US5360726A - Polypeptides enabling sorting of proteins to vacuoles in plants - Google Patents
Polypeptides enabling sorting of proteins to vacuoles in plants Download PDFInfo
- Publication number
- US5360726A US5360726A US07/791,930 US79193091A US5360726A US 5360726 A US5360726 A US 5360726A US 79193091 A US79193091 A US 79193091A US 5360726 A US5360726 A US 5360726A
- Authority
- US
- United States
- Prior art keywords
- ctpp
- cuc
- chit
- protein
- lectin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 143
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 125
- 210000003934 vacuole Anatomy 0.000 title claims abstract description 123
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 70
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 50
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 50
- 241000196324 Embryophyta Species 0.000 claims abstract description 142
- 108090001090 Lectins Proteins 0.000 claims abstract description 38
- 102000004856 Lectins Human genes 0.000 claims abstract description 38
- 239000002523 lectin Substances 0.000 claims abstract description 37
- 210000004027 cell Anatomy 0.000 claims description 162
- 108010021384 barley lectin Proteins 0.000 claims description 137
- 238000000034 method Methods 0.000 claims description 46
- 230000009261 transgenic effect Effects 0.000 claims description 39
- 230000008685 targeting Effects 0.000 claims description 21
- 210000002472 endoplasmic reticulum Anatomy 0.000 claims description 15
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 12
- 108091026890 Coding region Proteins 0.000 claims description 7
- 108010005233 alanylglutamic acid Proteins 0.000 claims description 5
- 108700029415 rice lectin Proteins 0.000 claims description 4
- 230000005945 translocation Effects 0.000 claims description 3
- LJSZPMSUYKKKCP-UBHSHLNASA-N Val-Phe-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 LJSZPMSUYKKKCP-UBHSHLNASA-N 0.000 claims 2
- HNXWVVHIGTZTBO-LKXGYXEUSA-N Asn-Ser-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O HNXWVVHIGTZTBO-LKXGYXEUSA-N 0.000 claims 1
- RLZBLVSJDFHDBL-KBIXCLLPSA-N Glu-Ala-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O RLZBLVSJDFHDBL-KBIXCLLPSA-N 0.000 claims 1
- RCFDOSNHHZGBOY-UHFFFAOYSA-N L-isoleucyl-L-alanine Natural products CCC(C)C(N)C(=O)NC(C)C(O)=O RCFDOSNHHZGBOY-UHFFFAOYSA-N 0.000 claims 1
- KZSYAEWQMJEGRZ-RHYQMDGZSA-N Thr-Leu-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O KZSYAEWQMJEGRZ-RHYQMDGZSA-N 0.000 claims 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 abstract description 94
- 210000004899 c-terminal region Anatomy 0.000 abstract description 7
- 230000000749 insecticidal effect Effects 0.000 abstract description 2
- 241000208125 Nicotiana Species 0.000 abstract 1
- 210000001938 protoplast Anatomy 0.000 description 118
- 235000018102 proteins Nutrition 0.000 description 115
- 244000061176 Nicotiana tabacum Species 0.000 description 97
- 235000001014 amino acid Nutrition 0.000 description 45
- 150000001413 amino acids Chemical class 0.000 description 40
- 102000037865 fusion proteins Human genes 0.000 description 33
- 108020001507 fusion proteins Proteins 0.000 description 33
- 239000002299 complementary DNA Substances 0.000 description 32
- 238000011534 incubation Methods 0.000 description 25
- 238000012545 processing Methods 0.000 description 22
- 238000004458 analytical method Methods 0.000 description 20
- 210000003463 organelle Anatomy 0.000 description 18
- 108010022172 Chitinases Proteins 0.000 description 17
- 238000005119 centrifugation Methods 0.000 description 17
- 239000012634 fragment Substances 0.000 description 17
- 239000002243 precursor Substances 0.000 description 17
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 16
- 238000012217 deletion Methods 0.000 description 16
- 230000037430 deletion Effects 0.000 description 16
- 230000004927 fusion Effects 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 102000012286 Chitinases Human genes 0.000 description 15
- 239000000499 gel Substances 0.000 description 15
- 230000003834 intracellular effect Effects 0.000 description 15
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 14
- 239000000284 extract Substances 0.000 description 13
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 102000005572 Cathepsin A Human genes 0.000 description 11
- 108010059081 Cathepsin A Proteins 0.000 description 11
- 240000008067 Cucumis sativus Species 0.000 description 11
- 101000763602 Manilkara zapota Thaumatin-like protein 1 Proteins 0.000 description 11
- 101000763586 Manilkara zapota Thaumatin-like protein 1a Proteins 0.000 description 11
- 101000966653 Musa acuminata Glucan endo-1,3-beta-glucosidase Proteins 0.000 description 11
- 108010046516 Wheat Germ Agglutinins Proteins 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000002372 labelling Methods 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 10
- 102000001708 Protein Isoforms Human genes 0.000 description 10
- 108010029485 Protein Isoforms Proteins 0.000 description 10
- 241000209140 Triticum Species 0.000 description 10
- 235000021307 Triticum Nutrition 0.000 description 10
- 230000000692 anti-sense effect Effects 0.000 description 10
- 102000054766 genetic haplotypes Human genes 0.000 description 10
- 150000004676 glycans Chemical class 0.000 description 10
- 235000021251 pulses Nutrition 0.000 description 10
- 230000028327 secretion Effects 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 9
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 238000002955 isolation Methods 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 239000000725 suspension Substances 0.000 description 9
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 238000002741 site-directed mutagenesis Methods 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 7
- 108010012864 alpha-Mannosidase Proteins 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000006870 ms-medium Substances 0.000 description 7
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 6
- 108050001049 Extracellular proteins Proteins 0.000 description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 6
- 235000007340 Hordeum vulgare Nutrition 0.000 description 6
- 240000005979 Hordeum vulgare Species 0.000 description 6
- 229930195725 Mannitol Natural products 0.000 description 6
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 6
- 241000209504 Poaceae Species 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 102000040739 Secretory proteins Human genes 0.000 description 6
- 108091058545 Secretory proteins Proteins 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 239000013504 Triton X-100 Substances 0.000 description 6
- 229920004890 Triton X-100 Polymers 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 102000019199 alpha-Mannosidase Human genes 0.000 description 6
- 210000004900 c-terminal fragment Anatomy 0.000 description 6
- 210000002421 cell wall Anatomy 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000001114 immunoprecipitation Methods 0.000 description 6
- 239000006166 lysate Substances 0.000 description 6
- 239000000594 mannitol Substances 0.000 description 6
- 235000010355 mannitol Nutrition 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 230000003248 secreting effect Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 5
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 5
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 235000018417 cysteine Nutrition 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000003365 immunocytochemistry Methods 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 229920002401 polyacrylamide Polymers 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- NBSCHQHZLSJFNQ-QTVWNMPRSA-N D-Mannose-6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@@H]1O NBSCHQHZLSJFNQ-QTVWNMPRSA-N 0.000 description 4
- 102100035172 Glucose-6-phosphate 1-dehydrogenase Human genes 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 4
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 4
- 102000006746 NADH Dehydrogenase Human genes 0.000 description 4
- 108010086428 NADH Dehydrogenase Proteins 0.000 description 4
- 241000208133 Nicotiana plumbaginifolia Species 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 4
- 229960003237 betaine Drugs 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000001573 invertase Substances 0.000 description 4
- 210000003712 lysosome Anatomy 0.000 description 4
- 230000001868 lysosomic effect Effects 0.000 description 4
- 229950006780 n-acetylglucosamine Drugs 0.000 description 4
- 230000003204 osmotic effect Effects 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000025220 protein targeting to vacuole Effects 0.000 description 4
- 238000000163 radioactive labelling Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 229920001917 Ficoll Polymers 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- VYZAGTDAHUIRQA-WHFBIAKZSA-N L-alanyl-L-glutamic acid Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O VYZAGTDAHUIRQA-WHFBIAKZSA-N 0.000 description 3
- 229930191564 Monensin Natural products 0.000 description 3
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 3
- 230000004988 N-glycosylation Effects 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 101001091368 Rattus norvegicus Glandular kallikrein-7, submandibular/renal Proteins 0.000 description 3
- 101000898773 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharopepsin Proteins 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 230000003816 axenic effect Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000011536 extraction buffer Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000002132 lysosomal effect Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229960005358 monensin Drugs 0.000 description 3
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 3
- 238000012261 overproduction Methods 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 230000001323 posttranslational effect Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 210000003412 trans-golgi network Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- PIEPQKCYPFFYMG-UHFFFAOYSA-N tris acetate Chemical compound CC(O)=O.OCC(N)(CO)CO PIEPQKCYPFFYMG-UHFFFAOYSA-N 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- HRSYWPMGIIAQIW-UHFFFAOYSA-N 5-bromo-2,3-dihydro-1,4-benzodioxine-7-carbaldehyde Chemical compound O1CCOC2=C1C=C(C=O)C=C2Br HRSYWPMGIIAQIW-UHFFFAOYSA-N 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 102100031673 Corneodesmosin Human genes 0.000 description 2
- 101710139375 Corneodesmosin Proteins 0.000 description 2
- 235000019750 Crude protein Nutrition 0.000 description 2
- 102100030497 Cytochrome c Human genes 0.000 description 2
- 108010075031 Cytochromes c Proteins 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010015899 Glycopeptides Proteins 0.000 description 2
- 102000002068 Glycopeptides Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000019218 Mannose-6-phosphate receptors Human genes 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 244000046052 Phaseolus vulgaris Species 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 101000895926 Streptomyces plicatus Endo-beta-N-acetylglucosaminidase H Proteins 0.000 description 2
- HOZOZZFCZRXYEK-GSWUYBTGSA-M butylscopolamine bromide Chemical compound [Br-].C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3[N+]([C@H](C2)[C@@H]2[C@H]3O2)(C)CCCC)=CC=CC=C1 HOZOZZFCZRXYEK-GSWUYBTGSA-M 0.000 description 2
- 210000000692 cap cell Anatomy 0.000 description 2
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 2
- 229960003669 carbenicillin Drugs 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 238000000326 densiometry Methods 0.000 description 2
- 238000010217 densitometric analysis Methods 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 238000001952 enzyme assay Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 108010045758 lysosomal proteins Proteins 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000009456 molecular mechanism Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000005664 protein glycosylation in endoplasmic reticulum Effects 0.000 description 2
- 230000007398 protein translocation Effects 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000004960 subcellular localization Effects 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical group NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- CHADEQDQBURGHL-UHFFFAOYSA-N (6'-acetyloxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 CHADEQDQBURGHL-UHFFFAOYSA-N 0.000 description 1
- YLUMOTIQYNIXLO-UHFFFAOYSA-N 1-morpholin-4-ylethanesulfonic acid Chemical compound OS(=O)(=O)C(C)N1CCOCC1 YLUMOTIQYNIXLO-UHFFFAOYSA-N 0.000 description 1
- 101710102211 11S globulin Proteins 0.000 description 1
- FFEARJCKVFRZRR-FOEKBKJKSA-N 3654-96-4 Chemical compound C[35S]CC[C@H](N)C(O)=O FFEARJCKVFRZRR-FOEKBKJKSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 229930182536 Antimycin Natural products 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 230000007023 DNA restriction-modification system Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102100023164 Epididymis-specific alpha-mannosidase Human genes 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical class CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- OWOFCNWTMWOOJJ-WDSKDSINSA-N Gln-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(O)=O OWOFCNWTMWOOJJ-WDSKDSINSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010031792 IGF Type 2 Receptor Proteins 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 101710094902 Legumin Proteins 0.000 description 1
- 108050006616 Mannose-6-phosphate receptors Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 101000866347 Solanum lycopersicum Glucan endo-1,3-beta-glucosidase A Proteins 0.000 description 1
- 101000966595 Solanum lycopersicum Glucan endo-1,3-beta-glucosidase B Proteins 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 101000690736 Triticum aestivum Agglutinin isolectin 1 Proteins 0.000 description 1
- 101000690735 Triticum aestivum Agglutinin isolectin 2 Proteins 0.000 description 1
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- CQIUKKVOEOPUDV-IYSWYEEDSA-N antimycin Chemical compound OC1=C(C(O)=O)C(=O)C(C)=C2[C@H](C)[C@@H](C)OC=C21 CQIUKKVOEOPUDV-IYSWYEEDSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000000211 autoradiogram Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- ICSSIKVYVJQJND-UHFFFAOYSA-N calcium nitrate tetrahydrate Chemical compound O.O.O.O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ICSSIKVYVJQJND-UHFFFAOYSA-N 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- NEKNNCABDXGBEN-UHFFFAOYSA-L disodium;4-(4-chloro-2-methylphenoxy)butanoate;4-(2,4-dichlorophenoxy)butanoate Chemical compound [Na+].[Na+].CC1=CC(Cl)=CC=C1OCCCC([O-])=O.[O-]C(=O)CCCOC1=CC=C(Cl)C=C1Cl NEKNNCABDXGBEN-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 235000018927 edible plant Nutrition 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 150000002482 oligosaccharides Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000007129 protein targeting to mitochondrion Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000004739 secretory vesicle Anatomy 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001526 topogenic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- ZHSGGJXRNHWHRS-VIDYELAYSA-N tunicamycin Chemical compound O([C@H]1[C@@H]([C@H]([C@@H](O)[C@@H](CC(O)[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(NC(=O)C=C2)=O)O)O1)O)NC(=O)/C=C/CC(C)C)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O ZHSGGJXRNHWHRS-VIDYELAYSA-N 0.000 description 1
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 235000020138 yakult Nutrition 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
- C07K14/42—Lectins, e.g. concanavalin, phytohaemagglutinin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present invention relates to polypeptides which when attached to the C-Terminal region of a protein enables sorting of proteins to the vacuoles in plants.
- the present invention relates to polypeptides which enables the sorting of lectins, which are insecticidal polypeptides, to the vacuole of a plant.
- proteins of the endoplasmic reticulum (ER), Golgi, lysosomes, vacuoles, plasma membrane, and cell wall are derived from a subset of proteins that enter the secretory pathway. Proteins are targeted to the secretory pathway by an N-terminal hydrophobic signal sequence which mediates a transmembrane translocation from the cytosol to the lumen of the endoplasmic reticulum. Following proteolytic cleavage of the signal sequence, some secretory proteins undergo further post-translational processing in the ER and Golgi network (Blobel, G., and Dobberstein, D., J. Cell Biol. 67, 835-851 (1975)).
- Proteins traversing the secretory pathway are believed to be sorted to their respective compartments by selective retention or targeting information contained in their molecular structures (Rothman, J. E., Cell 50, 521-522 (1987)). Proteins lacking specific sorting determinants follow a default pathway and are consequently secreted toward the cell surface (Rothman, J. E., Cell 50, 521-522 (1987); Wieland, F. T., et al., Cell 50, 289-300 (1987); Dorel, C., et al., J. Cell Biol. 108, 327-337 (1989); and Denecke, J., et al., Plant Cell 2, 51-59 (1990)).
- a secondary sorting signal that mediates a targeting process involves either a post-translational modification of the protein or depends upon primary, secondary, or tertiary structural elements within the polypeptide (Verner, K., et al., Protein translocation across membranes. 241, 1307-1313 (1988)).
- the most well characterized sorting process is the mannose-6-phosphate dependent sorting of mammalian lysosomal enzymes (Kornfeld, S., et al., Ann. Rev. Cell Biol. 5, 483-525 (1989)).
- N-linked glycans are not necessary for the correct transport and sorting of secretory proteins to vacuoles (Stevens, T. H., et al., Cell 30, 439-448 (1982); Voelker, T. A., et al., Plant Cell 1, 95-104 (1989); Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990); and Sonnewald, U., et al., Plant Cell 2, 345-355 (1990)). Therefore, it appears that targeting of proteins to vacuoles in yeast and plants is independent of post-translational modifications to oligosaccharide side-chains and may be dependent upon elements within the polypeptide.
- Such peptide sorting determinant is identified for the yeast vacuolar carboxypeptidase Y (CPY). It has been demonstrated that the amino-terminal propeptide of CPY fused with the secreted enzyme invertase, contains the sorting signal of CPY (Johnson, L. M., et al., Cell 28, 875-885 (1987); and Valls, L. A., et al., Cell 48, 887-897 (1987)). A detailed mutational analysis of the amino-terminal propeptide determined that the tetrapeptide QRPL functions as a vacuolar sorting signal.
- QRPL sequence is presented affects the efficiency of targeting, inferring the involvement of secondary structural elements in the sorting mechanism of CPY (Valls, L. A., et al., J. Cell Biol. 111, 361-368 (1990)).
- a sorting determinant was identified in the amino-terminal propeptide of another yeast vacuolar enzyme, proteinase A (Klionsky, D. J., et al., Mol. Cell Biol. 3, 2105-2116 (1988)), which is sufficient to redirect the normally secreted enzyme invertase to the yeast vacuole.
- proteinase A proteinase A
- PHA phytohemagglutinin-L
- LQRD yeast-like targeting tetrapeptide sequence
- the ability to sort proteins to the vacuoles of plants is very useful.
- the result is that the fruits or leaves contain more protein which for edible plants is important to the food value of the plant or which contain antimicrobial agents such as lectins which are active against fungi and insects which attack the plant.
- FIG. 1 shows organization of the Wild-Type (WT) and Carboxyl-Terminal Mutant (ctpp) Barley Lectin cDNAs.
- FIG. 2 shows a protein gel blot analysis of transiently expressed WT and ctpp Barley Lectin cDNA constructs.
- FIG. 3 shows accumulation of steady-state mRNA levels of barley lectin in tobacco suspension-cultured cells (NT) and in transgenic tobacco.
- FIG. 4 shows an electrophoresis gel for WT (A) and ctpp (B) RNA in media and in suspension cultured cells.
- FIG. 5 shows an electrophoresis gel for WT (A) and ctpp (B) in protoplasts isolated from transgenic tobacco and in the media.
- FIG. 6 shows an amino acid sequence comparison of carboxyl-terminal propeptides of gramineae lectins and tobacco beta-1,3-glucanases.
- SEQ ID NOS: 9 and 10 also show the amino acids for the tobacco beta-1,3-glucanases.
- the three letter codes are:
- FIG. 7 shows a model for barley lectin sorting in the trans-Golgi network.
- FIG. 8 is a schematic representation of proBL/Cuc Chit Fusion Proteins.
- the preproprotein of barley lectin consists of a signal sequence (box with dark hatched lines), a mature 18 kD subunit (open box), and the CTPP (box with light hatched lines).
- the insert represents the 15-amino acid CTPP propeptide (lightly shaded box), Gly (G) is the last amino acid from the carboxyl-terminus of the mature BL preceding the CTPP.
- Leu (L) and Glu (E) open box
- were added by introduction of a Xhol restriction site see Methods).
- Cuc Chit-CTPP glycosylated BL proprotein
- Cuc Chit-CTPP glycosylated CTPP
- FIG. 9 is an analysis of transiently expressed Cuc Chit fusion proteins in tobacco protoplasts.
- Cuc Chit/pGA643 constructs were introduced into tobacco protoplasts by PEG-mediated DNA uptake.
- Immunopurified proteins from the intracellular and extracellular fractions of pulse labeled tobacco protoplasts expressing, Cuc Chit (lane 1), Cuc Chit-BL (lane 2), Cuc Chit-proBL (lane 3), and Cuc Chit-CTPP (lane 4) were electrophoresed on 12.5% SDS-polyacrylamide gels and visualized by fluorography. The migration of molecular mass markers (kD) is represented on the left.
- FIG. 10 is a pulse-chase labeling experiment of tobacco protoplats expressing Cuc Chit and Cuc Chit-CTPP fusion proteins.
- Protoplasts were pulse labeled for 2.5 hours and chased for 8 hours.
- protein extracts were prepared from the protoplats and incubation media at specified intervals during the chase as indicated.
- Radiolabeled proteins were immunoprecipitated with anti-Cuc Chit antisera and analyzed by SDS-PAGE and fluorography. Molecular mass markers (kD) are indicated on the left.
- FIG. 11 is a localization of the processed form of the Cuc Chit-CTPP fusion protein in the vacuoles of Cuc Chit-CTPP transgenic tobacco protoplasts.
- Total protein from protoplasts and isolated vacuoles were separated by electrophoresis on a 12.5% SDS-polyacrylamide gel, and electroblotted onto Immobilon-P membrane. Immunodetection of Cuc Chit was performed with anti-Cuc Chit antisera as described in Methods. Equal amounts of soluble vacuole proteins in the protoplast and vacuole fractions, relative to ⁇ -mannosidase activity, were loaded per lane. The sizes of molecular mass standards (kD) are shown on the left.
- FIG. 12 shows immunocytochemical localization of Cuc Chit and Cuc Chit-CTPP Fusion in transgenic tobacco cells.
- the abbreviations used are: CW, cell wall; V, vacuole.
- FIG. 13 shows endo H digestion of radiolabeled Cuc Chit and Cuc Chit-CTPP fusion protein. Radiolabeled proteins were immunopurified from the intracellular and extracellular fractions of tobacco protoplasts expressing Cuc Cht and Cuc Chit-CTPP. Duplicate samples were incubated at 37° C. for 18 hours in the absence or presence of endo H prior to analysis by SDS-PAGE and fluorography.
- FIG. 14 shows the effect of core glycosylation inhibition on sorting of the Cuc Chit-CTPP proprotein to the vacuole.
- Protoplasts expressing Cuc Chit and Cuc Chit-CTPP were labeled in the presence or absence of tunicamycin and 35 S-labeled proteins were chased for 10 hours with excess Met/Cys. Proteins were immunopurified with anti-Cuc Chit antisera from protoplasts and incubation media, and analyzed by SDS-PAGE and fluorography. The migration of molecular mass standards (kD) is shown on the left.
- the present invention relates to a substantially pure C-terminal polypeptide enabling sorting of lectin to vacuoles in plants which comprises:
- VFAX 1 AIX 2 X 3 NSTLX 4 X 5 E which is SEQ ID NO. 6
- X 1 is selected from the group consisting of G and E,
- X 2 and X 3 are selected from the group consisting of A and T,
- X 4 is selected from the group consisting of V and L, and
- X 5 is selected from the group consisting of A and Q.
- the present invention also relates to a method of sorting proteins to the vacuoles in plants which comprises incorporating the polypeptide VFAX 1 AIX 2 X 3 NSTLX 4 X 5 E, which is SEQ ID NO. 6 onto the C-terminal portion of the protein.
- the present invention particularly relates to a substantially pure C-terminal polypeptide enabling sorting of barley lectin to vacuoles in plants which comprises VFAEAIAANSTLVAE, which is SEQ ID NO. 1.
- the present invention relates to a method of enabling sorting of proteins to the vacuoles in plants which comprises incorporating the polypeptide VFAEIAANSTLVAE (SEQ ID NO. 1) onto the C-terminal portion of the protein.
- the preferred protein is a lectin, particularly barley lectin.
- Barley lectin is synthesized as a preproprotein with a glycosylated carboxyl-terminal propeptide (CTPP) which is removed prior to or concomitant with deposition of the mature protein in vacuoles.
- CPP glycosylated carboxyl-terminal propeptide
- Expression of a cDNA clone encoding barley lectin in transformed tobacco plants results in the correct processing, maturation and accumulation of active barley lectin in vacuoles as described in application Ser. No. 07/406,318.
- the glycan of the propeptide is not essential for vacuolar sorting, but may influence the rate of post-translational processing.
- Gramineae lectins are vacuolar proteins which are initially synthesized as glycosylated 23 kD polypeptides which dimerize within the lumen of the ER to form an active N-acetylglucosamine (GlcNac)-binding proprotein (Mansfield, M. A., et al., Planta 173, 482-489 (1988)). During transport or after arrival in the vacuoles, the glycosylated carboxyl-terminal propeptide (CTPP) is removed from the proprotein to yield the mature lectin.
- CPP glycosylated carboxyl-terminal propeptide
- the analysis of the functional role of the carboxyl-terminal propeptide by examining the assembly and sorting of a barley lectin mutant lacking the carboxyl-terminal propeptide has been examined.
- Transient expression and stably transformed suspension-cultured cell systems were established in addition to using transgenic plants to facilitate the analysis of the vacuolar sorting of barley lectin. Using these three systems it was determined that the 15 amino acid carboxyl-terminal propeptide domain was necessary for correct sorting of barley lectin to the vacuole.
- Example 1 shows the method and results with barley lectin sorting to the vacuoles.
- Nucleotides 607 to 651 of the barley lectin cDNA (Ser. No. 07/406,318), which encodes the carboxyl-terminal propeptide of the barley lectin proprotein, were deleted by site-directed mutagenesis (Kunkel, T. A., et al., Methods Enzymol. 154, 367-382 (1987)).
- Uracil-containing single stranded wt barley lectin cDNA from application Ser. No.
- the synthetic mutagenic oligonucleotide 5' CGGCGGCTGCGACGGT/GATGATCTTGCTAATGGCAG-3' (nt 591 to 606/nt 652 to 672 SEQ ID NOS: 7 and 8 respectively), was annealed to the uracil-containing single stranded template and used to prime second-strand synthesis by T4 DNA polymerase (New England BioLabs).
- the CTPP deletion mutants of barley lectin were identified and selected as described in Ser. No. 406,318, subcloned into the binary plant expression vector pGA642 (An, G., et al., Plant Molec. Biol. Manual A3, 1-19 (1988)) and mobilized into the E.
- Nicotiana tabacum suspension-cultured (NT) cells were maintained in liquid Murashige and Skoog medium (MS) (Murashige, T., et al., Physiol. Plant. 15, 473-497 (1962)) supplemented with 0.2 mg/L 2,4-D (MS 0.2 mg/L 2,4-D) at 28° C. with shaking in a gyratory shaker at 150 rpm. Suspension cells were subcultured weekly with a 5% inoculum to fresh media. Axenic shoot cultures of N. tabacum (cv Wisconsin 38) were maintained and propagated by node cuttings on solid MS medium.
- MS Murashige and Skoog medium
- Protoplasts were prepared from 3-day NT cell cultures. NT cells were collected by centrifugation at 50 ⁇ g for 5 min at room temperature. The cell pellet was resuspended and digested in MS 0.2 mg/L 2,4-D with 1.0% cellulase Onozuka R10, 0.5% macerozyme R10 (Yakult Honsha Co., Ltd., Japan), 0.1% BSA and 0.4M sucrose at 28° C. for 4 hours with gentle shaking on a gyratory shaker at 75 rpm. Protoplasts were filtered through a 90 um steel mesh screen and purified by centrifugation in Babcock bottles (Baxter Scientific Products, McGaw Park, Ill.) at 350 ⁇ g for 10 minutes at room temperature.
- the protoplasts were recovered from the floating band and diluted in W5 solution [145 mM NaCl, 125 mM CaCl 2 2H 2 O, 5 mM KCl, 5 mM glucose pH 5.6] (Negrutiu, I., et al., Plant Mol. Biol. 8, 363-373 (1987)) and incubated at room temperature for 30 minutes. Viable protoplasts were visualized by fluorescein diacetate staining and the yields quantitated using a hemocytometer counting chamber.
- Protoplasts were collected by centrifugation at 50 ⁇ g for 10 minutes and resuspended to a final concentration of 1.7 ⁇ 10 6 viable protoplasts per ml with MaMg solution [0.4M mannitol, 15 mM MgCl 2 , 3 mM morpholinoethanesulphonic acid (MES)-KOH pH 5.6](Negrutiu, I., et al., Plant Mol. Biol. 8, 363-373 (1987)). Prior to adding plasmid DNA, 5 ⁇ 10 5 protoplasts were aliquoted to 15 ml polypropylene tubes (300 ul of a 1.7 ⁇ 10 6 protoplasts per ml suspension per tube) and were subjected to a 45° C.
- MaMg solution [0.4M mannitol, 15 mM MgCl 2 , 3 mM morpholinoethanesulphonic acid (MES)-KOH pH 5.6](Negrutiu, I.,
- the protoplast/plasmid DNA mixture was brought to a final concentration of 28% Polyethylene Glycol (PEG)-4000 with a solution containing 40% PEG 4000, 0.4M mannitol, 100 mM Ca(NO 3 ) 2 .4H 2 O, 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-KOH pH 7.0 (Negrutiu, I., et al., Plant Mol. Biol. 8, 363-373 (1987)).
- PEG Polyethylene Glycol
- HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
- the protoplast/DNA/PEG mixture was slowly diluted with 12 volumes of W5 solution over a period of 15 minutes as described by Damm et al (Damm, B., et al., Mol. Gen. Genet. 217, 6-12 (1989)).
- the protoplasts were collected by centrifugation at 50 ⁇ g for 10 minutes at room temperature and the protoplast pellet was resuspended in 2.5 ml MS 0.2 mg/L 2,4-D, and 0.4M mannitol to a final density of 2.0 ⁇ 10 5 protoplast per ml and transferred to 80 ⁇ 15 mm petri plates.
- the transiently transformed NT protoplasts were incubated for 12 hours in the presence of 200 uCi ["Expre 35 S 35 S" 35 S protein labeling mixture, (NEN Research Products), E. coli hydrolysate containing a mixture of 77% L-[ 35 S]-methionine and 18% L-[ 35 S]-cysteine in 50 mM tricine, 10 mM betaME buffer;-specific activity 1000-1100 Ci/mmol] ( 35 S-met/cys). After labeling, the protoplasts were separated from the culture media by centrifugation at 50 ⁇ g for 10 minutes at room temperature.
- the protoplast pellet was resuspended in 200 ul extraction buffer [50 mM Tris-acetate pH 5.0, 100 mM NaCl, 0.6% triton X-100 and 0.6 mM dithiothreitol].
- the lysate was cleared of insoluble debris by centrifugation at 16,000 ⁇ g for 5 minutes at 4° C., frozen in liquid nitrogen and stored at -70° C.
- the culture media (2.5 ml) was filtered to remove any remaining protoplasts as described in Wilkins et al (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)). Proteins in the culture media were precipitated with ammonium sulfate at 70% saturation at 4° C.
- the radiolabeled barley lectin was analyzed by SDS-PAGE on 12.5% polyacrylamide gels and visualized by fluorography as detailed in Mansfield et al. (Mansfield, M. A., et al., Planta 173, 482-489 (1988)).
- the binary vector pGA643 constructs containing wt or ctpp were mobilized to Agrobacterium tumefaciens LBA4404 as described in Wilkins et al (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)).
- NT suspension cells were co-cultivated with agrobacteria harboring wt and ctpp pGA643 constructs according to An (An, G., Plant Physiol. 79, 568-570 (1985)) and plated on MS 0.2 mg/L 2,4-D agar supplemented with 500 mg/L carbenicillin and 150 mg/L kanamycin. After 3-4 weeks, calli were transferred to fresh selective media.
- Transformed calli expressing barley lectin were grown in liquid MS 0.2 mg/L 2,4-D media with 500 mg/L carbenicillin and 150 mg/L kanamycin on a gyratory shaker at 150 rpm at 28° C.
- the ctpp transformed plants were obtained as described in Wilkins et al (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)).
- NT cells For pulse-chase labeling experiments, 0.5 ml NT cells (per well) from 4-day old cultures were incubated in 24 well Falcon tissue culture plates in the presence of 85 uCi 35 S-met/cys (see above). Two wells or a total of 1 ml of the 4-day NT cells were labeled per time point. The cells were incubated at room temperature with gentle shaking on a gyratory shaker at 75 rpm in the dark for 6 hours. After 6 hours, labeled proteins were chased by adding unlabeled methionine and cysteine to a concentration of 5 mM and 2.5mM per well, respectively. At the appropriate time points, labeled NT cells are pooled in 1.5 ml microfuge tubes and the cells were separated from the media by centrifugation at 2,000 ⁇ g for 1 minutes at 4° C.
- the culture media was transferred to another tube and centrifuged at (16,000 ⁇ g) for 10 minutes at 4° C. to remove any unpelleted cells and debris. Proteins in the culture media were concentrated as described above and stored at -70° C. The cells were washed once with 500 ul MS 0.2 mg/L 2,4-D, pelleted by centrifugation at 2,000 ⁇ g for 1 minute at 4° C. Cells were homogenized in 300 ul extraction buffer [50 mM Tris-acetate pH 5.0, 100 mM NaCl, 0.6% triton X-100 and 0.6 mM dithiothreitol].
- the cell suspension was chilled slowly in liquid nitrogen and the ice slurry was homogenized using a motor-driven microfuge pestle (Kontes, Vineland, N. J.). The homogenate was centrifuged at (16,000 ⁇ g) for 10 minutes at 4° C to remove debris and stored at -70° C. Radiolabeled barley lectin was purified from the crude protein extracts and analyzed as described above.
- Protoplasts for labeling were prepared from fully expanded leaves of 4 to 6 week old axenic shoot cultures of W38-wt and W38-ctpp barley lectin transformants.
- Leaf protoplasts were prepared as described in Wilkins et al (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)) with the exception that the enzyme mixture was dissolved in MS medium supplemented with 1.0 mg/l benzyladenine (BA), 0.1 mg/L naphthaleneacetic acid (NAA) and 0.6M mannitol.
- BA benzyladenine
- NAA naphthaleneacetic acid
- the protoplasts were pelleted at (50 ⁇ g) for 10 minutes, resuspended in MS medium with 1.0 mg/l BA, 0.1 mg/L NAA and 0.6M sucrose and centrifuged at (350 ⁇ g) for 10 minutes in Babcock bottles.
- the bloating band of protoplasts was washed once and diluted in MS medium with 1.0 mg/l BA, 0.1 mg/L NAA and 0.6M mannitol. Viable protoplasts were quantified as described above.
- 1.2 ⁇ 10 6 protoplasts were incubated in a total of 3.0 mls of MS medium with 1.0 mg/l BA, 0.1 mg/L NAA and 0.6M mannitol supplemented with 300 uCi 35 S-met/cys. Protoplasts were incubated in the dark at room temperature with gentle shaking (50 rpm on a gyratory shaker) for 12 hours. Labeled protoplasts (2 ⁇ 10 5 ) were treated as described above (Radiolabeling of Tobacco Leaf Protoplasts) to confirm synthesis of radiolabeled barley lectin. The remaining 1 ⁇ 10 6 protoplasts were pooled and collected by centrifugation at (50 ⁇ g) for 5 minutes at 4° C.
- Vacuoles were isolated as described in Ser. No. 406,318 with minor modifications and gently lysed by osmotic shock.
- Four volumes of 10 mM Hepes-KOH, ph 7.2 was added to the vacuole suspension and incubated at 4° C. for 30 minutes.
- Membranes and unbroken vacuoles were pelleted 30 minutes at (16,000 ⁇ g) at 4° C.
- Soluble proteins were concentrated by precipitation with ammonium sulfate at 70% saturation at 4° C. for at least 2 hours. Precipitated proteins were collected by centrifugation for 10 minutes at (16,000 ⁇ g) at 4° C. The protein pellet was resuspended in 300 ul 10 mM Hepes-KOH ph 7.2.
- the barley lectin cDNA clone (pBlc3) (Ser. No. 406,318) encodes a polypeptide containing a 26 amino acid signal sequence and a 186 amino acid proprotein. In the lumen of the ER, the signal sequence is cleaved and the polypeptide is co-translationally glycosylated.
- the proprotein consists of four highly homologous domains of 43 amino acids and a 15 amino acid carboxyl-terminal propeptide (CTPP) which contains an N-linked high mannose glycan.
- the glycosylated 15 amino acid CTPP Prior to or concomitant with deposition of mature barley lectin in the vacuole, the glycosylated 15 amino acid CTPP is cleaved to yield the dimer consisting of two identical 18 kD subunits.
- a mutant barley lectin cDNA clone lacking the 15 amino acid CTPP was prepared.
- the CTPP coding region of the cDNA clone pBlc3 (Ser. No. 406,318) was deleted (see Methods) by site-directed mutagenesis (Kunkel, T. A., et al., Methods Enzymol. 154, 367-382 (1987)).
- a synthetic oligonucleotide complementary to regions flanking the CTPP coding sequence was utilized as a primer to initiate second-strand synthesis of a mutant barley lectin clone lacking the CTPP.
- the CTPP barley lectin deletion mutant cDNA was subcloned into the binary plant expression vector pGA643 under transcriptional control of the 35S cauliflower mosaic virus promoter (An, G., et al., Plant Molec. Biol. Manual A3, 1-19 (1988)). Constructs containing the CTPP deletion mutant of barley lectin were designated by the code ctpp (FIG. 1).
- the pGA643 constructs containing the barley lectin cDNA were designated by the code WT (FIG. 1) (Ser.
- Barley lectin is localized in vacuoles/protein bodies of embryonic and adult root cap cells of barley (Mishkind, M. L., et al., Science 220, 1290-1292 (1983); and Lerner, D. R., et al., Plant Physiol. 91, 124-129 (1989)). Barley lectin is also correctly processed and targeted to vacuoles in transgenic tobacco cells (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)). To determine whether the ctpp mutant of barley lectin was synthesized and assembled into an active lectin in tobacco, ctpp constructs were transiently expressed in tobacco suspension-cultured cell (NT) protoplasts.
- NT tobacco suspension-cultured cell
- Wt and ctpp pGA643 constructs were introduced into NT protoplasts via polyethylene glycol treatment (Negrutiu, I., et al., Plant Mol. Biol. 8, 363-373 (1987)) and the protoplasts were pulse-labeled for 12 hours in the presence of a mixture of 35 S-labeled methionine and cysteine ( 35 S-met/cys) (see Methods) Protein extracts prepared from the labeled protoplasts and incubation media were fractionated on immobilized GlcNAc. The affinity purified fractions were analyzed under denaturing conditions by SDS-PAGE and fluorography as shown in FIG. 2.
- Protoplasts from tobacco suspension-cultured cells were transiently transformed with wt and ctpp pGA643 constructs via direct gene transfer using polyethylene glycol (Negrutiu, I., et al., Plant Mol. Biol. 8, 363-373 (1987)) and were pulse-labeled for 12 hours.
- Radiolabeled barley lectin was affinity purified from both protoplasts and incubation media and separated by SDS-PAGE as described in Methods.
- Lanes 2 and 5 represent radiolabeled barley lectin extracted from wt protoplast and corresponding incubation media, respectively.
- Lanes 3 and 6 are radiolabeled barley lectin from ctpp protoplasts and incubation media, respectively.
- Lanes 1 and 4 refer to extracts prepared from protoplasts treated in the absence of plasmid DNA, and are the negative controls.
- the sizes of the barley lectin precursor (23 kD) and mature barley lectin (18 kD) are shown on the left.
- Two polypeptides corresponding to the 23 kD proprotein and 18 kD mature subunit of barley lectin were present in pulse-labeled NT protoplasts expressing the wt construct (lane 2, FIG. 2).
- Radiolabeled barley lectin was not detected in the incubation media recovered from NT protoplast expressing wt barley lectin (lane 5, FIG. 2).
- barley lectin is not detected in the incubation media of 35 S-met/cys labeled leaf protoplasts from wt transgenic tobacco (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)). Only the mature 18 kD subunit of barley lectin was present in the affinity purified extracts from pulse-labeled ctpp NT protoplasts (lane 3, FIG. 2). Deletion of the carboxyl-terminal propeptide resulted in the appearance of radiolabeled barley lectin in the incubation media of the protoplasts transiently expressing only the ctpp construct (lane 6, FIG. 2). These results support the observation (Peumans, W.
- NT cells were transformed by co-cultivation with A. tumefaciens containing wt or ctpp pGA643 constructs according to the method of An, G., Plant Physiol. 79, 568-570 (1985).
- Kanamycin-resistant calli expressing barley lectin were designated NT-wt and NT-ctpp, respectively.
- Kanamycin-resistant tobacco plant transformants containing the ctpp deletion mutant of barley lectin were generated as described in Ser. No. 406,318.
- Transgenic plants expressing the mutant barley lectin were designated by the code W38-ctpp.
- FIG. 3 depicts the relative levels of barley lectin mRNA in total RNA isolated from wt and ctpp transformants. RNA gel blot analysis of total RNA from the tobacco suspension-cultured cells (NT) or tobacco leaves.
- CTPP Mutant of Vacuolar Barley Lectin is Secreted in Transgenic Tobacco Suspension-Cultured Cells and Plants
- NT-wt and NT-ctpp cells were pulse-labeled for 6 hours in the presence of 35 S-met/cys and chased for an additional 10 hours in the presence of unlabeled methionine and cysteine (met/cys). Crude intracellular and extracellular protein extracts were fractionated on immobilized GlcNAc. Radiolabeled barley lectin was analyzed by SDS-PAGE and fluorography (FIG. 4). The 23 kD polypeptide and mature 18 kD subunits of barley lectin were readily discernible in NT-wt cells (lane 1, FIG. 4A).
- the 18 kD barley lectin subunit was only discernible in the vacuole preparation from wt protoplasts after 60 hours of exposure and not in vacuoles from ctpp transformants (data not shown). However, after a 14 day exposure of the same gel, another band corresponding to the 23 kD precursor was visible in the vacuolar fraction of W38-wt protoplast and an 18 kD polypeptide could be seen in vacuoles isolated from W38-ctpp protoplasts (data not shown). The appearance of the 23 kD polypeptide suggests that the wt vacuole preparation is contaminated with ER and Golgi organelles.
- the vacuole is a multifunctional organelle important in the regulation and maintenance of plant cell growth and development. Recently, much research has been directed toward understanding the mechanism controlling the sorting and delivery of secretory proteins to vacuoles. To understand the mechanisms involved in protein sorting to vacuoles, it is necessary to identify and characterize the sorting signals from various vacuolar proteins with different functional and structural properties. We have established both transgenic and transient gene expression systems to investigate the mechanisms of post-translational processing and sorting of barley lectin to plant cell vacuoles. In transgenic tobacco, barley lectin is correctly synthesized as a gycosylated proprotein and assembled as an active GlcNAc-binding dimer in the ER (Wilkins, T.
- the proprotein is transported through the Golgi apparatus and is processed to its mature form by removal of a glycosylated 15 amino acid CTPP before or concomitant with deposition of the mature protein in the vacuoles of tobacco leaves (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)).
- the rate of processing of the precursor is regarded by the presence of an N-linked high mannose glycan on the CTPP.
- the glycan is not required for vacuolar targeting of barley lectin (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)) .
- WGA Barley lectin and wheat germ agglutin
- WGA Barley lectin and wheat germ agglutin
- Extensive X-ray crystallographic and sequence analysis of mature WGA has revealed that identical 18 kD subunits are composed of four highly homologous domains, each of which consists of a tightly folded core stabilized by four disulfide bonds (Wright, C. S., J. Mol. Biol. 194, 501-529 (1987)). Examination of the WGA crystal structure does not reveal any region(s) which extend from the surface of the molecule.
- CTPPs glycosylated proproteins
- the CTPP may be more exposed on the surface of the lectin dimer and free to interact with other proteins or protein complexes. Based on examination of the compact WGA crystal structure and predicted conformation of the precursor CTPP, we have hypothesized that the CTPP may function as a sorting determinant for targeting of barley lectin to the vacuole.
- vacuolar proteins are synthesized as larger precursors and are processed to their mature form prior to or upon arrival of the proprotein to vacuoles. Similar to the Graineae lectins, the vacuolar isoforms of beta-1,3-glucanases of Nicotiana tabacum and N. plumbaginifolia are initially synthesized as glycosylated precursors and processed into their mature forms by the removal of a glycosylated carboxyl-terminal propeptide (Shinshi, H., et al., Proc. Natl. Acad. Sci. US 85., 5541-5545 (1988)); and Van Den Bulcke, M., et al., Proc. Natl. Acad. Sci.
- the beta-1,3-glucanase CTPPs may be necessary for vacuolar sorting.
- the primary amino acid sequences of the Gramineae lectin and the tobacco beta-1,3-glucanase CTPPs are not conserved (FIG. 6), however, these CTPPs all contain a utilized N-linked glycosylation site and have an overall negative charge due to acidic amino acids.
- Features such as the acidic nature of these glycopeptides and/or secondary structure may be important in the molecular mechanisms of vacuolar sorting for these proteins.
- beta-1,3-glucanases in contrast to the Gramineae lectins, distinct extracellular isoforms of the beta-1,3-glucanases have been identified in N. plumbaginifolia (Van Den Bulcke, M., et al., Proc. Natl. Acad. Sci. US 86, 2673-2677 (1989)). It is not shown whether the extracellular forms have been synthesized with a CTPP and then processed to the intracellular forms. Recently, another beta-1,3-glucanase cDNA clone was isolated from N. tabacum (Neale, A. D., et al., Plant Cell 2, 673-684 (1990)) was isolated.
- This clone is homologous to the vacuolar beta-1,3-glucanase cDNA isolated by Shinshi et al. (Shinshi, H., et al., Proc. Natl. Acad. Sci. US 85, 5541-5545 (1988)), however, it lacks the region encoding the CTPP (Neale, A. D., et al., Plant Cell 2, 673-684 (1990)).
- lysosomal enzymes tagged by mannose-6-phosphate interact with the mannose-6-phosphate receptor system in the trans-Golgi and are segregated into vesicles destined for the lysosome (Kornfeld, S., et al., Ann. Rev. Cell Biol. 5, 83-525 (1989)).
- yeast the soluble vacuolar protein CPY is believed to be sorted in a late Golgi compartment (Valls, L. A., et al., Cell 48 887-897 (1987)).
- the sorting apparatus for the barley lectin precursor is therefore presumably associated with the trans-Golgi compartment.
- the CTPP is necessary for sorting of barley lectin proproteins to plant vacuoles.
- the CTPP is recognized by a sorting system and that the proprotein is segregated into vesicles destined for the vacuoles in the trans-Golgi network (FIG. 7).
- the schematic representation of one subunit of a barley lectin dimer was adapted from crystal structure of WGA (Wright, C. S., J. Mol. Biol. 194, 501-529 (1987)).
- Each of the four highly homologous domains of barley lectin is represented by a circle.
- the glycosylated carboxyl-terminal propeptide is depicted as a spiral to denote the predicted amphipatic alpha-helical structure of the peptide and the structure of the N-linked high mannose type glycan was adapted from Montreuil (Montreuil, J., Biol. Cell 51, 115-131 (1984)).
- the carboxyl-terminal propeptide of barley lectin is necessary for sorting of this protein to vacuoles.
- the barley lectin mutant lacking this sorting signal is secreted.
- the final step in the maturation of barley lectin has not been precisely characterized It remains unknown whether the carboxyl-terminal propeptide is cleaved from the precursor while enroute to or after deposition of the mature lectin in the vacuoles.
- the N-linked high mannose glycan present on the proprotein CTPP shows the rate of processing of the proprotein, possibly by masking the availability of the CTPP for processing (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)).
- the glycan is not required for sorting of barley lectin to vacuoles (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)).
- glycans may be to mask "accidental" targeting signals (Tague, B. W., et al., Plant Cell 2, 533-546 (1990)).
- Deglycosylation of the carboxyl-terminal glycopeptide may be required for recognition of the CTPP by the sorting machinery and the subsequent processing of the proprotein. This invokes a model whereby the glycosylated proprotein is processed to the mature lectin by a two step procedure (see Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)).
- Proteins lacking or failing to present an appropriate sorting determinant to the sorting apparatus would be secreted by default from the Golgi via secretory vesicles.
- the ctpp barley lectin mutant lacking the sorting signal was secreted (FIG. 7).
- overproduction of a vacuolar protein may saturate the sorting pathway, thereby resulting in the secretion of the protein via the default pathway as has been hypothesized by Stevens et al (Stevens, T. H., et al., J. Cell Biol. 102, 1551-1557 (1986)).
- Example 1 It has been previously shown in Example 1 that the 15 amino acid carboxyl-terminal propeptide of probarley lectin is necessary for the proper sorting of this protein to the plant vacuole. A mutant form of the protein lacking the carboxyl-terminal propeptide is secreted. To test whether the carboxyl-terminal propeptide is the vacuole sorting determinant of probarley lectin, the processing and sorting of a series of fusion proteins, containing the secreted protein, cucumber chitinase and regions of probarley lectin, in transgenic tobacco were examined.
- Pulse-labeling experiments demonstrated that the fusion proteins were properly translocated through the tobacco secretory system and that cucumber chitinase and cucumber chitinase fusion proteins lacking the carboxyl-terminal propeptide were secreted.
- the cucumber chitinase fusion protein containing the carboxyl-terminal propeptide was properly processed and sorted to the vacuole in transgenic tobacco as confirmed by organelle fractionation and electron microscopy immunocytochemistry. Therefore, the barley lectin carboxy-terminal propeptide is both necessary and sufficient for protein sorting to the vacuole in transgenic plants.
- pSCU1 (kindly provided by J. M. Neuhaus and T. Boller, Friedrich Miescher Institute, Basel Switzerland) contained a cucumber chitinase gene (Metraux, J. P., et al., Proc. Natl. Acad. Sci. USA 86, 896-900 (1989)) in which the putative Cuc Chit signal sequence coding region (amino acids 1 to 26) had been replaced with the signal peptide DNA sequence from the basic tobacco chitinase (amino acids 1 to 26) (Shinshi, H., et al., Plant Mol. Biol. 14, 357-368 (1990); and Shinshi, H., et al, Proc. Natl. Acad. Sci.
- BL cDNA mutants were constructed containing the following XhoI site(s): (1) BL1 had a single XhoI site that preceded the codon for Gln 27 the first amino acid of the mature 18-kD subunit of BL; (2) BL2 had a single XhoI site that preceded the codon for gly 197 ; (3) BL3 was a double BL cDNA mutant containing both XhoI sites presented in BL1 and BL2.
- Cuc Chit gene fusions were constructed as follows: Cuc Chit-proBL was constructed by cloning an SalI-XhoI restriction fragment containing the Cuc Chit coding region into the SalI-XhoI restriction sites of BL1 in pUC118; Cuc Chit-BL was constructed by cloning the XhoI restriction fragment from BL3 into the XhoI restriction site of Cuc Chit; Cuc Chit-CTPP was constructed by cloning the SalI-XhoI restriction fragment of Cuc Chit into the SalI-XhoI restriction sites of BL2.
- the Cuc Chit-CTPP[Gly] gene fusion was constructed by altering the CTPP N-linked glycosylation site within the Cuc Chit-CTPP gene fusion as described previously (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)). All mutations and constructs were checked and confirmed by 35 S dideoxy sequencing (Sanger, F., et al., Proc. Natl. Acad. Sci. US 56, 5463-5467 (1977)). XbaI restriction fragments containing Cuc Chit and Cuc Chit gene fusions were subcloned into the XbaI site of the plant expression vector pGA643 (An, G., et al., Plant Mol. Biol. Manual A3, 1-19 (1988)).
- Cuc Chit and Cuc Chit gene fusions were introduced into tobacco protoplasts as described previously (Bednarek, S. Y., et al., Plat Cell 2, 1145-1155 (1990)), with the exception that the transiently transformed protoplasts were resuspended to a final density of 2.5 ⁇ 10 5 protoplasts per ml in 1.0 ml of liquid Murashige and Skoog (MS) medium (Murashige, T., and F. Skoog, Physiol. Plant. 15, 473-497 (1962)) supplemented with 0.2 mg/L 2,4-D and 0.4M betaine monohydrate.
- MS Murashige and Skoog
- transformed protoplasts were incubated for 14 hours in the dark at room temperature with gentle shaking in the presence of 100 ⁇ Ci 35 S protein labeling mixture ( 35 S-Met/Cys)(specific activity 1000 Ci/mmol to 1100 Ci/mmol)(DuPont-New England Nuclear Research Products, Boston, Mass.). Labeled proteins were chased for an additional 10 hours with an excess of unlabeled met and cys (final concentration of 15 mM and 7.5 mM, respectively). Protoplasts and incubation media were transferred to 1.5 ml microfuge tubes and separated by brief centrifugation (15-20 sec) at 800 g.
- the protoplast pellets were lysed in 500 ⁇ l of TNET 250 (25 mM Tris-HCl, ph 7.5, 250 mM NaCl, 5 mM EDT, 1% Triton X-100 [v/v]) (Firestone, G. L., and S. D. Winguth, Methods Enzymol. 182, 688-700 (1990)) and cleared of insoluble debris by centrifugation at 16,000 g for 5 minutes at 4° C.
- the extracellular protein fraction was prepared from the filtered incubation media as described in Bednarek et al. (Bednarek, S.
- Tobacco plants (Nicotiana tabacum cv Wisconsin 38) were transformed with pGA643 Cuc Chit and Cuc Chit gene fusions as described in Wilkins et al (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)). Axenic shoot cultures of transformed tobacco were maintained and propagated by node cuttings on solid MS medium without exogenous hormones.
- Protoplasts were prepared and isolated as described previously (Bednarek, S. Y., et al., Plant Cell 2, 1145-1155 (1990)), with the exception that the cellulase/macerozyme mixture was prepared in MS medium supplemented with 0.1 mg/L naphthaleneacetic acid, 1.0 mg/L benzyladenine, and 0.6M betaine monohydrate (MS 0.1/1.0, 0.6M betaine).
- Protoplasts were purified by flotation in MS 0.1/1.0 medium supplemented with 0.6M sucrose, washed once, and diluted to a final concentration of 400,000 protoplasts per milliliter in MS 0.1/1.0, 0.6M betaine.
- Viable protoplasts were quantified (Bednarek, S. Y., et al., Plant Cell 2, 1145-1155 (1990)) and labeled as described in Wilkins et al (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990)) with 35 S Met/Cys. Extracts of intracellular and extracellular proteins were prepared for immunoprecipitation as described above.
- Protoplasts for vacuole isolation were prepared as described above. Vacuoles were released from the protoplasts by a combination of osmotic and thermal shock. Viable protoplasts (1 ⁇ 10 7 ) were chilled on ice for 30 minutes and then pelleted at 50 g for 10 minutes at 4° C. Protoplast were gently lysed in lysis buffer (0.2M sorbitol, 10% [w/v] Vicoll 400, 10 mM Hepes-KOH, ph 7.5, 10 ⁇ g/ml neutral red) and preheated to 45° C. Vacuoles were purified by flotation on a discontinuous Ficoll density gradient.
- lysis buffer 0.2M sorbitol, 10% [w/v] Vicoll 400, 10 mM Hepes-KOH, ph 7.5, 10 ⁇ g/ml neutral red
- the protoplast lysate was overlaid with two steps containing 5% [w/v] Ficoll 400 in 0.6M betaine, 10 mM Hepes-KOH, ph 7.5, and 0.6M betaine, 10 mM Hepes-KOH, ph 7.5; the gradients were centrifuged in a swinging bucket rotor at 5000 g for 30 minutes at 4° C. Vacuoles were recovered from the 0%/5% (w/v) Ficoll 400 interface, quantitated using a hemocytometer, and gently lysed by osmotic shock. The vacuole suspension was diluted with 5 volumes of 10 mM Hepes-KOH, ph 7.5, and incubated at room temperature for 10 minutes.
- Membranes and unbroken vacuoles were cleared from the lysate by centrifugation at 100,000 g for 30 minutes at 4° C. Soluble proteins were concentrated by ammonium sulfate (70% saturated at 20° C.) and resuspended in 10 mM Hepes-KOH, ph 7.5, 0.5% (v/v) Triton X-100. For subcellular marker enzyme assays, extracts representing total protoplast proteins were prepared. Protoplasts were lysed in 10 mM Hepes-KOH, ph 7.5, 0.5% (v/v) Triton X-100 and cleared of insoluble material by centrifugation at 16,000 g for 10 minutes at 4° C.
- NADH-cytochrome-c reductase was assayed by the method of Lord (Lord, J. M., Endoplasmic reticulum and ribosomes. In Isolation of membranes and organelles from plant cells, J. L. Hall and A. L. Moore, eds (New York: Academic Press), pp. 119-134 (1983)) with minor modifications.
- the assay (0.5 ml final volume) contained 20 mM potassium-phosphate buffer, ph 7.2, 0.5 mM NADH, 50 ⁇ M oxidized cytochrome c, 0.5% (v/v) Triton X-100.
- cytochrome c The NADH dependent reduction of cytochrome c was followed at 550 nm in a Beckman DU54 spectrophotometer (Beckman Instruments, Fullerton Calif.) at room temperature. The effects of 1 mM KCN and 1 ⁇ M antimycin on enzyme activity were investigated. Glucose-6-phosphate dehydrogenase was assayed as described by Simcox et al (Simcox, P. D., et al., L. Plant Physiol. 59, 1128-1132 (1977)). ⁇ -Mannosidase was assayed as described by Boller and Kende (Boller, T., and H. Kende, Plant Physiol. 63, 1123-1132 (1979)).
- Cuc Chit and Cuc Chit fusion proteins were purified by immunoprecipitation. To remove nonspecifically binding proteins, 35 S-labeled protoplast and media extracts were treated with 25 ⁇ l of nonimmune rabbit sera for 30 minutes at room temperature. Nonspecific protein immunocomplexes were reacted with fixed Staphylococcus aureus for 30 minutes at room temperature and removed by centrifugation at 16,000 g for 5 minutes. Two microliters of anti-Cuc Chit antiserum was added to the cleared extracts and incubated at room temperature for 15 minutes.
- Immunocomplexes were collected on protein A-Sepharose CL-4B beads (Pharmacia, Piscataway, N.J.) for 15 minutes at room temperature and washed three times with TNET 250. To further reduce nonspecific background, immunocomplexes were released from the protein A-Sepharose CL-4B beads by detergent solubilization with 1.0% SDS as described previously (Firestone, G. L., and S. D. Winguth, Methods Enzymol. 182 688-700 (1990)). The solubilized fraction was diluted in 1200 ⁇ l of TNET250 buffer with 0.5 mg BSA, and 0.6 ⁇ l anti-Cuc Chit antiserum and incubated at room temperature for 15 minutes with continuous mixing.
- Immunocomplexes were collected on protein A-Sepharose CL-4B beads washed once with TNET250 and once in nondetergent washing buffer (10 mM Tris-HCL pnnH 7.5, 5 mM EDTA). Bound proteins were released by heating at 95° C. for 5 minutes in 30 ⁇ l of SDS-PAGE sample buffer. Samples were analyzed by SDS-PAGE on 12.5% polyacrylamide gels (either 3-cm or 9-cm running gels) and visualized by fluorography as described previously (Mansfield, M. A., et al., Planta 173, 482-489 (1988)).
- Thin sections were prepared on an Ultracut E microtome (Reichert-Jung, Vienna Austria) and mounted on formvarcoated nickel grids (Polysciences, Warrington PA). Immunocytochemistry was performed essentially as described by Herman and Melroy (Herman, E. M., et al., Plant Mol. Biol. Manual B13, 1-24 (1990)). The primary antibody (rabbit anti-chitinase antiserum) was diluted 1 to 20, and control sections were incubated with nonimmune serum diluted similarly. Protein A-colloidal gold (EY Lab Inc., San Mateo Calif.) was diluted 1 to 50. Thin sections were examined on a JEOL 100CXII transmission microscope (Tokyo, Japan).
- each BL subunit is initially synthesized as a preproprotein composed of a 2.5-kD signal peptide, an 18-kD polypeptide, and a 1.5-kD CTPP.
- the proprotein is modified by the covalent addition of a high-mannose-type glycan to the CTPP, to form a 23-kD polypeptide, and dimerizes to form an active N-acetylglucosamine binding protein.
- the glycosylated CTPPs are cleaved to yield the dimer consisting of two 18-kD subunits.
- Cuc Chit is a protease-resistant 28-kD protein that is secreted into the intercellular space of cucumber plant in response to viral or pathogen infection (Metraux, J. P., et al., Proc. Natl. Acad. Sci. US 86 896-900 (1989)). No significant homology is found in a comparison of the DNA and deduced amino acid sequences of Cuc Chit and the intracellular basic chitinase isoforms from tobacco and bean (Metraux, J. P., et al., Proc. Natl. Acad. Sci. US 86, 896-900 (1989)).
- FIG. 1B is a schematic representation of the proteins encoded by the proBL/CucChit restriction fragment gene fusions.
- Three Cuc Chit gene fusions were constructed containing the following sequences: (1) the region encoding the barley lectin proprotein (FIG.
- Cuc Chit gene fusions were subcloned into the plant expression vector pGA643 (An, G., et al., Plant Mol. Biol. Manual A3, 1-19 (1988)) under transcriptional control of the cauliflower mosaic virus 35 S promoter.
- the resulting constructs were transiently expressed in tobacco suspension-cell protoplasts or stably transformed as described (Wilkins, T. A., et al., Plant Cell 2, 301-313 (1990); Bednarek, S. Y., et al., Plant Cell 2, 1145-1155 (1990)) into tobacco cells and plants via Agrobacterium.
- Cuc Chit/pGA643 constructs were introduced into tobacco suspension-cell protoplasts by polyethylene glycol mediated DNA uptake (Bednarek, S. Y., et al., Plant Cell 2, 1145-1155 (1990)), and the protoplasts were labeled in the presence of a mixture of 35 S-labeled methionine and cysteine ( 35 S-Met/Cys) for 14 hours.
- Cuc Chit and Cuc Chit fusion proteins were purified from protein extracts of the radiolabeled protoplasts and incubation media by immunoprecipitation with polyclonal antisera directed against Cuc Chit and analyzed by SDS-PAGE and fluorography.
- Cuc Chit and Cuc Chit-BL were synthesized as single polypeptides of M r 28,000 and M r 26,000, respectively, and secreted from the protoplasts into the incubation media (FIG. 9, lanes 1, 2), indicating that these proteins were properly translocated into the tobacco secretory system and secreted.
- the labeled polypeptide with an M r of 46,000 was completely secreted from the tobacco protoplast during a 10 hour chase with unlabeled methionine and cysteine (Met/Cys) and accumulated in the media (data not shown).
- Method/Cys unlabeled methionine and cysteine
- Vacuole fractions from Cuc Chit and Cuc Chit-CTPP plants contained ⁇ 10% NADH cytochrome c reductase and ⁇ 5% glucose-6-phosphate dehydrogenase, relative to total protoplast associated activity.
- the subcellular distribution of Cuc Chit and Cuc Chit-CTPP proteins was examined by immunoblot analysis of the protoplast and vacuole lysates using Cuc Chit polyclonal sera.
- Cuc Chit Localization of Cuc Chit in transgenic tobacco plants was also analyzed by electron microscopic immunocytochemistry. Thin sections of transgenic tobacco leaves expressing Cuc Chit and Cuc Chit-CTPP were treated with Cuc Chit antiserum. Antibody binding was visualized with 15-nm-diameter colloidal gold linked to protein A. Cuc Chit was localized in the cell wall and middle lamella of tobacco cells expressing Cuc Chit (FIG. 12A), whereas colloidal gold labeling was readily discernible in the vacuoles of tobacco cells expressing Cuc Chit-CTPP (FIG. 5C). A very low level of labeling was also detected in the cell wall of these cells. No specific labeling was detected in parallel experiments using non-immune sera as the primary antibody (FIG. 12B and 12D).
- BL is initially synthesized as a glycosylated proprotein and is subsequently processed prior to or concomitant with deposition of the protein in the vacuole, by removal of the glycosylated CTPP.
- both Cuc Chit-CTPP and Cuc Chit-proBL fusion proteins were initially synthesized as proproteins and processed to their mature form by the removal of the CTPP, intracellularly. It has been further demonstrated by organelle purification and electron microscopy immunocytochemical localization, that the M r 28,000 processed form of Cuc Chit-CTPP is localized in the vacuoles of tobacco cells expressing Cuc Chit-CTPP.
- the proBL CTPP was sufficient to redirect a secreted protein, cucumber chitinase, to the plant vacuole.
- the role of the 18-kD subunit of BL was analyzed on the sorting of Cuc Chit-BL and Cuc Chit-proBL fusion proteins.
- the Cuc Chit-proBL fusion protein was processed by removal of the CTPP and the mature protein was retained intracellularly, whereas the Cuc Chit-BL fusion protein lacking the CTPP was efficiently secreted from the cell.
- a mutant form of BL lacking the CTPP was secreted from transgenic tobacco protoplasts (Bednarek, S. Y., et al., Plant Cell 2, 1145-1155 (1990)).
- Targeting element(s) within a fusion protein may not be presented in the proper secondary and/or tertiary structural context and result in the complete or partial secretion of chimeric protein.
- Johnson et al Johnson, L. M., et al., Cell 48, 875-885 (1987)
- the first 30 amino acids of the yeast vacuolar CPY proprotein efficiently retained the secreted protein invertase, intracellularly, whereas a 10-amino acid region of the CPY propeptide was only effective at retaining 45% of the invertase fusion protein.
- Valls et al. (Valls, L. A., et al., J. Cell Biol.
- the basic and acidic isoforms of ⁇ -1,3-glucanases and chitinases from tobacco have been shown to be localized intracellularly and extracellularly, respectively (see Chrispeels, M. J., Plant Mol. Biol. 42 21-53 (1991) for review).
- a comparison of the deduced amino acid sequences of the acidic and basic ⁇ -1,3-glucanase and chitinase isoforms reveals that the vacuolar isoforms contain additional carboxyl-terminal extensions not found on the extracellular isoforms (Linthorst, J. H. M., et al., Mol. Plant-Microbe. Interact.
- tobacco ⁇ -1,3-glucanase is initially synthesized as a glycosylated precursor and processed to the mature protein by removal of the glycosylated carboxyl-terminal propeptide (Shinshi, H., et al., Proc. Natl. Acad. Sci. US 85, 5541-5545 (1988); Van den Bulcke, M., et al., Proc. Natl. Acad. Sci. US 86, 2673-2677 (1989)); however, it remains to be determined whether the propeptide contains any sorting information.
- An amino-terminal propeptide from the sweet potato storage protein, sporamin also contains a region necessary for vacuolar protein sorting in plants (Matsuoka, K., et al., Proc. Natl. Acad. Sci. US 88, 834-838 (1991)). Deletion of this region led to secretion of the sporamin by transgenic tobacco cells, while prosporamin was processed and deposited within the vacuoles. However, to date, this region has not been demonstrated to be sufficient for sorting to the vacuole.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Pest Control & Pesticides (AREA)
- Insects & Arthropods (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
__________________________________________________________________________ SEQUENCE LISTING (1) GENERAL INFORMATION: (iii) NUMBER OF SEQUENCES: 10 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 (B) TYPE: Amino Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: C-terminal fragment of barley lectin (vi) ORIGINAL SOURCE: (A) ORGANISM: wheat, barley or rice (B) STRAIN: (C) INDIVIDUAL ISOLATE: BLc3 (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A ( I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: sorting peptide for proteins (B) LOCATION: encoded by amino acid 172 to 186 of barley lectin cDNA (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: Sorts proteins to vacuoles (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: ValPheAl aGluAlaIleAlaAlaAsnSerThrLeuVal 1510 AlaGlu 15 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: C-terminal fragment of wheat lectin (WGA-A) (vi) ORIGINAL SOURCE: (A) ORGANISM: wheat (B) STRAIN: (C) INDIVIDUAL ISOLATE: (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: sorting peptide for proteins (B) LOCATION: encoded by amino acids 172 to 186 of WGA isolectin A cDNA (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: Sorts proteins to vacuoles (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: ValPheAlaGluAlaIleThrAlaAsnSerThrLeuLeu 1510 GlnGlu 15 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: C-terminal fragment of wheat lectin (WGA-B) (vi) ORIGINAL SOURCE: (A) ORGANISM: wheat (B) STRAIN: (C) INDIVIDUAL ISOLATE: (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: sorting peptide for proteins (B) LOCATION: encoded by amino acids 172 to 186 of WGA isolectin B cDNA (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: Sorts proteins to vacuoles (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ValPheAlaGluAlaIleAlaThrAsnSerThrLeuLeu 1510 AlaGlu 15 (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: C-terminal fragment of wheat lectin (WGA-D) (vi) ORIGINAL SOURCE: (A) ORGANISM: wheat (B) STRAIN: (C) INDIVIDUAL ISOLATE: (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: sorting peptide for proteins (B) LOCATION: encoded by amino acids 172 to 186 of WGA isolectin D cDNA (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: Sorts proteins to vacuoles (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: ValPheAlaGlyAlaIleThrAlaAsnSerThrLeuLeu 1510 AlaGlu 15 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: C-terminal fragment of rice lectin (vi) ORIGINAL SOURCE: (A) ORGANISM: rice (B) STRAIN: (C) INDIVIDUAL ISOLATE: (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: sorting peptide for proteins (B) LOCATION: encoded by amino acids 175 to 199 of rice lectin cDNA (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: Sorts proteins to vacuoles (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: AspGlyMetAlaAlaIleLeuAlaAsnAsnGlnSerVal 1510 SerPheGluGlyI leIleGluSerValAlaGluLeuVal 152025 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: Yes (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: C-terminal fragment of barley lectin (vi) ORIGINAL SOURCE: (A) ORGANISM: barley (B) STRAIN: (C) INDIVIDUAL ISOLATE: (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: sorting peptide for proteins (B) LOCATION: encoded by amino acids 172 to 186 of barley lectin cDNA (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: 4 Xaa is Gly or Glu, 7 Xaa and 8 Xaa is Ala or Thr, 13 Xaa is Val or Leu, 14 Xaa is Ala or Gln (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: ValPheAlaXaaAlaIleXaaXaaAsnSerThrLeuXaaXaa 1510 Glu 15 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 (B) TYPE: Nucleotide (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Synthetic Nucleotide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: N/A (vi) ORIGINAL SOURCE: N/A (A) ORGANISM: N/A (B) STRAIN: N/A (C) INDIVIDUAL ISOLATE: N/A (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: primer (B) LOCATION: N/A (C) IDENTIFICATION METHOD: N/A (D) OTHER INFORMATION: N/A (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: CGGCGGCTGCGACGGT16 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 (B) TYPE: Nucleotide (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Synthetic Nucleotide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: N/A (vi) ORIGINAL SOURCE: N/A (A) ORGANISM: N/A (B) STRAIN: N/A (C) INDIVIDUAL ISOLATE: N/A (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F ) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: primer (B) LOCATION: N/A (C) IDENTIFICATION METHOD: N/A (D) OTHER INFORMATION: N/A (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: GATGATCTTGCTAATGGCAG20 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v ) FRAGMENT TYPE: Tobacco -1,3-glucanase (vi) ORIGINAL SOURCE: (A) ORGANISM: N. tabacum (B) STRAIN: N/A (C) INDIVIDUAL ISOLATE: N/A (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: (viii ) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: -glucanase peptide (B) LOCATION: N/A (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: N/A (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: ValSerGlyGlyValTrpAspSerSerValGluThrAsnAlaThrAla 51015 SerLeuValSerGluMet 20 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 (B) TYPE: Amino acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: (A) DESCRIPTION: Peptide (iii) HYPOTHETICAL: No (iv) ANTI-SENSE: No (v) FRAGMENT TYPE: Tobacco 1,3-glucanase (vi) ORIGINAL SOURCE: (A) ORGANISM: N. plumbaginifolia (B) STRAIN: N/A (C) INDIVIDUAL ISOLATE: (D) DEVELOPMENTAL STAGE: N/A (E) HAPLOTYPE: N/A (F) TISSUE TYPE: N/A (G) CELL TYPE: N/A (H) CELL LINE: N/A (I) ORGANELLE: N/A (vii) IMMEDIATE SOURCE: N/A (viii) POSITION IN GENOME: N/A (ix) FEATURE: (A) NAME/KEY: -glucanase peptide (B) LOCATION: N/A (C) IDENTIFICATION METHOD: sequencing (D) OTHER INFORMATION: N/A (x) PUBLICATION INFORMATION: N/A (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: PheSerAspAr gTyrTrpAspIleSerAlaGluAsnAsnAlaThr 51015 AlaAlaSerLeuIleSerGluMet 20
Claims (6)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/791,930 US5360726A (en) | 1989-09-12 | 1991-11-12 | Polypeptides enabling sorting of proteins to vacuoles in plants |
| US08/173,515 US5525713A (en) | 1989-09-12 | 1993-12-23 | DNA encoding polypeptides enabling sorting of proteins to vacuoles in plants |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US40631889A | 1989-09-12 | 1989-09-12 | |
| US61220090A | 1990-11-13 | 1990-11-13 | |
| US07/791,930 US5360726A (en) | 1989-09-12 | 1991-11-12 | Polypeptides enabling sorting of proteins to vacuoles in plants |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US61220090A Continuation-In-Part | 1989-09-12 | 1990-11-13 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/173,515 Continuation-In-Part US5525713A (en) | 1989-09-12 | 1993-12-23 | DNA encoding polypeptides enabling sorting of proteins to vacuoles in plants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5360726A true US5360726A (en) | 1994-11-01 |
Family
ID=27019458
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/791,930 Expired - Lifetime US5360726A (en) | 1989-09-12 | 1991-11-12 | Polypeptides enabling sorting of proteins to vacuoles in plants |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5360726A (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5876995A (en) | 1996-02-06 | 1999-03-02 | Bryan; Bruce | Bioluminescent novelty items |
| WO2000004049A1 (en) * | 1998-07-15 | 2000-01-27 | The Horticulture And Food Research Institute Of New Zealand Limited | Chimeric polypeptides allowing expression of plant-noxious proteins |
| US6054637A (en) * | 1990-06-15 | 2000-04-25 | Novartis Finance Corporation | Signal sequences for vacuolar sorting |
| US6087161A (en) * | 1990-06-07 | 2000-07-11 | Zeneca Mogen B.V. | Polynucleotide encoding osmotin modified for apoplast targeting |
| US6222097B1 (en) | 1989-07-19 | 2001-04-24 | Calgene, Llc | Use of ovary-tissue transcriptional factors for altering plant color |
| US6232107B1 (en) | 1998-03-27 | 2001-05-15 | Bruce J. Bryan | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items |
| US6247995B1 (en) | 1996-02-06 | 2001-06-19 | Bruce Bryan | Bioluminescent novelty items |
| US6268546B1 (en) * | 1989-07-19 | 2001-07-31 | Calgene Llc | Ovary-tissue transcriptional factors |
| US6303344B1 (en) | 1996-12-18 | 2001-10-16 | Maxygen, Inc. | Methods and compositions for polypeptide engineering |
| WO2001075131A3 (en) * | 2000-03-31 | 2002-03-14 | Univ Technology Corp | Expression of uncoupling protein (ucp) in plants |
| US6416960B1 (en) | 1996-08-08 | 2002-07-09 | Prolume, Ltd. | Detection and visualization of neoplastic tissues and other tissues |
| US6458547B1 (en) | 1996-12-12 | 2002-10-01 | Prolume, Ltd. | Apparatus and method for detecting and identifying infectious agents |
| US7105718B2 (en) | 2000-03-31 | 2006-09-12 | The Regents Of The University Of Colorado | Compositions and methods for regulating metabolism in plants |
| US7109315B2 (en) | 2000-03-15 | 2006-09-19 | Bruce J. Bryan | Renilla reniformis fluorescent proteins, nucleic acids encoding the fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items |
| EP1925320A2 (en) | 1998-03-27 | 2008-05-28 | Prolume, Ltd. | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics |
| WO2012006622A3 (en) * | 2010-07-09 | 2012-07-19 | University Of Central Florida Research Foundation, Inc. | Improved agronomic traits via genetically induced elevation of phytohormone levels in plants |
| WO2013134651A1 (en) | 2012-03-09 | 2013-09-12 | Board Of Trustees Of Michigan State University | Method of enhancing plant drought tolerance by expression of ndr1 |
| WO2016079739A2 (en) | 2014-11-20 | 2016-05-26 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Compositions and methods for producing polypeptides with a modified glycosylation pattern in plant cells |
| US9783817B2 (en) | 2013-03-04 | 2017-10-10 | Arkansas State University | Methods of expressing and detecting activity of expansin in plant cells |
| WO2022256695A1 (en) | 2021-06-03 | 2022-12-08 | Mazen Animal Health Inc. | Oral administration of coronavirus spike protein for altering cytokine levels and providing passive immunity to newborn pigs |
| WO2025052302A1 (en) | 2023-09-05 | 2025-03-13 | Mazen Animal Health, Inc. | Methods and compositions for the production of mannanase in plants |
| WO2025074304A1 (en) | 2023-10-03 | 2025-04-10 | Mazen Animal Health, Inc. | Compositions and methods for in planta production of a porcine circovirus vaccine |
-
1991
- 1991-11-12 US US07/791,930 patent/US5360726A/en not_active Expired - Lifetime
Non-Patent Citations (129)
| Title |
|---|
| An, G., et al., Plant Molec. Biol. Manual A3, 1 19 (1988). * |
| An, G., et al., Plant Molec. Biol. Manual A3, 1-19 (1988). |
| An, G., Plant Physiol. 79, 568 570 (1985). * |
| An, G., Plant Physiol. 79, 568-570 (1985). |
| Bednarek, S. Y., et al., Plant Cell 2 1145 1155 (1990). * |
| Bednarek, S. Y., et al., Plant Cell 2 1145-1155 (1990). |
| Blake, M. S., et al., Anal. Biochem. 136, 175 179 (1984). * |
| Blake, M. S., et al., Anal. Biochem. 136, 175-179 (1984). |
| Blobel, G., & Dobberstein, D., J. Cell Biol. 67, 835 851 (1975). * |
| Blobel, G., & Dobberstein, D., J. Cell Biol. 67, 835-851 (1975). |
| Boller, T., et al., Plant Physiol. 63, 1123 1132 (1979). * |
| Boller, T., et al., Plant Physiol. 63, 1123-1132 (1979). |
| Chrispeels, M. J., Ann. Rev. Plant Physiol. Plant Molc. Biol. 42, 21 53 (1991). * |
| Chrispeels, M. J., Ann. Rev. Plant Physiol. Plant Molc. Biol. 42, 21-53 (1991). |
| Chrispeels, M. J., Planta 158, 140 151 (1983). * |
| Chrispeels, M. J., Planta 158, 140-151 (1983). |
| Damm, B., et al., Mol. Gen. Genet. 217, 6 12 (1989). * |
| Damm, B., et al., Mol. Gen. Genet. 217, 6-12 (1989). |
| Deloose, M., et al., Gene 70, 13 23 (1988). * |
| Deloose, M., et al., Gene 70, 13-23 (1988). |
| Denecke, J., et al., Plant Cell 2, 51 59 (1990). * |
| Denecke, J., et al., Plant Cell 2, 51-59 (1990). |
| Dorel, C., et al., J. Cell Biol. 108, 327 337 (1989). * |
| Dorel, C., et al., J. Cell Biol. 108, 327-337 (1989). |
| Feinberg, A. P., et al., Anal. Biochem. 132, 6 13 (1983). * |
| Feinberg, A. P., et al., Anal. Biochem. 132, 6-13 (1983). |
| Firestone, G. L., & S. D. Winguth, Methods Enzymol. 182, 688 700 (1990). * |
| Firestone, G. L., & S. D. Winguth, Methods Enzymol. 182, 688-700 (1990). |
| Gabel, C. A., et al., Proc. Natl. Acad. Sci. U.S.A. 80, 775 779 (1983). * |
| Gabel, C. A., et al., Proc. Natl. Acad. Sci. U.S.A. 80, 775-779 (1983). |
| Herman, E. M., et al., Plant Mol. Biol. Manual B13, 1 24 (1990). * |
| Herman, E. M., et al., Plant Mol. Biol. Manual B13, 1-24 (1990). |
| Johnson, L. M. et al., Cell 28, 875 885 (1987). * |
| Johnson, L. M. et al., Cell 28, 875-885 (1987). |
| Klionsky, D. J., et al., Mol. Cell Biol. 3, 2105 2116 (1988). * |
| Klionsky, D. J., et al., Mol. Cell Biol. 3, 2105-2116 (1988). |
| Klionsky, D. J., et al., Mol. Cell Biol. 8 2105 2116 (1988). * |
| Klionsky, D. J., et al., Mol. Cell Biol. 8 2105-2116 (1988). |
| Kornfeld, S., et al., Ann. Rev. Cell Biol. 5, 483 525 (1989). * |
| Kornfeld, S., et al., Ann. Rev. Cell Biol. 5, 483-525 (1989). |
| Kunkel, T. A., et al., Methods Enzymol. 154, 367 382 (1987). * |
| Kunkel, T. A., et al., Methods Enzymol. 154, 367-382 (1987). |
| Lerner, D. R., et al., Plant Physiol. 91, 124 129 (1989). * |
| Lerner, D. R., et al., Plant Physiol. 91, 124-129 (1989). |
| Linthorst, J. H. M., et al., Mol. Plant Microbe. Interact. 3, 252 258 (1990). * |
| Linthorst, J. H. M., et al., Mol. Plant Microbe. Interact. 3, 252-258 (1990). |
| Lord, J. M., "Endoplasmic reticulum & ribosomes" In Isolation of Membranes & organelles from plant cells, J. L. Hall & A. L. Moore eds (N.Y.: Academic Press), pp. 119-134 (1983). |
| Lord, J. M., Endoplasmic reticulum & ribosomes In Isolation of Membranes & organelles from plant cells, J. L. Hall & A. L. Moore eds (N.Y.: Academic Press), pp. 119 134 (1983). * |
| Mansfield, M. A. et al., Planta 173, 482 489 (1988). * |
| Mansfield, M. A. et al., Planta 173, 482-489 (1988). |
| Matsuoka, K., et al., Proc. Natl. Acad. Sci. U.S. 88, 834 838 (1991). * |
| Matsuoka, K., et al., Proc. Natl. Acad. Sci. U.S. 88, 834-838 (1991). |
| Metraux, J. P., et al., Proc. Natl. Acad. Sci. U.S.A. 86, 896 900 (1989). * |
| Metraux, J. P., et al., Proc. Natl. Acad. Sci. U.S.A. 86, 896-900 (1989). |
| Mishkind, M. L., et al., Science 220, 1290 1292 (1983). * |
| Mishkind, M. L., et al., Science 220, 1290-1292 (1983). |
| Montreuil, J., Biol. Cell 51, 115 131 (1984). * |
| Montreuil, J., Biol. Cell 51, 115-131 (1984). |
| Murashige, T., et al., Physiol. Plant 15, 473 497 (1962). * |
| Murashige, T., et al., Physiol. Plant 15, 473-497 (1962). |
| Nagy, F., et al., Plant Molecular Biology Manual B4, 1 29 (1988). * |
| Nagy, F., et al., Plant Molecular Biology Manual B4, 1-29 (1988). |
| Neale, A. D., et al., Plant Cell 2, 673 684 (1990). * |
| Neale, A. D., et al., Plant Cell 2, 673-684 (1990). |
| Negrutiu, I., et al., Plant Mol. Biol. 8, 363 373 (1987). * |
| Negrutiu, I., et al., Plant Mol. Biol. 8, 363-373 (1987). |
| Peumans, W. J., et al., Planta 154, 568 572 (1982). * |
| Peumans, W. J., et al., Planta 154, 568-572 (1982). |
| Raikhel N. V., et al., Proc. Natl. Acad. Sci. 84, 6745 6749 (1987). * |
| Raikhel N. V., et al., Proc. Natl. Acad. Sci. 84, 6745-6749 (1987). |
| Raikhel, N. V., et al., Planta 126, 406 414 (1988). * |
| Raikhel, N. V., et al., Planta 126, 406-414 (1988). |
| Rothman, J. E., Cell 50, 521 522 (1987). * |
| Rothman, J. E., Cell 50, 521-522 (1987). |
| Saalbach, G., et al., Plant Cell 3, 695 708 (1991). * |
| Saalbach, G., et al., Plant Cell 3, 695-708 (1991). |
| Sanger, F., et al., Proc. Natl. Acad. Sci. U.S. 56, 5463 5467 (1977). * |
| Sanger, F., et al., Proc. Natl. Acad. Sci. U.S. 56, 5463-5467 (1977). |
| Shinshi, H. et al., Proc. Natl. Acad. Sci. U.S.A. 85, 5541 5545 (1988). * |
| Shinshi, H. et al., Proc. Natl. Acad. Sci. U.S.A. 85, 5541-5545 (1988). |
| Shinshi, H., et al., Plant Mol. Biol. 14, 357 368 (1990). * |
| Shinshi, H., et al., Plant Mol. Biol. 14, 357-368 (1990). |
| Shinshi, H., et al., Proc. Natl. Acad. Sci. U.S.A. 84, 89 93 (1987). * |
| Shinshi, H., et al., Proc. Natl. Acad. Sci. U.S.A. 84, 89-93 (1987). |
| Simcox, P. D., et al., L. Plant Physiol. 59, 1128 1132 (1977). * |
| Simcox, P. D., et al., L. Plant Physiol. 59, 1128-1132 (1977). |
| Smith et al., Plant Molecular Biology 13, 601 603 (1989). * |
| Smith et al., Plant Molecular Biology 13, 601-603 (1989). |
| Smith, et al., Plant Physiology 91, 473 476 (1989). * |
| Smith, et al., Plant Physiology 91, 473-476 (1989). |
| Sonnewald, U., et al., Plant Cell 2, 345 355 (1990). * |
| Sonnewald, U., et al., Plant Cell 2, 345-355 (1990). |
| Stevens, T. H. et al., Cell 30, 439 448 (1982). * |
| Stevens, T. H. et al., Cell 30, 439-448 (1982). |
| Stevens, T. H., et al., J. Cell Biol. 102, 1551 1557 (1986). * |
| Stevens, T. H., et al., J. Cell Biol. 102, 1551-1557 (1986). |
| Stinissen, H. M. et al. 1983, Plant Molecular Biology vol. 2 pp. 33 40. * |
| Stinissen, H. M. et al. 1983, Plant Molecular Biology vol. 2 pp. 33-40. |
| Stinissen, H. M. et al. 1985 Biological Abstracts, vol. 80, No. 10, p. AB 821, abstract 89896. * |
| Stinissen, H. M. et al. 1985 Biological Abstracts, vol. 80, No. 10, p. AB-821, abstract #89896. |
| Tague, B. W., et al., J. Cell Biochem. Suppl. 13D, 230 (1989). * |
| Tague, B. W., et al., Plant Cell 2, 533 546 (1990). * |
| Tague, B. W., et al., Plant Cell 2, 533-546 (1990). |
| Tartakoff, A. M., Cell 32, 1026 1028 (1983). * |
| Tartakoff, A. M., Cell 32, 1026-1028 (1983). |
| Towbin, H., et al., Proc. Natl. Acad. Sci. U.S. 76, 4350 4354 (1979). * |
| Towbin, H., et al., Proc. Natl. Acad. Sci. U.S. 76, 4350-4354 (1979). |
| Valls, L. A., et al., Cell 48, 887 897 (1987). * |
| Valls, L. A., et al., Cell 48, 887-897 (1987). |
| Valls, L. A., et al., J. Cell Biol. 111, 361 368 (1990). * |
| Valls, L. A., et al., J. Cell Biol. 111, 361-368 (1990). |
| Van Den Bulcke, M., et al., Proc. Natl. Acad. Sci. U.S.A. 86 2673 2677 (1989). * |
| Van Den Bulcke, M., et al., Proc. Natl. Acad. Sci. U.S.A. 86 2673-2677 (1989). |
| Verner, K. et al., "Protein translocation across membranes", Science 241, 1307-1313 (1988). |
| Verner, K. et al., Protein translocation across membranes , Science 241, 1307 1313 (1988). * |
| Vieira, J., et al., Methods Enzymol. 153, 3 11 (1987). * |
| Vieira, J., et al., Methods Enzymol. 153, 3-11 (1987). |
| Voelker, T. A., et al., Cell 1, 95 104 (1989). * |
| Voelker, T. A., et al., Cell 1, 95-104 (1989). |
| Wieland, F. T. et al., Cell 50, 289 300 (1987). * |
| Wieland, F. T. et al., Cell 50, 289-300 (1987). |
| Wilkins et al., The Plant Cell, 1, 541 549 (1989). * |
| Wilkins et al., The Plant Cell, 1, 541-549 (1989). |
| Wilkins, T. A., et al., Plant Cell 2 301 313 (1990). * |
| Wilkins, T. A., et al., Plant Cell 2 301-313 (1990). |
| Wright C. S., et al., Biochemistry 23, 280 287 (1984). * |
| Wright C. S., et al., Biochemistry 23, 280-287 (1984). |
| Wright, C. S. 1987 J. Mol. Biol. vol. 194 pp. 501 529. * |
| Wright, C. S. 1987 J. Mol. Biol. vol. 194 pp. 501-529. |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6222097B1 (en) | 1989-07-19 | 2001-04-24 | Calgene, Llc | Use of ovary-tissue transcriptional factors for altering plant color |
| US6268546B1 (en) * | 1989-07-19 | 2001-07-31 | Calgene Llc | Ovary-tissue transcriptional factors |
| US6087161A (en) * | 1990-06-07 | 2000-07-11 | Zeneca Mogen B.V. | Polynucleotide encoding osmotin modified for apoplast targeting |
| US6054637A (en) * | 1990-06-15 | 2000-04-25 | Novartis Finance Corporation | Signal sequences for vacuolar sorting |
| US5876995A (en) | 1996-02-06 | 1999-03-02 | Bryan; Bruce | Bioluminescent novelty items |
| US6113886A (en) | 1996-02-06 | 2000-09-05 | Bruce Bryan | Bioluminescent novelty items |
| US6152358A (en) | 1996-02-06 | 2000-11-28 | Bruce Bryan | Bioluminescent novelty items |
| US6247995B1 (en) | 1996-02-06 | 2001-06-19 | Bruce Bryan | Bioluminescent novelty items |
| US6416960B1 (en) | 1996-08-08 | 2002-07-09 | Prolume, Ltd. | Detection and visualization of neoplastic tissues and other tissues |
| US6596257B2 (en) | 1996-08-08 | 2003-07-22 | Prolume, Ltd. | Detection and visualization of neoplastic tissues and other tissues |
| US6649357B2 (en) | 1996-12-12 | 2003-11-18 | Prolume, Ltd. | Apparatus and method for detecting and identifying infectious agents |
| US6458547B1 (en) | 1996-12-12 | 2002-10-01 | Prolume, Ltd. | Apparatus and method for detecting and identifying infectious agents |
| US6649356B2 (en) | 1996-12-12 | 2003-11-18 | Prolume, Ltd. | Apparatus and method for detecting and identifying infectious agents |
| US6303344B1 (en) | 1996-12-18 | 2001-10-16 | Maxygen, Inc. | Methods and compositions for polypeptide engineering |
| EP1925320A2 (en) | 1998-03-27 | 2008-05-28 | Prolume, Ltd. | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics |
| US6436682B1 (en) | 1998-03-27 | 2002-08-20 | Prolume, Ltd. | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items |
| US6232107B1 (en) | 1998-03-27 | 2001-05-15 | Bruce J. Bryan | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items |
| WO2000004049A1 (en) * | 1998-07-15 | 2000-01-27 | The Horticulture And Food Research Institute Of New Zealand Limited | Chimeric polypeptides allowing expression of plant-noxious proteins |
| US20050172356A1 (en) * | 1998-07-15 | 2005-08-04 | The Horticulture And Food Research Institute Of New Zealand | Nucleic acids encoding chimeric polypeptides allowing expression of plant-noxious proteins |
| US6972350B1 (en) * | 1998-07-15 | 2005-12-06 | The Horticulture And Food Research Institute Of New Zealand | Pest-resistant plants comprising a construct encoding a vacuole targeting sequence and avidin or streptavidin |
| US20080235822A1 (en) * | 1998-07-15 | 2008-09-25 | John Tane Christeller | Nucleic acids encoding chimeric polypeptides allowing expression of plant-noxious proteins |
| US7109315B2 (en) | 2000-03-15 | 2006-09-19 | Bruce J. Bryan | Renilla reniformis fluorescent proteins, nucleic acids encoding the fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items |
| WO2001075131A3 (en) * | 2000-03-31 | 2002-03-14 | Univ Technology Corp | Expression of uncoupling protein (ucp) in plants |
| US7105718B2 (en) | 2000-03-31 | 2006-09-12 | The Regents Of The University Of Colorado | Compositions and methods for regulating metabolism in plants |
| WO2012006622A3 (en) * | 2010-07-09 | 2012-07-19 | University Of Central Florida Research Foundation, Inc. | Improved agronomic traits via genetically induced elevation of phytohormone levels in plants |
| WO2013134651A1 (en) | 2012-03-09 | 2013-09-12 | Board Of Trustees Of Michigan State University | Method of enhancing plant drought tolerance by expression of ndr1 |
| US9783817B2 (en) | 2013-03-04 | 2017-10-10 | Arkansas State University | Methods of expressing and detecting activity of expansin in plant cells |
| WO2016079739A2 (en) | 2014-11-20 | 2016-05-26 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Compositions and methods for producing polypeptides with a modified glycosylation pattern in plant cells |
| US11697819B2 (en) | 2014-11-20 | 2023-07-11 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd | Compositions and methods for producing polypeptides with a modified glycosylation pattern in plant cells |
| WO2022256695A1 (en) | 2021-06-03 | 2022-12-08 | Mazen Animal Health Inc. | Oral administration of coronavirus spike protein for altering cytokine levels and providing passive immunity to newborn pigs |
| WO2025052302A1 (en) | 2023-09-05 | 2025-03-13 | Mazen Animal Health, Inc. | Methods and compositions for the production of mannanase in plants |
| WO2025074304A1 (en) | 2023-10-03 | 2025-04-10 | Mazen Animal Health, Inc. | Compositions and methods for in planta production of a porcine circovirus vaccine |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5360726A (en) | Polypeptides enabling sorting of proteins to vacuoles in plants | |
| Bednarek et al. | The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. | |
| Bednarek et al. | A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. | |
| da Silva Conceicao et al. | The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. | |
| Höfte et al. | Protein sorting to the vacuolar membrane. | |
| AU617433B2 (en) | Chemically regulatable dna sequences and genes and uses thereof | |
| Wilkins et al. | Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. | |
| Dombrowski et al. | Determination of the functional elements within the vacuolar targeting signal of barley lectin. | |
| Jedd et al. | A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane | |
| Bar-Peled et al. | Characterization of AtSEC12 and AtSAR1 (proteins likely involved in endoplasmic reticulum and Golgi transport) | |
| Sonnewald et al. | Transgenic tobacco plants expressing yeast‐derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions | |
| CA2012778C (en) | Disease-resistant transgenic plants | |
| Mullen et al. | Identification of the peroxisomal targeting signal for cottonseed catalase | |
| US5939288A (en) | Plant secretory signal peptides and nectarins | |
| JPH06509231A (en) | DNA associated with callases and their use in artificial male sterility | |
| Jones et al. | Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters | |
| Saalbach et al. | The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element | |
| Chaudhary et al. | Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds | |
| US6054637A (en) | Signal sequences for vacuolar sorting | |
| Savary et al. | Biosynthesis of defense-related proteins in transformed root cultures of Trichosanthes kirilowii Maxim. var japonicum (Kitam.) | |
| EP0567648A1 (en) | Chilling resistant plants and their production. | |
| Hunt et al. | The signal peptide of a vacuolar protein is necessary and sufficient for the efficient secretion of a cytosolic protein | |
| US6127532A (en) | Lectin cDNA and transgenic plants derived therefrom | |
| Coughlan et al. | Molecular Characterisation of Plant Endoplasmic Reticulum: Identification of Protein Disulfide‐Isomerase as the Major Reticuloplasmin | |
| Takos et al. | Glycosyl‐phosphatidylinositol‐anchor addition signals are processed in Nicotiana tabacum |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BOARD OF TRUSTEES A CONSTITUTIONAL CORPORATION Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RAIKHEL, NATASHA V.;REEL/FRAME:005944/0525 Effective date: 19911112 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| CC | Certificate of correction | ||
| FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: ENERGY, UNITED STATES, DEPARTMENT OF, DISTRICT OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITY;REEL/FRAME:009926/0716 Effective date: 19990408 |
|
| CC | Certificate of correction | ||
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| SULP | Surcharge for late payment |
Year of fee payment: 11 |