US5366371A - Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries - Google Patents

Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries Download PDF

Info

Publication number
US5366371A
US5366371A US08/053,129 US5312993A US5366371A US 5366371 A US5366371 A US 5366371A US 5312993 A US5312993 A US 5312993A US 5366371 A US5366371 A US 5366371A
Authority
US
United States
Prior art keywords
fuel
atomization
combustion chamber
atomized
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/053,129
Inventor
Momtaz N. Mansour
Ravi Chandran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manufacturing and Technology Conversion International Inc
Original Assignee
Manufacturing and Technology Conversion International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manufacturing and Technology Conversion International Inc filed Critical Manufacturing and Technology Conversion International Inc
Priority to US08/053,129 priority Critical patent/US5366371A/en
Assigned to MANUFACTURING AND TECHNOLOGY CONVERSION INTERNATIONAL, INC. reassignment MANUFACTURING AND TECHNOLOGY CONVERSION INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDRAN, RAVI, MANSOUR, MOMTAZ N.
Application granted granted Critical
Publication of US5366371A publication Critical patent/US5366371A/en
Assigned to THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORPORATION OF MARYLAND reassignment THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORPORATION OF MARYLAND CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: THERMOCHEM, INC., A CORPORATION OF MARYLAND
Assigned to THERMOCHEM, INC. reassignment THERMOCHEM, INC. LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: MFG. AND TECH. CONVERSION INT'L, INC.
Assigned to ABELL FOUNDATION, INC., THE, A CORP. OF MARYLAND reassignment ABELL FOUNDATION, INC., THE, A CORP. OF MARYLAND SECURITY AGREEMENT Assignors: THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORP. OF MARYLAND
Assigned to THERMOCHEM RECOVERY INTERNATIONAL, INC. reassignment THERMOCHEM RECOVERY INTERNATIONAL, INC. RELEASE OF SECURITY INTEREST Assignors: ABELL FOUNDATION, INC., THE
Assigned to MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY reassignment MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THERMOCHEM RECOVERY INTERNATIONAL, INC.
Anticipated expiration legal-status Critical
Assigned to THERMOCHEM RECOVERY INTERNATIONAL, INC. reassignment THERMOCHEM RECOVERY INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PNC BANK, NATIONAL ASSOCIATION, SUCCESSOR TO MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY
Assigned to THERMOCHEM RECOVERY INTERNATIONAL, INC. reassignment THERMOCHEM RECOVERY INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PNC BANK, NATIONAL ASSOCIATION, SUCCESSOR TO
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/005Burners for combustion of pulverulent fuel burning a mixture of pulverulent fuel delivered as a slurry, i.e. comprising a carrying liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/30Staged fuel supply
    • F23C2201/301Staged fuel supply with different fuels in stages

Definitions

  • This invention relates to apparatus and processes using an improved pulse combustor to atomize liquids or slurries.
  • Atomization of liquids and slurries is important for many systems. Particularly, atomization of fuels for combustion and gasification applications is a key step in attaining proper performance in such applications. Fuel that has been atomized into smaller particles typically enables more complete combustion, higher combustion temperatures, and better mixing of the fuel with air so as to increase combustion efficiency.
  • atomizers are in use today: (1) high pressure single-fluid atomizers (shown in FIG. 1) and (2) dual-fluid atomizers (shown in FIGS. 2A, 2B and 3).
  • a liquid or slurry fuel is pressurized to an elevated pressure which propels the fuel at high kinetic energy through an orifice into a nozzle injector.
  • the atomized fuel leaving the nozzle injector is then sprayed into a combustor chamber.
  • the high velocity of the fuel spray in turn provides for better mixing of the fuel and air and results in more efficient combustor performance.
  • a high pressure single-fluid atomizer as shown in FIG. 1 employs a high pressure pump to raise the pressure of the liquid fuel and to drive the atomizer.
  • the pressurized fluid expands through the nozzle so as to impart a high velocity to the fluid, resulting in an atomized spray.
  • the pump operation may be continuous or intermittent, with intermittent pumps being employed for fuel-injected internal combustion piston applications such as diesel and gasoline engines.
  • dual-fluid atomizers a separate atomization fluid is employed to achieve atomization of the liquid or slurry fuel.
  • dual-fluid atomizers are either internally mixed as shown in FIGS. 2A and 2B or externally mixed as shown in FIG. 3.
  • the atomizing fluid meets the fuel within an atomization chamber and the mixture is ejected at high velocity from a nozzle to form the atomized fuel spray.
  • FIG. 2A employs a Y-jet design where the atomization fluid (generally gas or steam) meets the liquid or slurry fuel at an acute angle.
  • 2B employs an eductor T-jet design where the atomization fluid flow meets the liquid or slurry fuel at a right angle.
  • Such atomizers may operate as eductors and, in some applications, no pump is required for fuel introduction.
  • mixing of the atomization fluid and the liquid or slurry fuel occur internally within the body of the atomizer before the atomized fuel spray leaves the atomizer.
  • the atomizing fluid meets the liquid or slurry fuel outside the body of the atomizer.
  • Mixing of the atomization fluid with the fuel outside the atomizer is particularly useful when coal slurries and viscous liquid fuels such as residual oils are employed.
  • Such highly abrasive or highly viscous fuels tend to cause rapid erosion of the inner surfaces of the atomizer when an internally mixed atomizer is employed.
  • rapid erosion is lessened.
  • an annular cavity distributes the liquid fuel or slurry around a supersonic jet of atomizing fluid.
  • a film of liquid fuel is sheared by the supersonic flow of the atomizing fluid through the cavity to produce an atomized fuel spray.
  • Fuel enters into the path of an atomization fluid after the atomization fluid exits from a supersonic nozzle.
  • the atomization fluid is provided with sufficient velocity to sheer the fuel droplets into an acceptable atomized fuel spray.
  • Liquid fuel in such applications need not be pressurized to high levels, with pressures in the range of from about 50 to about 250 pounds per square inch being acceptable.
  • the atomization fluid typically employed is a compressible fluid such as air or steam.
  • a compressible fluid such as air or steam.
  • pressures in the range of from about 20 to about 180 pounds per square inch are generally used.
  • steam the pressure range is generally from about 50 pounds per square inch to about 600 pounds per square inch depending on the application requirements.
  • the ratio of atomization fluid to liquid fuel varies from about 0.07 to about 0.50 pounds of atomization fluid per pound of liquid fuel being atomized.
  • more atomization fluid flow is required for the externally mixed, dual-fluid atomizers.
  • the amount of atomization fluid in such atomizers ranges from about 0.40 to about 3.0 pounds per pound of liquid fuel being atomized.
  • the apparatus and processes according to the present invention overcome most, if not all, of the above-noted problems of the prior art and generally possess the desired attributes set forth above by using a pulse combustion apparatus to atomize fuels.
  • the present invention may utilize an improved "T"-shaped combustion chamber to maximize atomization.
  • the present atomization apparatus may be designed to supply atomized fuel to combustion, gasification, and other systems which employ atomized liquid or slurry streams.
  • Another object of the present invention is to provide an improved atomizer employing a pulse combustor for atomization of liquids and slurries.
  • Still another object according to the present invention is to provide a high efficiency fuel atomizer employing a pulse combustor to atomize the fuel.
  • Another object according to the present invention is to provide a fuel atomizer that does not suffer from rapid erosion when atomizing highly abrasive slurries or highly viscous liquids.
  • Another object of the present invention is to provide a novel pulse combustor in a "T"-shaped design for atomizing slurries and liquids.
  • apparatus includes an atomization apparatus comprising pulse combustion means for generating a stream of atomization fluid and a means for providing a fuel to the pulse combustion means so that atomized liquids or slurries are produced by the stream of atomization fluid acting thereon.
  • the method for atomization according to the present invention generally comprises the steps of producing a stream of atomization fluid by pulse combustion and providing a liquid or slurry to be atomized to the stream of atomization fluid so that an atomized liquid or slurry is created that may be provided for further application.
  • apparatus includes an atomization apparatus comprising a dual pulse combustor designed in a T-shape for effective atomization of slurries and liquids.
  • the T-burner design provides high-intensity and high-frequency oscillating flows to provide the required energy for atomization.
  • one particular embodiment of the present invention includes an apparatus for creating and/or utilizing an atomized fuel comprising a pulse combustor for producing a stream of atomization fluid wherein the pulse combustor includes a combustion chamber, a valve in communication therewith for admitting fuel or air to the combustion chamber, a first fuel injector for admitting fuel to the pulse combustor and a resonance tube in communication with the combustion chamber.
  • the apparatus further comprises a second fuel injector for admitting fuel to the pulse combustor so that the fuel admitted thereto may be atomized by the stream of atomization fluid.
  • the resonance tube of the pulsed fuel atomizer is in communication with apparatus for utilizing the atomized fuel created therein such as combustion and gasification systems, and other similar types of devices wherein atomized fuel is preferred or acceptable.
  • a method for atomizing a fuel more specifically comprises the steps of supplying a pulse combustion fuel to a pulse combustor having a combustion chamber, a valve means for admitting fuel or air to the combustion chamber, and at least one resonance tube.
  • the method further includes pulse combusting the pulse combustion fuel to produce a combustion stream of atomization fluid exiting from the combustion chamber and entering into the resonance tube.
  • a liquid or slurry to be atomized is supplied to the pulse combustor after the stream of atomization fluid has been produced so that the liquid or slurry to be atomized is atomized by the stream of atomization fluid.
  • the method includes providing the atomized liquid or slurry, preferably a fuel, for further applications such as combustion and gasification.
  • one particular and preferred apparatus of the present invention includes a pulse combustion means having a combustion chamber in communication with an aerodynamic valve for admitting fuel or air on demand to the pulse combustion chamber.
  • the pulse combustion means includes one or more resonance tubes in communication with the combustion chamber.
  • a means is provided for supplying fuel to the pulse combustion chamber so that a pulsating flow of atomization fluid is created.
  • the apparatus further includes means downstream from the combustion chamber for supplying fuel to be atomized, and preferably takes the form of an injector. This second injector thus supplies the slurry or liquid fuel which is to be atomized to the atomization fluid so that atomization of the fuel occurs under the influence of the oscillating or pulsating flow field described herein.
  • the pulse combustion means when fired, produces a pulsating flow of combustion products which serves as an atomization fluid for the fuel supplied downstream.
  • the fuel which is preferably injected near the interface of the resonance tube and the combustion chamber, is then supplied to a main combustor cavity or other device such as a gasifier to utilize the atomized fuel in the combustion or gasification process.
  • the supercharger may employ a forced draft fan, an air blower, an air compressor, or other device to pressurize the air provided to the combustion chamber through the aerovalve.
  • the pulse combustion means operates under a supercharged air inlet condition.
  • a further embodiment of the present invention includes an apparatus for creating and/or utilizing an atomized fuel comprising pulse combustors in a T-burner design.
  • a pre-mixed air/fuel mixture is fed to the pulse combustor ends of a T-shaped combustion chamber which is operated in phase to produce a high-frequency oscillating flow.
  • the pulse combustion chamber does not have a well-defined separate combustion chamber and resonance tube. Resonance actually begins in the top portion of the T-shaped burner prior to entering the sonic nozzle, or perpindicular enlongated chamber, of the T-burner.
  • Fuel may be injected into the oscillating flow field near the exit of the T-burner under the influence of an acoustic wave at high velocity oscillations.
  • frequencies of 1,000-6,000 Hz may be achieved.
  • this particular design superimposes the high-intensity oscillating flow at moderate frequencies of 1,000-6,000 Hz on a steady jet to provide the sonic velocities required for the atomization of the slurries and liquids.
  • the systems may be generally operated at pressures of 200 to 600 psig.
  • FIG. 1 is a schematic illustration of a prior art high pressure, single-fluid atomizer.
  • FIG. 2A is a schematic illustration of a prior art Y-jet internally mixed, dual-fluid atomizer.
  • FIG. 2B is a schematic illustration of a prior art eductor T-jet internally mixed, dual-fluid atomizer.
  • FIG. 3 is a schematic illustration of a prior art externally mixed, dual-fluid atomizer.
  • FIG. 4 is a schematic illustration of one particular embodiment of a pulse combustor-atomizer apparatus of the present invention.
  • FIG. 5 is another particular embodiment of a pulse combustor-atomizer of the present invention wherein an air supercharger has been added thereto.
  • FIG. 6 illustrates a further embodiment of the pulse combustor-atomizer of the present invention wherein a T-shaped burner is employed.
  • the invention is directed to the atomization of liquids and slurries.
  • the description herein employs fuel as an example of a particular liquid or slurry that may be atomized accordingly.
  • the preferred apparatus for atomizing fuels employs a pulse combustor to produce an atomization fluid which is then utilized to atomize a further liquid or slurry.
  • a pulse combustor for the atomization of fuels has not previously been known.
  • the present invention is a dual-fluid atomizer apparatus.
  • a pulse combustor means creates an oscillating combustion product stream (or atomization fluid) which engages and atomizes a second fluid or slurry (preferably fuel) which is then provided in an atomized state for further use as desired, such as downstream combustion or gasification.
  • FIG. 4 depicts one particular pulse combustor fuel atomization apparatus according to the present invention.
  • a pulse combustor is shown generally by the numeral 10.
  • Pulse combustor 10 generally comprises a combustion chamber 12, a valve means 14 in communication with combustion chamber 12, and one or more resonance tubes 16 in communication with combustion chamber 12.
  • One particular pulse combustion means that may be employed in the present invention is generally and specifically described in U.S. Pat. No. 5,059,404 to Mansour et al. which is incorporated herein by reference.
  • pulse combustor 10 may employ an aerodynamic valve (fluidic diode), a mechanical valve or the like as valve means 14, a combustion chamber 12, and one or more tailpipes or resonance tubes 16. Additionally, pulse combustor 10 according to the present invention may include an air plenum and thrust augmenter or supercharger as described below with respect to FIG. 5.
  • the pulse combustor fuel atomizer of the present invention further includes a first fuel introduction means 18 for admitting of fuel for operation of the pulse combustor, though the combustor fuel could be admitted along with air through valve means 14.
  • An additional fuel introduction means 20 is provided for introducing fuel which is to be atomized by the combustor apparatus 10.
  • First fuel introduction means 18, preferably a fuel injector provides fuel to combustion chamber 12 for firing the pulse combustor 10.
  • Any conventional means may be employed to supply a fluid to the apparatus through first fuel and additional fuel introduction means 18 and 20.
  • conventional injection apparatuses which utilize pressurized fluid for spraying liquid fuel may be employed. Pressurized injectors, however, are not necessarily required because combustion chamber 12, acting as a vacuum source during operation as described herein, would draw fuel from first and additional fuel introduction means 18 and 20 without pressurization.
  • pulse combustor first fuel introduction means 18 preferably introduces fuel for firing the pulse combustion means 10 at an area near the junction of air valve means 14 and combustion chamber 12. Such positioning of first fuel introduction means 18, however, is not required in the present invention. In fact, and as mentioned above, first fuel introduction means 18 may be eliminated altogether. Instead, as described herein, valve means 14 may admit a fuel/air mixture to combustion chamber 12 so that an additional fuel path exemplified by first fuel introduction means 18 is not required.
  • combustion chamber 12 is in communication with resonance tube 16 for receipt of an oscillating stream of combustion products.
  • Additional fuel introduction means 20, which adds fuel to be atomized, is preferably located near the juncture of the resonance tube(s) 16 and combustion chamber 12. However, as will be appreciated, additional fuel introduction means 20 may be located anywhere along resonance tube(s) 16 provided the stream of atomization fluid created by pulse combustion in combustion chamber 12 can act thereon under influence of the oscillating flow field to atomize the fuel.
  • Valve means 14 acts as a diode such that self-air aspiration is affected in response to an oscillating pressure in combustion chamber 12 induced as a result of heat and mass release from combustion therein.
  • variations of the present invention include the use of a mechanical valve instead of an aerodynamic valve for valve means 14.
  • a pulse combustor such as that employed in the present invention, typically operates in the following manner.
  • Fuel enters combustion chamber 12 through first fuel introduction means 18 or, alternatively, through valve means 14.
  • Air enters combustion chamber 12 through valve means 14.
  • An emission or spark source (not shown) detonates the explosive mixture during start-up.
  • a sudden increase in volume triggered by the rapid increase in temperature and evolution of combustion products, pressurizes combustion chamber 12.
  • valve means 14 in the form of a fluidic diode, permits preferential flow in the direction of resonance tube(s) or tailpipe(s) 16.
  • the gaseous combustion product stream which is the atomization fluid in the present invention exiting combustion chamber 12, possesses significant momentum.
  • a vacuum is created in combustion chamber 12 due to the inertia of the atomization fluid within resonance tube(s) 16 and permits only a small fraction of atomization fluid to return to combustion chamber 12, with the balance of the atomization fluid, or gas, exiting through resonance tube(s) 16. Because the chamber pressure is then below atmospheric pressure, air and fuel mixtures are drawn into chamber 12 where auto-ignition takes place. Again, valve means 14 constrains reverse flow, and the cycle begins anew. Once the first cycle is initiated, engine operation is thereafter self-sustaining or self-aspirating.
  • the valve means utilized in many pulse combustion systems is a mechanical "flapper valve".
  • the flapper valve is actually a check valve permitting flow from inlet to the combustion chamber, and constraining reverse flow by a mechanical seating arrangement.
  • an aerodynamic valve without moving parts is preferred.
  • a boundary layer builds in the valve during the exhaust stroke and turbulent eddies choke off much of the reverse flow.
  • the exhaust gases have a much higher temperature than the inlet gases. Accordingly, the viscosity of the gas is much higher and the reverse resistance of the inlet diameter, in turn, is much higher than that for forward flow through the same opening.
  • a preferred pulse combustor used herein, and as noted above, is based on a Helmholtz configuration with an aerodynamic valve.
  • the pressure fluctuations which are combustion-induced in the Helmholtz resonator-shaped combustor, coupled with the fluidic diodicity of the aerodynamic valve, cause a bias flow of air and fluid from the combustor's inlet to the exit of resonance tube(s) 16.
  • This results in the combustion air being self-aspirated by the combustor and for an average pressure boost to develop in the combustion chamber to expel the products of combustion at a high average flow velocity (typically over 1,000 ft./sec.) into and through resonance tube(s) 16.
  • Sound intensity adjacent to the wall of combustion chamber 12 is normally in the range of 110-190 dB. The range may be altered depending on the desired acoustic field frequency to accommodate the specific application undertaken by the pulse combustor.
  • a rapid pressure oscillation through combustion chamber 12 generates an intense oscillating flow field.
  • the fluctuating flow field causes the atomization fluid, or products of combustion, to be swept away from the fuel which is firing the pulse combustor, thus providing access to oxygen with little or no diffusion limitation.
  • pulse combustors experience very high mass and heat transfer rates within the combustion zone. While these combustors tend to have very high heat release rates (typically 10 times those of conventional burners), the vigorous mass transfer and high heat transfer within the combustion region result in a more uniform temperature. Thus, peak temperatures attained are much lower than in the case of conventional systems, resulting in a significant reduction in nitrogen oxides (NO x ) formation as described in U.S. Pat. No. 5,059,404.
  • the high heat release rates also result in a smaller combustor size required for a given firing rate and a reduction in the required resonance time.
  • Pulse combustor systems of the present invention regulate their own stoichiometry within their range of firing without need of extensive controls to regulate the fuel feed to combustion air mass flow rate ratio.
  • the strength of the pressure pulsations in combustion chamber 12 increases which, in turn, increases the amount of air aspirated by the aerodynamic valve.
  • the combustor automatically maintains a substantially constant stoichiometry over its designed firing range.
  • the induced stoichiometry can be changed by modifying the aerodynamic valve fluidic diodicity.
  • two (2) pulse combustors may be arranged in a tandem configuration wherein two pulse combustors as shown in FIG. 4 are operated in close proximity.
  • the tandem operation employs a 180° phase lag between each combustor unit and results in super-positioning of acoustic waves and cancellation of the fugitive sound emissions.
  • tandem combustors may be configured so that a fuel "T” acts as a coupling allowing automatic fuel biasing between each of the in-tandem pulse combustion units. Under these conditions, one combustion chamber achieves a low pressure phase just as the other chamber simultaneously achieves a high pressure phase. Due to the pressure gradient existing in the fuel coupling, combustion products are accelerated from the high pressure chamber to the low pressure chamber. The momentum of the accelerated gases biases a flow of fuel from the main fuel source into the fuel line "T" and eventually into the low pressure combustion chamber. A half-cycle later, a similar phenomenon occurs in the opposing direction. By these means, fuel can be properly phased without the use of mechanical flapper valves or an independent phasing chamber.
  • pulse combustor 10 of the present invention may employ a number of different designs.
  • the tube may flare continuously outwardly allowing the entire resonance tube to act as a diffuser to reduce gas exit velocity from combustion chamber 12 prior to entry into a main combustor cavity or gasification system.
  • resonance tube(s) 16 may be essentially straight, but have at its outer end a diffuser section that consists of an outwardly flaring tailpipe section, or alternatively, may integrate a diffuser section at the end nearest combustion chamber 12 with an essentially straight tube extending therefrom.
  • pulse combustor means 10 When operated according to the present invention, pulse combustor means 10 produces a pulsating flow of atomization fluid and an acoustic wave having a frequency in a range of from about 20 to about 1500 Hz.
  • a pulsating flow of atomization fluid exits combustion chamber 12 and passes into resonance tube(s) 16.
  • the stream of atomization fluid leaving combustion chamber 12 is at a sufficient velocity so as to atomize the fuel being injected or provided by additional fuel introduction means 20.
  • fuel is atomized and travels along resonance tube(s) 16 gaining further speed until the atomized fuel is provided to a main combustor cavity or other application.
  • a suitable pulse jet fuel is provided to combustion chamber 12 through first introduction means 18 and/or valve means 14.
  • a highly flammable fuel such as natural gas, propane, hydrogen-rich synthesis gas, and other such gases are preferred to fire pulse combustion means 10. It is possible, however, to use liquid fuels, preferably light distillates such as gasoline and kerosene.
  • solid fuel such as lignite coals, sawdust, and other highly reactive solids may be used for firing the pulse combustion means 10. The higher the flammability of the fuel employed, the higher the attainable dynamic pressure amplitude induced by the spontaneous resonance of the Helmholtz resonator. Furthermore, highly flammable fuels provide higher heat release rates per unit volume of the Helmholtz resonator.
  • the oscillating dynamic pressures in combustion chamber 12 in the presence of an aerovalve or properly designed mechanical valve, give rise to a pressure boost in combustion chamber 12 that propels the atomization fluid through resonance tube(s) 16 at high velocity.
  • the high kinetic energy in the flow of atomization fluid through the resonance tube is employed to atomize fuel provided by fuel injector means 20.
  • the atomized fuel is introduced into a main combustor cavity 50 where additional combustion air is added and the atomized fuel is combusted.
  • the temperature of the atomized spray can be modified. Furthermore, in the case of a slurry fuel, adjustments to the pulse combustion stoichiometry and the ratio between the firing rate of the pulse combustion to the main combustor firing rate results in dry coal or other solid fuel emanating from the pulse jet atomizer into the main combustor cavity.
  • firing the pulse combustion means at near stoichiometric air conditions e.g., 3% excess air in the flue
  • a sufficiently high firing rate allows the atomized fuel emanating from the atomizer to produce pre-ignited volatiles and ignited fines together with the volatilized larger solid fuel particles from the fuel slurry. This, in turn, anchors the flame within the main combustor cavity and allows higher turndown of the main combustor without flame-out.
  • devolatilizing and pre-ignition parameters preheating or the main combustor's combustion air to stabilize the combustion of the atomized slurry can be eliminated.
  • the pulse combustor atomizer apparatus of the present invention is operated in the following manner.
  • a fuel for combusting in the pulse combustor is provided to pulse combustion chamber 12 through first fuel introduction means 18 or, alternatively, is provided through valve means 14 as an air/fuel mixture.
  • Air is provided through valve means 14 and an ignition source (not shown) ignites the fuel for combustion in combustion chamber 12.
  • Combustion of the fuel creates a pulsating flow of combustion products used as the atomization fluid of the present invention.
  • the pulsating combustion is self-aspirating as described herein.
  • the flow of atomization fluid leaving combustion chamber 12 travels to and through one or more resonance tubes 16.
  • an additional fuel introduction means 20 provides the fuel to be atomized by the pulse combustor 10. Fuel to be atomized and which is supplied through additional fuel introduction means 20 is provided to the flow of atomization fluid so that the oscillating, or pulsating, flow field previously described can act thereon so as to cause atomization of the fuel. The fuel which is then atomized is provided downstream for further processing such as combustion, gasification, etc.
  • the described pulse combustion fuel atomizer when employed to atomize slurry and liquid fuels, several desirable benefits are achieved. For example, the need for compressed air for atomization of the fuels is eliminated. This, of course, eliminates both the parasitic power required for generation of the compressed air and the capital and maintenance costs required to provide the compressor equipment. Furthermore, the erosion problems incurred with the previously-described internally mixed, dual-fluid atomization devices are avoided. In addition, the high parasitic power requirements of the externally mixed, dual-fluid atomizers are reduced.
  • the pulse combustion atomizer of the present invention essentially operates as an externally mixed, dual-fluid atomizer having lower erosion rates.
  • the atomization fluid is generated in a self-aspirating pulse combustion means by burning fuel. Such generation occurs in a system which requires no essential moving parts and no air compressors.
  • the pulse combustion atomizer results in increased mixing of fuel with air due to the pulsation of the combustion products stream. Moreover, the presence of solids in the atomization fluid stream give rise to an increase in the atomization ability of the stream.
  • a pulse combustion atomizer may be operated under a pressurized or supercharged inlet air condition.
  • an air plenum 24 may be connected through conduits to a supercharger 26.
  • Supercharger 26 may be a forced draft fan employed for supplying primary air to air plenum 24.
  • Air plenum 24 operates as a capacitor and seeks to provide primary air to pulse combustion means 10 at approximately constant static pressure.
  • the pressure boost developed due to pulse combustion within the present embodiment allows a reduction in the size, power requirements, and cost of forced draft supercharger 26.
  • Supercharger 26 may, instead, consist of an air blower, an air compressor, or other device for supercharging the air fed to valve means 14.
  • fuel that has been atomized by pulse combustion means 10 may be supplied to a main combustor cavity 50.
  • atomized fuel produced by the present apparatus may be supplied to a gasification device as generally known in the art and described in U.S. Pat. No. 5,059,404.
  • the main combustor cavity may consist of a further pulse combustion means or may, instead, be a typical conventional combustion unit.
  • FIG. 6 A further embodiment of the present invention is shown in FIG. 6.
  • the particular pulse combustion chamber illustrated therein is shown in the shape of a T-shaped burner.
  • a T-shaped pulse combustion burner is shown generally at 100.
  • Pulse combustion chamber 100 comprises a top chamber 110 having opposing ends 115 and 120 and a perpendicular chamber 125.
  • Opposing ends 115 and 120 comprise combustion fuel burners for burning air/fuel mixtures fed through ports 130 located at each burner. As described above, the air/fuel mixture is burned and self-detonated due to the flow of the combustion products and pulse combustion action.
  • Top chamber 110 is in communication with a perpendicular chamber 125 that terminates in a sonic nozzle 135.
  • the oscillating flow field is at its highest velocity oscillation and fuel injection ports 140 provide the liquid or slurry to be atomized by the pulse combustor near such nozzle opening.
  • fuel injection ports 140 provide the liquid or slurry to be atomized by the pulse combustor near such nozzle opening.
  • only one injection port 140 is necessary for proper atomization.
  • a premixed mixture of fuel and air is burned at both ends of the cylindrical top chamber 110.
  • Typical fuels include highly flammable fuels such as natural gas, propane, hydrogen-rich synthesis gas and the like.
  • the resultant pressure oscillations in the cylindrical upper chamber 110 are vented out through a centrally located perpendicular chamber ending in a sonic nozzle or outlet 135.
  • the operating frequency of the T-burner is inversely proportional to the length of the cylindrical chamber. Chamber pressure is controlled by the sonic nozzle throat diameter at a given firing rate. The highest velocity oscillations occur near outlet 135 of the T-burner.
  • the high kinetic energy and the presence of acoustic waves serve to enhance the atomization of the slurries. Additionally, the hot gases produced therein facilitate preheating and drying of the atomized slurry.
  • Test results using the T-burner indicate that high frequencies of greater than 1,000 Hz provide quality atomization and result in drying, preheating, pyrolysis, and even partial oxidation of the liquid or slurry fuel. Such superior fuel preparation ensures improved combustion intensity, flame stability and turndown, as well as reduced omissions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

An apparatus and process using a pulse combustor to atomize a liquid or slurry is provided. The apparatus includes a pulse combustor for generating a stream of atomization fluid and an oscillating flow field and introduction apparatus for introducing to the influence of the oscillating stream of atomization fluid a liquid or slurry to be atomized. Furthermore, an improved pulse combustion atomizer employing a T-shaped burner is provided.

Description

This application is a continuation-in-part of application Ser. No. 07/793,834 filed Nov. 18, 1991, now U.S. Pat. No. 5,205,728.
FIELD OF THE INVENTION
This invention relates to apparatus and processes using an improved pulse combustor to atomize liquids or slurries.
BACKGROUND OF THE INVENTION
Atomization of liquids and slurries is important for many systems. Particularly, atomization of fuels for combustion and gasification applications is a key step in attaining proper performance in such applications. Fuel that has been atomized into smaller particles typically enables more complete combustion, higher combustion temperatures, and better mixing of the fuel with air so as to increase combustion efficiency.
Primarily, two types of atomizers are in use today: (1) high pressure single-fluid atomizers (shown in FIG. 1) and (2) dual-fluid atomizers (shown in FIGS. 2A, 2B and 3). In the high pressure single-fluid atomizers, a liquid or slurry fuel is pressurized to an elevated pressure which propels the fuel at high kinetic energy through an orifice into a nozzle injector. The atomized fuel leaving the nozzle injector is then sprayed into a combustor chamber. The high velocity of the fuel spray in turn provides for better mixing of the fuel and air and results in more efficient combustor performance.
A high pressure single-fluid atomizer as shown in FIG. 1 employs a high pressure pump to raise the pressure of the liquid fuel and to drive the atomizer. The pressurized fluid expands through the nozzle so as to impart a high velocity to the fluid, resulting in an atomized spray. The pump operation may be continuous or intermittent, with intermittent pumps being employed for fuel-injected internal combustion piston applications such as diesel and gasoline engines.
In dual-fluid atomizers, a separate atomization fluid is employed to achieve atomization of the liquid or slurry fuel. Generally, dual-fluid atomizers are either internally mixed as shown in FIGS. 2A and 2B or externally mixed as shown in FIG. 3. In internally mixed, dual-fluid atomizers, the atomizing fluid meets the fuel within an atomization chamber and the mixture is ejected at high velocity from a nozzle to form the atomized fuel spray. One such dual-fluid atomizer shown in FIG. 2A employs a Y-jet design where the atomization fluid (generally gas or steam) meets the liquid or slurry fuel at an acute angle. Another dual-fluid atomizer shown in FIG. 2B employs an eductor T-jet design where the atomization fluid flow meets the liquid or slurry fuel at a right angle. Such atomizers may operate as eductors and, in some applications, no pump is required for fuel introduction. In both of the internally mixed, dual-fluid atomizers described, mixing of the atomization fluid and the liquid or slurry fuel occur internally within the body of the atomizer before the atomized fuel spray leaves the atomizer.
In externally mixed, dual-fluid atomizers such as the one shown in FIG. 3, the atomizing fluid meets the liquid or slurry fuel outside the body of the atomizer. Mixing of the atomization fluid with the fuel outside the atomizer is particularly useful when coal slurries and viscous liquid fuels such as residual oils are employed. Such highly abrasive or highly viscous fuels tend to cause rapid erosion of the inner surfaces of the atomizer when an internally mixed atomizer is employed. By mixing the atomization fluid and fuels outside the body of the atomizer, rapid erosion is lessened.
In the particular externally mixed, dual-fluid atomizer shown in FIG. 3, an annular cavity distributes the liquid fuel or slurry around a supersonic jet of atomizing fluid. A film of liquid fuel is sheared by the supersonic flow of the atomizing fluid through the cavity to produce an atomized fuel spray. Fuel enters into the path of an atomization fluid after the atomization fluid exits from a supersonic nozzle. The atomization fluid is provided with sufficient velocity to sheer the fuel droplets into an acceptable atomized fuel spray.
As previously mentioned, high pressure, single-fluid atomizers are generally employed in diesel engines and similar fuel-injection applications, particularly when the flow rate profile versus time is to be controlled. Pressures employed in such single-fluid atomizers can be in excess of 10,000 pounds per square inch.
Where large power plants and boilers are involved, dual-fluid atomizers are generally preferred. Liquid fuel in such applications need not be pressurized to high levels, with pressures in the range of from about 50 to about 250 pounds per square inch being acceptable.
In each of the dual-fluid systems previously described, the atomization fluid typically employed is a compressible fluid such as air or steam. In compressed air systems, pressures in the range of from about 20 to about 180 pounds per square inch are generally used. Where steam is employed, the pressure range is generally from about 50 pounds per square inch to about 600 pounds per square inch depending on the application requirements.
With respect to the internally mixed atomizers, the ratio of atomization fluid to liquid fuel varies from about 0.07 to about 0.50 pounds of atomization fluid per pound of liquid fuel being atomized. For the externally mixed, dual-fluid atomizers, more atomization fluid flow is required. The amount of atomization fluid in such atomizers ranges from about 0.40 to about 3.0 pounds per pound of liquid fuel being atomized.
As may be expected with such prior art atomizers, a large amount of parasitic power is consumed by the air compressors to supply the atomization fluid. Although in internally mixed dual-fluid atomizers, as little as 1.5% of the entire plant output comprises the parasitic air power, externally mixed, dual-fluid atomizers typically require as much as 15% of total power plant output to operate the compressors. Moreover, as more viscous and more abrasive fuels are employed, the amount of air required for atomization increases substantially. In addition, large amounts of atomization air are required, particularly in the externally mixed atomization processes, resulting in the need for enormous compressors which require a significant portion of plant output for operating.
In summary, typical prior art atomizers require large amounts of compressed air or other fluid for atomization. Moreover, the internally mixed, dual-fluid atomizers often incur erosion problems. Accordingly, an efficient, non-eroding atomization process which does not require a substantial amount of parasitic power is needed.
The apparatus and processes according to the present invention overcome most, if not all, of the above-noted problems of the prior art and generally possess the desired attributes set forth above by using a pulse combustion apparatus to atomize fuels. Moreover, the present invention may utilize an improved "T"-shaped combustion chamber to maximize atomization. The present atomization apparatus may be designed to supply atomized fuel to combustion, gasification, and other systems which employ atomized liquid or slurry streams.
SUMMARY OF THE INVENTION
It is thus an object of the present invention to provide improved atomization apparatus and processes for liquids and slurries.
Another object of the present invention is to provide an improved atomizer employing a pulse combustor for atomization of liquids and slurries.
Still another object according to the present invention is to provide a high efficiency fuel atomizer employing a pulse combustor to atomize the fuel.
It is yet another object of the present invention to provide a novel atomizer for liquids and slurries that does not have the parasitic power requirements of atomizers heretofore known.
Another object according to the present invention is to provide a fuel atomizer that does not suffer from rapid erosion when atomizing highly abrasive slurries or highly viscous liquids.
It is another object of the present invention to provide a combustor system employing a pulse combustion apparatus to atomize the fuel combusted in the combustion system.
It is yet another object of the present invention to provide a gasification system employing a pulse combustion based atomizer.
Another object of the present invention is to provide a novel pulse combustor in a "T"-shaped design for atomizing slurries and liquids.
Generally speaking, apparatus according to the present invention includes an atomization apparatus comprising pulse combustion means for generating a stream of atomization fluid and a means for providing a fuel to the pulse combustion means so that atomized liquids or slurries are produced by the stream of atomization fluid acting thereon. The method for atomization according to the present invention generally comprises the steps of producing a stream of atomization fluid by pulse combustion and providing a liquid or slurry to be atomized to the stream of atomization fluid so that an atomized liquid or slurry is created that may be provided for further application.
In addition, apparatus according to the present invention includes an atomization apparatus comprising a dual pulse combustor designed in a T-shape for effective atomization of slurries and liquids. In such system, the T-burner design provides high-intensity and high-frequency oscillating flows to provide the required energy for atomization.
Although the present invention is directed to atomization of liquids and/or slurries, the explanation of the claimed invention is generally exemplified by reference to the atomization of fuels. More specifically, one particular embodiment of the present invention includes an apparatus for creating and/or utilizing an atomized fuel comprising a pulse combustor for producing a stream of atomization fluid wherein the pulse combustor includes a combustion chamber, a valve in communication therewith for admitting fuel or air to the combustion chamber, a first fuel injector for admitting fuel to the pulse combustor and a resonance tube in communication with the combustion chamber. The apparatus further comprises a second fuel injector for admitting fuel to the pulse combustor so that the fuel admitted thereto may be atomized by the stream of atomization fluid. Furthermore, the resonance tube of the pulsed fuel atomizer is in communication with apparatus for utilizing the atomized fuel created therein such as combustion and gasification systems, and other similar types of devices wherein atomized fuel is preferred or acceptable.
A method for atomizing a fuel according to the present invention more specifically comprises the steps of supplying a pulse combustion fuel to a pulse combustor having a combustion chamber, a valve means for admitting fuel or air to the combustion chamber, and at least one resonance tube. The method further includes pulse combusting the pulse combustion fuel to produce a combustion stream of atomization fluid exiting from the combustion chamber and entering into the resonance tube. A liquid or slurry to be atomized is supplied to the pulse combustor after the stream of atomization fluid has been produced so that the liquid or slurry to be atomized is atomized by the stream of atomization fluid. Further, the method includes providing the atomized liquid or slurry, preferably a fuel, for further applications such as combustion and gasification.
As described herein, one particular and preferred apparatus of the present invention includes a pulse combustion means having a combustion chamber in communication with an aerodynamic valve for admitting fuel or air on demand to the pulse combustion chamber. The pulse combustion means includes one or more resonance tubes in communication with the combustion chamber. A means is provided for supplying fuel to the pulse combustion chamber so that a pulsating flow of atomization fluid is created. The apparatus further includes means downstream from the combustion chamber for supplying fuel to be atomized, and preferably takes the form of an injector. This second injector thus supplies the slurry or liquid fuel which is to be atomized to the atomization fluid so that atomization of the fuel occurs under the influence of the oscillating or pulsating flow field described herein. The pulse combustion means, when fired, produces a pulsating flow of combustion products which serves as an atomization fluid for the fuel supplied downstream. The fuel, which is preferably injected near the interface of the resonance tube and the combustion chamber, is then supplied to a main combustor cavity or other device such as a gasifier to utilize the atomized fuel in the combustion or gasification process.
Another particular embodiment of the present invention employs a supercharger for increasing the velocity of air admitted through the aerovalve described above. The supercharger may employ a forced draft fan, an air blower, an air compressor, or other device to pressurize the air provided to the combustion chamber through the aerovalve. When such high pressure air is supplied, the pulse combustion means operates under a supercharged air inlet condition.
A further embodiment of the present invention includes an apparatus for creating and/or utilizing an atomized fuel comprising pulse combustors in a T-burner design. In this particular design, a pre-mixed air/fuel mixture is fed to the pulse combustor ends of a T-shaped combustion chamber which is operated in phase to produce a high-frequency oscillating flow. The pulse combustion chamber does not have a well-defined separate combustion chamber and resonance tube. Resonance actually begins in the top portion of the T-shaped burner prior to entering the sonic nozzle, or perpindicular enlongated chamber, of the T-burner. Fuel may be injected into the oscillating flow field near the exit of the T-burner under the influence of an acoustic wave at high velocity oscillations. In this particular design, frequencies of 1,000-6,000 Hz may be achieved. In addition, this particular design superimposes the high-intensity oscillating flow at moderate frequencies of 1,000-6,000 Hz on a steady jet to provide the sonic velocities required for the atomization of the slurries and liquids. The systems may be generally operated at pressures of 200 to 600 psig.
BRIEF DESCRIPTION OF THE DRAWINGS
The construction designed to carry out the invention will be hereinafter described, together with other features thereof. The invention will be more readily understood from reading of the following specification and by reference to the accompanying drawings forming a part thereof, wherein an example of the invention is shown and wherein:
FIG. 1 is a schematic illustration of a prior art high pressure, single-fluid atomizer.
FIG. 2A is a schematic illustration of a prior art Y-jet internally mixed, dual-fluid atomizer.
FIG. 2B is a schematic illustration of a prior art eductor T-jet internally mixed, dual-fluid atomizer.
FIG. 3 is a schematic illustration of a prior art externally mixed, dual-fluid atomizer.
FIG. 4 is a schematic illustration of one particular embodiment of a pulse combustor-atomizer apparatus of the present invention.
FIG. 5 is another particular embodiment of a pulse combustor-atomizer of the present invention wherein an air supercharger has been added thereto.
FIG. 6 illustrates a further embodiment of the pulse combustor-atomizer of the present invention wherein a T-shaped burner is employed.
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention in the various illustrations.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As previously mentioned, the invention is directed to the atomization of liquids and slurries. The description herein employs fuel as an example of a particular liquid or slurry that may be atomized accordingly.
The preferred apparatus for atomizing fuels according to the present invention employs a pulse combustor to produce an atomization fluid which is then utilized to atomize a further liquid or slurry. Heretofore, the use of a pulse combustor for the atomization of fuels has not previously been known. In essence, the present invention is a dual-fluid atomizer apparatus. A pulse combustor means creates an oscillating combustion product stream (or atomization fluid) which engages and atomizes a second fluid or slurry (preferably fuel) which is then provided in an atomized state for further use as desired, such as downstream combustion or gasification.
FIG. 4 depicts one particular pulse combustor fuel atomization apparatus according to the present invention. Referring to FIG. 4, a pulse combustor is shown generally by the numeral 10. Pulse combustor 10 generally comprises a combustion chamber 12, a valve means 14 in communication with combustion chamber 12, and one or more resonance tubes 16 in communication with combustion chamber 12. One particular pulse combustion means that may be employed in the present invention is generally and specifically described in U.S. Pat. No. 5,059,404 to Mansour et al. which is incorporated herein by reference.
Specifically, pulse combustor 10 may employ an aerodynamic valve (fluidic diode), a mechanical valve or the like as valve means 14, a combustion chamber 12, and one or more tailpipes or resonance tubes 16. Additionally, pulse combustor 10 according to the present invention may include an air plenum and thrust augmenter or supercharger as described below with respect to FIG. 5.
The pulse combustor fuel atomizer of the present invention further includes a first fuel introduction means 18 for admitting of fuel for operation of the pulse combustor, though the combustor fuel could be admitted along with air through valve means 14. An additional fuel introduction means 20 is provided for introducing fuel which is to be atomized by the combustor apparatus 10. First fuel introduction means 18, preferably a fuel injector, provides fuel to combustion chamber 12 for firing the pulse combustor 10. Any conventional means may be employed to supply a fluid to the apparatus through first fuel and additional fuel introduction means 18 and 20. For example, conventional injection apparatuses which utilize pressurized fluid for spraying liquid fuel may be employed. Pressurized injectors, however, are not necessarily required because combustion chamber 12, acting as a vacuum source during operation as described herein, would draw fuel from first and additional fuel introduction means 18 and 20 without pressurization.
As also shown in FIG. 4, pulse combustor first fuel introduction means 18 preferably introduces fuel for firing the pulse combustion means 10 at an area near the junction of air valve means 14 and combustion chamber 12. Such positioning of first fuel introduction means 18, however, is not required in the present invention. In fact, and as mentioned above, first fuel introduction means 18 may be eliminated altogether. Instead, as described herein, valve means 14 may admit a fuel/air mixture to combustion chamber 12 so that an additional fuel path exemplified by first fuel introduction means 18 is not required.
As seen in FIG. 4, combustion chamber 12 is in communication with resonance tube 16 for receipt of an oscillating stream of combustion products. Additional fuel introduction means 20, which adds fuel to be atomized, is preferably located near the juncture of the resonance tube(s) 16 and combustion chamber 12. However, as will be appreciated, additional fuel introduction means 20 may be located anywhere along resonance tube(s) 16 provided the stream of atomization fluid created by pulse combustion in combustion chamber 12 can act thereon under influence of the oscillating flow field to atomize the fuel.
Combustion chamber 12 and resonance tube(s) 16 form a tuned Helmholtz resonator as described herein. Valve means 14 acts as a diode such that self-air aspiration is affected in response to an oscillating pressure in combustion chamber 12 induced as a result of heat and mass release from combustion therein. As described below, variations of the present invention include the use of a mechanical valve instead of an aerodynamic valve for valve means 14.
A pulse combustor, such as that employed in the present invention, typically operates in the following manner. Fuel enters combustion chamber 12 through first fuel introduction means 18 or, alternatively, through valve means 14. Air enters combustion chamber 12 through valve means 14. An emission or spark source (not shown) detonates the explosive mixture during start-up. A sudden increase in volume, triggered by the rapid increase in temperature and evolution of combustion products, pressurizes combustion chamber 12. As the hot gas expands, valve means 14 in the form of a fluidic diode, permits preferential flow in the direction of resonance tube(s) or tailpipe(s) 16. The gaseous combustion product stream, which is the atomization fluid in the present invention exiting combustion chamber 12, possesses significant momentum. A vacuum is created in combustion chamber 12 due to the inertia of the atomization fluid within resonance tube(s) 16 and permits only a small fraction of atomization fluid to return to combustion chamber 12, with the balance of the atomization fluid, or gas, exiting through resonance tube(s) 16. Because the chamber pressure is then below atmospheric pressure, air and fuel mixtures are drawn into chamber 12 where auto-ignition takes place. Again, valve means 14 constrains reverse flow, and the cycle begins anew. Once the first cycle is initiated, engine operation is thereafter self-sustaining or self-aspirating.
The valve means utilized in many pulse combustion systems is a mechanical "flapper valve". The flapper valve is actually a check valve permitting flow from inlet to the combustion chamber, and constraining reverse flow by a mechanical seating arrangement.
Although such mechanical valves may be used in conjunction with the present system, an aerodynamic valve without moving parts is preferred. With an aerodynamic valve, a boundary layer builds in the valve during the exhaust stroke and turbulent eddies choke off much of the reverse flow. Moreover, the exhaust gases have a much higher temperature than the inlet gases. Accordingly, the viscosity of the gas is much higher and the reverse resistance of the inlet diameter, in turn, is much higher than that for forward flow through the same opening. These phenomena, along with the high inertia of the atomization fluid exhausting in resonance tube(s) 16, combine to yield preferential and mean flow from inlet to exhaust. Thus, pulse combustion creates a self-aspirating engine, drawing its own air and fuel into combustion chamber 14, auto-igniting, and creating combustion products to form the atomization fluid utilized in the present invention.
A preferred pulse combustor used herein, and as noted above, is based on a Helmholtz configuration with an aerodynamic valve. The pressure fluctuations, which are combustion-induced in the Helmholtz resonator-shaped combustor, coupled with the fluidic diodicity of the aerodynamic valve, cause a bias flow of air and fluid from the combustor's inlet to the exit of resonance tube(s) 16. This results in the combustion air being self-aspirated by the combustor and for an average pressure boost to develop in the combustion chamber to expel the products of combustion at a high average flow velocity (typically over 1,000 ft./sec.) into and through resonance tube(s) 16.
The production of an intense acoustic wave is an inherent characteristic of pulse combustion. Sound intensity adjacent to the wall of combustion chamber 12 is normally in the range of 110-190 dB. The range may be altered depending on the desired acoustic field frequency to accommodate the specific application undertaken by the pulse combustor.
A rapid pressure oscillation through combustion chamber 12 generates an intense oscillating flow field. The fluctuating flow field causes the atomization fluid, or products of combustion, to be swept away from the fuel which is firing the pulse combustor, thus providing access to oxygen with little or no diffusion limitation. Secondly, pulse combustors experience very high mass and heat transfer rates within the combustion zone. While these combustors tend to have very high heat release rates (typically 10 times those of conventional burners), the vigorous mass transfer and high heat transfer within the combustion region result in a more uniform temperature. Thus, peak temperatures attained are much lower than in the case of conventional systems, resulting in a significant reduction in nitrogen oxides (NOx) formation as described in U.S. Pat. No. 5,059,404. The high heat release rates also result in a smaller combustor size required for a given firing rate and a reduction in the required resonance time.
Pulse combustor systems of the present invention regulate their own stoichiometry within their range of firing without need of extensive controls to regulate the fuel feed to combustion air mass flow rate ratio. As the fuel feed rate is increased, the strength of the pressure pulsations in combustion chamber 12 increases which, in turn, increases the amount of air aspirated by the aerodynamic valve. Thus, the combustor automatically maintains a substantially constant stoichiometry over its designed firing range. The induced stoichiometry can be changed by modifying the aerodynamic valve fluidic diodicity.
In certain embodiments of the present invention, two (2) pulse combustors may be arranged in a tandem configuration wherein two pulse combustors as shown in FIG. 4 are operated in close proximity. The tandem operation employs a 180° phase lag between each combustor unit and results in super-positioning of acoustic waves and cancellation of the fugitive sound emissions.
Such tandem combustors may be configured so that a fuel "T" acts as a coupling allowing automatic fuel biasing between each of the in-tandem pulse combustion units. Under these conditions, one combustion chamber achieves a low pressure phase just as the other chamber simultaneously achieves a high pressure phase. Due to the pressure gradient existing in the fuel coupling, combustion products are accelerated from the high pressure chamber to the low pressure chamber. The momentum of the accelerated gases biases a flow of fuel from the main fuel source into the fuel line "T" and eventually into the low pressure combustion chamber. A half-cycle later, a similar phenomenon occurs in the opposing direction. By these means, fuel can be properly phased without the use of mechanical flapper valves or an independent phasing chamber. The natural instability of the tandem units employing a common fuel coupling line is sufficient to automatically pull the two combustion units 180° out of phase because the units inherently hunt for the most stable and robust operating state. That state results in efficient fuel phasing, i.e., a 180° phase lag.
Various other modifications can be made to pulse combustor 10 of the present invention. For example, if desired, water-cooled jackets may be utilized for withdrawing heat from resonance tube(s) 16 for directing to a boiler or other heated fluid device. Furthermore, resonance tube(s) 16 may employ a number of different designs. For example, the tube may flare continuously outwardly allowing the entire resonance tube to act as a diffuser to reduce gas exit velocity from combustion chamber 12 prior to entry into a main combustor cavity or gasification system. Moreover, resonance tube(s) 16 may be essentially straight, but have at its outer end a diffuser section that consists of an outwardly flaring tailpipe section, or alternatively, may integrate a diffuser section at the end nearest combustion chamber 12 with an essentially straight tube extending therefrom.
When operated according to the present invention, pulse combustor means 10 produces a pulsating flow of atomization fluid and an acoustic wave having a frequency in a range of from about 20 to about 1500 Hz. As fuel is combusted, a pulsating flow of atomization fluid exits combustion chamber 12 and passes into resonance tube(s) 16. The stream of atomization fluid leaving combustion chamber 12 is at a sufficient velocity so as to atomize the fuel being injected or provided by additional fuel introduction means 20. After the atomization fluid meets the fuel to be atomized, fuel is atomized and travels along resonance tube(s) 16 gaining further speed until the atomized fuel is provided to a main combustor cavity or other application.
A suitable pulse jet fuel is provided to combustion chamber 12 through first introduction means 18 and/or valve means 14. Typically, a highly flammable fuel such as natural gas, propane, hydrogen-rich synthesis gas, and other such gases are preferred to fire pulse combustion means 10. It is possible, however, to use liquid fuels, preferably light distillates such as gasoline and kerosene. Furthermore, solid fuel such as lignite coals, sawdust, and other highly reactive solids may be used for firing the pulse combustion means 10. The higher the flammability of the fuel employed, the higher the attainable dynamic pressure amplitude induced by the spontaneous resonance of the Helmholtz resonator. Furthermore, highly flammable fuels provide higher heat release rates per unit volume of the Helmholtz resonator.
As previously described, the oscillating dynamic pressures in combustion chamber 12, in the presence of an aerovalve or properly designed mechanical valve, give rise to a pressure boost in combustion chamber 12 that propels the atomization fluid through resonance tube(s) 16 at high velocity. The high kinetic energy in the flow of atomization fluid through the resonance tube is employed to atomize fuel provided by fuel injector means 20. From resonance tube(s) 16, the atomized fuel is introduced into a main combustor cavity 50 where additional combustion air is added and the atomized fuel is combusted.
By varying the amount of excess air provided to pulse combustion means 10 and the amount of fuel being atomized for consumption by the main combustor, the temperature of the atomized spray can be modified. Furthermore, in the case of a slurry fuel, adjustments to the pulse combustion stoichiometry and the ratio between the firing rate of the pulse combustion to the main combustor firing rate results in dry coal or other solid fuel emanating from the pulse jet atomizer into the main combustor cavity. Furthermore, firing the pulse combustion means at near stoichiometric air conditions (e.g., 3% excess air in the flue) and at a sufficiently high firing rate, allows the atomized fuel emanating from the atomizer to produce pre-ignited volatiles and ignited fines together with the volatilized larger solid fuel particles from the fuel slurry. This, in turn, anchors the flame within the main combustor cavity and allows higher turndown of the main combustor without flame-out. Furthermore, when operating under such atomization/drying, devolatilizing and pre-ignition parameters, preheating or the main combustor's combustion air to stabilize the combustion of the atomized slurry can be eliminated.
The pulse combustor atomizer apparatus of the present invention is operated in the following manner. A fuel for combusting in the pulse combustor is provided to pulse combustion chamber 12 through first fuel introduction means 18 or, alternatively, is provided through valve means 14 as an air/fuel mixture. Air is provided through valve means 14 and an ignition source (not shown) ignites the fuel for combustion in combustion chamber 12. Combustion of the fuel creates a pulsating flow of combustion products used as the atomization fluid of the present invention. The pulsating combustion is self-aspirating as described herein. The flow of atomization fluid leaving combustion chamber 12 travels to and through one or more resonance tubes 16. At a location at or near the juncture of resonance tube(s) 16 and combustion chamber 12, an additional fuel introduction means 20 provides the fuel to be atomized by the pulse combustor 10. Fuel to be atomized and which is supplied through additional fuel introduction means 20 is provided to the flow of atomization fluid so that the oscillating, or pulsating, flow field previously described can act thereon so as to cause atomization of the fuel. The fuel which is then atomized is provided downstream for further processing such as combustion, gasification, etc.
With such a pulse combustion atomization apparatus, drying, devolatilization, and pre-ignition of the fuel injected into the pulse combustion means are achieved at a very high rate in the hot oscillating flow field found in resonance tube(s) 16. This allows deep staging of the main combustor to reduce NOx production as previously described. Furthermore, high turndown without flame-out and moderate combustion temperature which further reduces thermal NOx formation and a high combustion efficiency with little to no air preheating is thereby achieved. This, of course, eliminates the need for costly combustion air preheaters as required by the prior art and saves on capital and maintenance costs while providing superior main combustor performance with slurry and liquid fuels.
Therefore, when the described pulse combustion fuel atomizer is employed to atomize slurry and liquid fuels, several desirable benefits are achieved. For example, the need for compressed air for atomization of the fuels is eliminated. This, of course, eliminates both the parasitic power required for generation of the compressed air and the capital and maintenance costs required to provide the compressor equipment. Furthermore, the erosion problems incurred with the previously-described internally mixed, dual-fluid atomization devices are avoided. In addition, the high parasitic power requirements of the externally mixed, dual-fluid atomizers are reduced. The pulse combustion atomizer of the present invention essentially operates as an externally mixed, dual-fluid atomizer having lower erosion rates. The atomization fluid is generated in a self-aspirating pulse combustion means by burning fuel. Such generation occurs in a system which requires no essential moving parts and no air compressors.
Finally, superior fuel preparation for efficient combustion and for gasification with flame stability, high turndown, and decombustion staging potential is recognized over the current internally mixed and externally mixed, dual-fluid atomizers. In conventional dual-fluid atomizers, the droplet size of an atomized slurry is generally larger than the size of some of the coal particles present in the initial slurry, resulting in a water-laden fuel. Water-laden coals require a number of additional combustion processes to vaporize the water from the droplets as well as for devolatilization and ignition of the fuel. In addition, when certain cracking coals (such as bituminous coals typically used to manufacture slurry fuels) are used, agglomerates of fine particles are formed from multi-particle droplets resulting in a reduced surface-to-mass ratio of the burning fuel. Furthermore, the presence of water in the slurry generally requires significant preheated combustion air in order to avoid flame-out in the main combustor. Even with combustion air preheating, the combustor turndown and extent of staging, particularly deep staging, are limited with slurry fuels because of the presence of water in the fuels. Such is not the case with slurry fuels atomized by the present invention which undergo significant drying, devolatilization, and pre-ignition.
Additionally, the pulse combustion atomizer results in increased mixing of fuel with air due to the pulsation of the combustion products stream. Moreover, the presence of solids in the atomization fluid stream give rise to an increase in the atomization ability of the stream.
In another embodiment of the present invention, a pulse combustion atomizer may be operated under a pressurized or supercharged inlet air condition. As depicted in FIG. 5, an air plenum 24 may be connected through conduits to a supercharger 26. Supercharger 26 may be a forced draft fan employed for supplying primary air to air plenum 24. Air plenum 24 operates as a capacitor and seeks to provide primary air to pulse combustion means 10 at approximately constant static pressure. The pressure boost developed due to pulse combustion within the present embodiment allows a reduction in the size, power requirements, and cost of forced draft supercharger 26. Supercharger 26 may, instead, consist of an air blower, an air compressor, or other device for supercharging the air fed to valve means 14.
As shown in FIGS. 4 and 5, fuel that has been atomized by pulse combustion means 10 may be supplied to a main combustor cavity 50. In addition, atomized fuel produced by the present apparatus may be supplied to a gasification device as generally known in the art and described in U.S. Pat. No. 5,059,404. The main combustor cavity may consist of a further pulse combustion means or may, instead, be a typical conventional combustion unit.
A further embodiment of the present invention is shown in FIG. 6. The particular pulse combustion chamber illustrated therein is shown in the shape of a T-shaped burner. In this particular embodiment, a T-shaped pulse combustion burner is shown generally at 100. Pulse combustion chamber 100 comprises a top chamber 110 having opposing ends 115 and 120 and a perpendicular chamber 125. Opposing ends 115 and 120 comprise combustion fuel burners for burning air/fuel mixtures fed through ports 130 located at each burner. As described above, the air/fuel mixture is burned and self-detonated due to the flow of the combustion products and pulse combustion action. Top chamber 110 is in communication with a perpendicular chamber 125 that terminates in a sonic nozzle 135. Near the nozzle 135, the oscillating flow field is at its highest velocity oscillation and fuel injection ports 140 provide the liquid or slurry to be atomized by the pulse combustor near such nozzle opening. Of course, only one injection port 140 is necessary for proper atomization.
As described above, a premixed mixture of fuel and air is burned at both ends of the cylindrical top chamber 110. Typical fuels include highly flammable fuels such as natural gas, propane, hydrogen-rich synthesis gas and the like. The resultant pressure oscillations in the cylindrical upper chamber 110 are vented out through a centrally located perpendicular chamber ending in a sonic nozzle or outlet 135. The operating frequency of the T-burner is inversely proportional to the length of the cylindrical chamber. Chamber pressure is controlled by the sonic nozzle throat diameter at a given firing rate. The highest velocity oscillations occur near outlet 135 of the T-burner.
Accordingly, by injecting the slurry or liquid to be atomized in the sonic flow of the atomized fluid exiting outlet 135, the high kinetic energy and the presence of acoustic waves serve to enhance the atomization of the slurries. Additionally, the hot gases produced therein facilitate preheating and drying of the atomized slurry.
Economic studies employing the present atomization apparatus indicate that savings of atomization costs over conventional duel-fluid atomizers are great. Benefits, including the need for high compression of atomized air, the erosion problem linked to internally mixed, duel-fluid atomization, and the high parasitic power requirements of externally mixed, duel-fluid atomizers are avoided by the present apparatus. In addition, the simplicity of construction and ease of maintenance combine with the ability to operate at different frequencies simply by changing the length of the cylindrical chamber in the T-shaped burner to make the present burner a cost-effective atomizer for these purposes.
Test results using the T-burner indicate that high frequencies of greater than 1,000 Hz provide quality atomization and result in drying, preheating, pyrolysis, and even partial oxidation of the liquid or slurry fuel. Such superior fuel preparation ensures improved combustion intensity, flame stability and turndown, as well as reduced omissions.
Although preferred embodiments of the invention have been described using specific terms, devices, concentrations, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made without departing from the spirit or the scope of the following claims.

Claims (8)

What is claimed is:
1. A liquid or slurry atomization apparatus comprising:
a) a pulse combustor for generating a stream of atomization fluid and an oscillating flow field of same, said pulse combustor including means for introducing a fuel and air to a combustion chamber, said combustion chamber being formed in a generally T-shape wherein said fuel and air introduction means are at opposing ends of said T-shape, and wherein said combustion chamber terminates in an outlet located at the end of the perpendicular portion of said T-shape to provide a high velocity oscillation area thereat;
b) a vessel in communication with said outlet for receiving said atomization fluid stream and said oscillating flow field; and
c) means for introducing a liquid or slurry to be atomized to said pulse combustor, said introduction means being located at said high-velocity oscillation area to introduce said liquid or slurry to said oscillating flow field of atomization field for atomization of said liquid or slurry.
2. Apparatus as defined in claim 1 wherein said atomization apparatus is in upstream communication with a further combustion means for receiving said atomized liquid or slurry.
3. Apparatus as defined in claim 2 wherein said further combustion means comprises a pulse combustor.
4. Apparatus as defined in claim 1 further comprising gasifying means in communication with said atomization apparatus for receiving said atomized liquid or slurry.
5. A fuel atomizer apparatus comprising:
a) a pulse combustor capable of producing a pulsating flow of atomization fluid and an acoustic wave at a frequency in a range of from about 1000 to about 6000 Hz, said pulse combustor comprising a T-shaped combustion chamber terminating in an outlet for allowing said pulsating flow to exit said chamber, and means for introducing fuel and air to said combustion chamber; and
b) means for introducing a fuel to be atomized to said pulse combustor at a location sufficiently near to said outlet so that said fuel to be atomized may come under the influence of said pulsating flow of atomization fluid at a point of highest velocity oscillation whereby said fuel is atomized.
6. Apparatus as defined in claim 5 wherein said atomized apparatus is in communication with a further combustion means.
7. An apparatus for creating and utilizing an atomized fuel comprising:
a) a pulse combustor for producing an oscillating stream of atomization fluid, said pulse combustor having a T-shaped combustion chamber, means in communication with said combustion chamber for admitting air and fuel to said combustion chamber, and an outlet for allowing said atomization fluid stream to exit from said combustion chamber;
b) means for admitting an additional fuel to said stream of atomization fluid at the highest velocity oscillation of said oscillating flow field; and
c) means in communication with said outlet for utilizing said atomized fuel produced by said pulse combustor.
8. A method for pulse combustion atomization of a fuel in a pulse combustor including a T-shaped combustion chamber, means to introduce air and fuel into said combustion chamber, comprising the steps of:
a) supplying a pulse combustion fuel to said T-shaped combustion chamber, supplying air on demand to said combustion chamber;
b) pulse combusting said pulse combustion air-fuel mixture to produce a stream of atomization fluid and an oscillating flow field having a frequency of from about 1000 Hz to about 6000 Hz exiting from said combustion chamber;
c) introducing a fuel to be atomized to said stream of atomization fluid at the point of highest velocity oscillation whereby said fuel is atomized by said stream of atomization fluid under the influence of said oscillating flow field; and
d) providing said atomized fuel for further application.
US08/053,129 1991-11-18 1993-04-26 Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries Expired - Lifetime US5366371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/053,129 US5366371A (en) 1991-11-18 1993-04-26 Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/793,834 US5205728A (en) 1991-11-18 1991-11-18 Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries
US08/053,129 US5366371A (en) 1991-11-18 1993-04-26 Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/793,834 Continuation-In-Part US5205728A (en) 1991-11-18 1991-11-18 Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries

Publications (1)

Publication Number Publication Date
US5366371A true US5366371A (en) 1994-11-22

Family

ID=25160932

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/793,834 Expired - Lifetime US5205728A (en) 1991-11-18 1991-11-18 Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries
US08/053,129 Expired - Lifetime US5366371A (en) 1991-11-18 1993-04-26 Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/793,834 Expired - Lifetime US5205728A (en) 1991-11-18 1991-11-18 Process and apparatus utilizing a pulse combustor for atomizing liquids and slurries

Country Status (8)

Country Link
US (2) US5205728A (en)
EP (1) EP0679206A1 (en)
AU (1) AU3133493A (en)
BR (1) BR9206767A (en)
CA (1) CA2122829C (en)
CZ (1) CZ283728B6 (en)
RU (1) RU2126114C1 (en)
WO (1) WO1993010398A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957531A (en) * 1996-10-25 1999-09-28 Fisher Price Inc. Child car seat
WO2001012754A1 (en) 1999-08-19 2001-02-22 Manufacturing And Technology Conversion International, Inc. Gas turbine with indirectly heated steam reforming system
US6450108B2 (en) 2000-03-24 2002-09-17 Praxair Technology, Inc. Fuel and waste fluid combustion system
US6548197B1 (en) 1999-08-19 2003-04-15 Manufacturing & Technology Conversion International, Inc. System integration of a steam reformer and fuel cell
US6584774B1 (en) * 2001-10-05 2003-07-01 The United States Of America As Represented By The Secretary Of The Air Force High frequency pulsed fuel injector
US20040031450A1 (en) * 2002-05-22 2004-02-19 Manufacturing & Technology Conversion, Inc. Pulse gasification and hot gas cleanup apparatus and process
WO2004024620A2 (en) * 2002-09-10 2004-03-25 Manufacturing And Technology Conversion International, Inc. Steam reforming process and apparatus
US20040265202A1 (en) * 2003-04-21 2004-12-30 Manufacturing and Technology Conversion, International, Inc. Process for the treatment of waste streams
US20050050759A1 (en) * 2003-08-11 2005-03-10 Manufacturing And Technology Conversion International, Inc. Efficient and cost-effective biomass drying
US20070245627A1 (en) * 2006-04-24 2007-10-25 Thermochem Recovery International, Inc. Fluid bed reactor having vertically spaced apart clusters of heating conduits
US7531014B2 (en) 2006-04-24 2009-05-12 Thermochem Recovery International, Inc. Fluid bed reactor having a pulse combustor-type heat transfer module separated from the compartment of a reaction vessel
US20100068668A1 (en) * 2008-09-16 2010-03-18 Siemens Building Technologies Hvac Products Gmbh Gas burner
RU2468292C2 (en) * 2010-01-11 2012-11-27 Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) Solid fuel combustion method, and device for its implementation
US9920926B1 (en) 2017-07-10 2018-03-20 Thermochem Recovery International, Inc. Pulse combustion heat exchanger system and method
CN108181423A (en) * 2017-11-21 2018-06-19 西北工业大学 The speed coupling response function measurement device and method of propellant single order Oscillatory mode shape
US10099200B1 (en) 2017-10-24 2018-10-16 Thermochem Recovery International, Inc. Liquid fuel production system having parallel product gas generation
US10214418B2 (en) 2011-09-27 2019-02-26 Thermochem Recovery International, Inc. Method for converting biomass into fischer-tropsch products with carbon dioxide recycling
US10222060B2 (en) 2016-02-16 2019-03-05 Thermochem Recovery International, Inc. Two-stage energy-integrated product gas generation system and method
US10286431B1 (en) 2016-03-25 2019-05-14 Thermochem Recovery International, Inc. Three-stage energy-integrated product gas generation method
US10815440B2 (en) 2010-11-05 2020-10-27 Thermochem Recovery International, Inc. Systems and methods for producing syngas from a solid carbon-containing substance using a reactor having hollow engineered particles
US11370982B2 (en) 2016-08-30 2022-06-28 Thermochem Recovery International, Inc. Method of producing liquid fuel from carbonaceous feedstock through gasification and recycling of downstream products
US11466223B2 (en) 2020-09-04 2022-10-11 Thermochem Recovery International, Inc. Two-stage syngas production with separate char and product gas inputs into the second stage
US11555157B2 (en) 2020-03-10 2023-01-17 Thermochem Recovery International, Inc. System and method for liquid fuel production from carbonaceous materials using recycled conditioned syngas

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133297A (en) * 1991-04-22 1992-07-28 Manufacturing And Technology Conversion International, Inc. Pulsed atmospheric fluidized bed combustor apparatus and process
US5419877A (en) * 1993-09-17 1995-05-30 General Atomics Acoustic barrier separator
JP3650422B2 (en) * 1994-08-03 2005-05-18 パルテック株式会社 Method for producing low bulk density fine particles of alkali metal compound
US6308436B1 (en) 1998-07-01 2001-10-30 The Procter & Gamble Company Process for removing water from fibrous web using oscillatory flow-reversing air or gas
IL139417A0 (en) 1998-07-01 2001-11-25 Procter & Gamble Process for removing water from fibrous web using oscillatory-flow-reversing impingement gas
US6085437A (en) * 1998-07-01 2000-07-11 The Procter & Gamble Company Water-removing apparatus for papermaking process
AUPQ809700A0 (en) * 2000-06-09 2000-07-06 Commonwealth Scientific And Industrial Research Organisation Pulse combustion chamber and pulse combustor
EP2565538A1 (en) * 2011-08-31 2013-03-06 Siemens Aktiengesellschaft Diversion steam line
US9187699B2 (en) * 2011-11-08 2015-11-17 Exxonmobil Chemical Patents Inc. Hydrocarbon pyrolysis process
RU2565737C1 (en) * 2014-05-13 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Vortex burner for combustion of solid powdered fuel
EP3109546B1 (en) * 2015-06-24 2018-03-07 Hart Associes SARL Pulsed combustor assembly for dehydration and/or granulation of a wet feedstock
CN107859995B (en) * 2017-12-08 2024-03-12 山西大学 Rijke type pulse combustion system for coal-fired boiler
US11512260B2 (en) 2018-06-11 2022-11-29 Donald Gene Taylor Pulse detonation shockwave gasifier
WO2021154109A1 (en) * 2020-01-27 2021-08-05 Ильгиз Амирович Ямилев Pulsating combustion apparatus with improved energy conversion efficiency and reduced noise level (variants)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013396A (en) * 1975-08-25 1977-03-22 Tenney William L Fuel aerosolization apparatus and method
US4054097A (en) * 1976-03-17 1977-10-18 Barkhuus Per W Method and apparatus for incinerating liquid, gaseous and pasty waste
US4368677A (en) * 1981-04-07 1983-01-18 Kline Michael J Pulse combustion system for boilers
US4619601A (en) * 1984-08-29 1986-10-28 Kabushiki Kaisha Toshiba Pulse combustor
US4622003A (en) * 1983-10-13 1986-11-11 Motan Gesellschaft Mit Beschrankter Haftung Apparatus for dispensing active materials
US4854853A (en) * 1986-12-04 1989-08-08 Kirox, Inc. Waste combustion system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1125567A (en) * 1955-05-02 1956-11-02 Snecma Pulsating gas jet device for the projection of substances
US4183145A (en) * 1978-03-02 1980-01-15 Frolikov Ivan I Method of spray-drying liquid and pastelike materials and installation for carrying same into effect

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013396A (en) * 1975-08-25 1977-03-22 Tenney William L Fuel aerosolization apparatus and method
US4054097A (en) * 1976-03-17 1977-10-18 Barkhuus Per W Method and apparatus for incinerating liquid, gaseous and pasty waste
US4368677A (en) * 1981-04-07 1983-01-18 Kline Michael J Pulse combustion system for boilers
US4622003A (en) * 1983-10-13 1986-11-11 Motan Gesellschaft Mit Beschrankter Haftung Apparatus for dispensing active materials
US4619601A (en) * 1984-08-29 1986-10-28 Kabushiki Kaisha Toshiba Pulse combustor
US4854853A (en) * 1986-12-04 1989-08-08 Kirox, Inc. Waste combustion system

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957531A (en) * 1996-10-25 1999-09-28 Fisher Price Inc. Child car seat
US6548197B1 (en) 1999-08-19 2003-04-15 Manufacturing & Technology Conversion International, Inc. System integration of a steam reformer and fuel cell
WO2001012754A1 (en) 1999-08-19 2001-02-22 Manufacturing And Technology Conversion International, Inc. Gas turbine with indirectly heated steam reforming system
US20040079087A1 (en) * 1999-08-19 2004-04-29 Ravi Chandran System integration of a steam reformer and gas turbine
US7272934B2 (en) 1999-08-19 2007-09-25 Manufacturing And Technology Conversion International, Inc. System integration of a steam reformer and gas turbine
US20070012045A1 (en) * 1999-08-19 2007-01-18 Ravi Chandran System integration of a steam reformer and gas turbine
US6923004B2 (en) 1999-08-19 2005-08-02 Manufacturing And Technology Conversion International, Inc. System integration of a steam reformer and gas turbine
US6450108B2 (en) 2000-03-24 2002-09-17 Praxair Technology, Inc. Fuel and waste fluid combustion system
US6584774B1 (en) * 2001-10-05 2003-07-01 The United States Of America As Represented By The Secretary Of The Air Force High frequency pulsed fuel injector
US20050120924A1 (en) * 2002-05-22 2005-06-09 Ravi Chandran Pulse gasification and hot gas cleanup apparatus and process
US20040031450A1 (en) * 2002-05-22 2004-02-19 Manufacturing & Technology Conversion, Inc. Pulse gasification and hot gas cleanup apparatus and process
US6832565B2 (en) 2002-05-22 2004-12-21 Manufacturing & Technology Conversion, Inc. Pulse gasification and hot gas cleanup apparatus and process
US6997118B2 (en) 2002-05-22 2006-02-14 Manufacturing & Technology Conversion International, Inc. Pulse gasification and hot gas cleanup apparatus and process
WO2004024620A2 (en) * 2002-09-10 2004-03-25 Manufacturing And Technology Conversion International, Inc. Steam reforming process and apparatus
US20040182000A1 (en) * 2002-09-10 2004-09-23 Mansour Momtaz N. Steam reforming process and apparatus
WO2004024620A3 (en) * 2002-09-10 2004-05-13 Mfg & Tech Conversion Int Inc Steam reforming process and apparatus
US7842110B2 (en) 2002-09-10 2010-11-30 Thermochem Recovery International, Inc. Steam reforming process and apparatus
US6958136B2 (en) 2003-04-21 2005-10-25 Manufacturing And Technology Conversion International, Inc. Process for the treatment of waste streams
US20040265202A1 (en) * 2003-04-21 2004-12-30 Manufacturing and Technology Conversion, International, Inc. Process for the treatment of waste streams
US20050050759A1 (en) * 2003-08-11 2005-03-10 Manufacturing And Technology Conversion International, Inc. Efficient and cost-effective biomass drying
US20070245627A1 (en) * 2006-04-24 2007-10-25 Thermochem Recovery International, Inc. Fluid bed reactor having vertically spaced apart clusters of heating conduits
US7531014B2 (en) 2006-04-24 2009-05-12 Thermochem Recovery International, Inc. Fluid bed reactor having a pulse combustor-type heat transfer module separated from the compartment of a reaction vessel
US7569086B2 (en) 2006-04-24 2009-08-04 Thermochem Recovery International, Inc. Fluid bed reactor having vertically spaced apart clusters of heating conduits
US20100068668A1 (en) * 2008-09-16 2010-03-18 Siemens Building Technologies Hvac Products Gmbh Gas burner
RU2468292C2 (en) * 2010-01-11 2012-11-27 Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) Solid fuel combustion method, and device for its implementation
US10815440B2 (en) 2010-11-05 2020-10-27 Thermochem Recovery International, Inc. Systems and methods for producing syngas from a solid carbon-containing substance using a reactor having hollow engineered particles
US10800655B2 (en) 2011-09-27 2020-10-13 Thermochem Recovery International, Inc. Conditioned syngas composition, method of making same and method of processing same to produce fuels and/or fischer-tropsch products
US10214418B2 (en) 2011-09-27 2019-02-26 Thermochem Recovery International, Inc. Method for converting biomass into fischer-tropsch products with carbon dioxide recycling
US11760631B2 (en) 2011-09-27 2023-09-19 Thermochem Recovery International, Inc. Method of producing a cooled syngas of improved quality
US10280081B2 (en) 2011-09-27 2019-05-07 Thermochem Recovery International, Inc. Unconditioned syngas composition and method of cleaning up same for fischer-tropsch processing
US11186483B2 (en) 2011-09-27 2021-11-30 Thermochem Recovery International, Inc. Method of producing sulfur-depleted syngas
US12077435B2 (en) 2011-09-27 2024-09-03 Thermochem Recovery International, Inc. Method of generating clean syngas
US11242988B2 (en) 2016-02-16 2022-02-08 Thermochem Recovery International, Inc. Two-stage energy-integrated product gas generation system and method
US10222060B2 (en) 2016-02-16 2019-03-05 Thermochem Recovery International, Inc. Two-stage energy-integrated product gas generation system and method
US10286431B1 (en) 2016-03-25 2019-05-14 Thermochem Recovery International, Inc. Three-stage energy-integrated product gas generation method
US10287519B2 (en) 2016-03-25 2019-05-14 Thermochem Recovery International, Inc. Three-stage energy-integrated product gas generation system
US10946423B2 (en) 2016-03-25 2021-03-16 Thermochem Recovery International, Inc. Particulate classification vessel having gas distributor valve for recovering contaminants from bed material
US10766059B2 (en) 2016-03-25 2020-09-08 Thermochem Recovery International, Inc. System and method for recovering inert feedstock contaminants from municipal solid waste during gasification
US11634650B2 (en) 2016-08-30 2023-04-25 Thermochem Recovery International, Inc. Method of producing liquid fuel from carbonaceous feedstock through gasification and recycling of downstream products
US11370982B2 (en) 2016-08-30 2022-06-28 Thermochem Recovery International, Inc. Method of producing liquid fuel from carbonaceous feedstock through gasification and recycling of downstream products
US9920926B1 (en) 2017-07-10 2018-03-20 Thermochem Recovery International, Inc. Pulse combustion heat exchanger system and method
US10215401B2 (en) 2017-07-10 2019-02-26 Thermochem Recovery International, Inc. Pulse combustion heat exchanger system and method
US10350574B2 (en) 2017-10-24 2019-07-16 Thermochem Recovery International, Inc. Method for producing a product gas having component gas ratio relationships
US10099200B1 (en) 2017-10-24 2018-10-16 Thermochem Recovery International, Inc. Liquid fuel production system having parallel product gas generation
CN108181423B (en) * 2017-11-21 2020-06-02 西北工业大学 Propellant first-order oscillation mode speed coupling response function measuring device and method
CN108181423A (en) * 2017-11-21 2018-06-19 西北工业大学 The speed coupling response function measurement device and method of propellant single order Oscillatory mode shape
US11555157B2 (en) 2020-03-10 2023-01-17 Thermochem Recovery International, Inc. System and method for liquid fuel production from carbonaceous materials using recycled conditioned syngas
US11466223B2 (en) 2020-09-04 2022-10-11 Thermochem Recovery International, Inc. Two-stage syngas production with separate char and product gas inputs into the second stage
US11760949B2 (en) 2020-09-04 2023-09-19 Thermochem Recovery International, Inc. Two-stage syngas production with separate char and product gas inputs into the second stage

Also Published As

Publication number Publication date
CZ283728B6 (en) 1998-06-17
CZ120094A3 (en) 1995-11-15
CA2122829C (en) 2002-06-18
CA2122829A1 (en) 1993-05-27
US5205728A (en) 1993-04-27
EP0679206A1 (en) 1995-11-02
BR9206767A (en) 1995-01-10
WO1993010398A1 (en) 1993-05-27
AU3133493A (en) 1993-06-15
RU2126114C1 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US5366371A (en) Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries
US11421601B2 (en) Second stage combustion for igniter
US4130388A (en) Non-contaminating fuel burner
US5557921A (en) Power plant
US5628184A (en) Apparatus for reducing the production of NOx in a gas turbine
US4160526A (en) Liquid fuel atomizing nozzle
US5375995A (en) Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing installation
US6027330A (en) Low NOx fuel gas burner
US3880571A (en) Burner assembly for providing reduced emission of air pollutant
JPH10148334A (en) Method and device for liquid pilot fuel jetting of double fuel injector for gas turbine engine
CN104379921B (en) The injection of the heavy fuel of carried fine particles
JPH1144426A (en) Dual fuel injection device provided with a plurality of air jet liquid fuel atomizer, and its method
EP2434221A1 (en) Method and arrangement for injecting an emulsion into a flame
US4298337A (en) Fuel burner having flame stabilization by internal recirculation
JP3673009B2 (en) Gas turbine combustor
US5586878A (en) Premixing burner
US5146741A (en) Gaseous fuel injector
US4929172A (en) Stably operating pulse combustor and method
RU2374561C1 (en) Centrifugal-pneumatic jet
US6908298B1 (en) Air-fuel injection system for stable combustion
US4425854A (en) Micronized coal burner facility
US4943230A (en) Fuel injector for achieving smokeless combustion reactions at high pressure ratios
US6584774B1 (en) High frequency pulsed fuel injector
WO1994004873A1 (en) Compact liquid-fuel combuster
US4395228A (en) Rotary burner for liquid fuels

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: MANUFACTURING AND TECHNOLOGY CONVERSION INTERNATIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANSOUR, MOMTAZ N.;CHANDRAN, RAVI;REEL/FRAME:007005/0050

Effective date: 19930615

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: THERMOCHEM, INC., MARYLAND

Free format text: LICENSE;ASSIGNOR:MFG. AND TECH. CONVERSION INT'L, INC.;REEL/FRAME:010602/0647

Effective date: 19980610

Owner name: ABELL FOUNDATION, INC., THE, A CORP. OF MARYLAND,

Free format text: SECURITY AGREEMENT;ASSIGNOR:THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORP. OF MARYLAND;REEL/FRAME:010602/0682

Effective date: 20000207

Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., A CORPORA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THERMOCHEM, INC., A CORPORATION OF MARYLAND;REEL/FRAME:010602/0662

Effective date: 19980610

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., MARYLAND

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:ABELL FOUNDATION, INC., THE;REEL/FRAME:013056/0414

Effective date: 20020702

AS Assignment

Owner name: MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY, MARYLAN

Free format text: SECURITY INTEREST;ASSIGNOR:THERMOCHEM RECOVERY INTERNATIONAL, INC.;REEL/FRAME:013746/0781

Effective date: 20030124

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., MARYLAND

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION, SUCCESSOR TO MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY;REEL/FRAME:055197/0182

Effective date: 20210209

AS Assignment

Owner name: THERMOCHEM RECOVERY INTERNATIONAL, INC., MARYLAND

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION, SUCCESSOR TO;REEL/FRAME:055313/0830

Effective date: 20210217