US5366371A - Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries - Google Patents
Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries Download PDFInfo
- Publication number
- US5366371A US5366371A US08/053,129 US5312993A US5366371A US 5366371 A US5366371 A US 5366371A US 5312993 A US5312993 A US 5312993A US 5366371 A US5366371 A US 5366371A
- Authority
- US
- United States
- Prior art keywords
- fuel
- atomization
- combustion chamber
- atomized
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C15/00—Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
- F23C6/045—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
- F23C6/047—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
- F23D1/005—Burners for combustion of pulverulent fuel burning a mixture of pulverulent fuel delivered as a slurry, i.e. comprising a carrying liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2201/00—Staged combustion
- F23C2201/30—Staged fuel supply
- F23C2201/301—Staged fuel supply with different fuels in stages
Definitions
- This invention relates to apparatus and processes using an improved pulse combustor to atomize liquids or slurries.
- Atomization of liquids and slurries is important for many systems. Particularly, atomization of fuels for combustion and gasification applications is a key step in attaining proper performance in such applications. Fuel that has been atomized into smaller particles typically enables more complete combustion, higher combustion temperatures, and better mixing of the fuel with air so as to increase combustion efficiency.
- atomizers are in use today: (1) high pressure single-fluid atomizers (shown in FIG. 1) and (2) dual-fluid atomizers (shown in FIGS. 2A, 2B and 3).
- a liquid or slurry fuel is pressurized to an elevated pressure which propels the fuel at high kinetic energy through an orifice into a nozzle injector.
- the atomized fuel leaving the nozzle injector is then sprayed into a combustor chamber.
- the high velocity of the fuel spray in turn provides for better mixing of the fuel and air and results in more efficient combustor performance.
- a high pressure single-fluid atomizer as shown in FIG. 1 employs a high pressure pump to raise the pressure of the liquid fuel and to drive the atomizer.
- the pressurized fluid expands through the nozzle so as to impart a high velocity to the fluid, resulting in an atomized spray.
- the pump operation may be continuous or intermittent, with intermittent pumps being employed for fuel-injected internal combustion piston applications such as diesel and gasoline engines.
- dual-fluid atomizers a separate atomization fluid is employed to achieve atomization of the liquid or slurry fuel.
- dual-fluid atomizers are either internally mixed as shown in FIGS. 2A and 2B or externally mixed as shown in FIG. 3.
- the atomizing fluid meets the fuel within an atomization chamber and the mixture is ejected at high velocity from a nozzle to form the atomized fuel spray.
- FIG. 2A employs a Y-jet design where the atomization fluid (generally gas or steam) meets the liquid or slurry fuel at an acute angle.
- 2B employs an eductor T-jet design where the atomization fluid flow meets the liquid or slurry fuel at a right angle.
- Such atomizers may operate as eductors and, in some applications, no pump is required for fuel introduction.
- mixing of the atomization fluid and the liquid or slurry fuel occur internally within the body of the atomizer before the atomized fuel spray leaves the atomizer.
- the atomizing fluid meets the liquid or slurry fuel outside the body of the atomizer.
- Mixing of the atomization fluid with the fuel outside the atomizer is particularly useful when coal slurries and viscous liquid fuels such as residual oils are employed.
- Such highly abrasive or highly viscous fuels tend to cause rapid erosion of the inner surfaces of the atomizer when an internally mixed atomizer is employed.
- rapid erosion is lessened.
- an annular cavity distributes the liquid fuel or slurry around a supersonic jet of atomizing fluid.
- a film of liquid fuel is sheared by the supersonic flow of the atomizing fluid through the cavity to produce an atomized fuel spray.
- Fuel enters into the path of an atomization fluid after the atomization fluid exits from a supersonic nozzle.
- the atomization fluid is provided with sufficient velocity to sheer the fuel droplets into an acceptable atomized fuel spray.
- Liquid fuel in such applications need not be pressurized to high levels, with pressures in the range of from about 50 to about 250 pounds per square inch being acceptable.
- the atomization fluid typically employed is a compressible fluid such as air or steam.
- a compressible fluid such as air or steam.
- pressures in the range of from about 20 to about 180 pounds per square inch are generally used.
- steam the pressure range is generally from about 50 pounds per square inch to about 600 pounds per square inch depending on the application requirements.
- the ratio of atomization fluid to liquid fuel varies from about 0.07 to about 0.50 pounds of atomization fluid per pound of liquid fuel being atomized.
- more atomization fluid flow is required for the externally mixed, dual-fluid atomizers.
- the amount of atomization fluid in such atomizers ranges from about 0.40 to about 3.0 pounds per pound of liquid fuel being atomized.
- the apparatus and processes according to the present invention overcome most, if not all, of the above-noted problems of the prior art and generally possess the desired attributes set forth above by using a pulse combustion apparatus to atomize fuels.
- the present invention may utilize an improved "T"-shaped combustion chamber to maximize atomization.
- the present atomization apparatus may be designed to supply atomized fuel to combustion, gasification, and other systems which employ atomized liquid or slurry streams.
- Another object of the present invention is to provide an improved atomizer employing a pulse combustor for atomization of liquids and slurries.
- Still another object according to the present invention is to provide a high efficiency fuel atomizer employing a pulse combustor to atomize the fuel.
- Another object according to the present invention is to provide a fuel atomizer that does not suffer from rapid erosion when atomizing highly abrasive slurries or highly viscous liquids.
- Another object of the present invention is to provide a novel pulse combustor in a "T"-shaped design for atomizing slurries and liquids.
- apparatus includes an atomization apparatus comprising pulse combustion means for generating a stream of atomization fluid and a means for providing a fuel to the pulse combustion means so that atomized liquids or slurries are produced by the stream of atomization fluid acting thereon.
- the method for atomization according to the present invention generally comprises the steps of producing a stream of atomization fluid by pulse combustion and providing a liquid or slurry to be atomized to the stream of atomization fluid so that an atomized liquid or slurry is created that may be provided for further application.
- apparatus includes an atomization apparatus comprising a dual pulse combustor designed in a T-shape for effective atomization of slurries and liquids.
- the T-burner design provides high-intensity and high-frequency oscillating flows to provide the required energy for atomization.
- one particular embodiment of the present invention includes an apparatus for creating and/or utilizing an atomized fuel comprising a pulse combustor for producing a stream of atomization fluid wherein the pulse combustor includes a combustion chamber, a valve in communication therewith for admitting fuel or air to the combustion chamber, a first fuel injector for admitting fuel to the pulse combustor and a resonance tube in communication with the combustion chamber.
- the apparatus further comprises a second fuel injector for admitting fuel to the pulse combustor so that the fuel admitted thereto may be atomized by the stream of atomization fluid.
- the resonance tube of the pulsed fuel atomizer is in communication with apparatus for utilizing the atomized fuel created therein such as combustion and gasification systems, and other similar types of devices wherein atomized fuel is preferred or acceptable.
- a method for atomizing a fuel more specifically comprises the steps of supplying a pulse combustion fuel to a pulse combustor having a combustion chamber, a valve means for admitting fuel or air to the combustion chamber, and at least one resonance tube.
- the method further includes pulse combusting the pulse combustion fuel to produce a combustion stream of atomization fluid exiting from the combustion chamber and entering into the resonance tube.
- a liquid or slurry to be atomized is supplied to the pulse combustor after the stream of atomization fluid has been produced so that the liquid or slurry to be atomized is atomized by the stream of atomization fluid.
- the method includes providing the atomized liquid or slurry, preferably a fuel, for further applications such as combustion and gasification.
- one particular and preferred apparatus of the present invention includes a pulse combustion means having a combustion chamber in communication with an aerodynamic valve for admitting fuel or air on demand to the pulse combustion chamber.
- the pulse combustion means includes one or more resonance tubes in communication with the combustion chamber.
- a means is provided for supplying fuel to the pulse combustion chamber so that a pulsating flow of atomization fluid is created.
- the apparatus further includes means downstream from the combustion chamber for supplying fuel to be atomized, and preferably takes the form of an injector. This second injector thus supplies the slurry or liquid fuel which is to be atomized to the atomization fluid so that atomization of the fuel occurs under the influence of the oscillating or pulsating flow field described herein.
- the pulse combustion means when fired, produces a pulsating flow of combustion products which serves as an atomization fluid for the fuel supplied downstream.
- the fuel which is preferably injected near the interface of the resonance tube and the combustion chamber, is then supplied to a main combustor cavity or other device such as a gasifier to utilize the atomized fuel in the combustion or gasification process.
- the supercharger may employ a forced draft fan, an air blower, an air compressor, or other device to pressurize the air provided to the combustion chamber through the aerovalve.
- the pulse combustion means operates under a supercharged air inlet condition.
- a further embodiment of the present invention includes an apparatus for creating and/or utilizing an atomized fuel comprising pulse combustors in a T-burner design.
- a pre-mixed air/fuel mixture is fed to the pulse combustor ends of a T-shaped combustion chamber which is operated in phase to produce a high-frequency oscillating flow.
- the pulse combustion chamber does not have a well-defined separate combustion chamber and resonance tube. Resonance actually begins in the top portion of the T-shaped burner prior to entering the sonic nozzle, or perpindicular enlongated chamber, of the T-burner.
- Fuel may be injected into the oscillating flow field near the exit of the T-burner under the influence of an acoustic wave at high velocity oscillations.
- frequencies of 1,000-6,000 Hz may be achieved.
- this particular design superimposes the high-intensity oscillating flow at moderate frequencies of 1,000-6,000 Hz on a steady jet to provide the sonic velocities required for the atomization of the slurries and liquids.
- the systems may be generally operated at pressures of 200 to 600 psig.
- FIG. 1 is a schematic illustration of a prior art high pressure, single-fluid atomizer.
- FIG. 2A is a schematic illustration of a prior art Y-jet internally mixed, dual-fluid atomizer.
- FIG. 2B is a schematic illustration of a prior art eductor T-jet internally mixed, dual-fluid atomizer.
- FIG. 3 is a schematic illustration of a prior art externally mixed, dual-fluid atomizer.
- FIG. 4 is a schematic illustration of one particular embodiment of a pulse combustor-atomizer apparatus of the present invention.
- FIG. 5 is another particular embodiment of a pulse combustor-atomizer of the present invention wherein an air supercharger has been added thereto.
- FIG. 6 illustrates a further embodiment of the pulse combustor-atomizer of the present invention wherein a T-shaped burner is employed.
- the invention is directed to the atomization of liquids and slurries.
- the description herein employs fuel as an example of a particular liquid or slurry that may be atomized accordingly.
- the preferred apparatus for atomizing fuels employs a pulse combustor to produce an atomization fluid which is then utilized to atomize a further liquid or slurry.
- a pulse combustor for the atomization of fuels has not previously been known.
- the present invention is a dual-fluid atomizer apparatus.
- a pulse combustor means creates an oscillating combustion product stream (or atomization fluid) which engages and atomizes a second fluid or slurry (preferably fuel) which is then provided in an atomized state for further use as desired, such as downstream combustion or gasification.
- FIG. 4 depicts one particular pulse combustor fuel atomization apparatus according to the present invention.
- a pulse combustor is shown generally by the numeral 10.
- Pulse combustor 10 generally comprises a combustion chamber 12, a valve means 14 in communication with combustion chamber 12, and one or more resonance tubes 16 in communication with combustion chamber 12.
- One particular pulse combustion means that may be employed in the present invention is generally and specifically described in U.S. Pat. No. 5,059,404 to Mansour et al. which is incorporated herein by reference.
- pulse combustor 10 may employ an aerodynamic valve (fluidic diode), a mechanical valve or the like as valve means 14, a combustion chamber 12, and one or more tailpipes or resonance tubes 16. Additionally, pulse combustor 10 according to the present invention may include an air plenum and thrust augmenter or supercharger as described below with respect to FIG. 5.
- the pulse combustor fuel atomizer of the present invention further includes a first fuel introduction means 18 for admitting of fuel for operation of the pulse combustor, though the combustor fuel could be admitted along with air through valve means 14.
- An additional fuel introduction means 20 is provided for introducing fuel which is to be atomized by the combustor apparatus 10.
- First fuel introduction means 18, preferably a fuel injector provides fuel to combustion chamber 12 for firing the pulse combustor 10.
- Any conventional means may be employed to supply a fluid to the apparatus through first fuel and additional fuel introduction means 18 and 20.
- conventional injection apparatuses which utilize pressurized fluid for spraying liquid fuel may be employed. Pressurized injectors, however, are not necessarily required because combustion chamber 12, acting as a vacuum source during operation as described herein, would draw fuel from first and additional fuel introduction means 18 and 20 without pressurization.
- pulse combustor first fuel introduction means 18 preferably introduces fuel for firing the pulse combustion means 10 at an area near the junction of air valve means 14 and combustion chamber 12. Such positioning of first fuel introduction means 18, however, is not required in the present invention. In fact, and as mentioned above, first fuel introduction means 18 may be eliminated altogether. Instead, as described herein, valve means 14 may admit a fuel/air mixture to combustion chamber 12 so that an additional fuel path exemplified by first fuel introduction means 18 is not required.
- combustion chamber 12 is in communication with resonance tube 16 for receipt of an oscillating stream of combustion products.
- Additional fuel introduction means 20, which adds fuel to be atomized, is preferably located near the juncture of the resonance tube(s) 16 and combustion chamber 12. However, as will be appreciated, additional fuel introduction means 20 may be located anywhere along resonance tube(s) 16 provided the stream of atomization fluid created by pulse combustion in combustion chamber 12 can act thereon under influence of the oscillating flow field to atomize the fuel.
- Valve means 14 acts as a diode such that self-air aspiration is affected in response to an oscillating pressure in combustion chamber 12 induced as a result of heat and mass release from combustion therein.
- variations of the present invention include the use of a mechanical valve instead of an aerodynamic valve for valve means 14.
- a pulse combustor such as that employed in the present invention, typically operates in the following manner.
- Fuel enters combustion chamber 12 through first fuel introduction means 18 or, alternatively, through valve means 14.
- Air enters combustion chamber 12 through valve means 14.
- An emission or spark source (not shown) detonates the explosive mixture during start-up.
- a sudden increase in volume triggered by the rapid increase in temperature and evolution of combustion products, pressurizes combustion chamber 12.
- valve means 14 in the form of a fluidic diode, permits preferential flow in the direction of resonance tube(s) or tailpipe(s) 16.
- the gaseous combustion product stream which is the atomization fluid in the present invention exiting combustion chamber 12, possesses significant momentum.
- a vacuum is created in combustion chamber 12 due to the inertia of the atomization fluid within resonance tube(s) 16 and permits only a small fraction of atomization fluid to return to combustion chamber 12, with the balance of the atomization fluid, or gas, exiting through resonance tube(s) 16. Because the chamber pressure is then below atmospheric pressure, air and fuel mixtures are drawn into chamber 12 where auto-ignition takes place. Again, valve means 14 constrains reverse flow, and the cycle begins anew. Once the first cycle is initiated, engine operation is thereafter self-sustaining or self-aspirating.
- the valve means utilized in many pulse combustion systems is a mechanical "flapper valve".
- the flapper valve is actually a check valve permitting flow from inlet to the combustion chamber, and constraining reverse flow by a mechanical seating arrangement.
- an aerodynamic valve without moving parts is preferred.
- a boundary layer builds in the valve during the exhaust stroke and turbulent eddies choke off much of the reverse flow.
- the exhaust gases have a much higher temperature than the inlet gases. Accordingly, the viscosity of the gas is much higher and the reverse resistance of the inlet diameter, in turn, is much higher than that for forward flow through the same opening.
- a preferred pulse combustor used herein, and as noted above, is based on a Helmholtz configuration with an aerodynamic valve.
- the pressure fluctuations which are combustion-induced in the Helmholtz resonator-shaped combustor, coupled with the fluidic diodicity of the aerodynamic valve, cause a bias flow of air and fluid from the combustor's inlet to the exit of resonance tube(s) 16.
- This results in the combustion air being self-aspirated by the combustor and for an average pressure boost to develop in the combustion chamber to expel the products of combustion at a high average flow velocity (typically over 1,000 ft./sec.) into and through resonance tube(s) 16.
- Sound intensity adjacent to the wall of combustion chamber 12 is normally in the range of 110-190 dB. The range may be altered depending on the desired acoustic field frequency to accommodate the specific application undertaken by the pulse combustor.
- a rapid pressure oscillation through combustion chamber 12 generates an intense oscillating flow field.
- the fluctuating flow field causes the atomization fluid, or products of combustion, to be swept away from the fuel which is firing the pulse combustor, thus providing access to oxygen with little or no diffusion limitation.
- pulse combustors experience very high mass and heat transfer rates within the combustion zone. While these combustors tend to have very high heat release rates (typically 10 times those of conventional burners), the vigorous mass transfer and high heat transfer within the combustion region result in a more uniform temperature. Thus, peak temperatures attained are much lower than in the case of conventional systems, resulting in a significant reduction in nitrogen oxides (NO x ) formation as described in U.S. Pat. No. 5,059,404.
- the high heat release rates also result in a smaller combustor size required for a given firing rate and a reduction in the required resonance time.
- Pulse combustor systems of the present invention regulate their own stoichiometry within their range of firing without need of extensive controls to regulate the fuel feed to combustion air mass flow rate ratio.
- the strength of the pressure pulsations in combustion chamber 12 increases which, in turn, increases the amount of air aspirated by the aerodynamic valve.
- the combustor automatically maintains a substantially constant stoichiometry over its designed firing range.
- the induced stoichiometry can be changed by modifying the aerodynamic valve fluidic diodicity.
- two (2) pulse combustors may be arranged in a tandem configuration wherein two pulse combustors as shown in FIG. 4 are operated in close proximity.
- the tandem operation employs a 180° phase lag between each combustor unit and results in super-positioning of acoustic waves and cancellation of the fugitive sound emissions.
- tandem combustors may be configured so that a fuel "T” acts as a coupling allowing automatic fuel biasing between each of the in-tandem pulse combustion units. Under these conditions, one combustion chamber achieves a low pressure phase just as the other chamber simultaneously achieves a high pressure phase. Due to the pressure gradient existing in the fuel coupling, combustion products are accelerated from the high pressure chamber to the low pressure chamber. The momentum of the accelerated gases biases a flow of fuel from the main fuel source into the fuel line "T" and eventually into the low pressure combustion chamber. A half-cycle later, a similar phenomenon occurs in the opposing direction. By these means, fuel can be properly phased without the use of mechanical flapper valves or an independent phasing chamber.
- pulse combustor 10 of the present invention may employ a number of different designs.
- the tube may flare continuously outwardly allowing the entire resonance tube to act as a diffuser to reduce gas exit velocity from combustion chamber 12 prior to entry into a main combustor cavity or gasification system.
- resonance tube(s) 16 may be essentially straight, but have at its outer end a diffuser section that consists of an outwardly flaring tailpipe section, or alternatively, may integrate a diffuser section at the end nearest combustion chamber 12 with an essentially straight tube extending therefrom.
- pulse combustor means 10 When operated according to the present invention, pulse combustor means 10 produces a pulsating flow of atomization fluid and an acoustic wave having a frequency in a range of from about 20 to about 1500 Hz.
- a pulsating flow of atomization fluid exits combustion chamber 12 and passes into resonance tube(s) 16.
- the stream of atomization fluid leaving combustion chamber 12 is at a sufficient velocity so as to atomize the fuel being injected or provided by additional fuel introduction means 20.
- fuel is atomized and travels along resonance tube(s) 16 gaining further speed until the atomized fuel is provided to a main combustor cavity or other application.
- a suitable pulse jet fuel is provided to combustion chamber 12 through first introduction means 18 and/or valve means 14.
- a highly flammable fuel such as natural gas, propane, hydrogen-rich synthesis gas, and other such gases are preferred to fire pulse combustion means 10. It is possible, however, to use liquid fuels, preferably light distillates such as gasoline and kerosene.
- solid fuel such as lignite coals, sawdust, and other highly reactive solids may be used for firing the pulse combustion means 10. The higher the flammability of the fuel employed, the higher the attainable dynamic pressure amplitude induced by the spontaneous resonance of the Helmholtz resonator. Furthermore, highly flammable fuels provide higher heat release rates per unit volume of the Helmholtz resonator.
- the oscillating dynamic pressures in combustion chamber 12 in the presence of an aerovalve or properly designed mechanical valve, give rise to a pressure boost in combustion chamber 12 that propels the atomization fluid through resonance tube(s) 16 at high velocity.
- the high kinetic energy in the flow of atomization fluid through the resonance tube is employed to atomize fuel provided by fuel injector means 20.
- the atomized fuel is introduced into a main combustor cavity 50 where additional combustion air is added and the atomized fuel is combusted.
- the temperature of the atomized spray can be modified. Furthermore, in the case of a slurry fuel, adjustments to the pulse combustion stoichiometry and the ratio between the firing rate of the pulse combustion to the main combustor firing rate results in dry coal or other solid fuel emanating from the pulse jet atomizer into the main combustor cavity.
- firing the pulse combustion means at near stoichiometric air conditions e.g., 3% excess air in the flue
- a sufficiently high firing rate allows the atomized fuel emanating from the atomizer to produce pre-ignited volatiles and ignited fines together with the volatilized larger solid fuel particles from the fuel slurry. This, in turn, anchors the flame within the main combustor cavity and allows higher turndown of the main combustor without flame-out.
- devolatilizing and pre-ignition parameters preheating or the main combustor's combustion air to stabilize the combustion of the atomized slurry can be eliminated.
- the pulse combustor atomizer apparatus of the present invention is operated in the following manner.
- a fuel for combusting in the pulse combustor is provided to pulse combustion chamber 12 through first fuel introduction means 18 or, alternatively, is provided through valve means 14 as an air/fuel mixture.
- Air is provided through valve means 14 and an ignition source (not shown) ignites the fuel for combustion in combustion chamber 12.
- Combustion of the fuel creates a pulsating flow of combustion products used as the atomization fluid of the present invention.
- the pulsating combustion is self-aspirating as described herein.
- the flow of atomization fluid leaving combustion chamber 12 travels to and through one or more resonance tubes 16.
- an additional fuel introduction means 20 provides the fuel to be atomized by the pulse combustor 10. Fuel to be atomized and which is supplied through additional fuel introduction means 20 is provided to the flow of atomization fluid so that the oscillating, or pulsating, flow field previously described can act thereon so as to cause atomization of the fuel. The fuel which is then atomized is provided downstream for further processing such as combustion, gasification, etc.
- the described pulse combustion fuel atomizer when employed to atomize slurry and liquid fuels, several desirable benefits are achieved. For example, the need for compressed air for atomization of the fuels is eliminated. This, of course, eliminates both the parasitic power required for generation of the compressed air and the capital and maintenance costs required to provide the compressor equipment. Furthermore, the erosion problems incurred with the previously-described internally mixed, dual-fluid atomization devices are avoided. In addition, the high parasitic power requirements of the externally mixed, dual-fluid atomizers are reduced.
- the pulse combustion atomizer of the present invention essentially operates as an externally mixed, dual-fluid atomizer having lower erosion rates.
- the atomization fluid is generated in a self-aspirating pulse combustion means by burning fuel. Such generation occurs in a system which requires no essential moving parts and no air compressors.
- the pulse combustion atomizer results in increased mixing of fuel with air due to the pulsation of the combustion products stream. Moreover, the presence of solids in the atomization fluid stream give rise to an increase in the atomization ability of the stream.
- a pulse combustion atomizer may be operated under a pressurized or supercharged inlet air condition.
- an air plenum 24 may be connected through conduits to a supercharger 26.
- Supercharger 26 may be a forced draft fan employed for supplying primary air to air plenum 24.
- Air plenum 24 operates as a capacitor and seeks to provide primary air to pulse combustion means 10 at approximately constant static pressure.
- the pressure boost developed due to pulse combustion within the present embodiment allows a reduction in the size, power requirements, and cost of forced draft supercharger 26.
- Supercharger 26 may, instead, consist of an air blower, an air compressor, or other device for supercharging the air fed to valve means 14.
- fuel that has been atomized by pulse combustion means 10 may be supplied to a main combustor cavity 50.
- atomized fuel produced by the present apparatus may be supplied to a gasification device as generally known in the art and described in U.S. Pat. No. 5,059,404.
- the main combustor cavity may consist of a further pulse combustion means or may, instead, be a typical conventional combustion unit.
- FIG. 6 A further embodiment of the present invention is shown in FIG. 6.
- the particular pulse combustion chamber illustrated therein is shown in the shape of a T-shaped burner.
- a T-shaped pulse combustion burner is shown generally at 100.
- Pulse combustion chamber 100 comprises a top chamber 110 having opposing ends 115 and 120 and a perpendicular chamber 125.
- Opposing ends 115 and 120 comprise combustion fuel burners for burning air/fuel mixtures fed through ports 130 located at each burner. As described above, the air/fuel mixture is burned and self-detonated due to the flow of the combustion products and pulse combustion action.
- Top chamber 110 is in communication with a perpendicular chamber 125 that terminates in a sonic nozzle 135.
- the oscillating flow field is at its highest velocity oscillation and fuel injection ports 140 provide the liquid or slurry to be atomized by the pulse combustor near such nozzle opening.
- fuel injection ports 140 provide the liquid or slurry to be atomized by the pulse combustor near such nozzle opening.
- only one injection port 140 is necessary for proper atomization.
- a premixed mixture of fuel and air is burned at both ends of the cylindrical top chamber 110.
- Typical fuels include highly flammable fuels such as natural gas, propane, hydrogen-rich synthesis gas and the like.
- the resultant pressure oscillations in the cylindrical upper chamber 110 are vented out through a centrally located perpendicular chamber ending in a sonic nozzle or outlet 135.
- the operating frequency of the T-burner is inversely proportional to the length of the cylindrical chamber. Chamber pressure is controlled by the sonic nozzle throat diameter at a given firing rate. The highest velocity oscillations occur near outlet 135 of the T-burner.
- the high kinetic energy and the presence of acoustic waves serve to enhance the atomization of the slurries. Additionally, the hot gases produced therein facilitate preheating and drying of the atomized slurry.
- Test results using the T-burner indicate that high frequencies of greater than 1,000 Hz provide quality atomization and result in drying, preheating, pyrolysis, and even partial oxidation of the liquid or slurry fuel. Such superior fuel preparation ensures improved combustion intensity, flame stability and turndown, as well as reduced omissions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/053,129 US5366371A (en) | 1991-11-18 | 1993-04-26 | Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/793,834 US5205728A (en) | 1991-11-18 | 1991-11-18 | Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries |
US08/053,129 US5366371A (en) | 1991-11-18 | 1993-04-26 | Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/793,834 Continuation-In-Part US5205728A (en) | 1991-11-18 | 1991-11-18 | Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries |
Publications (1)
Publication Number | Publication Date |
---|---|
US5366371A true US5366371A (en) | 1994-11-22 |
Family
ID=25160932
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/793,834 Expired - Lifetime US5205728A (en) | 1991-11-18 | 1991-11-18 | Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries |
US08/053,129 Expired - Lifetime US5366371A (en) | 1991-11-18 | 1993-04-26 | Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/793,834 Expired - Lifetime US5205728A (en) | 1991-11-18 | 1991-11-18 | Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries |
Country Status (8)
Country | Link |
---|---|
US (2) | US5205728A (en) |
EP (1) | EP0679206A1 (en) |
AU (1) | AU3133493A (en) |
BR (1) | BR9206767A (en) |
CA (1) | CA2122829C (en) |
CZ (1) | CZ283728B6 (en) |
RU (1) | RU2126114C1 (en) |
WO (1) | WO1993010398A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5957531A (en) * | 1996-10-25 | 1999-09-28 | Fisher Price Inc. | Child car seat |
WO2001012754A1 (en) | 1999-08-19 | 2001-02-22 | Manufacturing And Technology Conversion International, Inc. | Gas turbine with indirectly heated steam reforming system |
US6450108B2 (en) | 2000-03-24 | 2002-09-17 | Praxair Technology, Inc. | Fuel and waste fluid combustion system |
US6548197B1 (en) | 1999-08-19 | 2003-04-15 | Manufacturing & Technology Conversion International, Inc. | System integration of a steam reformer and fuel cell |
US6584774B1 (en) * | 2001-10-05 | 2003-07-01 | The United States Of America As Represented By The Secretary Of The Air Force | High frequency pulsed fuel injector |
US20040031450A1 (en) * | 2002-05-22 | 2004-02-19 | Manufacturing & Technology Conversion, Inc. | Pulse gasification and hot gas cleanup apparatus and process |
WO2004024620A2 (en) * | 2002-09-10 | 2004-03-25 | Manufacturing And Technology Conversion International, Inc. | Steam reforming process and apparatus |
US20040265202A1 (en) * | 2003-04-21 | 2004-12-30 | Manufacturing and Technology Conversion, International, Inc. | Process for the treatment of waste streams |
US20050050759A1 (en) * | 2003-08-11 | 2005-03-10 | Manufacturing And Technology Conversion International, Inc. | Efficient and cost-effective biomass drying |
US20070245627A1 (en) * | 2006-04-24 | 2007-10-25 | Thermochem Recovery International, Inc. | Fluid bed reactor having vertically spaced apart clusters of heating conduits |
US7531014B2 (en) | 2006-04-24 | 2009-05-12 | Thermochem Recovery International, Inc. | Fluid bed reactor having a pulse combustor-type heat transfer module separated from the compartment of a reaction vessel |
US20100068668A1 (en) * | 2008-09-16 | 2010-03-18 | Siemens Building Technologies Hvac Products Gmbh | Gas burner |
RU2468292C2 (en) * | 2010-01-11 | 2012-11-27 | Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) | Solid fuel combustion method, and device for its implementation |
US9920926B1 (en) | 2017-07-10 | 2018-03-20 | Thermochem Recovery International, Inc. | Pulse combustion heat exchanger system and method |
CN108181423A (en) * | 2017-11-21 | 2018-06-19 | 西北工业大学 | The speed coupling response function measurement device and method of propellant single order Oscillatory mode shape |
US10099200B1 (en) | 2017-10-24 | 2018-10-16 | Thermochem Recovery International, Inc. | Liquid fuel production system having parallel product gas generation |
US10214418B2 (en) | 2011-09-27 | 2019-02-26 | Thermochem Recovery International, Inc. | Method for converting biomass into fischer-tropsch products with carbon dioxide recycling |
US10222060B2 (en) | 2016-02-16 | 2019-03-05 | Thermochem Recovery International, Inc. | Two-stage energy-integrated product gas generation system and method |
US10286431B1 (en) | 2016-03-25 | 2019-05-14 | Thermochem Recovery International, Inc. | Three-stage energy-integrated product gas generation method |
US10815440B2 (en) | 2010-11-05 | 2020-10-27 | Thermochem Recovery International, Inc. | Systems and methods for producing syngas from a solid carbon-containing substance using a reactor having hollow engineered particles |
US11370982B2 (en) | 2016-08-30 | 2022-06-28 | Thermochem Recovery International, Inc. | Method of producing liquid fuel from carbonaceous feedstock through gasification and recycling of downstream products |
US11466223B2 (en) | 2020-09-04 | 2022-10-11 | Thermochem Recovery International, Inc. | Two-stage syngas production with separate char and product gas inputs into the second stage |
US11555157B2 (en) | 2020-03-10 | 2023-01-17 | Thermochem Recovery International, Inc. | System and method for liquid fuel production from carbonaceous materials using recycled conditioned syngas |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5133297A (en) * | 1991-04-22 | 1992-07-28 | Manufacturing And Technology Conversion International, Inc. | Pulsed atmospheric fluidized bed combustor apparatus and process |
US5419877A (en) * | 1993-09-17 | 1995-05-30 | General Atomics | Acoustic barrier separator |
JP3650422B2 (en) * | 1994-08-03 | 2005-05-18 | パルテック株式会社 | Method for producing low bulk density fine particles of alkali metal compound |
US6308436B1 (en) | 1998-07-01 | 2001-10-30 | The Procter & Gamble Company | Process for removing water from fibrous web using oscillatory flow-reversing air or gas |
IL139417A0 (en) | 1998-07-01 | 2001-11-25 | Procter & Gamble | Process for removing water from fibrous web using oscillatory-flow-reversing impingement gas |
US6085437A (en) * | 1998-07-01 | 2000-07-11 | The Procter & Gamble Company | Water-removing apparatus for papermaking process |
AUPQ809700A0 (en) * | 2000-06-09 | 2000-07-06 | Commonwealth Scientific And Industrial Research Organisation | Pulse combustion chamber and pulse combustor |
EP2565538A1 (en) * | 2011-08-31 | 2013-03-06 | Siemens Aktiengesellschaft | Diversion steam line |
US9187699B2 (en) * | 2011-11-08 | 2015-11-17 | Exxonmobil Chemical Patents Inc. | Hydrocarbon pyrolysis process |
RU2565737C1 (en) * | 2014-05-13 | 2015-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" | Vortex burner for combustion of solid powdered fuel |
EP3109546B1 (en) * | 2015-06-24 | 2018-03-07 | Hart Associes SARL | Pulsed combustor assembly for dehydration and/or granulation of a wet feedstock |
CN107859995B (en) * | 2017-12-08 | 2024-03-12 | 山西大学 | Rijke type pulse combustion system for coal-fired boiler |
US11512260B2 (en) | 2018-06-11 | 2022-11-29 | Donald Gene Taylor | Pulse detonation shockwave gasifier |
WO2021154109A1 (en) * | 2020-01-27 | 2021-08-05 | Ильгиз Амирович Ямилев | Pulsating combustion apparatus with improved energy conversion efficiency and reduced noise level (variants) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4013396A (en) * | 1975-08-25 | 1977-03-22 | Tenney William L | Fuel aerosolization apparatus and method |
US4054097A (en) * | 1976-03-17 | 1977-10-18 | Barkhuus Per W | Method and apparatus for incinerating liquid, gaseous and pasty waste |
US4368677A (en) * | 1981-04-07 | 1983-01-18 | Kline Michael J | Pulse combustion system for boilers |
US4619601A (en) * | 1984-08-29 | 1986-10-28 | Kabushiki Kaisha Toshiba | Pulse combustor |
US4622003A (en) * | 1983-10-13 | 1986-11-11 | Motan Gesellschaft Mit Beschrankter Haftung | Apparatus for dispensing active materials |
US4854853A (en) * | 1986-12-04 | 1989-08-08 | Kirox, Inc. | Waste combustion system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1125567A (en) * | 1955-05-02 | 1956-11-02 | Snecma | Pulsating gas jet device for the projection of substances |
US4183145A (en) * | 1978-03-02 | 1980-01-15 | Frolikov Ivan I | Method of spray-drying liquid and pastelike materials and installation for carrying same into effect |
-
1991
- 1991-11-18 US US07/793,834 patent/US5205728A/en not_active Expired - Lifetime
-
1992
- 1992-11-09 AU AU31334/93A patent/AU3133493A/en not_active Abandoned
- 1992-11-09 BR BR9206767A patent/BR9206767A/en not_active IP Right Cessation
- 1992-11-09 CZ CZ941200A patent/CZ283728B6/en not_active IP Right Cessation
- 1992-11-09 RU RU94027278A patent/RU2126114C1/en not_active IP Right Cessation
- 1992-11-09 EP EP92925167A patent/EP0679206A1/en not_active Ceased
- 1992-11-09 WO PCT/US1992/009740 patent/WO1993010398A1/en not_active Application Discontinuation
- 1992-11-09 CA CA002122829A patent/CA2122829C/en not_active Expired - Fee Related
-
1993
- 1993-04-26 US US08/053,129 patent/US5366371A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4013396A (en) * | 1975-08-25 | 1977-03-22 | Tenney William L | Fuel aerosolization apparatus and method |
US4054097A (en) * | 1976-03-17 | 1977-10-18 | Barkhuus Per W | Method and apparatus for incinerating liquid, gaseous and pasty waste |
US4368677A (en) * | 1981-04-07 | 1983-01-18 | Kline Michael J | Pulse combustion system for boilers |
US4622003A (en) * | 1983-10-13 | 1986-11-11 | Motan Gesellschaft Mit Beschrankter Haftung | Apparatus for dispensing active materials |
US4619601A (en) * | 1984-08-29 | 1986-10-28 | Kabushiki Kaisha Toshiba | Pulse combustor |
US4854853A (en) * | 1986-12-04 | 1989-08-08 | Kirox, Inc. | Waste combustion system |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5957531A (en) * | 1996-10-25 | 1999-09-28 | Fisher Price Inc. | Child car seat |
US6548197B1 (en) | 1999-08-19 | 2003-04-15 | Manufacturing & Technology Conversion International, Inc. | System integration of a steam reformer and fuel cell |
WO2001012754A1 (en) | 1999-08-19 | 2001-02-22 | Manufacturing And Technology Conversion International, Inc. | Gas turbine with indirectly heated steam reforming system |
US20040079087A1 (en) * | 1999-08-19 | 2004-04-29 | Ravi Chandran | System integration of a steam reformer and gas turbine |
US7272934B2 (en) | 1999-08-19 | 2007-09-25 | Manufacturing And Technology Conversion International, Inc. | System integration of a steam reformer and gas turbine |
US20070012045A1 (en) * | 1999-08-19 | 2007-01-18 | Ravi Chandran | System integration of a steam reformer and gas turbine |
US6923004B2 (en) | 1999-08-19 | 2005-08-02 | Manufacturing And Technology Conversion International, Inc. | System integration of a steam reformer and gas turbine |
US6450108B2 (en) | 2000-03-24 | 2002-09-17 | Praxair Technology, Inc. | Fuel and waste fluid combustion system |
US6584774B1 (en) * | 2001-10-05 | 2003-07-01 | The United States Of America As Represented By The Secretary Of The Air Force | High frequency pulsed fuel injector |
US20050120924A1 (en) * | 2002-05-22 | 2005-06-09 | Ravi Chandran | Pulse gasification and hot gas cleanup apparatus and process |
US20040031450A1 (en) * | 2002-05-22 | 2004-02-19 | Manufacturing & Technology Conversion, Inc. | Pulse gasification and hot gas cleanup apparatus and process |
US6832565B2 (en) | 2002-05-22 | 2004-12-21 | Manufacturing & Technology Conversion, Inc. | Pulse gasification and hot gas cleanup apparatus and process |
US6997118B2 (en) | 2002-05-22 | 2006-02-14 | Manufacturing & Technology Conversion International, Inc. | Pulse gasification and hot gas cleanup apparatus and process |
WO2004024620A2 (en) * | 2002-09-10 | 2004-03-25 | Manufacturing And Technology Conversion International, Inc. | Steam reforming process and apparatus |
US20040182000A1 (en) * | 2002-09-10 | 2004-09-23 | Mansour Momtaz N. | Steam reforming process and apparatus |
WO2004024620A3 (en) * | 2002-09-10 | 2004-05-13 | Mfg & Tech Conversion Int Inc | Steam reforming process and apparatus |
US7842110B2 (en) | 2002-09-10 | 2010-11-30 | Thermochem Recovery International, Inc. | Steam reforming process and apparatus |
US6958136B2 (en) | 2003-04-21 | 2005-10-25 | Manufacturing And Technology Conversion International, Inc. | Process for the treatment of waste streams |
US20040265202A1 (en) * | 2003-04-21 | 2004-12-30 | Manufacturing and Technology Conversion, International, Inc. | Process for the treatment of waste streams |
US20050050759A1 (en) * | 2003-08-11 | 2005-03-10 | Manufacturing And Technology Conversion International, Inc. | Efficient and cost-effective biomass drying |
US20070245627A1 (en) * | 2006-04-24 | 2007-10-25 | Thermochem Recovery International, Inc. | Fluid bed reactor having vertically spaced apart clusters of heating conduits |
US7531014B2 (en) | 2006-04-24 | 2009-05-12 | Thermochem Recovery International, Inc. | Fluid bed reactor having a pulse combustor-type heat transfer module separated from the compartment of a reaction vessel |
US7569086B2 (en) | 2006-04-24 | 2009-08-04 | Thermochem Recovery International, Inc. | Fluid bed reactor having vertically spaced apart clusters of heating conduits |
US20100068668A1 (en) * | 2008-09-16 | 2010-03-18 | Siemens Building Technologies Hvac Products Gmbh | Gas burner |
RU2468292C2 (en) * | 2010-01-11 | 2012-11-27 | Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) | Solid fuel combustion method, and device for its implementation |
US10815440B2 (en) | 2010-11-05 | 2020-10-27 | Thermochem Recovery International, Inc. | Systems and methods for producing syngas from a solid carbon-containing substance using a reactor having hollow engineered particles |
US10800655B2 (en) | 2011-09-27 | 2020-10-13 | Thermochem Recovery International, Inc. | Conditioned syngas composition, method of making same and method of processing same to produce fuels and/or fischer-tropsch products |
US10214418B2 (en) | 2011-09-27 | 2019-02-26 | Thermochem Recovery International, Inc. | Method for converting biomass into fischer-tropsch products with carbon dioxide recycling |
US11760631B2 (en) | 2011-09-27 | 2023-09-19 | Thermochem Recovery International, Inc. | Method of producing a cooled syngas of improved quality |
US10280081B2 (en) | 2011-09-27 | 2019-05-07 | Thermochem Recovery International, Inc. | Unconditioned syngas composition and method of cleaning up same for fischer-tropsch processing |
US11186483B2 (en) | 2011-09-27 | 2021-11-30 | Thermochem Recovery International, Inc. | Method of producing sulfur-depleted syngas |
US12077435B2 (en) | 2011-09-27 | 2024-09-03 | Thermochem Recovery International, Inc. | Method of generating clean syngas |
US11242988B2 (en) | 2016-02-16 | 2022-02-08 | Thermochem Recovery International, Inc. | Two-stage energy-integrated product gas generation system and method |
US10222060B2 (en) | 2016-02-16 | 2019-03-05 | Thermochem Recovery International, Inc. | Two-stage energy-integrated product gas generation system and method |
US10286431B1 (en) | 2016-03-25 | 2019-05-14 | Thermochem Recovery International, Inc. | Three-stage energy-integrated product gas generation method |
US10287519B2 (en) | 2016-03-25 | 2019-05-14 | Thermochem Recovery International, Inc. | Three-stage energy-integrated product gas generation system |
US10946423B2 (en) | 2016-03-25 | 2021-03-16 | Thermochem Recovery International, Inc. | Particulate classification vessel having gas distributor valve for recovering contaminants from bed material |
US10766059B2 (en) | 2016-03-25 | 2020-09-08 | Thermochem Recovery International, Inc. | System and method for recovering inert feedstock contaminants from municipal solid waste during gasification |
US11634650B2 (en) | 2016-08-30 | 2023-04-25 | Thermochem Recovery International, Inc. | Method of producing liquid fuel from carbonaceous feedstock through gasification and recycling of downstream products |
US11370982B2 (en) | 2016-08-30 | 2022-06-28 | Thermochem Recovery International, Inc. | Method of producing liquid fuel from carbonaceous feedstock through gasification and recycling of downstream products |
US9920926B1 (en) | 2017-07-10 | 2018-03-20 | Thermochem Recovery International, Inc. | Pulse combustion heat exchanger system and method |
US10215401B2 (en) | 2017-07-10 | 2019-02-26 | Thermochem Recovery International, Inc. | Pulse combustion heat exchanger system and method |
US10350574B2 (en) | 2017-10-24 | 2019-07-16 | Thermochem Recovery International, Inc. | Method for producing a product gas having component gas ratio relationships |
US10099200B1 (en) | 2017-10-24 | 2018-10-16 | Thermochem Recovery International, Inc. | Liquid fuel production system having parallel product gas generation |
CN108181423B (en) * | 2017-11-21 | 2020-06-02 | 西北工业大学 | Propellant first-order oscillation mode speed coupling response function measuring device and method |
CN108181423A (en) * | 2017-11-21 | 2018-06-19 | 西北工业大学 | The speed coupling response function measurement device and method of propellant single order Oscillatory mode shape |
US11555157B2 (en) | 2020-03-10 | 2023-01-17 | Thermochem Recovery International, Inc. | System and method for liquid fuel production from carbonaceous materials using recycled conditioned syngas |
US11466223B2 (en) | 2020-09-04 | 2022-10-11 | Thermochem Recovery International, Inc. | Two-stage syngas production with separate char and product gas inputs into the second stage |
US11760949B2 (en) | 2020-09-04 | 2023-09-19 | Thermochem Recovery International, Inc. | Two-stage syngas production with separate char and product gas inputs into the second stage |
Also Published As
Publication number | Publication date |
---|---|
CZ283728B6 (en) | 1998-06-17 |
CZ120094A3 (en) | 1995-11-15 |
CA2122829C (en) | 2002-06-18 |
CA2122829A1 (en) | 1993-05-27 |
US5205728A (en) | 1993-04-27 |
EP0679206A1 (en) | 1995-11-02 |
BR9206767A (en) | 1995-01-10 |
WO1993010398A1 (en) | 1993-05-27 |
AU3133493A (en) | 1993-06-15 |
RU2126114C1 (en) | 1999-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5366371A (en) | Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries | |
US11421601B2 (en) | Second stage combustion for igniter | |
US4130388A (en) | Non-contaminating fuel burner | |
US5557921A (en) | Power plant | |
US5628184A (en) | Apparatus for reducing the production of NOx in a gas turbine | |
US4160526A (en) | Liquid fuel atomizing nozzle | |
US5375995A (en) | Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing installation | |
US6027330A (en) | Low NOx fuel gas burner | |
US3880571A (en) | Burner assembly for providing reduced emission of air pollutant | |
JPH10148334A (en) | Method and device for liquid pilot fuel jetting of double fuel injector for gas turbine engine | |
CN104379921B (en) | The injection of the heavy fuel of carried fine particles | |
JPH1144426A (en) | Dual fuel injection device provided with a plurality of air jet liquid fuel atomizer, and its method | |
EP2434221A1 (en) | Method and arrangement for injecting an emulsion into a flame | |
US4298337A (en) | Fuel burner having flame stabilization by internal recirculation | |
JP3673009B2 (en) | Gas turbine combustor | |
US5586878A (en) | Premixing burner | |
US5146741A (en) | Gaseous fuel injector | |
US4929172A (en) | Stably operating pulse combustor and method | |
RU2374561C1 (en) | Centrifugal-pneumatic jet | |
US6908298B1 (en) | Air-fuel injection system for stable combustion | |
US4425854A (en) | Micronized coal burner facility | |
US4943230A (en) | Fuel injector for achieving smokeless combustion reactions at high pressure ratios | |
US6584774B1 (en) | High frequency pulsed fuel injector | |
WO1994004873A1 (en) | Compact liquid-fuel combuster | |
US4395228A (en) | Rotary burner for liquid fuels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: MANUFACTURING AND TECHNOLOGY CONVERSION INTERNATIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANSOUR, MOMTAZ N.;CHANDRAN, RAVI;REEL/FRAME:007005/0050 Effective date: 19930615 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: THERMOCHEM, INC., MARYLAND Free format text: LICENSE;ASSIGNOR:MFG. AND TECH. CONVERSION INT'L, INC.;REEL/FRAME:010602/0647 Effective date: 19980610 Owner name: ABELL FOUNDATION, INC., THE, A CORP. OF MARYLAND, Free format text: SECURITY AGREEMENT;ASSIGNOR:THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORP. OF MARYLAND;REEL/FRAME:010602/0682 Effective date: 20000207 Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORPORA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THERMOCHEM, INC., A CORPORATION OF MARYLAND;REEL/FRAME:010602/0662 Effective date: 19980610 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., MARYLAND Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ABELL FOUNDATION, INC., THE;REEL/FRAME:013056/0414 Effective date: 20020702 |
|
AS | Assignment |
Owner name: MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY, MARYLAN Free format text: SECURITY INTEREST;ASSIGNOR:THERMOCHEM RECOVERY INTERNATIONAL, INC.;REEL/FRAME:013746/0781 Effective date: 20030124 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION, SUCCESSOR TO MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY;REEL/FRAME:055197/0182 Effective date: 20210209 |
|
AS | Assignment |
Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION, SUCCESSOR TO;REEL/FRAME:055313/0830 Effective date: 20210217 |