US5418112A - Photosensitive compositions useful in three-dimensional part-building and having improved photospeed - Google Patents
Photosensitive compositions useful in three-dimensional part-building and having improved photospeed Download PDFInfo
- Publication number
- US5418112A US5418112A US08/150,621 US15062193A US5418112A US 5418112 A US5418112 A US 5418112A US 15062193 A US15062193 A US 15062193A US 5418112 A US5418112 A US 5418112A
- Authority
- US
- United States
- Prior art keywords
- layer
- parts
- photocurable polymer
- dimethoxy
- benzophenone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/029—Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/14—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0037—Production of three-dimensional images
Definitions
- the present invention relates to a photosensitive resin which is especially well adapted for use in rapid prototyping, or desktop manufacturing. It is particularly useful in photocurative rapid prototyping methods such as stereolithography.
- the resin is made from a photocurable polymer, Which is an ethylenically unsaturated oligomer based on a (meth)acrylate-containing polyurethane, polyester, or epoxy, and a photoinitiator system which is (1) an oxygen-reactive compound, (2) a photoinitiator and (3) a surface cure agent.
- the photocurable polymer and the photoinitiator system are typically formulated with reactive diluents.
- the formulated resin has an improved photospeed, which is measured by a critical exposure energy, E c , of less than 1.5 milliJoules per square centimeter (mJ/cm 2 ).
- E c critical exposure energy
- the instant resins are significantly faster (in some cases, about eight times faster) than the fastest currently commercially available stereolithography resin.
- One step in the introduction of a new product is the making of a model or prototype.
- a manufacturer needs a physical model of new or improved parts or products before it commits to production.
- the model allows people to physically handle the object, measure it, and detect design flaws early in the design process.
- Every year thousands of prototypes are made for parts that go into, for example, an automobile, airplane, or missile, the packaging of computers and other electronic systems, the components of consumer appliances, and dispensers for such products as perfumes, detergents, and shampoos--almost everything that is produced for personal use or for business.
- Traditional methods of making prototypes involve expensive and time-consuming manual procedures, or complex programming for numerically-controlled machine tools. Stereolithography has reduced the cost of prototypes and the time needed to make them. Many service bureaus make prototypes for companies that do not have their own stereolithographic equipment.
- Stereolithography can produce short runs of certain finished products in the final material configuration directly from a computer aided design ("CAD") software.
- CAD computer aided design
- Such parts have been used as a stopgap measure to introduce products until tooling has been perfected for conventional volume production parts.
- a current limitation on the direct manufacture of production parts is the lack of availability of proper photopolymers. Intense research and development work is going on to develop materials that could closely resemble the final material properties. Once the appropriate photopolymers are developed, manufacturing of actual production parts could be the main use for photopolymers.
- Stereolithography is a way to make solid objects by successively "printing" thin layers of a cured photopolymer, one on top of the other. A number of ways are known for accomplishing this end.
- U.S. Pat. No. 4,575,330 issued Mar. 11, 1986 to Hull describes a scanning method for stereolithography.
- a concentrated beam of ultraviolet light is focused on the surface of a container filled with a liquid photopolymer.
- the light beam moving under computer control, draws a layer of the object onto the surface of the liquid. Wherever the beam strikes the surface, a very thin layer of the photopolymer reacts by polymerizing or crosslinking, and changes into a solid.
- the entire operation is performed again and again, with the position of the object shifted slightly each time, so that the object is built up layer by layer.
- Very precise control of the light source is required, so a computer-controlled laser is used. The same is true of the position of the object, which is typically shifted downward in the container in small increments.
- a computer-aided design, manufacture and engineering (“CAD/CAM/CAE”) software mathematically slices a three-dimensional computer model of the object into many thin layers.
- the software controls the motion of a laser beam across the surface of the polymer and also the steplike position shifts of the formed object.
- the laser is focused in a tiny area and repeatedly scans across the surface of the liquid, leaving a pattern of cured and uncured areas in much the same way that light and dark points are made to produce a picture on a television screen. This type scanning is called raster scanning.
- a support structure is designed using the CAD program.
- the part is completely built, it is removed from the container, heated to drain off excess liquid, and, if necessary, further cured in an oven.
- the supporting structure is cut away, and the part may be painted or surface-finished.
- a high power UV lamp is used to flood expose one layer of a liquid photopolymer at a time through a negative, or mask.
- the mask is generated electrostatically on a glass plate with a toner powder.
- a 2-second exposure from the lamp solidifies a thin surface layer of the photopolymer.
- the exposed mask is physically wiped clean and electrostatically discharged to prepare it for the next cross-section image.
- the uncured photopolymer which is still liquid, is blown (air-knifed), vacuumed or washed away.
- the cavities left by the uncured polymer are filled with hot wax.
- the wax solidifies to form a support structure for the next layer.
- the entire surface is milled with a cutter to make it ready for the next polymer layer. The cycle is repeated, so that the object is built up layer by layer.
- Stereolithography has also been used to produce wax patterns indirectly or produce resin patterns directly.
- a conventional method involves creating a master pattern, then producing a die and injecting the die with wax. The wax model is then coated with a porous ceramic slurry, creating a mold. The wax is melted out and metal is poured in the ⁇ investment ⁇ mold. The mold is later broken or washed away, leaving the desired metal part.
- the resin pattern produced by stereolithography can replace wax and is burned rather than melted.
- a typical process involves heating the shelled pattern from ambient temperature to 100° C. over a 24-hour period so that there is an overall volume reduction, and subsequent burnout at 750°-900° C. This investment casting method is described in U.S. Pat. No. 4,844,144 issued to Murphy et al., Jul. 4, 1989.
- Stereolithography is also available as an alternative to room-temperature-vulcanized molds, which are made out of silicone rubber and are widely used to make prototypes as well as production parts in such industries as aerospace, sporting goods, toys and decorative plastic furniture. It customarily takes about eight weeks to make a conventional pattern and the mold. With stereolithographic patterns, this time can be reduced to three to five days.
- the photopolymer masters produced by stereolithography are also used to make hard tooling for injection molding and blow molding. Typically, the masters are coated with arc-sprayed atomized metal and subsequently built up with reinforced epoxies or similar hard compositions. Such molds are used for prototyping or limited production runs.
- stereolithography offers new advantages that were simply unavailable before.
- CAT scan data can be used to create 3-D models of damaged body parts. By manipulation and measurement of the model, a surgeon can devise more effective treatment of an injury, reducing the need for multiple surgeries in complicated cases such as hip replacements, and decreasing recovery time.
- the present invention focuses on an improved resin, which exhibits enhanced photospeed.
- a number of photosensitive resins are now available for use with stereolithographic equipment.
- Current stereolithographic applications require resins that are mechanically stable, with a resolution of 0.005 inch.
- the photopolymer must cure rapidly and also should be able to endure both cure and post-cure treatments with minimal distortion. At present it appears that there is some trade-off between speed of cure, or photospeed, and size stability during cure.
- the present invention exhibits greatly enhanced photospeed as well as size stability comparable with the fastest commercially available resins.
- E c the critical exposure energy, which is conveniently defined in "Rapid Phototyping & Manufacturing; Fundamentals of Stereolithography” P. F. Jacobs, Society of Manufacturing Engineers (1992), pp. 33, lines 14-16.
- This E c is the minimum exposure needed to induce polymerization and is measured in millijoules per square centimeter (mJ/cm 2 ).
- WINDOWPANE® technique also described in "Rapid Prototyping & Manufacturing", above, at pages 24-29. For the inventors' purposes, an E c of less than 1.5 is desirable.
- U.S. Pat. No. 4,942,001 issued to Murphy et al. Jul. 17, 1990 relates to polymeric (meth)acrylates blended with an N-vinyl monomer.
- N-vinyl monomer such as N-vinyl pyrrolidone
- This compound is a suspected carcinogen. It is disclosed that exposure to preferably 0.2 to about 5 Joules per square centimeter (Col. 2, lines 65-66) will partially cure the blend, resulting in gelatinous and mechanically weak object (Col. 3, lines 3-9) and is subject to further exposure to radiation or thermal cure. (Col. 4, lines 32-47).
- EP 506616 corresponding to Canadian Patent No. 2,063,982 relates to polyurethane (meth)acrylate and various (meth)acrylates and contains no photosensitivity data;
- EP 517657 relates to polyester (meth)acrylates;
- EP 378144 relates to (meth)acrylated epoxies and discloses that unspecified additives, including oxygen scavengers, can be used;
- EP 450254 relates to mixed free-radical and ionic photoinitiators with polymeric and monomeric (meth)acrylates and uses lasers with wavelengths greater than 400 nm.
- the commercially available materials from these classes can be obtained from Ciba, all of which have an E c >4 in the range of 300-400 nm.
- the present invention relates to a photopolymer composition which is especially well adapted for use in stereolithography, especially due to its improved photospeed coupled with acceptable size stability upon cure.
- the combination has the advantage of having an E c of less that 1.5 mJ/cm 2 .
- the photopackage, or photoinitiator system includes an air-curable initiator or blend of initiators plus a phosphorous compound, all of which are active in the range of about 250-400 nm.
- the photoinitiator can in concept be any initiator having a strong absorbance at 250-400 nm.
- These include the benzoin alkyl ethers, such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether.
- Another class of photoinitiators are the dialkoxyacetophenones exemplified by 2,2-dimethoxy-2-phenylacetophenone, i.e. Irgacure®651 (Ciba-Geigy) and 2,2-diethoxy-2-phenylacetophenone.
- Still another class of photoinitiators are the aldehyde and ketone carbonyl compounds having at least one aromatic nucleus attached directly to the carboxyl group.
- These photoinitiators include, but are not limited to benzophenone, acetophenone, o-methoxybenzophenone, acenaphthene-quinone, methyl ethyl ketone, valerophenone, hexanophenone, alpha-phenyl-butyrophenone, p-morpholinopropiophenone, dibenzosuberone, 4-morpholinobenzophenone, 4'-morpholinodeoxybezoin, p-diacetylbenzene, 4-aminobenzophenone, 4'-methoxyacetophenone, benzaldehyde, alpha-tetralone, 9-acetylphenanthrene, 2-acetylphenanthrene, 10-thioxanthenone, 3-acetyl
- a surface cure agent which is active in the range of 250-400 nm and not substantially inhibited by oxygen.
- Useable surface cure agents include the substituted and unsubstituted benzophenones, and benzophenone is preferred. This material is present in amounts of about 0.1 to 5 wt. %, preferably 0.5 to 3%.
- the phosphorous compound is sensitive to UV light. It has been found that the organic derivatives of phosphines are useful in this invention. They have the general formula PR 1 R 2 R 3 wherein R 1 , R 2 and R 3 can be identical or different and represent aliphatic, cycloaliphatic, aromatic, araliphatic or heterocyclic radicals, but one of the radicals R 1 , R 2 or R 3 must always be an aromatic radical, and the percentages by weight mentioned relate to the total weight of unsaturated resin and copolymerizable monomers.
- phosphines useful in this invention triphenylphosphine, tri-p-tolyl-phosphine diphenylmethyl-phosphine, diphenyl-ethyl-phosphinediphenylpropyl-prosphine, dimethyl-phenyl-phosphine, diethyl-phenyl-phosphine, dipropyl-phenyl-phosphine, divinyl-phenyl-phosphine, divinyl-p-methoxyphenyl-phosphine, divinyl-p-bromophenyl-phosphine, divinyl-p-tolyl-phosphine, diallyl-phenyl-phosphine, diallyl-p-methoxyphenyl-phosphine, diallyl-p-bromophenyl-phosphine, diallyl-p-tolyl-phosphine. Triphenyl phosphine is particularly preferred.
- Stabilizers may also be present, preferably in the range of about 0 to 3%. Preferred are 2,6-di-tert-butyl-4-methylphenol (preferably 0.1 to 1%) and 4-methoxy phenol (preferably 0.1 to 1%).
- the photopackage described above can be combined with a photopolymer composition, preferably (meth)acrylate containing oligomers of molecular weight (by GPC) of about 300-5,000, preferably 500-2,000, and various reactive diluents.
- a photopolymer composition preferably (meth)acrylate containing oligomers of molecular weight (by GPC) of about 300-5,000, preferably 500-2,000, and various reactive diluents.
- the photopolymer composition in concept can be any liquid ethylenically unsaturated monomer, oligomer, blend of oligomers or prepolymer based on polyurethane, polyester or (meth)acrylated epoxy and is typically formulated with reactive diluents.
- the liquid ethylenically unsaturated monomer, oligomer or prepolymer, i.e., the (meth)acrylate terminated polyene is of the formula: ##STR1## wherein R is H or CH 3 , R 1 is an organic moiety and n is at least 2 of the composition herein, can be made by various reactants and methods.
- One of these acrylate terminated materials is a polyether polyol urethane polyacrylate formed by reacting a polyether polyol with a polyisocyanate and a hydroxylalkyl acrylate.
- Another material may be a polyester polyol urethane polyacrylate formed by reacting a polyester polyol with a polyisocyanate and a hydroxyalkyl acrylate.
- Various commercially available polyurethane (meth)acrylates are the Photomer 6000 series, available from Henkel Corporation, Ambler, Pa., the CN 900 series from Sartomer Corp., West Chester, Pa. and the Ebecryl series by Radcure Specialities, Inc., Louisville, Ky.
- Still another material in this category is a (meth)acrylated epoxy formed by reacting a diepoxide with acrylic acid.
- a typical example is the reaction of Bisphenol-A epoxide with acrylic acid, represented by the Photomer 3000 series from Henkel.
- Yet another acrylate terminated material operable herein is a polyether or a polyester acrylate formed by end-capping a polyether polyol or polyester polyol with acrylic acid or acryoyl chloride.
- a commercially available example is the Photomer 5000 series from Henkel.
- Yet another acrylate terminated material operable herein is a urethane polyacrylate formed by end-capping a diisocyanate with a hydroxyalkyl acrylate.
- a polyurethane methacrylate which is the reaction product of a polyether polyol, toluene diisocyanate and hydroxy propyl methacrylate, and which has a molecular weight measured by GPC of about 1,200, is preferred.
- oligomers prepared by reacting polyether or polyester diols with diisocyanate and further with a hydroxyalkyl (meth)acrylate.
- the capped prepolymer is the radiation-curable polyurethane type which has received the most attention in research and development and achieved by far the most commercial use.
- Polyether polyols such as poly(propylene oxide) diols, copoly(ethene oxide-propylene oxide) diols, poly(tetramethylene oxide) diols, and the wide range of polyester diols have all been used in practice.
- the hydroxyl groups of these polyols have been converted to urethane groups by reaction with one of the isocyanate groups of the diisocyanate. All of the commercially available diisocyanates have been utilized for oligomers and achieved some commercial use, i.e.
- MDI methylene bis(phenyl isocyanate)
- TDI methylene bis(phenyl isocyanate): a commercial 80:20 mixture of 2,4- and 2,6-toluene diisocyanate, 3-isocyanatomethyl-3,5,5 trimethyl cyclohexylisocyanate (IPDI), methylene bis(cyclohexyl isocyanate) (Desmodur W), and probably others. More highly functional polyisocyanates could probably be used in polyurethane oligomers, but none are known to have been successful commercially.
- Various (meth)acrylates such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and 2-hydroxyethyl methacrylate are all commercially available and have been used effectively to introduce the acrylic unsaturation onto the ends of the oligomer chains.
- Hydroxyethyl acrylate is preferred because of the high reactivity of the hydroxyl group with isocyanate in the oligomer synthesis and the high reactivity of the acrylate double bond in the radiation-curing process. It is however the most toxic of the three.
- Pentaerythritol triacrylate which contains approximately one equivalent of hydroxyl and three acrylate groups per mole, has occasionally been used as a hydroxy functional acrylate to introduce terminal acrylic functionality in a polyurethane. It naturally makes oligomers much more highly functional in acrylate groups than the others listed.
- urethane--forming catalysts may be used in the reactions with diisocyanates.
- These catalysts include, e.g., organo-tin compounds such as dibutyl tin dilaurate and stannous octoate, organo-mercury compounds, tertiary amines, and mixtures of these materials.
- Possible diluents include, but are not limited to, trimethylolpropane triacrylate, hexanediol diacrylate, 1,3-butylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, polyethylene glycol 200 diacrylate, tetraethylene glycol diacrylate, triethylene glycol diacrylate, pentaerythritol tetraacrylate, tripropylene glycol diacrylate, ethyloxylated bisphenol-A diacrylate, trimethylolpropane diacrylate, di-trimethylolpropane tetraacrylate, triacrylate of tris(hydroxyethyl) isocyanurate, dipentaerythritol hydroxypentaacrylate, pentaerythritol triacrylate, ethoxylated trimethlyolpropane triacrylate, triethylene
- Mono(methyl)acrylates such as cyclohexyl methacrylate, isobornyl methacrylate, lauryl methacrylate and tetrahydrofurfuryl methacrylate are also operable, either singly or as blends, as reactive diluents.
- a preferred reactive diluent is ethoxylated trimethylol propane triacrylate.
- a polyurethane methacrylate which is a reaction product of a polyether polyol, toluene diisocyanate and hydroxypropyl methacrylate and has a Mw of 1,200, were mixed with 275 parts of premixed photoinitiators and stabilizers (25 parts) in 250 parts of ethoxylated trimethylol propane triacrylate.
- the premix comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone, 2 parts of triphenyl phosphine (pre-dissolved in 2 parts of diethylether with subsequent evaporation of the diethylether during mixing in a vented hood), 1.5 parts of 2,6-di-tert-butyl-4-methyl phenol and 0.5 parts of 4-methoxy phenol.
- the mixed components were allowed to deaerate before testing in the SLA-190 machine (3D Systems, Valencia, Calif.).
- the photospeed properties (Table 1) were obtained using standard test parts (WINDOW PANE®).
- the flexural modulus was measured by a three-point bending test on the Instron 1011 with standard rectangular pieces of 150 mm ⁇ 10 mm ⁇ 2.5 mm.
- Photomer 3016 a bisphenol A epoxy diacrylate from Henkel Corporation, Ambler, Pa.
- the premix comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone and 2 parts of triphenyl phosphine (pre-dissolved in 2 parts of diethylether with subsequent evaporation of the diethylether during mixing in a vented hood).
- the mixed components were allowed to dearate before testing in the SLA-190 machine (3D Systems, Valencia, Calif.).
- the photospeed properties (Table 1) were obtained using standard test parts (WINDOW PANE®).
- Photomer 5018 (a polyester acrylate from Henkel Corporation, Ambler, PA) were mixed with 250 parts of ethoxylated trimethylolpropane triacrylate and 35 parts of a premixture.
- the premixture comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone and 8 parts of triphenylphosphine pre-dissolved in 12 parts of tetrahydrofurfuryl acrylate.
- the mixed components were allowed to deaerate before testing in the SLA-190 stereolithography machine (3D Systems, Valencia, Calif.). The photospeed properties were obtained (see following table) using standard test parts (WINDOWPANE®).
- 225 parts of the polyurethane methacrylate of Example 1 were mixed with 250 parts of ethoxylated trimethylolpropane triacrylate and 35 parts of a premixture.
- the premixture comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone, 1.5 parts of 2,6-di-tert-butyl-4-methyl phenol, 0.5 parts of 4-methoxy phenol and 8 parts of triphenylphosphine pre-dissolved in 10 parts of a diethyleneglycol dimethacrylate.
- the mixed components were allowed to deaerate before testing in the SLA-190 stereolithography machine (3D Systems, Valencia, Calif.). The photospeed properties were obtained (see following table) using standard test parts (WINDOW PANE®).
- Examples 1 and 4 used polyurethane methacrylate oligomers having a molecular weight of about 1200 with the inventors' photopackage. It can be seen that the resulting photosensitive resins have an E c of 0.8 and 0.3 mJ/cm 2 respectively, which represents a sharp improvement over Comparative Examples 1-3, all of which are commercially available photosensitive resins.
- Example 2 shows a bisphenol epoxy diacrylate and Example 3 shows a polyester acrylate, both treated in the manner of the present invention. Again, the examples show that the use of the instant photopackage greatly enhances the photospeed of these compositions. The most preferred compositions comprise this photopackage with the polyurethane methacrylate oligomers and this combination gives photospeeds far superior to presently commercial compositions (e.g. Tables 1 and 1A).
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
A method useful for stereolithography that yields enhanced photospeed, as well as a photocurable polymer composition well adapted for use with same, are disclosed.
A preferred combination includes 1,2-dimethoxy-2-phenyl acetophenone, benzophenone, and triphenyl phosphine combined with a polyurethane (meth)acrylate oligomer.
Description
The present invention relates to a photosensitive resin which is especially well adapted for use in rapid prototyping, or desktop manufacturing. It is particularly useful in photocurative rapid prototyping methods such as stereolithography. The resin is made from a photocurable polymer, Which is an ethylenically unsaturated oligomer based on a (meth)acrylate-containing polyurethane, polyester, or epoxy, and a photoinitiator system which is (1) an oxygen-reactive compound, (2) a photoinitiator and (3) a surface cure agent. The photocurable polymer and the photoinitiator system are typically formulated with reactive diluents. The formulated resin has an improved photospeed, which is measured by a critical exposure energy, Ec, of less than 1.5 milliJoules per square centimeter (mJ/cm2). The instant resins are significantly faster (in some cases, about eight times faster) than the fastest currently commercially available stereolithography resin.
Manufacturers are using stereolithography to improve product quality, to reduce expenditures and minimize the time required to bring new products to market.
One step in the introduction of a new product is the making of a model or prototype. A manufacturer needs a physical model of new or improved parts or products before it commits to production. The model allows people to physically handle the object, measure it, and detect design flaws early in the design process. Every year thousands of prototypes are made for parts that go into, for example, an automobile, airplane, or missile, the packaging of computers and other electronic systems, the components of consumer appliances, and dispensers for such products as perfumes, detergents, and shampoos--almost everything that is produced for personal use or for business. Traditional methods of making prototypes involve expensive and time-consuming manual procedures, or complex programming for numerically-controlled machine tools. Stereolithography has reduced the cost of prototypes and the time needed to make them. Many service bureaus make prototypes for companies that do not have their own stereolithographic equipment.
Stereolithography can produce short runs of certain finished products in the final material configuration directly from a computer aided design ("CAD") software. Such parts have been used as a stopgap measure to introduce products until tooling has been perfected for conventional volume production parts. A current limitation on the direct manufacture of production parts is the lack of availability of proper photopolymers. Intense research and development work is going on to develop materials that could closely resemble the final material properties. Once the appropriate photopolymers are developed, manufacturing of actual production parts could be the main use for photopolymers.
Stereolithography is a way to make solid objects by successively "printing" thin layers of a cured photopolymer, one on top of the other. A number of ways are known for accomplishing this end.
For example, U.S. Pat. No. 4,575,330 issued Mar. 11, 1986 to Hull describes a scanning method for stereolithography. A concentrated beam of ultraviolet light is focused on the surface of a container filled with a liquid photopolymer. The light beam, moving under computer control, draws a layer of the object onto the surface of the liquid. Wherever the beam strikes the surface, a very thin layer of the photopolymer reacts by polymerizing or crosslinking, and changes into a solid. To make a three-dimensional object, the entire operation is performed again and again, with the position of the object shifted slightly each time, so that the object is built up layer by layer. Very precise control of the light source is required, so a computer-controlled laser is used. The same is true of the position of the object, which is typically shifted downward in the container in small increments.
A computer-aided design, manufacture and engineering ("CAD/CAM/CAE") software mathematically slices a three-dimensional computer model of the object into many thin layers. The software controls the motion of a laser beam across the surface of the polymer and also the steplike position shifts of the formed object. The laser is focused in a tiny area and repeatedly scans across the surface of the liquid, leaving a pattern of cured and uncured areas in much the same way that light and dark points are made to produce a picture on a television screen. This type scanning is called raster scanning.
When a part has a freestanding section or overhang, a support structure is designed using the CAD program. When the part is completely built, it is removed from the container, heated to drain off excess liquid, and, if necessary, further cured in an oven. The supporting structure is cut away, and the part may be painted or surface-finished.
Another method of stereolithography involves the use of a photomask to build objects. In that method, a high power UV lamp is used to flood expose one layer of a liquid photopolymer at a time through a negative, or mask. The mask is generated electrostatically on a glass plate with a toner powder. A 2-second exposure from the lamp solidifies a thin surface layer of the photopolymer. The exposed mask is physically wiped clean and electrostatically discharged to prepare it for the next cross-section image. At the same time, the uncured photopolymer, which is still liquid, is blown (air-knifed), vacuumed or washed away. The cavities left by the uncured polymer are filled with hot wax. The wax solidifies to form a support structure for the next layer. Finally, the entire surface is milled with a cutter to make it ready for the next polymer layer. The cycle is repeated, so that the object is built up layer by layer.
Stereolithography has also been used to produce wax patterns indirectly or produce resin patterns directly. A conventional method involves creating a master pattern, then producing a die and injecting the die with wax. The wax model is then coated with a porous ceramic slurry, creating a mold. The wax is melted out and metal is poured in the `investment` mold. The mold is later broken or washed away, leaving the desired metal part. In this process, the resin pattern produced by stereolithography can replace wax and is burned rather than melted. A typical process involves heating the shelled pattern from ambient temperature to 100° C. over a 24-hour period so that there is an overall volume reduction, and subsequent burnout at 750°-900° C. This investment casting method is described in U.S. Pat. No. 4,844,144 issued to Murphy et al., Jul. 4, 1989.
Stereolithography is also available as an alternative to room-temperature-vulcanized molds, which are made out of silicone rubber and are widely used to make prototypes as well as production parts in such industries as aerospace, sporting goods, toys and decorative plastic furniture. It customarily takes about eight weeks to make a conventional pattern and the mold. With stereolithographic patterns, this time can be reduced to three to five days. The photopolymer masters produced by stereolithography are also used to make hard tooling for injection molding and blow molding. Typically, the masters are coated with arc-sprayed atomized metal and subsequently built up with reinforced epoxies or similar hard compositions. Such molds are used for prototyping or limited production runs.
In other applications, stereolithography offers new advantages that were simply unavailable before. In the medical field, CAT scan data can be used to create 3-D models of damaged body parts. By manipulation and measurement of the model, a surgeon can devise more effective treatment of an injury, reducing the need for multiple surgeries in complicated cases such as hip replacements, and decreasing recovery time.
Other methods of building objects using separately cured layers of photopolymers are also available, and new methods and equipment are expected.
One of the basic limiting requirements for any stereolithographic method is the photosensitive resin. The present invention focuses on an improved resin, which exhibits enhanced photospeed. A number of photosensitive resins are now available for use with stereolithographic equipment. Current stereolithographic applications require resins that are mechanically stable, with a resolution of 0.005 inch. The photopolymer must cure rapidly and also should be able to endure both cure and post-cure treatments with minimal distortion. At present it appears that there is some trade-off between speed of cure, or photospeed, and size stability during cure. The present invention exhibits greatly enhanced photospeed as well as size stability comparable with the fastest commercially available resins.
As photopolymer technology develops, various test criteria have begun to evolve. One such criterion is related to photospeed and is called Ec, the critical exposure energy, which is conveniently defined in "Rapid Phototyping & Manufacturing; Fundamentals of Stereolithography" P. F. Jacobs, Society of Manufacturing Engineers (1992), pp. 33, lines 14-16. This Ec is the minimum exposure needed to induce polymerization and is measured in millijoules per square centimeter (mJ/cm2). A standard technique for determining Ec is the WINDOWPANE® technique, also described in "Rapid Prototyping & Manufacturing", above, at pages 24-29. For the inventors' purposes, an Ec of less than 1.5 is desirable.
Various resins have been explored for use in stereolithography. For example, International Publication No. WO 92/20014 relates to polymer compositions for stereolithography that contain vinyl ether-epoxide polymers. These compositions show good accuracy, but are extremely slow. That is, they have an Ec of 27. They are also sensitive to ambient humidity.
U.S. Pat. No. 5,167,882 issued to Jacobine et al. Dec. 1, 1992, relates to norbornene/thiol and free radical initiators. These materials are disclosed to lack stability (Col. 3, lines 46-51).
International Publication No. WO 92/02572 relates to an associative blend of electron-donating and electron-accepting groups, principally a mixture of polymeric and monomeric (meth)acrylates with free radical initiators and an inert thermoplastic material. These materials are disclosed to be especially useful for investment casting.
U.S. Pat. No. 4,942,001, issued to Murphy et al. Jul. 17, 1990 relates to polymeric (meth)acrylates blended with an N-vinyl monomer. The incorporation of an N-vinyl monomer such as N-vinyl pyrrolidone is undesirable, as this compound is a suspected carcinogen. It is disclosed that exposure to preferably 0.2 to about 5 Joules per square centimeter (Col. 2, lines 65-66) will partially cure the blend, resulting in gelatinous and mechanically weak object (Col. 3, lines 3-9) and is subject to further exposure to radiation or thermal cure. (Col. 4, lines 32-47).
Various publications relate to (meth)acrylate formulations and free-radical photopackages. EP 506616 corresponding to Canadian Patent No. 2,063,982 relates to polyurethane (meth)acrylate and various (meth)acrylates and contains no photosensitivity data; EP 517657 relates to polyester (meth)acrylates; EP 378144 relates to (meth)acrylated epoxies and discloses that unspecified additives, including oxygen scavengers, can be used; and EP 450254 relates to mixed free-radical and ionic photoinitiators with polymeric and monomeric (meth)acrylates and uses lasers with wavelengths greater than 400 nm. The commercially available materials from these classes can be obtained from Ciba, all of which have an Ec >4 in the range of 300-400 nm.
It is an object of the present invention to provide a novel photosensitive resin useful for stereolithography.
It is a further object of the present invention to provide a photosensitive resin having an improved photospeed.
It is yet another object of the present invention to provide a photopackage for a photosensitive resin that, upon formulation with an ethylenically unsaturated oligomer based on a (meth)acrylate-containing polyurethane, polyester, or (meth)acrylated epoxy, and also reactive diluents results in a photosensitive resin having a critical exposure energy Ec of less than 1.5 mJ/cm2.
Other objects and advantages of the present invention will become apparent through the disclosure herein.
The present invention relates to a photopolymer composition which is especially well adapted for use in stereolithography, especially due to its improved photospeed coupled with acceptable size stability upon cure. The combination has the advantage of having an Ec of less that 1.5 mJ/cm2.
The Photopackage
The photopackage, or photoinitiator system, includes an air-curable initiator or blend of initiators plus a phosphorous compound, all of which are active in the range of about 250-400 nm.
The photoinitiator can in concept be any initiator having a strong absorbance at 250-400 nm. These include the benzoin alkyl ethers, such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether. Another class of photoinitiators are the dialkoxyacetophenones exemplified by 2,2-dimethoxy-2-phenylacetophenone, i.e. Irgacure®651 (Ciba-Geigy) and 2,2-diethoxy-2-phenylacetophenone. Still another class of photoinitiators are the aldehyde and ketone carbonyl compounds having at least one aromatic nucleus attached directly to the carboxyl group. These photoinitiators include, but are not limited to benzophenone, acetophenone, o-methoxybenzophenone, acenaphthene-quinone, methyl ethyl ketone, valerophenone, hexanophenone, alpha-phenyl-butyrophenone, p-morpholinopropiophenone, dibenzosuberone, 4-morpholinobenzophenone, 4'-morpholinodeoxybezoin, p-diacetylbenzene, 4-aminobenzophenone, 4'-methoxyacetophenone, benzaldehyde, alpha-tetralone, 9-acetylphenanthrene, 2-acetylphenanthrene, 10-thioxanthenone, 3-acetylphenanthrene, 3-acetylindone, 9-fluorenone, 1-indanone, 1,3,5-triacetylbenzene, thioxanthen-9-one, xanthene-9-one, 7-H-benz[de]-anthracen-7-one, 1-naphthaldehyde, 4,4'-bis(dimethylamino)-benzophenone, fluorene-9-one, 1'-acetonaphthone, 2'-acetonaphthone, 2,3-butanedione, acetonaphthene, benz[a]anthracene 7.12 diene, etc. Most preferred is 2,2-dimethoxy- 2-phenyl acetophenone. The photoinitiator is present in an amount of about 0.1 to 8 wt. %, preferably about 1 to 4 wt. %.
It is preferred to add a surface cure agent which is active in the range of 250-400 nm and not substantially inhibited by oxygen. Useable surface cure agents include the substituted and unsubstituted benzophenones, and benzophenone is preferred. This material is present in amounts of about 0.1 to 5 wt. %, preferably 0.5 to 3%.
The phosphorous compound is sensitive to UV light. It has been found that the organic derivatives of phosphines are useful in this invention. They have the general formula PR1 R2 R3 wherein R1, R2 and R3 can be identical or different and represent aliphatic, cycloaliphatic, aromatic, araliphatic or heterocyclic radicals, but one of the radicals R1, R2 or R3 must always be an aromatic radical, and the percentages by weight mentioned relate to the total weight of unsaturated resin and copolymerizable monomers.
The following are representative phosphines useful in this invention: triphenylphosphine, tri-p-tolyl-phosphine diphenylmethyl-phosphine, diphenyl-ethyl-phosphinediphenylpropyl-prosphine, dimethyl-phenyl-phosphine, diethyl-phenyl-phosphine, dipropyl-phenyl-phosphine, divinyl-phenyl-phosphine, divinyl-p-methoxyphenyl-phosphine, divinyl-p-bromophenyl-phosphine, divinyl-p-tolyl-phosphine, diallyl-phenyl-phosphine, diallyl-p-methoxyphenyl-phosphine, diallyl-p-bromophenyl-phosphine, diallyl-p-tolyl-phosphine. Triphenyl phosphine is particularly preferred. This material is present in an amount of about 0.1 to 5 weight percent, preferably 0.2 to 3 wt. %.
Stabilizers may also be present, preferably in the range of about 0 to 3%. Preferred are 2,6-di-tert-butyl-4-methylphenol (preferably 0.1 to 1%) and 4-methoxy phenol (preferably 0.1 to 1%).
The photopackage described above can be combined with a photopolymer composition, preferably (meth)acrylate containing oligomers of molecular weight (by GPC) of about 300-5,000, preferably 500-2,000, and various reactive diluents.
The Photopolymer Composition
The photopolymer composition in concept can be any liquid ethylenically unsaturated monomer, oligomer, blend of oligomers or prepolymer based on polyurethane, polyester or (meth)acrylated epoxy and is typically formulated with reactive diluents.
The liquid ethylenically unsaturated monomer, oligomer or prepolymer, i.e., the (meth)acrylate terminated polyene is of the formula: ##STR1## wherein R is H or CH3, R1 is an organic moiety and n is at least 2 of the composition herein, can be made by various reactants and methods.
One of these acrylate terminated materials is a polyether polyol urethane polyacrylate formed by reacting a polyether polyol with a polyisocyanate and a hydroxylalkyl acrylate. Another material may be a polyester polyol urethane polyacrylate formed by reacting a polyester polyol with a polyisocyanate and a hydroxyalkyl acrylate. Various commercially available polyurethane (meth)acrylates are the Photomer 6000 series, available from Henkel Corporation, Ambler, Pa., the CN 900 series from Sartomer Corp., West Chester, Pa. and the Ebecryl series by Radcure Specialities, Inc., Louisville, Ky. Still another material in this category is a (meth)acrylated epoxy formed by reacting a diepoxide with acrylic acid. A typical example is the reaction of Bisphenol-A epoxide with acrylic acid, represented by the Photomer 3000 series from Henkel. Yet another acrylate terminated material operable herein is a polyether or a polyester acrylate formed by end-capping a polyether polyol or polyester polyol with acrylic acid or acryoyl chloride. A commercially available example is the Photomer 5000 series from Henkel. Yet another acrylate terminated material operable herein is a urethane polyacrylate formed by end-capping a diisocyanate with a hydroxyalkyl acrylate.
A polyurethane methacrylate which is the reaction product of a polyether polyol, toluene diisocyanate and hydroxy propyl methacrylate, and which has a molecular weight measured by GPC of about 1,200, is preferred.
Polyurethane (meth)acrylate
These are oligomers prepared by reacting polyether or polyester diols with diisocyanate and further with a hydroxyalkyl (meth)acrylate.
The capped prepolymer is the radiation-curable polyurethane type which has received the most attention in research and development and achieved by far the most commercial use.
Polyether polyols such as poly(propylene oxide) diols, copoly(ethene oxide-propylene oxide) diols, poly(tetramethylene oxide) diols, and the wide range of polyester diols have all been used in practice. The hydroxyl groups of these polyols have been converted to urethane groups by reaction with one of the isocyanate groups of the diisocyanate. All of the commercially available diisocyanates have been utilized for oligomers and achieved some commercial use, i.e. methylene bis(phenyl isocyanate) (MDI), (TDI): a commercial 80:20 mixture of 2,4- and 2,6-toluene diisocyanate, 3-isocyanatomethyl-3,5,5 trimethyl cyclohexylisocyanate (IPDI), methylene bis(cyclohexyl isocyanate) (Desmodur W), and probably others. More highly functional polyisocyanates could probably be used in polyurethane oligomers, but none are known to have been successful commercially.
Various (meth)acrylates such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and 2-hydroxyethyl methacrylate are all commercially available and have been used effectively to introduce the acrylic unsaturation onto the ends of the oligomer chains. Hydroxyethyl acrylate is preferred because of the high reactivity of the hydroxyl group with isocyanate in the oligomer synthesis and the high reactivity of the acrylate double bond in the radiation-curing process. It is however the most toxic of the three. Pentaerythritol triacrylate (PETA), which contains approximately one equivalent of hydroxyl and three acrylate groups per mole, has occasionally been used as a hydroxy functional acrylate to introduce terminal acrylic functionality in a polyurethane. It naturally makes oligomers much more highly functional in acrylate groups than the others listed.
Conventional urethane--forming catalysts may be used in the reactions with diisocyanates. These catalysts include, e.g., organo-tin compounds such as dibutyl tin dilaurate and stannous octoate, organo-mercury compounds, tertiary amines, and mixtures of these materials.
Hydroxyalkyl (meth)acrylate
This material has the structure HO-R8 OC(:O)-C(R9)=CH2, where the R's are as above defined. Within this structure hydroxyethylmethacrylate is preferred.
Diluents
Possible diluents include, but are not limited to, trimethylolpropane triacrylate, hexanediol diacrylate, 1,3-butylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, polyethylene glycol 200 diacrylate, tetraethylene glycol diacrylate, triethylene glycol diacrylate, pentaerythritol tetraacrylate, tripropylene glycol diacrylate, ethyloxylated bisphenol-A diacrylate, trimethylolpropane diacrylate, di-trimethylolpropane tetraacrylate, triacrylate of tris(hydroxyethyl) isocyanurate, dipentaerythritol hydroxypentaacrylate, pentaerythritol triacrylate, ethoxylated trimethlyolpropane triacrylate, triethylene glycol dimethacrylate, ethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol-200 dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene glycol-600 dimethacrylate, 1,3-butylene glycol dimethacrylate, ethoxylated bisphenol-A dimethacrylate, trimethylolpropane trimethacrylate, diethylene glycol dimethacrylate, 1,4-butanediol diacrylate, diethylene glycol dimethacrylate, pentaerythritol tetramethacrylate, glycerin dimethacrylate, trimethylolpropane dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol diacrylate and the like and mixtures thereof which can be added to the photopolymerizable composition to modify the cured product. Mono(methyl)acrylates such as cyclohexyl methacrylate, isobornyl methacrylate, lauryl methacrylate and tetrahydrofurfuryl methacrylate are also operable, either singly or as blends, as reactive diluents. A preferred reactive diluent is ethoxylated trimethylol propane triacrylate.
One of ordinary skill in the art will readily recognize that various substitutions can be made for the named materials. The Examples below are provided for the purpose of illustrating the practice of the invention, and do not limit its scope or the scope of the claims which follow.
225 parts of a polyurethane methacrylate, which is a reaction product of a polyether polyol, toluene diisocyanate and hydroxypropyl methacrylate and has a Mw of 1,200, were mixed with 275 parts of premixed photoinitiators and stabilizers (25 parts) in 250 parts of ethoxylated trimethylol propane triacrylate. The premix comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone, 2 parts of triphenyl phosphine (pre-dissolved in 2 parts of diethylether with subsequent evaporation of the diethylether during mixing in a vented hood), 1.5 parts of 2,6-di-tert-butyl-4-methyl phenol and 0.5 parts of 4-methoxy phenol. The mixed components were allowed to deaerate before testing in the SLA-190 machine (3D Systems, Valencia, Calif.). The photospeed properties (Table 1) were obtained using standard test parts (WINDOW PANE®). The flexural modulus was measured by a three-point bending test on the Instron 1011 with standard rectangular pieces of 150 mm×10 mm×2.5 mm.
225 parts of Photomer 3016, a bisphenol A epoxy diacrylate from Henkel Corporation, Ambler, Pa., were mixed with 267 parts of premixed photoinitiators and stabilizers (17 parts) in 250 parts of ethoxylated trimethylol propane triacrylate. The premix comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone and 2 parts of triphenyl phosphine (pre-dissolved in 2 parts of diethylether with subsequent evaporation of the diethylether during mixing in a vented hood). The mixed components were allowed to dearate before testing in the SLA-190 machine (3D Systems, Valencia, Calif.). The photospeed properties (Table 1) were obtained using standard test parts (WINDOW PANE®).
The properties of three commercially available resins, Somos 2100 (Comparative Example 1) from E. I. dupont de Nemours and Cibatool XB5139 (Comparative Example 2) from Ciba Corporation and Loctite 8100 (Comparative Example 3) from Loctite Corporation, were obtained on the same SLA-190 as Examples 1-2.
TABLE 1 ______________________________________ Comparative Example Example 1 Example 2 1 2 3 ______________________________________ E.sub.c : Minimum cure 0.8 1.4 4.6 3.2 7.5 energy, mJ/cm.sup.2 D.sub.p : Depth of Cure, 5.8 5.6 6.3 5.8 5.7 mils Green Flexural 363 -- 484 388 -- Modulus, N/nm.sup.2 ______________________________________
Photospeed and depth of cure of other commercially available resins reported from the literature are listed below.
TABLE 1A ______________________________________ PHOTOSPEED OF COMMERCIAL STEREOLITHOGRAPHY RESINS Resin D.sub.p (mils) E.sub.c (mJ/cm.sup.2) ______________________________________ Cibatool XB 5143 (Ciba) 5.7 5.2 Cibatool XB 5149 (Ciba) 5.7 5.2 Cibatool XB 5154 (Ciba) 5.6 4.4 Cibatool XB 5170 (Ciba) 4.8 13.5 Somos 4110 (DuPont) 4.5 2.5 Somos 5110 (DuPont) 4.0 2.5 Somos 2110 (DuPont) 4.7 3.5 Somos 3110 (DuPont) 5.0 2.5 Exactomer 2201 (Allied 7.0 27.0 Signal) ______________________________________
225 parts of Photomer 5018 (a polyester acrylate from Henkel Corporation, Ambler, PA) were mixed with 250 parts of ethoxylated trimethylolpropane triacrylate and 35 parts of a premixture. The premixture comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone and 8 parts of triphenylphosphine pre-dissolved in 12 parts of tetrahydrofurfuryl acrylate. The mixed components were allowed to deaerate before testing in the SLA-190 stereolithography machine (3D Systems, Valencia, Calif.). The photospeed properties were obtained (see following table) using standard test parts (WINDOWPANE®).
225 parts of the polyurethane methacrylate of Example 1 were mixed with 250 parts of ethoxylated trimethylolpropane triacrylate and 35 parts of a premixture. The premixture comprised 11 parts of 2,2-dimethoxy-2-phenyl acetophenone, 4 parts of benzophenone, 1.5 parts of 2,6-di-tert-butyl-4-methyl phenol, 0.5 parts of 4-methoxy phenol and 8 parts of triphenylphosphine pre-dissolved in 10 parts of a diethyleneglycol dimethacrylate. The mixed components were allowed to deaerate before testing in the SLA-190 stereolithography machine (3D Systems, Valencia, Calif.). The photospeed properties were obtained (see following table) using standard test parts (WINDOW PANE®).
TABLE 2 ______________________________________ Property Example 3 Example 4 ______________________________________ E.sub.c : Mininum cure energy, mJ/cm.sup.2 2.4 0.3 D.sub.p : Depth of Cure, mils 6.6 5.1 ______________________________________
Examples 1 and 4 used polyurethane methacrylate oligomers having a molecular weight of about 1200 with the inventors' photopackage. It can be seen that the resulting photosensitive resins have an Ec of 0.8 and 0.3 mJ/cm2 respectively, which represents a sharp improvement over Comparative Examples 1-3, all of which are commercially available photosensitive resins. Example 2 shows a bisphenol epoxy diacrylate and Example 3 shows a polyester acrylate, both treated in the manner of the present invention. Again, the examples show that the use of the instant photopackage greatly enhances the photospeed of these compositions. The most preferred compositions comprise this photopackage with the polyurethane methacrylate oligomers and this combination gives photospeeds far superior to presently commercial compositions (e.g. Tables 1 and 1A).
Claims (12)
1. A method of manufacturing a three dimensional object from successive layers of a photocurable composition comprising the steps of:
(a) forming a layer of a photocurable polymer composition;
(b) exposing the layer to actinic radiation, thereby photocuring at least a portion of the layer;
(c) introducing a new layer of photocurable polymer composition into the exposed layer in (b);
(d) exposing the new layer in (c) to actinic radiation, thereby photocuring at least a portion of the layer in (c)
wherein the photocurable polymer composition is UV curable in air and comprises
A. a photoinitiator system which is
(1) at least one trivalent phosphorous compound;
(2) at least one photoinitiator; and
(3) a surface cure agent, and
B. a photopolymer which is an ethylenically unsaturated oligomer based on polyurethane, polyester or epoxy, wherein the photosensitive composition has a critical exposure energy Ec of less than about 1.5 mJ/cm2 and
C. reactive diluents.
2. The method of claim 1, wherein (1) is an organic derivative of a phosphine.
3. The method of claim 1, wherein (1) is triphenyl phosphine.
4. The method of claim 1, wherein (2) is 2,2-dimethoxy-2-phenyl acetophenone.
5. The method of claim 1, wherein (3) is a substituted or unsubstituted benzophenone.
6. The method of claim 1, wherein oligomer B is a polyurethane (meth)acrylate.
7. The method of claim 1, wherein oligomer B is a reaction product of a polyether polyol, toluene diisocyanate and hydroxypropyl methacrylate.
8. The method of claim 1 wherein one of the reactive diluents C is ethoxylated trimethylol propane triacrylate.
9. The method of claim 1 wherein the photocurable polymer comprises, in weight percent:
(1) triphenylphosphine (0.1 to 5%);
(2) 2,2-dimethoxy-2-phenyl acetophenone (0.1 to 8%);
(3) benzophenone (0.1 to 5%).
10. The method of claim 1 wherein the photocurable polymer further comprises (4) stabilizers (0.1 to 3%).
11. The method of claim 10 wherein the stabilizers (4) are 2,6-di-tert-butyl-4-methyl phenol and 4-methoxy phenol.
12. The method of claim 11 wherein, in weight percent:
(1) is triphenylphosphine (0.2 to 3%);
(2) is 2,2-dimethoxy-2-phenyl acetophenone (1 to 4%);
(3) benzophenone (0.5 to 3%);
(4) is 2,6-di-tert-butyl-4-methyl phenol (0.1 to 1%) and 4-methoxyphenol (0.1 to 1%).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/150,621 US5418112A (en) | 1993-11-10 | 1993-11-10 | Photosensitive compositions useful in three-dimensional part-building and having improved photospeed |
PCT/US1994/012021 WO1995013565A1 (en) | 1993-11-10 | 1994-10-20 | Photosensitive compositions useful in three-dimensional part-building and having improved photospeed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/150,621 US5418112A (en) | 1993-11-10 | 1993-11-10 | Photosensitive compositions useful in three-dimensional part-building and having improved photospeed |
Publications (1)
Publication Number | Publication Date |
---|---|
US5418112A true US5418112A (en) | 1995-05-23 |
Family
ID=22535341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/150,621 Expired - Fee Related US5418112A (en) | 1993-11-10 | 1993-11-10 | Photosensitive compositions useful in three-dimensional part-building and having improved photospeed |
Country Status (2)
Country | Link |
---|---|
US (1) | US5418112A (en) |
WO (1) | WO1995013565A1 (en) |
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498782A (en) * | 1993-09-08 | 1996-03-12 | Union Carbide Chemicals & Plastics Technology Corporation | Distortion control additives for ultraviolet-curable compositions |
US5719227A (en) * | 1995-12-04 | 1998-02-17 | Armstrong World Industries, Inc. | Coating composition |
US5811142A (en) | 1996-04-03 | 1998-09-22 | Tenneo Packaging | Modified atmosphere package for cut of raw meat |
US5824260A (en) * | 1995-06-14 | 1998-10-20 | United Technologies Corporation | Method of producing a strong, dimensionally stable object |
FR2773162A1 (en) * | 1997-12-29 | 1999-07-02 | Essilor Int | PHOTOPOLYMERIZABLE COMPOSITION BASED ON POLYISO MONOMERS (THIO) CYANATES AND MONOMERS WITH PROTON LABILE, COMPRISING A PHOTO-INTAKE AGENT AND A PHOTOPOLYMERIZATION ACTIVATION AGENT AND OPTICAL ARTIFACTS OBTAINED |
US5928560A (en) | 1996-08-08 | 1999-07-27 | Tenneco Packaging Inc. | Oxygen scavenger accelerator |
US6007967A (en) * | 1997-12-11 | 1999-12-28 | Polyfibron Technologies, Inc. | Methods for off-contact imaging solid printing plates |
US6251557B1 (en) | 1996-05-09 | 2001-06-26 | Dsm N.V. | Photosensitive resin composition for rapid prototyping and a process for the manufacture of 3-dimensional objects |
US6309581B1 (en) | 1998-02-13 | 2001-10-30 | Milwaukee School Of Engineering | Method of making a three dimensional object |
US6379866B2 (en) * | 2000-03-31 | 2002-04-30 | Dsm Desotech Inc | Solid imaging compositions for preparing polypropylene-like articles |
US6395195B1 (en) | 1996-08-08 | 2002-05-28 | Pactiv Corporation | Oxygen scavenger accelerator |
WO2002055613A2 (en) | 2001-01-12 | 2002-07-18 | Dsm Ip Assets B.V. | Radiation curable compositions comprising alkoxylated aliphatic reactive diluents |
US6455620B1 (en) * | 1999-08-10 | 2002-09-24 | Eastman Chemical Company | Polyether containing polymers for oxygen scavenging |
US20030004600A1 (en) * | 2001-05-11 | 2003-01-02 | Stratasys, Inc. | Material and method for three-dimensional modeling |
US6623687B1 (en) | 1999-08-06 | 2003-09-23 | Milwaukee School Of Engineering | Process of making a three-dimensional object |
US6641897B2 (en) | 1998-02-13 | 2003-11-04 | The Milwaukee School Of Engineering | Three dimensional object |
US20040009428A1 (en) * | 2001-07-04 | 2004-01-15 | Kenji Tamura | Resist curable resin composition and cured article thereof |
EP1385055A1 (en) | 2002-07-18 | 2004-01-28 | 3D Systems, Inc. | Stereolithographic resins with high temperature and high impact resistance |
US6727043B2 (en) | 1998-07-10 | 2004-04-27 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polyethylene-like articles |
US6762002B2 (en) | 1998-07-10 | 2004-07-13 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polypropylene-like articles |
US20040137368A1 (en) * | 2003-01-13 | 2004-07-15 | 3D Systems, Inc. | Stereolithographic resins containing selected oxetane compounds |
US20040135292A1 (en) * | 2003-01-07 | 2004-07-15 | Coats Alma L. | Stereolithography resins and methods |
US20040170923A1 (en) * | 2003-02-27 | 2004-09-02 | 3D Systems, Inc. | Colored stereolithographic resins |
US20040257271A1 (en) * | 2003-02-28 | 2004-12-23 | Jacobson Boris Solomon | Method and apparatus for a power system for phased-array radar |
US20050040562A1 (en) * | 2003-08-19 | 2005-02-24 | 3D Systems Inc. | Nanoparticle-filled stereolithographic resins |
US20050074691A1 (en) * | 1998-07-10 | 2005-04-07 | Lawton John A. | Solid imaging compositions for preparing polypropylene-like articles |
US20050165127A1 (en) * | 2003-12-31 | 2005-07-28 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polyethylene-like articles |
US20080257216A1 (en) * | 2007-04-20 | 2008-10-23 | Ppg Industries Ohio, Inc. | New urethane (meth)acrylates and their use in curable coating compositions |
US20080318489A1 (en) * | 2007-06-18 | 2008-12-25 | Eisenhut Anthony R | Radiation curable arts and crafts toy |
US20100140849A1 (en) * | 2007-03-22 | 2010-06-10 | Stratasys, Inc. | Extrusion-based layered deposition systems using selective radiation exposure |
US7795349B2 (en) | 1999-11-05 | 2010-09-14 | Z Corporation | Material systems and methods of three-dimensional printing |
US7905951B2 (en) | 2006-12-08 | 2011-03-15 | Z Corporation | Three dimensional printing material system and method using peroxide cure |
US7968626B2 (en) | 2007-02-22 | 2011-06-28 | Z Corporation | Three dimensional printing material system and method using plasticizer-assisted sintering |
US8167999B2 (en) | 2007-01-10 | 2012-05-01 | 3D Systems, Inc. | Three-dimensional printing material system with improved color, article performance, and ease of use |
US9453142B2 (en) | 2014-06-23 | 2016-09-27 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
WO2016200972A1 (en) | 2015-06-08 | 2016-12-15 | Dsm Ip Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
WO2017059222A1 (en) | 2015-10-01 | 2017-04-06 | Dsm Ip Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10316213B1 (en) | 2017-05-01 | 2019-06-11 | Formlabs, Inc. | Dual-cure resins and related methods |
WO2019117723A1 (en) | 2017-12-15 | 2019-06-20 | Dsm Ip Assets B.V. | Compositions and methods for high-temperature jetting of viscous thermosets to create solid articles via additive fabrication |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
WO2019204807A1 (en) | 2018-04-20 | 2019-10-24 | Dsm Ip Assets, B.V. | Radiation curable compositions for additive fabrication |
US10500786B2 (en) | 2016-06-22 | 2019-12-10 | Carbon, Inc. | Dual cure resins containing microwave absorbing materials and methods of using the same |
US10501572B2 (en) | 2015-12-22 | 2019-12-10 | Carbon, Inc. | Cyclic ester dual cure resins for additive manufacturing |
US10538031B2 (en) | 2015-12-22 | 2020-01-21 | Carbon, Inc. | Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products |
US10639844B2 (en) | 2015-12-22 | 2020-05-05 | Carbon, Inc. | Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins |
US10647054B2 (en) | 2015-12-22 | 2020-05-12 | Carbon, Inc. | Accelerants for additive manufacturing with dual cure resins |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10787583B2 (en) | 2015-12-22 | 2020-09-29 | Carbon, Inc. | Method of forming a three-dimensional object comprised of a silicone polymer or co-polymer |
US10786945B2 (en) | 2013-10-30 | 2020-09-29 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US10792858B2 (en) | 2015-12-22 | 2020-10-06 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resin |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
JP2020536142A (en) * | 2017-10-02 | 2020-12-10 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | UV curable compositions, methods, and articles obtained from them with controlled mechanical and chemical properties. |
US10882110B2 (en) | 2015-09-09 | 2021-01-05 | Voxeljet Ag | Method and device for applying fluids |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
WO2021042013A1 (en) | 2019-08-30 | 2021-03-04 | Dsm Ip Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US10975193B2 (en) | 2015-09-09 | 2021-04-13 | Carbon, Inc. | Epoxy dual cure resins for additive manufacturing |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
CN113906066A (en) * | 2019-05-30 | 2022-01-07 | 罗杰斯公司 | Photocurable composition for stereolithography, stereolithography method using the same, polymer assembly formed by stereolithography method, and device comprising the polymer assembly |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US11440244B2 (en) | 2015-12-22 | 2022-09-13 | Carbon, Inc. | Dual precursor resin systems for additive manufacturing with dual cure resins |
US11458673B2 (en) | 2017-06-21 | 2022-10-04 | Carbon, Inc. | Resin dispenser for additive manufacturing |
US11504903B2 (en) | 2018-08-28 | 2022-11-22 | Carbon, Inc. | 1K alcohol dual cure resins for additive manufacturing |
US11535686B2 (en) | 2017-03-09 | 2022-12-27 | Carbon, Inc. | Tough, high temperature polymers produced by stereolithography |
US11633908B2 (en) * | 2018-03-02 | 2023-04-25 | Formlabs, Inc. | Latent cure resins and related methods |
US11891485B2 (en) | 2015-11-05 | 2024-02-06 | Carbon, Inc. | Silicone dual cure resins for additive manufacturing |
US11890810B2 (en) | 2015-09-16 | 2024-02-06 | Voxeljet Ag | Device and method for producing three-dimensional shaped parts |
US11975487B2 (en) | 2016-03-09 | 2024-05-07 | Voxeljet Ag | Method and device for producing 3D shaped parts using construction field tools |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19723892C1 (en) * | 1997-06-06 | 1998-09-03 | Rainer Hoechsmann | Method for producing components by build-up technology |
WO2001072502A1 (en) | 2000-03-24 | 2001-10-04 | Generis Gmbh | Method for manufacturing a structural part by deposition technique |
CN103331911B (en) * | 2013-06-18 | 2015-09-23 | 珠海天威飞马打印耗材有限公司 | Rapid three dimensional printing forming equipment and 3D solid thing forming method |
US11616302B2 (en) | 2018-01-15 | 2023-03-28 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
CN108752539B (en) * | 2018-05-28 | 2020-12-04 | 南昌大学 | Cation-free radical hybrid 3D printing stereolithography rapid prototyping photosensitive resin and preparation method thereof |
US11552390B2 (en) | 2018-09-11 | 2023-01-10 | Rogers Corporation | Dielectric resonator antenna system |
GB2594171A (en) | 2018-12-04 | 2021-10-20 | Rogers Corp | Dielectric electromagnetic structure and method of making the same |
US20220243059A1 (en) * | 2019-06-14 | 2022-08-04 | Huntsman International Llc | A curable polyurethane based resin for use in additive manufacturing |
DE102020109280A1 (en) | 2020-04-02 | 2021-10-07 | Kulzer Gmbh | Light-curing composition for the production of dental components with matt surfaces |
US11482790B2 (en) | 2020-04-08 | 2022-10-25 | Rogers Corporation | Dielectric lens and electromagnetic device with same |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4221646A (en) * | 1978-05-01 | 1980-09-09 | The Goodyear Tire & Rubber Company | Treated polyetherurethane photopolymer composition containing triaryl phosphine |
US4366228A (en) * | 1980-09-05 | 1982-12-28 | Eastman Kodak Company | Photopolymerizable compositions featuring novel co-initiators |
US4575330A (en) * | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US4632897A (en) * | 1981-08-07 | 1986-12-30 | Basf Aktiengesellschaft | Photopolymerizable recording material suitable for the production of photoresist layers |
US4752498A (en) * | 1987-03-02 | 1988-06-21 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US4844144A (en) * | 1988-08-08 | 1989-07-04 | Desoto, Inc. | Investment casting utilizing patterns produced by stereolithography |
CA2007295A1 (en) * | 1989-01-10 | 1990-07-10 | Max Hunziker | Photocurable compositions |
US4942060A (en) * | 1989-04-21 | 1990-07-17 | E. I. Du Pont De Nemours And Company | Solid imaging method utilizing photohardenable compositions of self limiting thickness by phase separation |
US4942001A (en) * | 1988-03-02 | 1990-07-17 | Inc. DeSoto | Method of forming a three-dimensional object by stereolithography and composition therefore |
US4961154A (en) * | 1986-06-03 | 1990-10-02 | Scitex Corporation Ltd. | Three dimensional modelling apparatus |
CA2028537A1 (en) * | 1989-10-27 | 1991-04-28 | Manfred Hofmann | Process for adjusting the sensitivity to radiation of photopolymerizable compositions |
EP0450254A1 (en) * | 1990-04-03 | 1991-10-09 | Ciba-Geigy Ag | Photocurable compositions |
WO1992002572A1 (en) * | 1990-07-30 | 1992-02-20 | Dsm N.V. | Associative reactive blend-containing compositions |
CA2063982A1 (en) * | 1991-03-27 | 1992-09-28 | Ciba Specialty Chemicals Holding Inc. | Photosensitive composition based on acrylates |
WO1992020014A1 (en) * | 1991-05-01 | 1992-11-12 | Allied-Signal Inc. | Stereolithography using vinyl ether-epoxide polymers |
US5167882A (en) * | 1990-12-21 | 1992-12-01 | Loctite Corporation | Stereolithography method |
EP0517657A1 (en) * | 1991-06-04 | 1992-12-09 | Ciba-Geigy Ag | Photosensitive compositions |
US5198159A (en) * | 1990-10-09 | 1993-03-30 | Matsushita Electric Works, Ltd. | Process of fabricating three-dimensional objects from a light curable resin liquid |
US5208110A (en) * | 1988-06-21 | 1993-05-04 | Ciba-Geigy Corporation | Security cards |
-
1993
- 1993-11-10 US US08/150,621 patent/US5418112A/en not_active Expired - Fee Related
-
1994
- 1994-10-20 WO PCT/US1994/012021 patent/WO1995013565A1/en active Application Filing
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4221646A (en) * | 1978-05-01 | 1980-09-09 | The Goodyear Tire & Rubber Company | Treated polyetherurethane photopolymer composition containing triaryl phosphine |
US4366228A (en) * | 1980-09-05 | 1982-12-28 | Eastman Kodak Company | Photopolymerizable compositions featuring novel co-initiators |
US4632897A (en) * | 1981-08-07 | 1986-12-30 | Basf Aktiengesellschaft | Photopolymerizable recording material suitable for the production of photoresist layers |
US4575330A (en) * | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US4575330B1 (en) * | 1984-08-08 | 1989-12-19 | ||
US4961154A (en) * | 1986-06-03 | 1990-10-02 | Scitex Corporation Ltd. | Three dimensional modelling apparatus |
US4752498A (en) * | 1987-03-02 | 1988-06-21 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US4942001A (en) * | 1988-03-02 | 1990-07-17 | Inc. DeSoto | Method of forming a three-dimensional object by stereolithography and composition therefore |
US5208110A (en) * | 1988-06-21 | 1993-05-04 | Ciba-Geigy Corporation | Security cards |
US4844144A (en) * | 1988-08-08 | 1989-07-04 | Desoto, Inc. | Investment casting utilizing patterns produced by stereolithography |
EP0378144A2 (en) * | 1989-01-10 | 1990-07-18 | Ciba-Geigy Ag | Photocurable compositions |
CA2007295A1 (en) * | 1989-01-10 | 1990-07-10 | Max Hunziker | Photocurable compositions |
US4942060A (en) * | 1989-04-21 | 1990-07-17 | E. I. Du Pont De Nemours And Company | Solid imaging method utilizing photohardenable compositions of self limiting thickness by phase separation |
CA2028537A1 (en) * | 1989-10-27 | 1991-04-28 | Manfred Hofmann | Process for adjusting the sensitivity to radiation of photopolymerizable compositions |
EP0450254A1 (en) * | 1990-04-03 | 1991-10-09 | Ciba-Geigy Ag | Photocurable compositions |
WO1992002572A1 (en) * | 1990-07-30 | 1992-02-20 | Dsm N.V. | Associative reactive blend-containing compositions |
US5198159A (en) * | 1990-10-09 | 1993-03-30 | Matsushita Electric Works, Ltd. | Process of fabricating three-dimensional objects from a light curable resin liquid |
US5167882A (en) * | 1990-12-21 | 1992-12-01 | Loctite Corporation | Stereolithography method |
CA2063982A1 (en) * | 1991-03-27 | 1992-09-28 | Ciba Specialty Chemicals Holding Inc. | Photosensitive composition based on acrylates |
EP0506616A1 (en) * | 1991-03-27 | 1992-09-30 | Ciba-Geigy Ag | Photosensitive acrylate mixture |
WO1992020014A1 (en) * | 1991-05-01 | 1992-11-12 | Allied-Signal Inc. | Stereolithography using vinyl ether-epoxide polymers |
EP0517657A1 (en) * | 1991-06-04 | 1992-12-09 | Ciba-Geigy Ag | Photosensitive compositions |
Cited By (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5801392A (en) * | 1993-09-08 | 1998-09-01 | Union Carbide Chemicals & Plastics Technology Corporation | Distortion control additives for ultraviolet-curable compositions |
US5498782A (en) * | 1993-09-08 | 1996-03-12 | Union Carbide Chemicals & Plastics Technology Corporation | Distortion control additives for ultraviolet-curable compositions |
US5824260A (en) * | 1995-06-14 | 1998-10-20 | United Technologies Corporation | Method of producing a strong, dimensionally stable object |
US5989679A (en) * | 1995-06-14 | 1999-11-23 | United Technologies Corporation | Strong, dimensionally stable object |
US5719227A (en) * | 1995-12-04 | 1998-02-17 | Armstrong World Industries, Inc. | Coating composition |
US5948457A (en) | 1996-04-03 | 1999-09-07 | Tenneco Packaging Inc. | Modified atmosphere package |
US5811142A (en) | 1996-04-03 | 1998-09-22 | Tenneo Packaging | Modified atmosphere package for cut of raw meat |
US6251557B1 (en) | 1996-05-09 | 2001-06-26 | Dsm N.V. | Photosensitive resin composition for rapid prototyping and a process for the manufacture of 3-dimensional objects |
US6508955B1 (en) | 1996-08-08 | 2003-01-21 | Pactiv Corporation | Oxygen scavenger accelerator |
US5928560A (en) | 1996-08-08 | 1999-07-27 | Tenneco Packaging Inc. | Oxygen scavenger accelerator |
US6395195B1 (en) | 1996-08-08 | 2002-05-28 | Pactiv Corporation | Oxygen scavenger accelerator |
US6666988B2 (en) | 1996-08-08 | 2003-12-23 | Pactiv Corporation | Methods of using an oxygen scavenger |
US6315921B1 (en) | 1996-08-08 | 2001-11-13 | Pactiv Corporation | Oxygen scavenger accelerator |
US6007967A (en) * | 1997-12-11 | 1999-12-28 | Polyfibron Technologies, Inc. | Methods for off-contact imaging solid printing plates |
US6225021B1 (en) | 1997-12-29 | 2001-05-01 | Essilor International Compagnie Generale D 'optique | Photopolymerizable composition based on polyiso(thio)cyanate monomers and on monomers with a labile proton, comprising a photoinitiating agent and an agent for activating the photopolymerization and optical articles obtained |
WO1999033892A1 (en) * | 1997-12-29 | 1999-07-08 | Essilor International Compagnie Generale D'optique | Photopolymerisable composition based on polyiso(thio)cyanate monomers and monomers with labile proton, comprising a photoinitator and an agent activating polymerisation and resulting optical articles |
FR2773162A1 (en) * | 1997-12-29 | 1999-07-02 | Essilor Int | PHOTOPOLYMERIZABLE COMPOSITION BASED ON POLYISO MONOMERS (THIO) CYANATES AND MONOMERS WITH PROTON LABILE, COMPRISING A PHOTO-INTAKE AGENT AND A PHOTOPOLYMERIZATION ACTIVATION AGENT AND OPTICAL ARTIFACTS OBTAINED |
AU757118B2 (en) * | 1997-12-29 | 2003-02-06 | Essilor International Compagnie Generale D'optique | Photopolymerisable composition based on polyiso(thio)cyanate monomers and monomers with labile proton, comprising a photoinitator and an agent activating polymerisation and resulting optical articles |
US6309581B1 (en) | 1998-02-13 | 2001-10-30 | Milwaukee School Of Engineering | Method of making a three dimensional object |
US6641897B2 (en) | 1998-02-13 | 2003-11-04 | The Milwaukee School Of Engineering | Three dimensional object |
US6762002B2 (en) | 1998-07-10 | 2004-07-13 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polypropylene-like articles |
US20050074691A1 (en) * | 1998-07-10 | 2005-04-07 | Lawton John A. | Solid imaging compositions for preparing polypropylene-like articles |
US20060154175A9 (en) * | 1998-07-10 | 2006-07-13 | Lawton John A | Solid imaging compositions for preparing polypropylene-like articles |
US6727043B2 (en) | 1998-07-10 | 2004-04-27 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polyethylene-like articles |
US7534386B2 (en) | 1999-04-20 | 2009-05-19 | Stratasys, Inc. | Material and method for three-dimensional modeling |
US20040039470A1 (en) * | 1999-08-06 | 2004-02-26 | Milwaukee School Of Engineering | Three dimensional object and method of making the same |
US6623687B1 (en) | 1999-08-06 | 2003-09-23 | Milwaukee School Of Engineering | Process of making a three-dimensional object |
US6455620B1 (en) * | 1999-08-10 | 2002-09-24 | Eastman Chemical Company | Polyether containing polymers for oxygen scavenging |
US7795349B2 (en) | 1999-11-05 | 2010-09-14 | Z Corporation | Material systems and methods of three-dimensional printing |
US20040091799A1 (en) * | 2000-03-31 | 2004-05-13 | Lawton John A | Solid imaging compositions for preparing polypropylene-like articles |
US6749976B2 (en) | 2000-03-31 | 2004-06-15 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polypropylene-like articles |
US6379866B2 (en) * | 2000-03-31 | 2002-04-30 | Dsm Desotech Inc | Solid imaging compositions for preparing polypropylene-like articles |
WO2002055613A2 (en) | 2001-01-12 | 2002-07-18 | Dsm Ip Assets B.V. | Radiation curable compositions comprising alkoxylated aliphatic reactive diluents |
US20030004600A1 (en) * | 2001-05-11 | 2003-01-02 | Stratasys, Inc. | Material and method for three-dimensional modeling |
US7314591B2 (en) | 2001-05-11 | 2008-01-01 | Stratasys, Inc. | Method for three-dimensional modeling |
US20040009428A1 (en) * | 2001-07-04 | 2004-01-15 | Kenji Tamura | Resist curable resin composition and cured article thereof |
US7195857B2 (en) * | 2001-07-04 | 2007-03-27 | Showa Denko K.K. | Resist curable resin composition and cured article thereof |
EP1385055A1 (en) | 2002-07-18 | 2004-01-28 | 3D Systems, Inc. | Stereolithographic resins with high temperature and high impact resistance |
US20040135292A1 (en) * | 2003-01-07 | 2004-07-15 | Coats Alma L. | Stereolithography resins and methods |
US7211368B2 (en) * | 2003-01-07 | 2007-05-01 | 3 Birds, Inc. | Stereolithography resins and methods |
US20040137368A1 (en) * | 2003-01-13 | 2004-07-15 | 3D Systems, Inc. | Stereolithographic resins containing selected oxetane compounds |
US20090239175A1 (en) * | 2003-01-13 | 2009-09-24 | 3D Systems, Inc. | Stereolithographic Resins Containing Selected Oxetane Compounds |
US20040170923A1 (en) * | 2003-02-27 | 2004-09-02 | 3D Systems, Inc. | Colored stereolithographic resins |
US20040257271A1 (en) * | 2003-02-28 | 2004-12-23 | Jacobson Boris Solomon | Method and apparatus for a power system for phased-array radar |
US20060267252A1 (en) * | 2003-08-19 | 2006-11-30 | Bettina Steinmann | Nanoparticle-filled stereolithographic resins |
US20050040562A1 (en) * | 2003-08-19 | 2005-02-24 | 3D Systems Inc. | Nanoparticle-filled stereolithographic resins |
US20050165127A1 (en) * | 2003-12-31 | 2005-07-28 | Dsm Desotech, Inc. | Solid imaging compositions for preparing polyethylene-like articles |
US7905951B2 (en) | 2006-12-08 | 2011-03-15 | Z Corporation | Three dimensional printing material system and method using peroxide cure |
US8157908B2 (en) | 2006-12-08 | 2012-04-17 | 3D Systems, Inc. | Three dimensional printing material system and method using peroxide cure |
US8167999B2 (en) | 2007-01-10 | 2012-05-01 | 3D Systems, Inc. | Three-dimensional printing material system with improved color, article performance, and ease of use |
US7968626B2 (en) | 2007-02-22 | 2011-06-28 | Z Corporation | Three dimensional printing material system and method using plasticizer-assisted sintering |
US8506862B2 (en) | 2007-02-22 | 2013-08-13 | 3D Systems, Inc. | Three dimensional printing material system and method using plasticizer-assisted sintering |
US20100140849A1 (en) * | 2007-03-22 | 2010-06-10 | Stratasys, Inc. | Extrusion-based layered deposition systems using selective radiation exposure |
US20080257216A1 (en) * | 2007-04-20 | 2008-10-23 | Ppg Industries Ohio, Inc. | New urethane (meth)acrylates and their use in curable coating compositions |
US20080318489A1 (en) * | 2007-06-18 | 2008-12-25 | Eisenhut Anthony R | Radiation curable arts and crafts toy |
US8465337B2 (en) * | 2007-06-18 | 2013-06-18 | Anthony R. Eisenhut | Radiation curable arts and crafts toy |
US10960655B2 (en) | 2007-07-18 | 2021-03-30 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US9815243B2 (en) | 2010-03-31 | 2017-11-14 | Voxeljet Ag | Device for producing three-dimensional models |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US10179365B2 (en) | 2010-04-17 | 2019-01-15 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10639715B2 (en) | 2010-04-17 | 2020-05-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10589460B2 (en) | 2012-03-06 | 2020-03-17 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US11225029B2 (en) | 2012-05-25 | 2022-01-18 | Voxeljet Ag | Device for producing three-dimensional models and methods thereof |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US11130290B2 (en) | 2012-11-25 | 2021-09-28 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US11072090B2 (en) | 2013-02-28 | 2021-07-27 | Voxeljet Ag | Material system for producing a molded part using a water-soluble casting mold |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US11541596B2 (en) | 2013-10-30 | 2023-01-03 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US10786945B2 (en) | 2013-10-30 | 2020-09-29 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US11850796B2 (en) | 2013-12-02 | 2023-12-26 | Voxeljet Ag | Interchangeable container with moveable side walls |
US11292188B2 (en) | 2013-12-02 | 2022-04-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10889055B2 (en) | 2013-12-20 | 2021-01-12 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US12070905B2 (en) | 2014-05-26 | 2024-08-27 | Voxeljet Ag | 3D reverse printing method and device |
US10899868B2 (en) | 2014-06-23 | 2021-01-26 | Carbon, Inc. | Methods for producing footwear with materials having multiple mechanisms of hardening |
US10968307B2 (en) | 2014-06-23 | 2021-04-06 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
US10155882B2 (en) | 2014-06-23 | 2018-12-18 | Carbon, Inc. | Methods of producing EPOXY three-dimensional objects from materials having multiple mechanisms of hardening |
US11850803B2 (en) | 2014-06-23 | 2023-12-26 | Carbon, Inc. | Methods for producing three-dimensional objects with apparatus having feed channels |
US10647879B2 (en) | 2014-06-23 | 2020-05-12 | Carbon, Inc. | Methods for producing a dental mold, dental implant or dental aligner from materials having multiple mechanisms of hardening |
US10647880B2 (en) | 2014-06-23 | 2020-05-12 | Carbon, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
JP2017527637A (en) * | 2014-06-23 | 2017-09-21 | カーボン,インコーポレイテッド | Polyurethane resin with various curing mechanisms used in the production of three-dimensional objects |
US9676963B2 (en) | 2014-06-23 | 2017-06-13 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
US11707893B2 (en) | 2014-06-23 | 2023-07-25 | Carbon, Inc. | Methods for producing three-dimensional objects with apparatus having feed channels |
US9982164B2 (en) | 2014-06-23 | 2018-05-29 | Carbon, Inc. | Polyurea resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
US9598606B2 (en) * | 2014-06-23 | 2017-03-21 | Carbon, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
US11440266B2 (en) | 2014-06-23 | 2022-09-13 | Carbon, Inc. | Methods of producing epoxy three-dimensional objects from materials having multiple mechanisms of hardening |
US11312084B2 (en) | 2014-06-23 | 2022-04-26 | Carbon, Inc. | Methods for producing helmet inserts with materials having multiple mechanisms of hardening |
US9453142B2 (en) | 2014-06-23 | 2016-09-27 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
US11299579B2 (en) | 2014-06-23 | 2022-04-12 | Carbon, Inc. | Water cure methods for producing three-dimensional objects from materials having multiple mechanisms of hardening |
US10240066B2 (en) | 2014-06-23 | 2019-03-26 | Carbon, Inc. | Methods of producing polyurea three-dimensional objects from materials having multiple mechanisms of hardening |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
WO2016200972A1 (en) | 2015-06-08 | 2016-12-15 | Dsm Ip Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
US10882110B2 (en) | 2015-09-09 | 2021-01-05 | Voxeljet Ag | Method and device for applying fluids |
US11814472B2 (en) | 2015-09-09 | 2023-11-14 | Carbon, Inc. | Epoxy dual cure resins for additive manufacturing |
US10975193B2 (en) | 2015-09-09 | 2021-04-13 | Carbon, Inc. | Epoxy dual cure resins for additive manufacturing |
US11890810B2 (en) | 2015-09-16 | 2024-02-06 | Voxeljet Ag | Device and method for producing three-dimensional shaped parts |
WO2017059222A1 (en) | 2015-10-01 | 2017-04-06 | Dsm Ip Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
EP3567428A1 (en) | 2015-10-01 | 2019-11-13 | DSM IP Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
US11891485B2 (en) | 2015-11-05 | 2024-02-06 | Carbon, Inc. | Silicone dual cure resins for additive manufacturing |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US12036732B2 (en) | 2015-12-01 | 2024-07-16 | Voxeljet Ag | Method and device for producing three- dimensional components with the aid of an overfeed sensor |
US10501572B2 (en) | 2015-12-22 | 2019-12-10 | Carbon, Inc. | Cyclic ester dual cure resins for additive manufacturing |
US10787583B2 (en) | 2015-12-22 | 2020-09-29 | Carbon, Inc. | Method of forming a three-dimensional object comprised of a silicone polymer or co-polymer |
US11034084B2 (en) | 2015-12-22 | 2021-06-15 | Carbon, Inc. | Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products |
US11905423B2 (en) | 2015-12-22 | 2024-02-20 | Carbon, Inc. | Blocked silicone dual cure resins for additive manufacturing |
US10538031B2 (en) | 2015-12-22 | 2020-01-21 | Carbon, Inc. | Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products |
US10639844B2 (en) | 2015-12-22 | 2020-05-05 | Carbon, Inc. | Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins |
US11440244B2 (en) | 2015-12-22 | 2022-09-13 | Carbon, Inc. | Dual precursor resin systems for additive manufacturing with dual cure resins |
US10792858B2 (en) | 2015-12-22 | 2020-10-06 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resin |
US11833744B2 (en) | 2015-12-22 | 2023-12-05 | Carbon, Inc. | Dual precursor resin systems for additive manufacturing with dual cure resins |
US10647054B2 (en) | 2015-12-22 | 2020-05-12 | Carbon, Inc. | Accelerants for additive manufacturing with dual cure resins |
US10774177B2 (en) | 2015-12-22 | 2020-09-15 | Carbon, Inc. | Cyclic ester dual cure resins for additive manufacturing |
US11975487B2 (en) | 2016-03-09 | 2024-05-07 | Voxeljet Ag | Method and device for producing 3D shaped parts using construction field tools |
US10500786B2 (en) | 2016-06-22 | 2019-12-10 | Carbon, Inc. | Dual cure resins containing microwave absorbing materials and methods of using the same |
US11535686B2 (en) | 2017-03-09 | 2022-12-27 | Carbon, Inc. | Tough, high temperature polymers produced by stereolithography |
US10316213B1 (en) | 2017-05-01 | 2019-06-11 | Formlabs, Inc. | Dual-cure resins and related methods |
US10793745B2 (en) | 2017-05-01 | 2020-10-06 | Formlabs, Inc. | Dual-cure resins and related methods |
US11724445B2 (en) | 2017-06-21 | 2023-08-15 | Carbon, Inc. | Resin dispenser for additive manufacturing |
US11458673B2 (en) | 2017-06-21 | 2022-10-04 | Carbon, Inc. | Resin dispenser for additive manufacturing |
JP2020536142A (en) * | 2017-10-02 | 2020-12-10 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | UV curable compositions, methods, and articles obtained from them with controlled mechanical and chemical properties. |
WO2019117723A1 (en) | 2017-12-15 | 2019-06-20 | Dsm Ip Assets B.V. | Compositions and methods for high-temperature jetting of viscous thermosets to create solid articles via additive fabrication |
US11633908B2 (en) * | 2018-03-02 | 2023-04-25 | Formlabs, Inc. | Latent cure resins and related methods |
WO2019204807A1 (en) | 2018-04-20 | 2019-10-24 | Dsm Ip Assets, B.V. | Radiation curable compositions for additive fabrication |
EP4095603A1 (en) | 2018-04-20 | 2022-11-30 | Covestro (Netherlands) B.V. | Method of producing a three-dimensional part via an additive fabrication process |
US11485818B2 (en) | 2018-04-20 | 2022-11-01 | Covestro (Netherlands) B.V. | Radiation curable compositions for additive fabrication |
US11504903B2 (en) | 2018-08-28 | 2022-11-22 | Carbon, Inc. | 1K alcohol dual cure resins for additive manufacturing |
CN113906066A (en) * | 2019-05-30 | 2022-01-07 | 罗杰斯公司 | Photocurable composition for stereolithography, stereolithography method using the same, polymer assembly formed by stereolithography method, and device comprising the polymer assembly |
US11866526B2 (en) | 2019-08-30 | 2024-01-09 | Stratasys, Inc. | Liquid, hybrid UV/vis radiation curable resin compositions for additive fabrication |
WO2021042013A1 (en) | 2019-08-30 | 2021-03-04 | Dsm Ip Assets B.V. | Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication |
Also Published As
Publication number | Publication date |
---|---|
WO1995013565A1 (en) | 1995-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5418112A (en) | Photosensitive compositions useful in three-dimensional part-building and having improved photospeed | |
US6017973A (en) | Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and novel urethane acrylate | |
AU703806B2 (en) | Liquid photocurable compositions | |
EP0525578A1 (en) | Photopolymer composition for the production of three-dimensional objects | |
EP0403758B1 (en) | Solid imaging method using compositions containing core-shell polymers | |
EP0938026B1 (en) | Photocurable liquid resin composition | |
DE69702490T2 (en) | Photo-curable resin composition | |
CN101898423B (en) | Compositions and methods for use in three dimensional model printing | |
DE69738578T2 (en) | Photohardenable resin composition | |
EP0802455B1 (en) | Use of a photocurable resin composition for the production of a stereolithographed object | |
US6251557B1 (en) | Photosensitive resin composition for rapid prototyping and a process for the manufacture of 3-dimensional objects | |
EP2135136B1 (en) | Stereolithography resin compositions and three-dimensional objects made therefrom | |
EP0833205B1 (en) | Three-dimensional object by optical stereography and resin composition for producing the same | |
DE69706041T2 (en) | PHOTOCURABLE RESIN COMPOSITION | |
WO1996028762A1 (en) | Liquid photocurable compositions | |
JPH0732493A (en) | Method and device for forming three-dimensional image | |
KR100252803B1 (en) | Photosensitive resin composition for photo-cast-molding | |
JPH08231849A (en) | Optically relief forming resin composition | |
DE69713726T2 (en) | Photocurable resin composition | |
JP3468479B2 (en) | Photocurable resin composition for stereolithography and method for producing optical stereolithography | |
JPH06128342A (en) | Resin composition for optical three-dimensional shaping | |
JPH1034674A (en) | Manufacture of reproduced model using photosensitive resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: W. R. GRACE & CO.-CONN., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIRLE, SRINIVAS K.;KUMPFMILLER, RONALD J.;REEL/FRAME:007379/0856 Effective date: 19931124 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19990523 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |