US5380390A - Patterned abrasive material and method - Google Patents

Patterned abrasive material and method Download PDF

Info

Publication number
US5380390A
US5380390A US08/066,475 US6647593A US5380390A US 5380390 A US5380390 A US 5380390A US 6647593 A US6647593 A US 6647593A US 5380390 A US5380390 A US 5380390A
Authority
US
United States
Prior art keywords
particles
step
pressure sensitive
sensitive adhesive
adhesive tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/066,475
Inventor
Naum N. Tselesin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultimate Abrasive Systems Inc
Original Assignee
Ultimate Abrasive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US71298991A priority Critical
Application filed by Ultimate Abrasive Systems Inc filed Critical Ultimate Abrasive Systems Inc
Priority to US08066475 priority patent/US5380390B1/en
Priority claimed from AU69561/94A external-priority patent/AU690560C/en
Publication of US5380390A publication Critical patent/US5380390A/en
Application granted granted Critical
Publication of US5380390B1 publication Critical patent/US5380390B1/en
Priority claimed from US08/728,169 external-priority patent/US5817204A/en
Assigned to ULTIMATE ABRASIVE SYSTEMS, L.L.C. reassignment ULTIMATE ABRASIVE SYSTEMS, L.L.C. CERTIFICATE OF ELECTION & CERTIFICATE OF ORGANIZATION BY ELECTION Assignors: ULTIMATE ABRASIVE SYSTEMS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/02Circular saw blades
    • B23D61/021Types of set; Variable teeth, e.g. variable in height or gullet depth: Varying pitch; Details of gullet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/02Circular saw blades
    • B23D61/025Details of saw blade body
    • B23D61/026Composite body, e.g. laminated, body of diverse material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0072Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using adhesives for bonding abrasive particles or grinding elements to a support, e.g. by gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/10Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with cooling provisions, e.g. with radial slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels
    • B24D5/123Cut-off wheels having different cutting segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/12Saw-blades or saw-discs specially adapted for working stone
    • B28D1/121Circular saw blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING, OR SHARPENING
    • B24D2203/00Tool surfaces formed with a pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic
    • Y10T428/249957Inorganic impregnant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249974Metal- or silicon-containing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic

Abstract

An abrasive material is formed by coating a substrate with an adhesive, contacting he substrate with a quantity of hard, abrasive particles, then removing all particles not held by the adhesive. The remaining particles are surrounded with a sinterable or fusible material while the particles are temporarily held. The substrate can have the adhesive applied in a pattern, or covering uniformly and masked, to cause particles to adhere in certain areas to achieve a desired pattern. While the particles are held on the substrate, physical force can be applied to orient the particles uniformly; then, a powder can be applied, or the substrate can be applied to a preform. Subsequent treatment with heat and/or pressure will complete the abrasive material.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of the application by the same inventor, Ser. No. 07/712,989, filed Jun. 10, 1991, now abandoned and titled "Patterned Abrasive Material and Method".

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to abrasive materials, and is more particularly concerned with a method for making a patterned abrasive materials wherein a plurality of abrasive particles is temporarily held by an adhesive, and is subsequently fixed by a matrix material.

2. Discussion of the Prior Art

Much effort has been expended in attempting to place diamonds or other hard abrasive particles on a surface in a predetermined pattern. The pattern is desirable in that the hard particles are distributed substantially uniformly throughout a surface, or in that specific shapes containing generally uniformly distributed particles are distributed throughout a surface. By having the particles in specific shapes that are distributed across a surface, the stock removal rate, and the quality of the machined surface, can be optimized; and, more importantly, spaces between the abrasive areas allow for the removal of debris and the inflow of coolant.

Most of the prior art techniques for providing patterns of abrasive particles include the provision of metal spots onto which diamonds are electrodeposited, the diamonds then being held in place by electroplating, or by a polymeric resin or the like. Diamonds have also been hand placed to achieve a pattern. Hand setting is of course very time consuming; and, the particles have then been held in place by electrodeposition of metal to hold the particles. Holding the particles by electrodeposited metal is not fully satisfactory because insufficient metal can be provided to truly hold the particles and to resist wear; thus, the particles tend to come loose before the abrasive material has been used enough to wear the particles. Once one stone, or particle, is loosened, there is less support for adjacent particles, and one is likely to lose a number of additional particles very quickly. In addition, not all hard particles can be held by electrodeposited metal; and, electrodepositing is limited in its range of metallic compositions as not all metals are capable of electrode position. Electrodepositing is not feasible with non-metallic compositions. Further, electrodepositing presents some environmental problems related to disposing of the used electrolytes.

Another prior art technique is disclosed in French application No. 69.01577 filed Jan. 24, 1969, and published under No. 2,029,390. In this application, abrasive particles are deposited into the openings in mesh material of wire, plastic or the like. While the abrasive particles reside in the openings in the mesh, metal is electroplated to secure the particles within the mesh. In one embodiment, the particles are forced into the openings in the mesh, and the mesh holds the particles until metal is electroplated thereon to secure the particles. To use this invention, therefore, one must select the size of the abrasive particles carefully; then, the electroplating does not provide sufficient strength for the resulting material to be very durable. This method is difficult to implement on a mass-production scale because the particles are not secured within the openings until metal is electrodeposited on the material, so the material would be difficult to transport before the metal is deposited.

One successful technique for providing patterns in the abrasive material is disclosed in U.S. Pat. Nos. 4,925,457, issued May 15, 1990, 5,049,165, issued Sep. 17, 1991, and 5,092,910, issued Mar. 3, 1992. This technique provides single and multiple layer sintered abrasive material that can subsequently be cut to shape and fixed to a substrate. Use of sinterable material, preferably processed with pressure during sintering, allows one to provide the abrasive tool with a desired combination of strength, flexibility, toughness, wear resistance, and good adherence to metallic mesh and to a variety of abrasive particles such as diamonds and cubic boron nitrides, for structural integrity. Because of this, very demanding applications can be satisfied, such as saw segments for cutting concrete, ceramic and stone, for stock removal members of grinding tools, and drill bit segments for the same materials. These materials and tool are used for such heavy duty applications as dry cutting. Electrodeposited metal does not have these advantages. If desired, of course, a plurality of specific shapes can be spaced apart on a substrate to achieve a patterned abrasive. The resulting patterned abrasive is a good quality abrasive, but the additional steps of preparing the abrasive, transporting the prepared abrasives within a manufacturing facility or between manufacturing facilities, and subsequently assembling the patterned abrasive renders the technique uneconomical for mass production of the abrasive material, and for some applications.

SUMMARY OF THE INVENTION

The present invention provides a method for making an abrasive material wherein a tacky adhesive is provided on a substrate. Hard abrasive particles are then placed into contact with the substrate, and the adhesive temporarily holds some of the hard particles on the substrate. A mask, which may take the form of a mesh or other cellular material, can be placed against the substrate before contacting the substrate with hard particles. The mask will then determine the distribution of the hard particles; and, the hard particles may be received within the openings of a mesh or other cellular material. Alternatively, the adhesive may be applied in a pattern on the substrate to determine the distribution of the hard particles.

After the hard particles have been placed on and adhered to the substrate, a matrix material is engaged with the hard particles and/or the substrate. The matrix material thus provides a composite abrasive material wherein the particles are in the desired pattern and held by the matrix material.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will become apparent form consideration of the following specification when taken in conjunction with the accompanying drawings in which:

FIG. 1 is a rather schematic, perspective view showing one method for preparing an abrasive product in accordance with the present invention;

FIG. 2 is a view similar to FIG. 1, but showing a slightly modified process;

FIG. 3 is an enlarged, cross-sectional view showing the material from FIG. 1 or FIG. 2 being fixed by matrix material in accordance with the present invention;

FIG. 4 is an enlarged, cross-sectional view showing a modified form of the arrangement shown in FIG. 3;

FIG. 5 is a schematic representation showing another method for fixing the particles in matrix material; and,

FIGS. 6-8 are schematic views showing further modified methods for fixing the particles in matrix material.

DETAILED DESCRIPTION OF HE EMBODIMENTS

Referring now more particularly to the drawings and to those embodiments of the invention here chosen by way of illustration, FIG. 1 shows one technique for applying hard, abrasive particles to a substrate. The substrate 10 may be almost any material, such as: a thin sheet of metal plastic or paper; or a preform consisting of unsintered, partially sintered or completely sintered metal powder, metal fibers or the like. In general, almost any substance may be used as the substrate 10, including a substrate made by vapor deposition, by thermal spraying such as plasma spraying, or the like.

The first step in FIG. 1 shows the substrate 10 with a plurality of adhesive areas 11 defined thereon. The adhesive areas 11 may be formed in any ay desired. For example, the surface of the substrate 10 can be masked as by a stencil, and the areas sprayed, poured or the like. Also, the areas 11 may be pieces of pressure sensitive tape. Thus, any means for rendering the areas 11 tacky is within the scope of the present invention.

Brazing, or fusing, paste can be advantageously used as the adhesive in the present invention. The paste is available with and without flux. The paste is commercially available, and can also be custom made to suit individual preferences. Such a paste therefore will provide the adhesive, and a fusible material at the same time. It should also be understood, of course, that such a paste may contain sinterable material rather than a fusible material, or may contain both fusible and sinterable materials.

The second step in FIG. 1 then shows the substrate 10 contacted by a plurality of hard particles, the idea being to cover the entire substrate with the particles. Then, the substrate is inverted or otherwise treated to remove loose particles from the substrate. While particles 12 cover the entire substrate 10 in step two, step three shows particles 12 remaining only in the tacky areas 11. The material is thus ready to receive a matrix material to secure the particles 12 permanently.

FIG. 2 shows a modification of the method illustrated in FIG. 1. In FIG. 2, the entire substrate 10A is coated with adhesive. Since the entire surface is coated, it will be understood that the adhesive may be sprayed, rolled, brushed or the like, or the substrate may be dipped, or tapes having adhesive thereon may be used. By some technique, then, the surface of the substrate 10A is coated with a tacky adhesive.

The second step is to place a mask against the surface of the substrate 10A, then to place a plurality of hard particles against the surface. As illustrated in FIG. 2, the mask 14 has relatively large opening through which the particles 12 will pass to create areas of particles adhered to the substrate 10A. The mask 14 can then be removed, as shown in step three of FIG. 2, and there remains a substrate with a plurality of discrete areas, each having a plurality of particles temporarily adhered thereto.

Several variations in this method are possible. As will be discussed below, the mask may be a wire mesh or the like, and the mask may be left in place to become a part of the final abrasive material. With this in mind, adhesive can be applied to the mask after the mask is in place and before the hard particles are engaged with the surface. The mask will retain some particles on its surface in addition to the particles retained within the openings of the mask. ALso, the particles can be placed on the surface; then, adhesive can be applied to the entire surface, and more hard particles added. A greater quantity of hard particles will now be retained, and some of the particles will be fixed to the mask.

The present invention readily lends itself to the orientation of hard particles before the particles are permanently secured. Using mechanical forces, such as by shaking or vibrating the substrate with the hard particles temporarily fixed by adhesive, or loose on the substrate, the particles will be forced into a position that is stable. By applying magnetic force, the particles such as diamonds will become oriented according to their crystallographic structure and the lines of magnetic force. Thus, many different physical forces may be applied to the substrate having hard particles thereon, and the particles will be uniformly oriented.

Once the particles are oriented, they must be held securely in order to obtain the advantages of the orientation. After the particles have been oriented, therefore, the group of particles may be sprayed with a coating of an adhesive to hold the positions. Also, one can wet the particles with a liquid such as water, then freeze the liquid to hold the particles. In any event, one will contact he particles with a sinterable or fusible material, perhaps in a preform, to provide a permanent hold for the particles.

Attention is next directed to FIG. 3 of the drawings which shows one method for securing the particles with a matrix material. In FIG. 3 there is a substrate 10B which may be any material as is discussed above. It should further be noticed that the substrate 10B may be a tape or the like having adhesive on both sides. The tape can then be stuck to the preform 15, and receive particles 14 on the otter surface. The substrate 10B may also be a more nearly rigid material that is subsequently placed against the preform 15. In any event, the substrate 10B is placed against the preform 15, and pressure is exerted by the opposed plates 16.

When pressure is exerted on the assembly shown in FIG. 3, the particles 14 will be urged into the preform. One might force the particles 14 completely into the preform so the particles are totally surrounded by the matrix material, or one might leave a portion of the particles protruding from the preform. This is a matter of design choice depending on the particular use of the resulting abrasive material.

Those skilled in the art will understand that the preform 15 may be any of numerous types of preform. First, it should be pointed out that the preform may be a sinterable or a fusible material, or a combination thereof, depending on the specific results desired. Those skilled in the art will understand that the process and the function, in this context, is substantially the same whether the matrix material is sinterable or fusible. The final strength is different, but those skilled in the art will select the particular matrix material that is best for the intended use. Therefore, as used herein, each of the terms "sinterable" and "fusible" will also include the other unless the context requires otherwise. Furthermore, it will be understood that a matrix material can be deposited by a temperature related process such as thermal (e.g. plasma) spray or vapor deposition. In the context of the present invention, such thermal deposition of material can be considered as an equivalent of the use of sinterable material.

In addition to the sinterable and fusible matrix materials, it will be understood that metal can be electrodeposited to provide a temporary hold for the particles. In this case an electroconductive adhesive can be used. Those skilled in the art will realize that the matrix provided by electrodeposition will not be as strong as sintered or fused matrix material.

Looking next at FIG. 4 of the drawings, it will be seen that this is an arrangement utilizing the method discussed in connection with FIG. 2 in that a mask is placed against the substrate, and particles adhere to the exposed substrate.

As shown in FIG. 4, the substrate 10C has an adhesive as has been previously discussed. The mask takes the form of a wire mesh 19. While the openings in the mask of FIG. 2 are large enough that a large number of particles 12 enter each opening, the openings in FIG. 4 are such that a single particle 18 is in each opening. This is a matter of design choice, and any ratio of opening size to particle size may be selected.

Another feature shown in FIG. 4 is the blocking, or shielding, of a portion of the mask 19. Some form of shield 20 can be used to cover a portion of the mesh 19 and adhesive to prevent particles 18 from adhering in this area. Though numerous materials and techniques can be used, if one is using a pressure sensitive tape as the substrate 10C, the same tape can be used as the shield 20, so the complete mask is easy to assemble.

FIG. 4 shows an arrangement similar to FIG. 3 in that the substrate 10C, with the temporarily adhered particles 18, is placed against a preform 21, and plates 22 then exert pressure on the assembly. A difference in FIG. 4 is that the mask, in the form of the mesh 19, remains in place to be forced into the preform. The mesh 19 may be a steel or other relatively high melting point metal, in which case the mesh will assist in supporting the particles 18 during use of the resulting abrasive material; or, the mesh 19 may be a polymeric material or the like having a low melt (or even vaporization) point, in which case the mesh will effectively disappear from the completed abrasive material.

As before, the particles 18 can be forced completely into the preform 21, or the particles may be partially protruding from the preform to have an "open" surface immediately.

Using the process of the present invention, the ratio of the size of the mesh opening to the size of the hard particles is not important. During the compaction of the material, the particles can be separated by the matrix material so that substantially all the particles can be substantially completely surrounded by matrix material and are not directly in contact with wires of the mesh material.

FIG. 5 of the drawings illustrates another modification of the method discussed above. In FIG. 5, there is the substrate 10D which will have an adhesive on at least one surface. The surface may be masked as discussed above for the deposit of hard particles 24; then, the mask may be removed or not, as desired. In FIG. 5, the mask is not shown, but a mesh as in FIG. 4 may be used and left in place if desired. Then, a fusing material 25 is placed on the substrate. Since the hard particles 24 are already in place, the fusing material 25 will fill the interstices. A small number of pieces of material 25 is shown in FIG. 5, but those skilled in the art will understand that a relatively fine powder may be used, and the material 25 will largely surround each of the particles 24.

The substrate 10D therefore has hard particles 24 distributed thereon, and fusing material 25 at least partially surrounding the hard particles 24, all adhered to the substrate 10D by the adhesive on the substrate. This substrate is then placed against a preform. As shown in FIG. 5, the substrate is sandwiched between two preforms, though only one can be used if desired, as in FIG. 4.

Plates 29 will exert pressure on the assembly of FIG. 5, and heat will be applied. The fusing material 25 will melt at or below the sintering temperature of the preforms 26 and 28, and will assist in adhering the particles 24 to one another, and to the preforms 26 and 28. As a result, the abrasive tool can be stronger; or, one can use cheaper preforms because of the superior adhesion, without depreciating the quality of the final abrasive material. As i; well known in the art, if the hard particles 24 are buried under he surface of the matrix material, the working surface of the tool will be sand blasted or similarly treated to "open" the surface, or to expose the hard particles, before the first use.

In all of the above discussed methods, it should be understood that the substrate 10 can be virtually any material, and including a preform. A preform may be coated with adhesive to act as the substrate; then, the step of placing the substrate against a preform is not a separate step, but is merged with the step of placing hard particles on the substrate.

Further, one might start with any substrate, such as a piece of pressure sensitive tape, and deposit powder or fibers of matrix material thereon. The surface of the matrix material can then be coated with more adhesive, and the process repeated until a preform of the desired thickness is achieved. Adhesive can be the final layer, to receive and temporarily hold hard particles.

A sinterable preform with a high percentage porosity (e.g. 80% and above) can receive an adhesive substrate to seal one side of the preform. A fine, fusible powder is then poured into the preform to fill (at least partially) the pores of the preform. If desired, a second adhesive substrate can be used to seal the opposite side of the porous preform. The porous preform next receives a plurality of hard particles that are temporarily fixed to another adhesive substrate. A mesh or the like may also be adhered to this substrate. The substrates and preform are then placed together and sintered, with or without pressure. It will of course be understood that one may also provide a preform on top of the layer of hard particles, so the hard particles are between the two preforms.

The preform for use in the present invention may be also include a plurality of hard particles therein. For example, some diamonds, cubic boron nitrides, crushed hard metal such as cemented carbides, and ceramic pieces may be included and mixed with the metal powder or fibers of the preform. The preform may then be adhered with adhesive, partially sintered or sintered. The included hard particles will provide better resistance to abrasion to secure the hard particles 14, 19 or 24 and hold them more tenaciously.

By providing a preform with hard particles therein, one can then place a mesh material on at least one surface of the preform and apply compaction pressure. During compaction, some of the hard particles will be urged into some of the openings of the mesh material, thereby achieving a result similar to that described herein. While the abrasive material will not be as nearly homogeneous as the material formed by the other methods described herein, the technique is simple and could provide an inexpensive commercial product.

In all the above discussed embodiments of the invention, it will be understood by those skilled in the art that the materials may be impregnated with a fusible material. One will simply place a fusible material on at least one side of the assembly before beginning the heating and/or compaction, and the fusible material will melt and be carried into the material by capillary action.

Looking now at FIGS. 6, 7 and 8, the above discussion of the methods should be kept in mind, and the compaction step is carried out by roll compaction. In FIGS. 6, 7 and 8 the apparatus is substantially the same, so all figures have the same reference numerals for similar parts.

In FIG. 6, a substrate 10E is fed between two rolls 30 and 31. The substrate 10E will be any of the substrates discussed above, with hard particles adhered thereto. To secure the particles in a matrix material, a metal powder or the like is added at 32. The assembly is compacted at the nip of the rolls 30 and 31 to produce the final product 32A. It should be understood that the powder 32 may be sinterable or fusible material, and may include hard particles as in discussed above.

FIG. 7 shows the substrate 10E passing between the rolls 30 and 31, and a preform 34 is placed against the substrate 10E. Pressure at the nip of the rolls 30 and 31 will provide the compaction step discussed to produce the final product at 34A. FIG. 8 is similar to FIG. 7 except that there are two preforms 35 and 36, one on each side of the substrate to produce a product similar to that produced by the method shown in FIG. 5. The product 35A exits from the nip of the rolls 30 and 31.

Thus, the method of the present invention is readily adapted to a continuous process for forming the abrasive material. A continuous strip of substrate, which may be pressure sensitive adhesive tape, or a preform or the like coated with adhesive can be fed between compaction rolls 30 and 31. Matrix material in the form of powder or fibers can be fed against the substrate, or a preform can be fed in against the substrate to form the final product. The substrate and the matrix materials can be selected to provide a final product with the desired features.

It will therefore be understood by those skilled in the art that the particular embodiments of the invention here presented are by way of illustration only, and are meant to be in no way restrictive; therefore, numerous changes and modification may be made, and the full use of equivalents resorted to, without departing from the spirit or scope of the invention as outlined in the appended claims.

Claims (18)

I claim:
1. A method for making an abrasive material comprising the steps of coating a substrate with an adhesive, contacting said substrate with a first plurality of hard particles and then removing a second plurality of hard particles consisting of particles that are not adhered to said substrate by said adhesive so that a third plurality of hard particles remains on said substrate adhered to said substrate by said adhesive, and at least partially surrounding most of the particles of said third plurality of hard particles with a sinterable matrix material, and heating said material to cause said sinterable matrix material to permanently hold said third plurality of hard particles, wherein the said step of at least partially surrounding most of the hard particles with a sinterable matrix material includes the steps of sealing one side of a porous quantity of fusible powder into said porous preform, and placing together said porous preform and said substrate having said hard particles adhered to it prior to the said step of heating the material.
2. A method for making an abrasive material, said abrasive material comprising a plurality of hard particles for providing the abrasive quality, and a sinterable matrix material having the hard particles distributed therein for holding said hard particles, said method comprising the steps of placing a pressure sensitive adhesive tape against one side of a mask so that said pressure sensitive adhesive tape is adhered to said mask, said mask defining a plurality of openings distributed in a predetermined pattern, said openings extending completely through said mask so that said pressure sensitive adhesive tape closes said openings, then placing a quantity of hard particles against the opposite side of said mask so that some of said hard particles are received within said openings and at least some of said hard particles that are received within said openings are adhered to said pressure sensitive adhesive tape, removing hard particles that are not adhered to said pressure sensitive adhesive tape and subsequently at least partially surrounding said particles that are adhered to said pressure sensitive adhesive tape with a sinterable matrix material and heating said material to cause said material to hold said particles that adhere to said tape.
3. A method as claimed in claim 2 and further including the step of removing said mask from said pressure sensitive adhesive tape prior to the said step of at least partially surrounding said particles that are adhered to said tape with a sinterable matrix material.
4. A method as claimed in claim 3, and further including the step of applying a supplementary force to said hard particles that are adhered to said pressure sensitive adhesive tape before the said step of partially surrounding said particles with a sensitive matrix material.
5. A method as claimed in claim 4, wherein said supplementary force is selected from the group consisting of mechanical force and magnetic force.
6. A method as claimed in claim 2, and further including the step of applying a supplementary force to said hard particles that are adhered to said pressure sensitive adhesive tape for orienting said particles before the said step of partially surrounding said particles with a matrix material, and wherein said particles are of a size as to protrude from said openings in said mask.
7. A method as claimed in claim 6, wherein said supplementary force is selected from the group consisting of mechanical force and magnetic force.
8. A method as claimed in claim 3, including the step of applying a meltable material to said pressure sensitive adhesive tape after the said step of removing said mask from said pressure sensitive adhesive tape adhesive substrate, and before the said step of at least partially surrounding said particles that are adhered to said tape substrate with a sinterable matrix material.
9. A method as claimed in claim 8, wherein said meltable material is selected from the group consisting of fusible and brazable materials.
10. A method as claimed in claim 3, wherein said step of at least partially surrounding said particle that are adhered to said pressure sensitive adhesive tape with a sinterable matrix material includes the step of placing a sinterable preform against at least one side of said tape and urging said preform and said tape together.
11. A method as claimed in claim 2, wherein said step of at least partially surrounding said particles that are adhered to said pressure sensitive adhesive tape with a sinterable matrix material includes the step of placing a sinterable preform having hard particles randomly distributed therein against at least one side of said tape and urging said preform and said tape together.
12. A method as claimed in claim 2, wherein said step of at least partially surrounding said particles that are adhered to said pressure sensitive adhesive tape with a sinterable matrix material includes the step of placing a sinterable preform against at least one side of said tape and urging said preform and said tape together.
13. A method as claimed in claim 12, wherein said step of placing a preform against at least one side of said tape includes the steps of making said preform by coating a pressure sensitive adhesive tape with a sinterable matrix material to provide a first layer of a sinterable matrix material, and coating the surface of said sinterable matrix material with a adhesive applying a second sinterable matrix material layer, and repeating said steps until said preform of the desired thickness is formed.
14. A method as claimed in claim 2, wherein said mask is formed of a polymeric material, and further including the step of heating said material sufficiently that said mask effectively disappears from said material.
15. A method as claimed in claim 2, including the step of applying a meltable material to said pressure sensitive adhesive tape before the said step of at least partially surrounding said particles that are adhered to said pressure sensitive adhesive tape with a sinterable matrix material.
16. A method as claimed in claim 2, wherein said mask and said pressure sensitive adhesive tape are in the form of continuous strips, and wherein the said step of placing the pressure sensitive adhesive tape against one side of the mask is accomplished by feeding said continuous strips of mask and pressure sensitive adhesive tape between opposed compressing means.
17. A method as claimed in claim 16, wherein the said step of at least partially surrounding said hard particles that are adhered to said pressure sensitive adhesive tape with a sinterable matrix material comprises feeding a sinterable preform between compressing means along with said mask and pressure sensitive adhesive tape after having said hard particles applied to said openings in said mask.
18. A method as claimed in claim 2 wherein said hard particles are selected from the group consisting of diamonds, carbides, borides, nitrides, pieces of hard metals, and pieces of ceramic.
US08066475 1991-06-10 1993-05-25 Patterned abrasive material and method Expired - Lifetime US5380390B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US71298991A true 1991-06-10 1991-06-10
US08066475 US5380390B1 (en) 1991-06-10 1993-05-25 Patterned abrasive material and method

Applications Claiming Priority (25)

Application Number Priority Date Filing Date Title
US08066475 US5380390B1 (en) 1991-06-10 1993-05-25 Patterned abrasive material and method
EP04002949A EP1430999B1 (en) 1993-05-25 1994-05-24 Method for making an abrasive material
AT04002949T AT376909T (en) 1993-05-25 1994-05-24 Method for producing an abrasive material
DE69433547A DE69433547D1 (en) 1993-05-25 1994-05-24 Patterned abrasive and method
AT94918093T AT259278T (en) 1993-05-25 1994-05-24 Patterned abrasive and method
DE69433547T DE69433547T2 (en) 1993-05-25 1994-05-24 Patterned abrasive and method
CN94192250A CN1111575C (en) 1993-05-25 1994-05-24 Patterned abrasive material and method
JP7500870A JPH08510694A (en) 1993-05-25 1994-05-24 Patterned abrasive material and method
EP94918093A EP0713452B1 (en) 1993-05-25 1994-05-24 Patterned abrasive material and method
DE69435041A DE69435041D1 (en) 1993-05-25 1994-05-24 Method for producing an abrasive material
BR9406663A BR9406663A (en) 1993-05-25 1994-05-24 Standardized abrasive Material and method
DE69435041T DE69435041T2 (en) 1993-05-25 1994-05-24 Method for producing an abrasive material
PCT/US1994/005780 WO1994027833A1 (en) 1993-05-25 1994-05-24 Patterned abrasive material and method
KR10-1995-0705288A KR100340851B1 (en) 1993-05-25 1994-05-24 Patterned abrasive material and its manufacturing method
ES94918093T ES2214483T3 (en) 1993-05-25 1994-05-24 Abrasive modeled material and method to prepare it.
CA002163030A CA2163030C (en) 1993-05-25 1994-05-24 Patterned abrasive material and method
RU95122657A RU2143332C1 (en) 1993-05-25 1994-05-24 Shaped abrasive material and process for making it
ES04002949T ES2295712T3 (en) 1993-05-25 1994-05-24 Method for manufacturing an abrasive material.
AU69561/94A AU690560C (en) 1993-05-25 1994-05-24 Patterned abrasive material and method
ZA9403643A ZA9403643B (en) 1993-05-25 1994-05-25 Patterned abrasive material and method.
TW083104876A TW254878B (en) 1993-05-25 1994-05-28
US08/728,169 US5817204A (en) 1991-06-10 1996-10-09 Method for making patterned abrasive material
US09/075,188 US5980678A (en) 1991-06-10 1998-05-11 Patterned abrasive material and method
JP2004035780A JP4287301B2 (en) 1993-05-25 2004-02-12 Patterned abrasive material and method for producing the same
HK04110215A HK1069795A1 (en) 1993-05-25 2004-12-23 Method and making an abrasive material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US71298991A Continuation-In-Part 1991-06-10 1991-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US29192494A Continuation-In-Part 1994-08-18 1994-08-18

Publications (2)

Publication Number Publication Date
US5380390A true US5380390A (en) 1995-01-10
US5380390B1 US5380390B1 (en) 1996-10-01

Family

ID=22069735

Family Applications (1)

Application Number Title Priority Date Filing Date
US08066475 Expired - Lifetime US5380390B1 (en) 1991-06-10 1993-05-25 Patterned abrasive material and method

Country Status (15)

Country Link
US (1) US5380390B1 (en)
EP (2) EP0713452B1 (en)
JP (2) JPH08510694A (en)
KR (1) KR100340851B1 (en)
CN (1) CN1111575C (en)
AT (2) AT259278T (en)
BR (1) BR9406663A (en)
CA (1) CA2163030C (en)
DE (4) DE69433547T2 (en)
ES (2) ES2295712T3 (en)
HK (1) HK1069795A1 (en)
RU (1) RU2143332C1 (en)
TW (1) TW254878B (en)
WO (1) WO1994027833A1 (en)
ZA (1) ZA9403643B (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624522A (en) * 1995-06-07 1997-04-29 Owens-Corning Fiberglas Technology Inc. Method for applying granules to strip asphaltic roofing material to form variegated shingles
US5747105A (en) 1996-04-30 1998-05-05 Owens Corning Fiberglas Technology Inc. Traversing nozzle for applying granules to an asphalt coated sheet
WO1998030356A1 (en) * 1997-01-13 1998-07-16 Rodel, Inc. Polymeric polishing pad having photolithographically induced surface pattern(s) and methods relating thereto
US5817204A (en) * 1991-06-10 1998-10-06 Ultimate Abrasive Systems, L.L.C. Method for making patterned abrasive material
WO1998051448A1 (en) * 1997-05-14 1998-11-19 Norton Company Patterned abrasive tools
WO1999041039A1 (en) * 1998-02-11 1999-08-19 Applied Materials, Inc. Improved end effector for pad conditioning
EP1015180A1 (en) * 1997-04-04 2000-07-05 Chien-Min Sung Abrasive tools with patterned grit distribution and method of manufacture
US6110031A (en) * 1997-06-25 2000-08-29 3M Innovative Properties Company Superabrasive cutting surface
US6123612A (en) * 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US6196911B1 (en) 1997-12-04 2001-03-06 3M Innovative Properties Company Tools with abrasive segments
WO2001043918A2 (en) * 1999-12-17 2001-06-21 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
US6257973B1 (en) 1999-11-04 2001-07-10 Norton Company Coated abrasive discs
US6358133B1 (en) 1998-02-06 2002-03-19 3M Innovative Properties Company Grinding wheel
WO2002043925A1 (en) * 2000-11-29 2002-06-06 3M Innovative Properties Company Abrasive article having a window system for polishing wafers, and methods
US6416560B1 (en) 1999-09-24 2002-07-09 3M Innovative Properties Company Fused abrasive bodies comprising an oxygen scavenger metal
WO2002066200A1 (en) * 2001-02-20 2002-08-29 3M Innovative Properties Company Reducing metals as a brazing flux
US6478831B2 (en) 1995-06-07 2002-11-12 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
US6551176B1 (en) 2000-10-05 2003-04-22 Applied Materials, Inc. Pad conditioning disk
US20030084894A1 (en) * 1997-04-04 2003-05-08 Chien-Min Sung Brazed diamond tools and methods for making the same
US6669745B2 (en) 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
US6679243B2 (en) 1997-04-04 2004-01-20 Chien-Min Sung Brazed diamond tools and methods for making
US6755720B1 (en) * 1999-07-15 2004-06-29 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US20040194689A1 (en) * 1997-04-04 2004-10-07 Chien-Min Sung High pressure superabrasive particle synthesis
US6884155B2 (en) 1999-11-22 2005-04-26 Kinik Diamond grid CMP pad dresser
US20050095959A1 (en) * 1999-11-22 2005-05-05 Chien-Min Sung Contoured CMP pad dresser and associated methods
US20050118939A1 (en) * 2000-11-17 2005-06-02 Duescher Wayne O. Abrasive bead coated sheet and island articles
US20050136667A1 (en) * 1997-04-04 2005-06-23 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US20050241239A1 (en) * 2004-04-30 2005-11-03 Chien-Min Sung Abrasive composite tools having compositional gradients and associated methods
US20060016127A1 (en) * 1997-04-04 2006-01-26 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US20060073774A1 (en) * 2004-09-29 2006-04-06 Chien-Min Sung CMP pad dresser with oriented particles and associated methods
US7089925B1 (en) 2004-08-18 2006-08-15 Kinik Company Reciprocating wire saw for cutting hard materials
US20060258276A1 (en) * 2005-05-16 2006-11-16 Chien-Min Sung Superhard cutters and associated methods
US20070060026A1 (en) * 2005-09-09 2007-03-15 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20070155298A1 (en) * 2004-08-24 2007-07-05 Chien-Min Sung Superhard Cutters and Associated Methods
US20070249270A1 (en) * 2004-08-24 2007-10-25 Chien-Min Sung Superhard cutters and associated methods
US20080022603A1 (en) * 2006-07-26 2008-01-31 Kinik Company Diamond disc manufacturing process
US20080060173A1 (en) * 2006-09-11 2008-03-13 3M Innovative Properties Company Methods for making fasteners
US20080098659A1 (en) * 2006-10-26 2008-05-01 Chien-Min Sung Methods for securing individual abrasive particles to a substrate in a predetermined pattern
US20080132153A1 (en) * 2006-11-29 2008-06-05 Mitsubishi Materials Corporation Cmp conditioner
US20080140043A1 (en) * 2005-03-11 2008-06-12 Zoltan Mandzsu Methods For Making Fasteners
US20080153398A1 (en) * 2006-11-16 2008-06-26 Chien-Min Sung Cmp pad conditioners and associated methods
US20080178436A1 (en) * 2007-01-25 2008-07-31 3M Innovative Properties Company Fastener webs with microstructured particles and methods of making same
US20080250722A1 (en) * 2007-04-10 2008-10-16 Chien-Min Sung Electroplated abrasive tools, methods, and molds
US20080262642A1 (en) * 2004-05-17 2008-10-23 Matsushita Electric Industrial Co., Ltd. Component Mounting Order Deciding Method and Component Mounting Order Deciding Apparatus
US20080292869A1 (en) * 2007-05-22 2008-11-27 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20090068937A1 (en) * 2006-11-16 2009-03-12 Chien-Min Sung CMP Pad Conditioners with Mosaic Abrasive Segments and Associated Methods
US20090093195A1 (en) * 2006-11-16 2009-04-09 Chien-Min Sung CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods
US20090123705A1 (en) * 2007-11-13 2009-05-14 Chien-Min Sung CMP Pad Dressers
US20090145045A1 (en) * 2007-12-06 2009-06-11 Chien-Min Sung Methods for Orienting Superabrasive Particles on a Surface and Associated Tools
US20090226637A1 (en) * 2008-03-07 2009-09-10 Semiconductor Energy Laboratory Co., Ltd. Deposition Method and Method for Manufacturing Light-Emitting Device
US20090257942A1 (en) * 2008-04-14 2009-10-15 Chien-Min Sung Device and method for growing diamond in a liquid phase
US20100022167A1 (en) * 2008-07-25 2010-01-28 Supfina Grieshaber Gmbh & Co. Kg Superfinish Machine with an Endless Polishing Band and Method for Operating a Superfinish Machine
US20100200304A1 (en) * 2009-02-12 2010-08-12 Saint-Gobain Abrasives, Inc. Abrasive tip for abrasive tool and method for forming and replacing thereof
US20100248596A1 (en) * 2006-11-16 2010-09-30 Chien-Min Sung CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods
US20100261419A1 (en) * 2009-04-10 2010-10-14 Chien-Min Sung Superabrasive Tool Having Surface Modified Superabrasive Particles and Associated Methods
US20100326416A1 (en) * 2008-03-19 2010-12-30 Ronald Schwarz High speed abrasive cutting blade with simulated teeth
US20110073094A1 (en) * 2009-09-28 2011-03-31 3M Innovative Properties Company Abrasive article with solid core and methods of making the same
CN101653928B (en) * 2008-08-19 2011-08-03 苏新页 Stickiness transfer method for diamond order distribution and stickiness transfer tape
US20120302146A1 (en) * 2011-05-23 2012-11-29 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US20130244552A1 (en) * 2012-03-14 2013-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Manufacture and method of making the same
US20130273820A1 (en) * 1997-04-04 2013-10-17 Chien-Min Sung Brazed diamond tools and methods for making the same
US20140099868A1 (en) * 2011-05-23 2014-04-10 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US8777699B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Superabrasive tools having substantially leveled particle tips and associated methods
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
US9028303B2 (en) 2010-07-12 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive article for shaping of industrial materials
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9278430B2 (en) 2009-12-31 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article incorporating an infiltrated abrasive segment
US9289881B2 (en) 2008-08-08 2016-03-22 Saint-Gobain Abrasives, Inc. Abrasive tools having a continuous metal phase for bonding an abrasive component to a carrier
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
US9475169B2 (en) 2009-09-29 2016-10-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US10259102B2 (en) 2014-10-21 2019-04-16 3M Innovative Properties Company Abrasive preforms, method of making an abrasive article, and bonded abrasive article
US10300581B2 (en) 2014-09-15 2019-05-28 3M Innovative Properties Company Methods of making abrasive articles and bonded abrasive wheel preparable thereby
US10307889B2 (en) 2015-03-30 2019-06-04 3M Innovative Properties Company Coated abrasive article and method of making the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039641A (en) * 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
EP1216805A1 (en) * 2000-12-22 2002-06-26 Marcrist International Limited Circular saw blade with abrasive regions on each face
US6835220B2 (en) * 2001-01-04 2004-12-28 Saint-Gobain Abrasives Technology Company Anti-loading treatments
DE50214119D1 (en) * 2002-01-25 2010-02-04 Wendt Gmbh Method for producing a grinding tool with galvanically bonded grinding bodies
DE602006018375D1 (en) * 2006-03-03 2010-12-30 Sandro Giovanni Giuseppe Ferronato
CN101298130B (en) * 2007-04-30 2010-11-17 厦门致力金刚石工具有限公司 Non-grid type diamond abrasion cloth and method of manufacturing the same
JP5809053B2 (en) 2008-07-03 2015-11-10 スリーエム イノベイティブ プロパティズ カンパニー Fixed abrasive particles and articles made therefrom
CN102149784B (en) * 2008-07-22 2014-03-05 圣戈班磨料磨具有限公司 Coated abrasive products containing aggregates
WO2010121025A1 (en) * 2009-04-17 2010-10-21 3M Innovative Properties Company Metal particle transfer article, metal modified substrate, and method of making and using the same
FI20105606A (en) * 2010-05-28 2010-11-25 Kwh Mirka Ab Oy Abrasive product and method for making such
US8888878B2 (en) 2010-12-30 2014-11-18 Saint-Gobain Abrasives, Inc. Coated abrasive aggregates and products containg same
KR101121254B1 (en) * 2011-04-05 2012-03-22 이화다이아몬드공업 주식회사 Method for manufacturing electrodeposited diamond wire saw using patterning non-conduction materials
CN102225468B (en) * 2011-06-03 2012-11-21 福建万龙金刚石工具有限公司 Sintering mould and production process for diamond turbine bowl mill
WO2013049526A2 (en) 2011-09-29 2013-04-04 Saint-Gobain Abrasives, Inc. Abrasive products and methods for finishing hard surfaces
RU2484941C1 (en) * 2011-12-27 2013-06-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Method of making cutting elements from superhard materials
US9321947B2 (en) 2012-01-10 2016-04-26 Saint-Gobain Abrasives, Inc. Abrasive products and methods for finishing coated surfaces
CN104144769A (en) 2012-03-16 2014-11-12 圣戈班磨料磨具有限公司 Abrasive products and methods for finishing surfaces
US8968435B2 (en) 2012-03-30 2015-03-03 Saint-Gobain Abrasives, Inc. Abrasive products and methods for fine polishing of ophthalmic lenses
ITPD20130059A1 (en) * 2013-03-08 2014-09-09 Levorato Abrasivi Srl A process for making abrasive coils
US20150284550A1 (en) * 2013-10-21 2015-10-08 Massachusetts Institute Of Technology Tunable Surface Topography Through Particle-Enhanced Soft Composites
US20180085897A1 (en) * 2015-06-02 2018-03-29 3M Innovative Properties Company Method of transferring particles to a substrate
SK500772015A3 (en) * 2015-11-18 2017-06-02 Adroc Tech S.R.O. Traction endless-track for vehicle
CN106312849B (en) * 2016-08-29 2018-08-24 华侨大学 A method of abrasive material pattern arrangement soldering emery wheel is made based on the pre- cladding of laser
CN106493635A (en) * 2016-11-22 2017-03-15 华侨大学 A kind of surface has the diadust grinding block of trench structure and processing method

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565713A (en) * 1967-10-27 1971-02-23 Xerox Corp Method of forming a ceramic image on a ceramic substrate
US3663191A (en) * 1970-07-23 1972-05-16 Dentsply Int Inc Diamond tool and method of making the same
US3745623A (en) * 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
US3773480A (en) * 1971-07-19 1973-11-20 F L J C Codman Co Abrasive means and method of manufacture
US4292103A (en) * 1979-02-13 1981-09-29 Nissha Printing Co., Ltd. Transfer printing
US4366202A (en) * 1981-06-19 1982-12-28 Kimberly-Clark Corporation Ceramic/organic web
US4411856A (en) * 1981-07-15 1983-10-25 Corning Glass Works Method and apparatus for high speed manifolding of honeycomb structures
US4510000A (en) * 1983-11-30 1985-04-09 International Business Machines Corporation Method for palladium activating molybdenum metallized features on a ceramic substrate
US4520062A (en) * 1982-11-16 1985-05-28 Nevamar Corporation Transfer coating of abrasion-resistant layers
US4560603A (en) * 1983-10-27 1985-12-24 Ltv Aerospace And Defense Company Composite matrix with oriented whiskers
US4680199A (en) * 1986-03-21 1987-07-14 United Technologies Corporation Method for depositing a layer of abrasive material on a substrate
US4759892A (en) * 1981-07-15 1988-07-26 Corning Glass Works Method and apparatus for aligning body with honeycomb structure
US4781775A (en) * 1987-06-01 1988-11-01 Motorola Inc. Coplanar die to substrate bond method
JPS63270403A (en) * 1987-04-27 1988-11-08 Toru Morimoto Production of metallic porous material
US4825539A (en) * 1987-03-27 1989-05-02 Fujitsu Limited Process for manufacturing a multilayer substrate
US4846906A (en) * 1987-12-02 1989-07-11 The Duriron Company, Inc. Methods for the manufacture of porous ceramic shapes containing membraneous surfaces
US4889760A (en) * 1987-07-31 1989-12-26 Siemens Aktiengesellschaft Filler layer electrical component and method for the manufacture thereof
US4906512A (en) * 1987-07-31 1990-03-06 Siemens Aktiengesellschaft Electrical multilayer component comprising a sintered, monolithic ceramic body and method for its manufacture
US4916869A (en) * 1988-08-01 1990-04-17 L. R. Oliver & Company, Inc. Bonded abrasive grit structure
US4931069A (en) * 1987-10-30 1990-06-05 Wiand Ronald C Abrasive tool with improved swarf clearance and method of making
US4949511A (en) * 1986-02-10 1990-08-21 Toshiba Tungaloy Co., Ltd. Super abrasive grinding tool element and grinding tool
US4951427A (en) * 1989-05-30 1990-08-28 General Electric Company Refractory metal oxide coated abrasives and grinding wheels made therefrom
US5014468A (en) * 1989-05-05 1991-05-14 Norton Company Patterned coated abrasive for fine surface finishing
US5021204A (en) * 1981-07-15 1991-06-04 Corning Incorporated Method for selectively charging honeycomb structures
US5049164A (en) * 1990-01-05 1991-09-17 Norton Company Multilayer coated abrasive element for bonding to a backing
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
US5066312A (en) * 1987-02-27 1991-11-19 Abrasive Technology N.A., Inc. Flexible abrasives
US5092910A (en) * 1989-01-30 1992-03-03 Dekok Peter T Abrasive tool and method for making
US5110384A (en) * 1989-04-21 1992-05-05 E. I. Du Pont De Nemours And Company Process for making electrically conductive patterns
US5131924A (en) * 1990-02-02 1992-07-21 Wiand Ronald C Abrasive sheet and method
US5145739A (en) * 1990-07-12 1992-09-08 Sarin Vinod K Abrasion resistant coated articles
US5152917A (en) * 1991-02-06 1992-10-06 Minnesota Mining And Manufacturing Company Structured abrasive article
US5164265A (en) * 1989-12-11 1992-11-17 Minnesota Mining And Manufacturing Company Abrasive elements
US5181939A (en) * 1989-12-20 1993-01-26 Charles Neff Article and a method for producing an article having a high friction surface
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5203880A (en) * 1992-07-24 1993-04-20 Tselesin Naum N Method and apparatus for making abrasive tools
US5213590A (en) * 1989-12-20 1993-05-25 Neff Charles E Article and a method for producing an article having a high friction surface
US5213591A (en) * 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
US5219462A (en) * 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
US5234757A (en) * 1991-04-30 1993-08-10 The Dexter Corporation Expandable films and molded products therefrom
US5288353A (en) * 1992-01-21 1994-02-22 Deere & Company Method for forming a polymeric plastic product having a hard wear-resistant surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2876086A (en) * 1954-06-21 1959-03-03 Minnesota Mining & Mfg Abrasive structures and method of making
DE2918103C2 (en) * 1979-05-04 1985-12-05 Sia Schweizer Schmirgel- & Schleifindustrie Ag, Frauenfeld, Ch
JPS626952B2 (en) * 1982-07-30 1987-02-14 Harumitsu Yasuda
JPS607209U (en) * 1983-06-29 1985-01-18
US5190568B1 (en) * 1989-01-30 1996-03-12 Ultimate Abrasive Syst Inc Abrasive tool with contoured surface

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565713A (en) * 1967-10-27 1971-02-23 Xerox Corp Method of forming a ceramic image on a ceramic substrate
US3663191A (en) * 1970-07-23 1972-05-16 Dentsply Int Inc Diamond tool and method of making the same
US3773480A (en) * 1971-07-19 1973-11-20 F L J C Codman Co Abrasive means and method of manufacture
US3745623A (en) * 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
US4292103A (en) * 1979-02-13 1981-09-29 Nissha Printing Co., Ltd. Transfer printing
US4366202A (en) * 1981-06-19 1982-12-28 Kimberly-Clark Corporation Ceramic/organic web
US4759892A (en) * 1981-07-15 1988-07-26 Corning Glass Works Method and apparatus for aligning body with honeycomb structure
US4411856A (en) * 1981-07-15 1983-10-25 Corning Glass Works Method and apparatus for high speed manifolding of honeycomb structures
US5021204A (en) * 1981-07-15 1991-06-04 Corning Incorporated Method for selectively charging honeycomb structures
US4520062A (en) * 1982-11-16 1985-05-28 Nevamar Corporation Transfer coating of abrasion-resistant layers
US4560603A (en) * 1983-10-27 1985-12-24 Ltv Aerospace And Defense Company Composite matrix with oriented whiskers
US4510000A (en) * 1983-11-30 1985-04-09 International Business Machines Corporation Method for palladium activating molybdenum metallized features on a ceramic substrate
US4949511A (en) * 1986-02-10 1990-08-21 Toshiba Tungaloy Co., Ltd. Super abrasive grinding tool element and grinding tool
US4680199A (en) * 1986-03-21 1987-07-14 United Technologies Corporation Method for depositing a layer of abrasive material on a substrate
US5066312A (en) * 1987-02-27 1991-11-19 Abrasive Technology N.A., Inc. Flexible abrasives
US4825539A (en) * 1987-03-27 1989-05-02 Fujitsu Limited Process for manufacturing a multilayer substrate
JPS63270403A (en) * 1987-04-27 1988-11-08 Toru Morimoto Production of metallic porous material
US4781775A (en) * 1987-06-01 1988-11-01 Motorola Inc. Coplanar die to substrate bond method
US4889760A (en) * 1987-07-31 1989-12-26 Siemens Aktiengesellschaft Filler layer electrical component and method for the manufacture thereof
US4906512A (en) * 1987-07-31 1990-03-06 Siemens Aktiengesellschaft Electrical multilayer component comprising a sintered, monolithic ceramic body and method for its manufacture
US4931069A (en) * 1987-10-30 1990-06-05 Wiand Ronald C Abrasive tool with improved swarf clearance and method of making
US4846906A (en) * 1987-12-02 1989-07-11 The Duriron Company, Inc. Methods for the manufacture of porous ceramic shapes containing membraneous surfaces
US4916869A (en) * 1988-08-01 1990-04-17 L. R. Oliver & Company, Inc. Bonded abrasive grit structure
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5092910B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Abrasive tool
US5049165B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Composite material
US5049165A (en) * 1989-01-30 1991-09-17 Tselesin Naum N Composite material
US5092910A (en) * 1989-01-30 1992-03-03 Dekok Peter T Abrasive tool and method for making
US5110384A (en) * 1989-04-21 1992-05-05 E. I. Du Pont De Nemours And Company Process for making electrically conductive patterns
US5014468A (en) * 1989-05-05 1991-05-14 Norton Company Patterned coated abrasive for fine surface finishing
US4951427A (en) * 1989-05-30 1990-08-28 General Electric Company Refractory metal oxide coated abrasives and grinding wheels made therefrom
US5164265A (en) * 1989-12-11 1992-11-17 Minnesota Mining And Manufacturing Company Abrasive elements
US5181939A (en) * 1989-12-20 1993-01-26 Charles Neff Article and a method for producing an article having a high friction surface
US5213590A (en) * 1989-12-20 1993-05-25 Neff Charles E Article and a method for producing an article having a high friction surface
US5049164A (en) * 1990-01-05 1991-09-17 Norton Company Multilayer coated abrasive element for bonding to a backing
US5131924A (en) * 1990-02-02 1992-07-21 Wiand Ronald C Abrasive sheet and method
US5145739A (en) * 1990-07-12 1992-09-08 Sarin Vinod K Abrasion resistant coated articles
US5152917B1 (en) * 1991-02-06 1998-01-13 Minnesota Mining & Mfg Structured abrasive article
US5152917A (en) * 1991-02-06 1992-10-06 Minnesota Mining And Manufacturing Company Structured abrasive article
US5234757A (en) * 1991-04-30 1993-08-10 The Dexter Corporation Expandable films and molded products therefrom
US5219462A (en) * 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
US5288353A (en) * 1992-01-21 1994-02-22 Deere & Company Method for forming a polymeric plastic product having a hard wear-resistant surface
US5203880B1 (en) * 1992-07-24 1995-10-17 Ultimate Abrasive Syst Inc Method and apparatus for making abrasive tools
US5203880A (en) * 1992-07-24 1993-04-20 Tselesin Naum N Method and apparatus for making abrasive tools
US5213591A (en) * 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980678A (en) * 1991-06-10 1999-11-09 Ultimate Abrasive Systems, L.L.C. Patterned abrasive material and method
US5817204A (en) * 1991-06-10 1998-10-06 Ultimate Abrasive Systems, L.L.C. Method for making patterned abrasive material
US6478831B2 (en) 1995-06-07 2002-11-12 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
US5624522A (en) * 1995-06-07 1997-04-29 Owens-Corning Fiberglas Technology Inc. Method for applying granules to strip asphaltic roofing material to form variegated shingles
US5747105A (en) 1996-04-30 1998-05-05 Owens Corning Fiberglas Technology Inc. Traversing nozzle for applying granules to an asphalt coated sheet
WO1998030356A1 (en) * 1997-01-13 1998-07-16 Rodel, Inc. Polymeric polishing pad having photolithographically induced surface pattern(s) and methods relating thereto
US20040194689A1 (en) * 1997-04-04 2004-10-07 Chien-Min Sung High pressure superabrasive particle synthesis
US20060016127A1 (en) * 1997-04-04 2006-01-26 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
EP1015180A1 (en) * 1997-04-04 2000-07-05 Chien-Min Sung Abrasive tools with patterned grit distribution and method of manufacture
US7124753B2 (en) 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US20090283089A1 (en) * 1997-04-04 2009-11-19 Chien-Min Sung Brazed Diamond Tools and Methods for Making the Same
US20130273820A1 (en) * 1997-04-04 2013-10-17 Chien-Min Sung Brazed diamond tools and methods for making the same
US20030084894A1 (en) * 1997-04-04 2003-05-08 Chien-Min Sung Brazed diamond tools and methods for making the same
US7585366B2 (en) 1997-04-04 2009-09-08 Chien-Min Sung High pressure superabrasive particle synthesis
US9199357B2 (en) * 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US20080248305A1 (en) * 1997-04-04 2008-10-09 Chien-Min Sung Superabrasive Particle Synthesis with Controlled Placement of Crystalline Seeds
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US7404857B2 (en) 1997-04-04 2008-07-29 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US8104464B2 (en) 1997-04-04 2012-01-31 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US20050136667A1 (en) * 1997-04-04 2005-06-23 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
EP1015180A4 (en) * 1997-04-04 2003-04-23 Chien-Min Sung Abrasive tools with patterned grit distribution and method of manufacture
US7368013B2 (en) 1997-04-04 2008-05-06 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US7323049B2 (en) 1997-04-04 2008-01-29 Chien-Min Sung High pressure superabrasive particle synthesis
US20070295267A1 (en) * 1997-04-04 2007-12-27 Chien-Min Sung High pressure superabrasive particle synthesis
US20070157917A1 (en) * 1997-04-04 2007-07-12 Chien-Min Sung High pressure superabrasive particle synthesis
US20080047484A1 (en) * 1997-04-04 2008-02-28 Chien-Min Sung Superabrasive particle synthesis with growth control
US6679243B2 (en) 1997-04-04 2004-01-20 Chien-Min Sung Brazed diamond tools and methods for making
US20070051354A1 (en) * 1997-04-04 2007-03-08 Chien-Min Sung Brazed diamond tools and methods for making the same
US20070051355A1 (en) * 1997-04-04 2007-03-08 Chien-Min Sung Brazed diamond tools and methods for making the same
AU717867B2 (en) * 1997-05-14 2000-04-06 Norton Company Patterned abrasive tools
WO1998051448A1 (en) * 1997-05-14 1998-11-19 Norton Company Patterned abrasive tools
US6110031A (en) * 1997-06-25 2000-08-29 3M Innovative Properties Company Superabrasive cutting surface
US6196911B1 (en) 1997-12-04 2001-03-06 3M Innovative Properties Company Tools with abrasive segments
US6358133B1 (en) 1998-02-06 2002-03-19 3M Innovative Properties Company Grinding wheel
US6159087A (en) * 1998-02-11 2000-12-12 Applied Materials, Inc. End effector for pad conditioning
WO1999041039A1 (en) * 1998-02-11 1999-08-19 Applied Materials, Inc. Improved end effector for pad conditioning
US7198553B2 (en) 1998-04-15 2007-04-03 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US6629884B1 (en) 1998-04-15 2003-10-07 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US20040180617A1 (en) * 1998-04-15 2004-09-16 3M Innovative Properties Company Conditioning disk
US6123612A (en) * 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US20040033772A1 (en) * 1998-04-15 2004-02-19 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US7641538B2 (en) 1998-04-15 2010-01-05 3M Innovative Properties Company Conditioning disk
US20040185763A1 (en) * 1999-07-15 2004-09-23 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US7044990B2 (en) 1999-07-15 2006-05-16 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US6755720B1 (en) * 1999-07-15 2004-06-29 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US6416560B1 (en) 1999-09-24 2002-07-09 3M Innovative Properties Company Fused abrasive bodies comprising an oxygen scavenger metal
US6402604B2 (en) * 1999-11-04 2002-06-11 Saint-Gobain Abrasive Technology Company Process for the production of coated abrasive discs
US6257973B1 (en) 1999-11-04 2001-07-10 Norton Company Coated abrasive discs
US6884155B2 (en) 1999-11-22 2005-04-26 Kinik Diamond grid CMP pad dresser
US20050095959A1 (en) * 1999-11-22 2005-05-05 Chien-Min Sung Contoured CMP pad dresser and associated methods
US7201645B2 (en) 1999-11-22 2007-04-10 Chien-Min Sung Contoured CMP pad dresser and associated methods
US20070254566A1 (en) * 1999-11-22 2007-11-01 Chien-Min Sung Contoured CMP pad dresser and associated methods
WO2001043918A2 (en) * 1999-12-17 2001-06-21 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
WO2001043918A3 (en) * 1999-12-17 2002-03-28 Ultimate Abrasive Systems Llc Abrasive surface and article and methods for making them
US6551176B1 (en) 2000-10-05 2003-04-22 Applied Materials, Inc. Pad conditioning disk
US20050118939A1 (en) * 2000-11-17 2005-06-02 Duescher Wayne O. Abrasive bead coated sheet and island articles
US8545583B2 (en) * 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
WO2002043925A1 (en) * 2000-11-29 2002-06-06 3M Innovative Properties Company Abrasive article having a window system for polishing wafers, and methods
US6604985B2 (en) 2000-11-29 2003-08-12 3M Innovative Properties Company Abrasive article having a window system for polishing wafers, and methods
US6786810B2 (en) 2000-11-29 2004-09-07 3M Innovative Properties Company Abrasive article having a window system for polishing wafers, and methods
EP1655103A1 (en) * 2000-11-29 2006-05-10 3M Innovative Properties Company Method of making an abrasive article
US6575353B2 (en) 2001-02-20 2003-06-10 3M Innovative Properties Company Reducing metals as a brazing flux
US20030201308A1 (en) * 2001-02-20 2003-10-30 3M Innovative Properties Company Reducing metals as a brazing flux
US6858050B2 (en) 2001-02-20 2005-02-22 3M Innovative Properties Company Reducing metals as a brazing flux
WO2002066200A1 (en) * 2001-02-20 2002-08-29 3M Innovative Properties Company Reducing metals as a brazing flux
US6669745B2 (en) 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
EP2263832A3 (en) * 2001-02-21 2011-04-13 3M Innovative Properties Co. Abrasive article with optimally oriented abrasive particles
EP2263832A2 (en) 2001-02-21 2010-12-22 3M Innovative Properties Co. Abrasive article with optimally oriented abrasive particles
US20050241239A1 (en) * 2004-04-30 2005-11-03 Chien-Min Sung Abrasive composite tools having compositional gradients and associated methods
US8019455B2 (en) * 2004-05-17 2011-09-13 Panasonic Corporation Component mounting order deciding method and component mounting order deciding apparatus
US20080262642A1 (en) * 2004-05-17 2008-10-23 Matsushita Electric Industrial Co., Ltd. Component Mounting Order Deciding Method and Component Mounting Order Deciding Apparatus
US7089925B1 (en) 2004-08-18 2006-08-15 Kinik Company Reciprocating wire saw for cutting hard materials
US7762872B2 (en) 2004-08-24 2010-07-27 Chien-Min Sung Superhard cutters and associated methods
US20070249270A1 (en) * 2004-08-24 2007-10-25 Chien-Min Sung Superhard cutters and associated methods
US20070155298A1 (en) * 2004-08-24 2007-07-05 Chien-Min Sung Superhard Cutters and Associated Methods
US7658666B2 (en) 2004-08-24 2010-02-09 Chien-Min Sung Superhard cutters and associated methods
US20060073774A1 (en) * 2004-09-29 2006-04-06 Chien-Min Sung CMP pad dresser with oriented particles and associated methods
US7491116B2 (en) 2004-09-29 2009-02-17 Chien-Min Sung CMP pad dresser with oriented particles and associated methods
US20090186561A1 (en) * 2004-09-29 2009-07-23 Chien-Min Sung CMP Pad Dresser with Oriented Particles and Associated Methods
US8043145B2 (en) 2004-09-29 2011-10-25 Chien-Min Sung CMP pad dresser with oriented particles and associated methods
US8298048B2 (en) 2004-09-29 2012-10-30 Chien-Min Sung CMP pad dresser with oriented particles and associated methods
US20080140043A1 (en) * 2005-03-11 2008-06-12 Zoltan Mandzsu Methods For Making Fasteners
US8440257B2 (en) 2005-03-11 2013-05-14 3M Innovative Properties Company Methods for making fasteners
US8196270B2 (en) 2005-03-11 2012-06-12 3M Innovative Properties Company Methods for making fasteners
US20060258276A1 (en) * 2005-05-16 2006-11-16 Chien-Min Sung Superhard cutters and associated methods
US20130303056A1 (en) * 2005-05-16 2013-11-14 Chien-Min Sung Cmp pad dressers with hybridized abrasive surface and related methods
US9067301B2 (en) * 2005-05-16 2015-06-30 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US7651386B2 (en) 2005-09-09 2010-01-26 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US8414362B2 (en) * 2005-09-09 2013-04-09 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20070060026A1 (en) * 2005-09-09 2007-03-15 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7901272B2 (en) 2005-09-09 2011-03-08 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20070264918A1 (en) * 2005-09-09 2007-11-15 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US9902040B2 (en) 2005-09-09 2018-02-27 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20110212670A1 (en) * 2005-09-09 2011-09-01 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20100221990A1 (en) * 2005-09-09 2010-09-02 Chien-Min Sung Methods of Bonding Superabrasive Particles in an Organic Matrix
US20080171503A1 (en) * 2005-09-09 2008-07-17 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7690971B2 (en) * 2005-09-09 2010-04-06 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20100139174A1 (en) * 2005-09-09 2010-06-10 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US7717972B2 (en) * 2006-07-26 2010-05-18 Kinik Company Diamond disc manufacturing process
US8387942B2 (en) 2006-07-26 2013-03-05 Kinik Company Dies for manufacturing diamond discs
US20080022603A1 (en) * 2006-07-26 2008-01-31 Kinik Company Diamond disc manufacturing process
US20100186887A1 (en) * 2006-07-26 2010-07-29 Kinik Company Dies for manufaturing diamond discs
US20080060173A1 (en) * 2006-09-11 2008-03-13 3M Innovative Properties Company Methods for making fasteners
US7636988B2 (en) 2006-09-11 2009-12-29 3M Innovative Properties Company Methods for making fasteners
US20100055326A1 (en) * 2006-09-11 2010-03-04 3M Innovative Properties Company Methods for making fasteners
US20080098659A1 (en) * 2006-10-26 2008-05-01 Chien-Min Sung Methods for securing individual abrasive particles to a substrate in a predetermined pattern
US20090068937A1 (en) * 2006-11-16 2009-03-12 Chien-Min Sung CMP Pad Conditioners with Mosaic Abrasive Segments and Associated Methods
US8622787B2 (en) * 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US20090093195A1 (en) * 2006-11-16 2009-04-09 Chien-Min Sung CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods
US20100248596A1 (en) * 2006-11-16 2010-09-30 Chien-Min Sung CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods
US8393934B2 (en) * 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US20080153398A1 (en) * 2006-11-16 2008-06-26 Chien-Min Sung Cmp pad conditioners and associated methods
US8398466B2 (en) 2006-11-16 2013-03-19 Chien-Min Sung CMP pad conditioners with mosaic abrasive segments and associated methods
US20080132153A1 (en) * 2006-11-29 2008-06-05 Mitsubishi Materials Corporation Cmp conditioner
US20080178436A1 (en) * 2007-01-25 2008-07-31 3M Innovative Properties Company Fastener webs with microstructured particles and methods of making same
US20080250722A1 (en) * 2007-04-10 2008-10-16 Chien-Min Sung Electroplated abrasive tools, methods, and molds
US20080292869A1 (en) * 2007-05-22 2008-11-27 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US20090123705A1 (en) * 2007-11-13 2009-05-14 Chien-Min Sung CMP Pad Dressers
US8393938B2 (en) 2007-11-13 2013-03-12 Chien-Min Sung CMP pad dressers
US20090145045A1 (en) * 2007-12-06 2009-06-11 Chien-Min Sung Methods for Orienting Superabrasive Particles on a Surface and Associated Tools
US9011563B2 (en) * 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US20090226637A1 (en) * 2008-03-07 2009-09-10 Semiconductor Energy Laboratory Co., Ltd. Deposition Method and Method for Manufacturing Light-Emitting Device
US8840972B2 (en) * 2008-03-07 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing light-emitting device
US20100326416A1 (en) * 2008-03-19 2010-12-30 Ronald Schwarz High speed abrasive cutting blade with simulated teeth
US8252263B2 (en) 2008-04-14 2012-08-28 Chien-Min Sung Device and method for growing diamond in a liquid phase
US20090257942A1 (en) * 2008-04-14 2009-10-15 Chien-Min Sung Device and method for growing diamond in a liquid phase
US20100022167A1 (en) * 2008-07-25 2010-01-28 Supfina Grieshaber Gmbh & Co. Kg Superfinish Machine with an Endless Polishing Band and Method for Operating a Superfinish Machine
US9289881B2 (en) 2008-08-08 2016-03-22 Saint-Gobain Abrasives, Inc. Abrasive tools having a continuous metal phase for bonding an abrasive component to a carrier
CN101653928B (en) * 2008-08-19 2011-08-03 苏新页 Stickiness transfer method for diamond order distribution and stickiness transfer tape
US20100200304A1 (en) * 2009-02-12 2010-08-12 Saint-Gobain Abrasives, Inc. Abrasive tip for abrasive tool and method for forming and replacing thereof
US9097067B2 (en) 2009-02-12 2015-08-04 Saint-Gobain Abrasives, Inc. Abrasive tip for abrasive tool and method for forming and replacing thereof
US20100261419A1 (en) * 2009-04-10 2010-10-14 Chien-Min Sung Superabrasive Tool Having Surface Modified Superabrasive Particles and Associated Methods
US20110073094A1 (en) * 2009-09-28 2011-03-31 3M Innovative Properties Company Abrasive article with solid core and methods of making the same
US9475169B2 (en) 2009-09-29 2016-10-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US9278430B2 (en) 2009-12-31 2016-03-08 Saint-Gobain Abrasives, Inc. Abrasive article incorporating an infiltrated abrasive segment
US9028303B2 (en) 2010-07-12 2015-05-12 Saint-Gobain Abrasives, Inc. Abrasive article for shaping of industrial materials
US8777699B2 (en) 2010-09-21 2014-07-15 Ritedia Corporation Superabrasive tools having substantially leveled particle tips and associated methods
US20120302146A1 (en) * 2011-05-23 2012-11-29 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US9138862B2 (en) * 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US20140099868A1 (en) * 2011-05-23 2014-04-10 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US8974270B2 (en) * 2011-05-23 2015-03-10 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US20150306734A1 (en) * 2011-05-23 2015-10-29 Chien-Min Sung Cmp pad dresser having leveled tips and associated methods
US8778259B2 (en) 2011-05-25 2014-07-15 Gerhard B. Beckmann Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
US20130244552A1 (en) * 2012-03-14 2013-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Manufacture and method of making the same
US9242342B2 (en) * 2012-03-14 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Manufacture and method of making the same
US10300581B2 (en) 2014-09-15 2019-05-28 3M Innovative Properties Company Methods of making abrasive articles and bonded abrasive wheel preparable thereby
US10259102B2 (en) 2014-10-21 2019-04-16 3M Innovative Properties Company Abrasive preforms, method of making an abrasive article, and bonded abrasive article
US10307889B2 (en) 2015-03-30 2019-06-04 3M Innovative Properties Company Coated abrasive article and method of making the same

Also Published As

Publication number Publication date
DE69435041D1 (en) 2007-12-13
EP1430999A1 (en) 2004-06-23
AT376909T (en) 2007-11-15
AT259278T (en) 2004-02-15
US5380390B1 (en) 1996-10-01
ES2214483T3 (en) 2004-09-16
DE69433547D1 (en) 2004-03-18
DE69435041T2 (en) 2008-08-07
CN1124480A (en) 1996-06-12
EP0713452B1 (en) 2004-02-11
CA2163030A1 (en) 1994-12-08
JP2004174712A (en) 2004-06-24
EP0713452A1 (en) 1996-05-29
JP4287301B2 (en) 2009-07-01
TW254878B (en) 1995-08-21
KR100340851B1 (en) 2003-02-11
EP1430999B1 (en) 2007-10-31
HK1069795A1 (en) 2008-08-01
RU2143332C1 (en) 1999-12-27
ZA9403643B (en) 1995-04-24
ES2295712T3 (en) 2008-04-16
DE69433547T2 (en) 2004-12-23
BR9406663A (en) 1996-02-06
AU6956194A (en) 1994-12-20
KR960702388A (en) 1996-04-27
JPH08510694A (en) 1996-11-12
WO1994027833A1 (en) 1994-12-08
CN1111575C (en) 2003-06-18
CA2163030C (en) 2003-12-30
EP0713452A4 (en) 1997-11-05
AU690560B2 (en) 1998-04-30

Similar Documents

Publication Publication Date Title
US7368013B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US7641538B2 (en) Conditioning disk
TWI278928B (en) Abrasive tools made with a self-avoiding abrasive grain array
US6926969B2 (en) Process for the production of sintered porous bodies
US7294158B2 (en) Abrasive product, method of making and using the same, and apparatus for making the same
KR101641387B1 (en) Method and jig assembly for manufacturing outer blade cutting wheel
RU2247794C2 (en) Method for coating of superabrasive with metal
US5133782A (en) Multilayer abrading tool having an irregular abrading surface and process
US8545583B2 (en) Method of forming a flexible abrasive sheet article
DE3202697C2 (en)
US4256467A (en) A flexible abrasive coated article and method of making it
US3860400A (en) Flexible abrasive coverings
US5468268A (en) Method of making an abrasive compact
EP0276946B1 (en) Abrasive article
ES2382620T3 (en) Binder for abrasion tool.
EP0790880B1 (en) Abrasive products
US5203944A (en) Method for fabrication of three-dimensional articles by thermal spray deposition using masks as support structures
US2562587A (en) Bonded abrasive
US4908046A (en) Multilayer abrading tool and process
US4629373A (en) Polycrystalline diamond body with enhanced surface irregularities
US5376410A (en) Material surface modification
EP0090657B1 (en) A method of making abrasive bodies
US6096107A (en) Superabrasive products
US4614837A (en) Method for placing electrically conductive paths on a substrate
KR20050040934A (en) Molten braze-coated superabrasive particles and associated methods

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

CC Certificate of correction
RR Request for reexamination filed

Effective date: 19960229

B1 Reexamination certificate first reexamination
AS Assignment

Owner name: ULTIMATE ABRASIVE SYSTEMS, L.L.C., GEORGIA

Free format text: CERTIFICATE OF ELECTION & CERTIFICATE OF ORGANIZATION BY ELECTION;ASSIGNOR:ULTIMATE ABRASIVE SYSTEMS, INC.;REEL/FRAME:008886/0620

Effective date: 19940928

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12