US5335712A - Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies - Google Patents

Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies Download PDF

Info

Publication number
US5335712A
US5335712A US07/863,765 US86376592A US5335712A US 5335712 A US5335712 A US 5335712A US 86376592 A US86376592 A US 86376592A US 5335712 A US5335712 A US 5335712A
Authority
US
United States
Prior art keywords
fibers
whiskers
metal matrix
matrix composite
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/863,765
Inventor
William J. Corbett
Marvin C. Lunde
Peter T. B. Shaffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Ceramics Laboratories Inc
Original Assignee
Technical Ceramics Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US07/310,381 priority Critical patent/US5108964A/en
Priority to US07/690,347 priority patent/US5153057A/en
Application filed by Technical Ceramics Laboratories Inc filed Critical Technical Ceramics Laboratories Inc
Priority to US07/863,765 priority patent/US5335712A/en
Application granted granted Critical
Publication of US5335712A publication Critical patent/US5335712A/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23202248&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5335712(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/72After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/025Aligning or orienting the fibres
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • C04B2111/00922Preforms as such
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Abstract

A fiber-organic composition includes from about 5% to 50% by volume of uniformly dispersed, non-planar or three dimensionally random oriented inorganic fibers or whiskers, and a thermoplastic material such as paraffin wax. The composition also includes surfactants to promote wetting and dispersion of the inorganic fibers or whiskers. These materials are subjected to high shear mixing to form a uniform randomly oriented three-dimensional dispersion of the inorganic fibers or whiskers. After molding the mixture in such a manner so as not to disrupt the uniform, three-dimensional orientation of the fibers or whiskers, a majority of the thermoplastic material is removed leaving a shaped body or preform having sufficient strength for handling. The shaped body or preform can then be infiltrated with molten metal or the like to form a metal matrix composite.

Description

This application is a division of application Ser. No. 07/690,347, filed Apr. 24, 1991, now U.S. Pat. No. 5,153,057, which is a division of application Ser. No. 07/310,381, filed Feb. 15, 1989, now U.S. Pat. No. 5,108,964.

BACKGROUND OF THE INVENTION

This invention relates to shaped bodies which contain short fibers or whiskers, moldable ceramic-organic compounds or compositions for use in such bodies, metal or ceramic matrix composites which include such bodies, and methods for producing the shaped bodies and composites.

A need for lightweight, high strength, cost competitive parts by the aircraft, automotive and other industries has led to a demand for improved strength to weight ratio materials such as metal matrix composites. In addition, there is a growing demand by such industries for metal matrix composites having relatively complex shapes which require little or no finish machining.

In general, metal matrix composites have a dispersed inorganic or ceramic reinforcing phase which imparts improved strength and stiffness. For example, some improvement in strength and stiffness can be obtained by incorporating ceramic particles in the matrix. And, a more dramatic improvement can be obtained when short ceramic fibers or whiskers are used as the reinforcing phase.

However, the properties of such composites, reinforced with ceramic fibers or whiskers depend strongly upon the orientation of the fibers or whiskers. For example, composites produced with three-dimensionally random oriented fibers or whiskers have isotropic properties (i.e., directionally independent). Metal matrix composites reinforced with fibers or whiskers having one (planar) or two (unidirectional) degrees of orientation exhibit anisotropic properties (i.e., directionally dependent). Thus, except for simple structures such as stiffeners or struts, metal matrix composites having isotropic properties are more desirable. Also, there is an increasing demand for such composites having complex shapes.

In producing metal matrix composites, highly desirable to obtain uniformly distributed fibers or whiskers in a predetermined concentration. It is also desirable to preform the reinforcing phase (i.e., the ceramic fibers or whiskers) into a shaped structure or preform. This shaped structure or preform can then be infiltrated with molten metal or the like to produce a composite part without significantly damaging the structural integrity of the fibers. In addition it is desirable to obtain a relatively high concentration of fibers in the order of up to 50% or possibly more by volume of a composite to increase the strength, the stiffness or otherwise improve the physical characteristics of the part.

In general, the presently used techniques for fabricating reinforcing phase preforms utilize paper making technology in which the inorganic fibers or whiskers are suspended as a slurry and collected as a mat by vacuum filtration. The densities of such mats are limited and typical contain from 4 to 8% fiber by volume. Such mats have a density gradient in the direction of filtration. In addition the vacuum filtration technique produces a fiber mat wherein the fibers have a two-dimensional planar orientation instead of a more desirable random or three-dimensional dispersion as provided by the present invention. In some cases multiple mats have been superimposed on one another and compressed in an effort to increase the fiber density, however, this approach does not usually increase the density sufficiently and tends to further orient the fibers into a planar array. This approach also tends to break fibers. Furthermore, the shapes produced using the above described preforms are limited to relatively simple shapes which are then subjected to expensive and time consuming machining to produce more complex shapes.

Efforts to produce shaped metal matrix composites having a uniformly distributed three-dimensional random reinforcing phase of ceramic fibers or whiskers, by either conventional powder metallurgy techniques or by mixing the reinforcement phase into the molten metal prior to casting (compocasting) have enjoyed only limited success.

Hood et al., U.S. Pat. No. 4,463,058, discloses a method wherein silicon carbide whiskers are uniformly dispersed and/or distributed in a metal matrix. The method comprises forming a slurry of whiskers and mixing the slurry with an aluminum powder. In this manner, silicon carbide whiskers can be added in amounts of up to 50% by volume of the total finished composite. However, as formed the fibers are oriented relative to the surface of the aluminum particles; and, after forging, the fibers tend to have a planar or parallel dispersion rather than three-dimensional random orientation.

There have been a number of attempts to produce improved preforms and metal matrix composites. For example, Motohiro Yamamoto and Minoru Fukazawa of the Tokai Carbon Company Limited disclose a method for manufacturing fiber oriented preforms in their U.S. Pat. No. 4,500,504. They disperse silicon carbide (SIC) whiskers in molten paraffin wax. And then, the resulting mixture after removing excess wax is cooled to a plastic state and formed by extruding through a nozzle or slit. And then, the extrudate is heated at more than 400° C. for removal of the wax. The manufactured preform consists of oriented fibers which are planar or even parallel. In addition, it is difficult to control and reproduce fiber loading.

A similar approach is taught by Masaharu Oshima, Hiroe Okawa, Katsuhiro Kishi, Toshihiro Manaki and Kenishi Shibata of Nissan Motor Company entitled "Extrusion in Forming Fibrous Preform for Composites," as reported in Chemical abstracts. The Masaharu Oshima abstract discloses extruding a slurry of randomly oriented fibers which tends to produce aligned orientation, and then heating the extruded mass to remove the salt. These silicon carbide whiskers were then dispersed ultrasonically in an aqueous slurry containing an anionic surfactant (Sintrex) and then vacuum formed into a porous disk. The air in the disk was then replaced with molten wax by vacuum impregnation with a molten solution (100° C.) containing paraffin wax, VE722 copolymer, and surfactant Stafoam DO. The impregnated disk was heated at 55° in a mold cavity and then extruded. The manufactured rod was dewaxed at about 200° C., sintered at 800° C. and pressure infiltrated with an aluminum alloy at approximately 800° C. at 800 kg/cm2. The resulting product showed tensile strength of approximately 57 kg/mm2. However, this technique also produces preforms having parallel oriented fibers and cannot be used to produce shapes having isotropic properties.

It has now been found that shaped bodies or preforms containing ceramic whiskers and metal matrix composites according to the present invention can be produced with relatively high percentages of uniformly distributed three-dimensionally oriented inorganic fibers or whiskers. It has also been found that such bodies can be produced in relatively complex shapes.

In addition it has been found that novel inorganic fiber-organic compositions according to the present invention can be injection molded without significantly damaging or displacing the three-dimensional orientation of the fibers. And these molded products can be converted into ceramic fiber or whisker preforms according to the present invention.

It has also been found that shaped bodies or preforms for the production of metal or ceramic matrix composites can be produced in accordance with the novel methods disclosed herein. Such methods not only produce preforms and metal matrix composites having consistently reproducible concentrations of uniformly distributed three-dimensionally oriented inorganic fibers or whiskers, but also produce such products economically.

SUMMARY OF THE INVENTION

In essence a shaped body or preform according to the present invention comprises a mass of short inorganic fibers or whiskers which are uniformly dispersed throughout the body with a high degree of three-dimensional random orientation. These fibers amount to at least about 5% by volume and preferably from 10% to about 40% or more by volume and may or may not be bonded to one another at their points of contact. In a preferred embodiment of the invention the ceramic fibers or whiskers are uniformly dispersed throughout the body are essentially free of organic materials and have sufficient structural integrity for handling or infiltration by molten metal without fiber deformation. The whiskers may be bonded together by a ceramic to ceramic bond at their points of contact or at times held together by entanglement. In some cases temporary bonding can be accomplished by leaving a residual amount of organic material (for example about 0.3 to about 0.5% by wgt) to hold the fibers in place.

Accordingly, the shaped bodies according to a preferred form of the invention have relative densities which are about equal to or equal to the volume fraction of fibers. Relative density means the ratio of the actual density of the body compared with what it would be if composed totally of fiber without voids i.e. 100%.

The invention also contemplates a inorganic fiber-organic composition which is suitable for injection or other type of molding. This composition comprises from about 5% to about 50% and preferably from about 10% to about 40% by volume of relatively short ceramic fibers or whiskers and about 50% to about 95% by volume of an organic thermoplastic molding compound such as a wax. In addition, organic surfactants in an amount of about 0.01 to about 5% by weight of the total composition are included in order to obtain the theological properties which are required for molding the ceramic organic composition into a predetermined shape. A shaped body or preform according to the present invention may also include a fugitive material or a material which can be carbonized for use in bonding the fibers to one another. A fugitive material can be used to control the fiber loading and rheology of the mix.

In addition a metal matrix composite according to the present invention comprises a continuous metal phase and a mass of short inorganic or ceramic fibers or whiskers as described above with respect to the shaped bodies. The inorganic fibers or whiskers are molded with a high degree of three-dimensional random orientation to form a shaped body or preform. Such fibers comprise at least about 5% and preferably 10% or more by volume of the body and may be bonded to one another at their points of contact or held together by entanglement or interparticle forces. And then, a molten metallic mass infiltrates and surrounds said fibers to thereby form the metal matrix composite. In a preferred embodiment of the invention the fibers are "free floating", i.e., they are not bound to one another in the finished composite. For example, the fibers in the preform were held together by entanglement or any temporary binder removed or dissolved during infiltration by the molten metal.

A metal matrix composite according to another embodiment of the invention includes from 10% to about 40% by volume of ceramic whiskers which are bonded together by sintering or reaction bonding and are then infiltrated and surrounded with molten metal which is cooled.

In accordance with a further embodiment of the invention a shaped body may be formed by the novel process as follows. A mass of heated thermoplastic molding composition in its fluid state is provided and combined with a mass of short metal, carbon or ceramic fibers. In practice about 10% to about 40% by volume on the short ceramic fibers are dispersed into the heated thermoplastic molding material. In addition a surfactant or surfactants are added to the fiber containing composition to thereby form a mixture. This mixture is then subjected to high shear stirring at an elevated temperature, vacuum degassed and introduced into a mold cavity by casting or injection molding while maintaining the three-dimensional random orientation of the fibers. In other words, care is taken to avoid any significant disturbance of the fiber or damage to the three-dimensional random orientation of the fibers during molding. The mold and mixture contained therein are cooled and a molded shape removed therefrom. And then, a majority if not all of the thermoplastic compound is removed to thereby provide a shaped preform of fibers having sufficient strength to allow handling of the preform and introduction of molten metal without disturbing the fibers or deforming the preform. In most cases all but a nominal amount of the thermoplastic is removed, i.e., less than 1% by wgt of thermoplastic remains. Thus, the relative density of the shaped body is about equal to the volume fraction of fiber.

In one embodiment of the invention, the fiber-organic mixture is introduced into a mold cavity by injection molding with relatively low pressures, i.e., about 10 to about 1,000 psi but preferably about 15 to about 150 psi.

In a preferred embodiment of the invention, the majority of a thermoplastic molding compound is removed leaving only a residual amount bonding the fibers together at their points of contact. At this stage the preform is subjected to high temperature to remove the residual thermoplastic molding compound. The preform may then be subjected to a higher temperature (e.g., above about 800° C.) to form a ceramic to ceramic bond between the fibers at a point where they contact one another. In other cases the fiber structure is used as a preform without any need for a ceramic to ceramic or other bond. In the latter case the relative density of the preform or shaped body is equal to the volume fraction of fiber.

The invention also contemplates forming a metal matrix composite from the shaped preform described above by subsequently forming a solid metallic shape which includes the inorganic fiber preform. For example the metal matrix composite can be made by infiltrating and surrounding the inorganic fibers in the preform with a molten metal.

The invention also contemplates forming a ceramic matrix composite containing three-dimensional randomly-oriented inorganic fibers or whiskers by adding powders to the molding mix, and/or using chemical vapor infiltration of the molded ceramic fiber preform.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a photomicrograph of a mass of silicon carbide whiskers produced by Tateho Chemical Industries, Type SCW-1, showing the random orientation of the whiskers at 6000 x magnification;

FIG. 2 is a photomicrograph of the center of a fracture surface of a shaped body with 0.37 volume fraction of silicon carbide whiskers at 1500x;

FIG. 3 is a photomicrograph of the center of a fracture surface of a shaped body with 0.37 volume fraction of silicon carbide whiskers at 6000x;

FIG. 4 is photomicrograph of the same part as shown in FIGS. 2 and 3 at 1500x, but taken near the edge to show the uniformity of structure and random fiber orientation;

FIG. 5 is a photomicrograph of the section illustrated in FIG. 4, but at 6000x;

FIG. 6 is a photomicrograph of a polished surface through a silicon carbide whisker preform having 0.2 volume fraction of whiskers after squeeze casting to introduce approximately 0.8 volume fraction of aluminum metal at 6000x;

FIG. 7 is a photomicrograph showing another section of the composite shown in FIG. 6 at the same 6000x magnification;

FIG. 8 is a photomicrograph of a fracture surface of a shaped body with 0.10 volume fraction of Si3 N4 whiskers at 1500x;

FIG. 9 is a photomicrograph of the same section as shown in FIG. 8 but at 6000x;

FIG. 10 is a photomicrograph of silicon carbide whiskers from Advanced Composite Materials Corporation of Greer, S.C., with an organic adhesive added to assist in making the photomicrograph of a fracture surface at 2500x;

FIG. 11 is a photomicrograph with lines added to illustrate the calculation of average angular deviation;

FIG. 11a is a table listing the angular deviations shown in FIG. 11; and

FIG. 12 is a photomicrograph showing a mass of fibers exhibiting generally planar or parallel orientation.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to moldable inorganic fiber-organic molding compositions containing ceramic whiskers or the like having three-dimensional random orientation and to preforms which are made from such compositions. It also relates to metal or ceramic matrix composites and to methods for forming shaped preforms and metal matrix composites containing such preforms. For the purpose of clarity, the detailed description is divided into five sections. The first section relates to fiber-organic compositions which are suitable for molding, the second to shaped bodies formed from such compositions, the third to metal or ceramic matrix composites containing such preforms and the fourth and fifth to methods of forming shaped preforms and metal and ceramic matrix composites respectively.

INORGANIC FIBER-ORGANIC COMPOSITIONS

The fiber (inorganic)-organic compositions which have been found suitable for molding comprise from-about 5% to about 50% or more by volume of relatively short inorganic fibers. In addition such compositions include about 50% to about 95% by volume of an organic thermoplastic molding compound such as a wax and up to about 5% (by weight) of a surfactant or surfactants to aid in wetting and dispersion of the fibers.

The fiber component of the fiber-organic composition comprises a mass of short inorganic fibers or whiskers which are present in an amount of at least 5% by volume. A range of about 10% to about 40% by volume is preferred. And, at fiber concentrations of below 20% by volume, the stability and theology of the mixture may be enhanced by a fugitive or pseudo fugitive material to permit satisfactory molding.

The short inorganic fibers referred to herein as whiskers will be described with reference to silicon carbide whiskers. However it should be understood that other short carbon, metallic, or ceramic fibers, whiskers or chopped filaments can be substituted therefor without departing from the scope of the appended claims. For example, inorganic fibers or whiskers may include alumina, aluminum nitride, aluminum silicate, silicon carbide, silicon dioxide, silicon nitride, magnesium oxide, boron carbide, titanium nitride, zirconium dioxide, or mullite, titanium, tungsten, iron, etc.

A silicon carbide whisker as used in a presently preferred embodiment of the invention is a single crystal of microscopic size, and greatly elongated relative to its diameter. Diameters are typically from less than 0.1 to 10 micrometers. However as the whiskers become larger they tend to develop facets and their strength decreases. Therefore, the strongest whiskers and those most applicable to the present invention have diameters which are less than about 2 micrometers. Such silicon carbide whiskers have a relatively high surface mass ratio and are relatively unstable as compared to usual silicon carbide crystals for example, they tend to recrystallize at temperatures above about 1750° C., and to oxidize in air at temperatures below 1000° C.

Such whiskers can be produced by the methods disclosed in the U.S. Patent granted to W. W. Pultz, U.S. Pat. No. 3,335,049, which is incorporated herein by reference. In essence, the whiskers are produced when charges of silica and carbon are heated to a critical temperature range in an atmosphere resulting from the introduction of carefully controlled partial pressures of an inert gas and carbon monoxide. The submicroscopic fibers containing silicon carbide crystals having diameters averaging about 0.025 micrometers and lengths up to 100 micrometers and sometimes longer are produced by initially mixing together the charge of silica and carbon in a molar ratio of 1:1-1:4. The mixture is transferred to a furnace and heated to a temperature of about 1375°-1575° C. for a time sufficient to obtain the desired fiber formation during ,which time a carefully controlled partial pressure of carbon monoxide, along with an inert diluent gas, e.g., hydrogen, helium or argon, is introduced. The partial pressure of carbon monoxide ranges from about 5-500 mm of mercury. For convenience, the total pressure within the regular system is held at one atmosphere although pressures lower or higher can be utilized.

It should also be recognized that commercially available ceramic whiskers such as silicon carbide include up to 15% particulate matter. Therefore, in referring to the percentage of whiskers in a final composition, such whiskers normally include a small amount of particulate material. It should also be recognized that in those embodiments wherein particulate material or powder is added, that amount is in addition to the particles which are inherent with the fiber.

At times it may be desirable to increase the ceramic loading in the fiber-organic compositions of the invention by adding small amounts of ceramic powder. For example, amounts of up to about 10% or more by volume of silicon carbide particles may be added. Ceramic powder is preferably utilized in its finely divided form, for example the preferred silicon carbide material has an average size particle from about 0.10 to about 2.0 microns (19 m2 /g to about 1 m2 /g), with a maximum size of about 5.00 microns (0.4 m2 /g). Although size is an important parameter, surface area is also relevant in selecting a suitable material. Accordingly, the preferred silicon carbide particles as used in the present composition have a surface area of from about 1 to about 20 m2 /g. It is presently preferred that the surface area of particles range between about 5 to about 20 m2 /g.

The principle organic component of the thermoplastic compounds can be selected from a variety of materials such as waxes, acrylic resins, nylon, polyethylene, polyethylene glycol, ethylene-vinyl acetate, polybutylene, polypropylene and the like. However, in a preferred form, the thermoplastic compounds are selected from the waxes. Such waxes include virtually any wax such as paraffin, microcrystalline, carnauba, polyethylene wax, synthetic hydrocarbon wax, etc.

The preparation of inorganic fiber-organic compositions or mixes, in the practice of our invention, involve accomplishing three distinct objectives.

1. Wetting of the inorganic fibers or whiskers by a binder;

2. Substantial deaggregation or deflocculation of fiber or whisker clusters; and

3. Prevention of reaggregation of the fibers or whiskers.

For the inorganic fibers, whiskers, or clusters thereof, to be dispersed into the binder phase involves wetting of the fiber or whisker surfaces by the binder phase, whereby air is displaced from the surfaces by the binder phase. In several of the preferred embodiments of our invention either a paraffin wax, a mixture of paraffin wax and microcrystalline wax, or a mixture of paraffin wax, microcrystalline wax and montan wax, compose the major portion of the binder phase. Paraffin wax is used not only for its very low viscosity in the molten state, but also because of its generally lower contact angle with (i.e., greater wettability of) ceramic surfaces. Waxes of various average molecular weights and melting points may be used as will be well-understood by those of ordinary skill in ceramic forming techniques. Montan wax is useful for its assistance in wetting the ceramic fibers or whiskers. Microcrystalline wax, as is well known, imparts strength to the molded parts. Additionally, certain substances may be added to the binder phase which further aid in the wetting of the inorganic fiber or whisker surfaces. Such substances are commonly known as surfactants or wetting agents. Fatty acids such as stearic acid or oleic acid, or fatty acid esters such as sorbitan monostearate, are common examples.

Even though the inorganic (preferably ceramic) fibers or whiskers have been wet by the binder phase, they may still be aggregated into clumps or flocs which should be broken up for the ceramic fibers or whiskers to be well dispersed into the binder phase. Good dispersion is necessary if the final molded fiber or whisker preform is to have a homogeneous microstructure, and probably essential if it is desired to obtain the maximum concentration of ceramic fibers or whiskers in the molding mix. Therefore, it is desirable to use a mixer that produces a high degree of shearing action during the mixing, or compounding, of the mixes.

There are many high shear mixers on the market, a number of which are commonly used in the plastics industry. In the preferred embodiment of our invention, we use a double planetary mixer having provisions for both heating and evacuating the mixing chamber. However, in some cases, even the shear developed by such a mixer is not sufficient to achieve good dispersion of the fiber or whisker flocs. This is particularly true in those cases where the ceramic fibers or whiskers have been previously processed by spray-drying. In such cases, an additional mixing step, employing a so-called "high intensity" mixer, is recommended. This type of mixer usually has a fixed cylinder and a rotating cylinder in axial alignment with one another. Two rotating discs, axially aligned at their centers, and having close spacing, can also be used. The spacing between the two cylinders or discs is quite small, so that when the molten mix is forced through the space it is subjected to an intense shearing action. This shear level is generally sufficient to deaggregate even the most tightly bound clumps or flocs of ceramic fibers or whiskers. It is possible, of course, to use mixers that incorporate both double planetary and high intensity mixing actions in a single mixing unit.

Once the inorganic fibers or whiskers have been dispersed into the binder phase, it is desirable to prevent the individual dispersed ceramic fibers or whiskers from coming together once again to form aggregates. This requires the formation of repulsive interparticle forces. In non-polar organic media, such as waxes, electrostatic barriers to aggregation are usually ineffective and steric barriers are generally required to disperse solid particles. Such barriers are developed using certain surfactants which function as dispersing agents. These dispersing agents are adsorbed at the fiber/binder interface, and stability arises because the adsorbed molecules extend into the organic media and inhibit the close approach of two particles to each other.

In a preferred embodiment of our invention, we employ dispersing agents which have a chemically functional group that is adsorbed at the interface between the ceramic fibers or whiskers and the wax, and has an organophillic polymeric chain that extends into the wax phase. The adsorbed functional group couples to the fiber or whisker surfaces via hydrogen bonding (most ceramics surfaces are hydroxylated) or weak chemical bonding. The organophillic polymeric chains extending into the wax phase creates steric barriers either from the energy required to desolvate these chains as the ceramic fibers or whiskers approach one another, or from the decrease in the entropy of the system as these polymeric chains are restricted in their movement or arrangement by the close approach of two ceramic fibers or whiskers.

There are many such "coupling type" dispersing agents. One example is menhaden oil. This fish oil is an effective dispersing agent for ceramic particles in nonpolar organic solvents due to the presence of carboxylic acid groups along the triglyceride chains, formed as a result of oxidation of the oil during processing. The carboxylic acid groups anchor strongly to the hydroxylated ceramic particle surfaces, while the long flexible triglyceride chains extend into the nonpolar organic dispersion medium providing a strong steric barrier to flocculation.

The polymeric fatty esters are another example, where the carboxylic acid groups anchor strongly to the hydroxylated ceramic particle surfaces and the alkyl groups and aliphatic chains extending into the nonpolar organic dispersion medium provide a strong steric barrier to flocculation. Other examples include the alkylbenzenes, where the benzene rings anchor to ceramic particle surfaces while the aliphatic chains extend into the hydrocarbon dispersion medium. For any such coupling type dispersing agent, the stability of the dispersion increases with the number and length of the alkyl groups or aliphatic chains that extend into the hydrocarbon dispersion medium.

In the practice of our invention it is also sometimes advantageous to add various other functional compounds to the mixes: emulsifiers, such as lecithin or Ciba-Geigy's proprietary Alrosperse 11P; and materials such as KantStik Z Powder (a micronized microcrystalline wax) that is marketed by Specialty Products Company of Jersey City, N.J. as a proprietary lubricant for injection molding mixes.

When preparing the molding mixes, in the practice of our invention, there is nothing critical regarding the order of addition of ingredients. For example, the ingredients of the binder phase, waxes, wetting agents, dispersing agents, etc., can all be placed in the mixer and melted together. The ceramic fibers or whiskers can then be added, and mixed until a stable dispersion is obtained. Conversely, the waxes can be melted in the mixer, the fibers or whiskers added, and the other ingredients (i.e., wetting agents, dispersing agents, etc.) added while mixing is taking place.

Following the introduction of all the ingredients of the molding mix, and after any "high intensity" mixing, it is desirable to continue mixing in a double planetary mixer or the like with the bowl under vacuum for at least about 30 minutes. This removes any entrapped air from the mix and improves the quality of subsequent moldings.

After a stable three-dimensionally random dispersion has been produced, the mix can be transferred from the mixer to suitable molds or an injection molding machine while still fluid, or solidified in some suitable pan or container for storage. If desired, the heat to the mixer bowl can be shut off while the mixing action is continued, preferably under vacuum, and a granulated or pelletized product will be obtained, which can be stored.

Having obtained a fiber-organic molding mix containing well dispersed, three-dimensional randomly oriented fibers, it is necessary to carry out molding without destroying either the uniform dispersion or the random orientation of the fiber, as was done in the practices of Yamamoto and Fukazawa, or Oshima et al. cited previously. This can be accomplished either by conventional casting or by injection molding. However, if injection molding is employed, care should be taken to avoid subjecting the molten mix to high shearing forces which may produce alignment of the fiber, and prevent the desired three-dimensional orientation in the molded body. With conventional injection molding machines, utilizing injection pressures of 1,000 psi or greater, this requires the use of gates and runners having very large cross-sectional areas. Also, even with such gates and runners, the random fiber orientation may be destroyed within narrow cross-sections of the molded part when such injection pressures are employed.

Thus, in a preferred embodiment of this invention low pressure (i.e., less than 1,000 psi) injection molding is employed to produce a shaped part from the fiber-organic molding mix. The fiber-organic molding mixtures of the present invention are sufficiently fluid when molten that pressures of less than 1,000 psi, and in certain cases less than 150 psi, are adequate to injection mold the melt. Such low pressures can be conveniently obtained by air pressure applied to a molten mass of the mix contained in a suitable pressure pot having a valve and nozzle for conveying the mix to a gate of a mold. Another convenient method is the use of a hydraulic piston acting on a chamber containing a molten mass of the mix. Of course, conventional screw or piston delivery machines, as are used for the injection molding of plastics, may be used if the delivery pressure has been reduced to the low pressures desired according to a preferred embodiment of our invention.

The fiber-organic mixture to be molded is injected into the mold with sufficient heat and pressure to cause the mix to flow into all areas of the mold. The exact temperature will depend upon the melting point of the particular thermoplastic mixture employed, but a temperature slightly higher than the melting point of the mixture is generally used. A pressure of about 10 to 150 psi is usually sufficient to force the present mixtures into a mold.

Employing the techniques disclosed herein, it has been found possible to obtain a uniform, reproducible, three-dimensionally random distribution of fibers throughout a shaped body even in those cases involving complex shapes. The following examples are presented for the purpose of illustration of this invention, and are not intended as limitations thereof. In the examples, "parts" means parts by weight.

EXAMPLE 1

28.45 parts of paraffin wax, 1.87 parts of microcrystalline wax, and 0.91 parts of montan wax were melted together in a heated mixing bowl of a double planetary mixer. While mixing, 0.65 parts of oleic acid, 0.91 parts of polymeric fatty esters, and 0.26 parts of lecithin were added. With continued mixing, silicon carbide whiskers (Tateho Chemical Industries SCW #1-S) were added in incremental amounts until 66.62 parts had been incorporated. Mixing was continued, with the mixing bowl under vacuum, for approximately two hours. This mix was transferred to a low pressure injection molding machine, and cylindrical preforms 47/8 inches in length and 0.5 inch in diameter were molded at an injection pressure of 30 to 40 psi. These preforms, after removal of the binder phase, were 0.375 volume fraction silicon carbide whiskers. The whiskers were randomly oriented within the preforms, as shown by the micrograph presented as FIGS. 2, 3, 4, and 5.

EXAMPLE 2

44.5 parts of paraffin wax, 3.01 parts of microcrystalline wax, and 1.38 parts of montan wax were melted together in the heated mixing bowl of a double planetary mixer. While mixing, 1.06 parts of oleic acid, 1.07 parts of polymeric fatty esters, 0.41 parts of lecithin, and 2.67 parts of micronized microcrystalline wax were added. With continued mixing, silicon carbide whiskers (Tateho Chemical Industries SCW #1-S) were added in incremental amounts until 45.43 parts had been incorporated. Mixing was continued, with the bowl under vacuum, for approximately two hours. The mix was transferred to a low pressure injection molding machine, and cylindrical preforms 47/8 inches in length and 0.5 inch in diameter were molded at an injection pressure of 75 to 90 psi. These preforms, after removal of the binder phase, were 0.20 volume fraction silicon carbide whiskers. The whiskers were randomly oriented within the preforms. One of the preforms was subsequently heated, placed into a suitable mold, and molten aluminum was squeezed cast into the preform. Photomicrographs of the resulting whisker reinforced metal matrix are presented as FIGS. 6 and 7.

EXAMPLE 3

32.60 parts of paraffin wax, 16.30 parts of oxidized paraffin wax, 10.87 parts of microcrystalline wax and 5.43 parts of polyethylene wax were melted in the heated mixing bowl of a double planetary mixture. While mixing, 0.21 parts of oleic acid, 0.49 parts of stearic acid, and 5.43 parts of micronized microcrystalline wax were added. With continued mixing, silicon nitride whiskers (Tateho Chemical Industries SNW #1-S), were added in incremental amounts until 26.66 parts were incorporated. Mixing was continued, with the bowl under vacuum, for approximately two hours. The mix was transferred to a low pressure injection molding machine, and rectangular preforms 41/2"×3/8"×5/8" were molded at an injection pressure of 30 psi. These preforms, after removal of the binder phase, were 0.101 volume fraction silicon nitride whiskers. The whiskers were randomly oriented within the preforms, as shown by the micrographs presented as FIGS. 8 and 9.

EXAMPLE 4

33.94 parts of paraffin wax, 1.75 parts of microcrystalline wax, and 1.18 parts of montan wax, were melted together in the heated mixing bowl of a double planetary mixer. While mixing, 0.32 parts of Alrosperse 11P, 0.67 parts of oleic acid, 0.95 parts of polymeric fatty esters, 0.29 parts of lecithin, 0.11 parts of stearic acid, 0.25 parts of sorbitan monostearate, and 3.15 parts of micronized microcrystalline wax, were added. With continued mixing, 14.04 parts of Tateho silicon carbide whiskers (Tateho Chemical Industries SCW #1-S) and 43.35 parts of Advanced Composites Materials Corporation silicon carbide whiskers were added incrementally. The mix was then subjected to two hours of mixing in a high intensity mixer. Mixing was continued in the double planetary mixer, with the bowl under vacuum, for approximately two hours. The mix was transferred to a low pressure injection molding machine, and hexagonal mirror preforms were molded at an injection pressure of less than 120 psi. These preforms measured approximately five inches flat to flat and were one-quarter inch thick. The injection gate was located on one flat of the preform, and the injection direction was perpendicular to the narrow dimension, or thickness, of the preform. These preforms after removal of the binder phase, were 0.388 volume fraction (38.8 volume percent) silicon carbide whiskers. Despite the approximately 20 to 1 aspect ratio of these preforms, the whiskers were randomly oriented within the preforms, as shown by the micrograph presented as FIG. 10.

EXAMPLE 5

56.37 parts of paraffin wax and 3.72 parts of microcrystalline wax were melted together in the heated mixing bowl of a double planetary mixer. While mixing, 0.24 parts of oleic acid, 0.20 parts of Alrosperse 11P, 0.41 parts of polymeric fatty esters, 0.26 parts of sorbitan monostearate and 0.35 parts of micronized microcrystalline wax were added. With continued mixing, 32.45 parts of short alumina fibers (ICI Americas Inc., Saffil), having a median diameter of 3 microns and an average aspect ratio of 50 to 1, were added in incremental amounts. The mix was then subjected to one hour of mixing in a high intensity mixer. Mixing was continued in the double planetary mixer, with the bowl under vacuum, for approximately two hours. The mix was transferred to a low pressure injection molding machine, and rectangular preforms 41/2"×3/8"×5/8" were molded at an injection pressure of 20 psi. These preforms, after removal of the binder phase, were 0.104 volume fraction (10.4 volume percent) alumina fiber.

For injection molding, injectability is dependent to a high degree on the fiber aspect ratio. The aspect ratio is the length of the fiber divided by its diameter. In other words, shorter fibers or those with a lower aspect ratio are more similar to equiaxed particles and more easily injected into a die. Generally, fibers with an aspect ratio of less than 10:1 will not produce a three-dimensional random preform. In addition, it is generally easier to obtain uniform distribution of equiaxed particles, particularly those having a narrow size distribution. However, by applying the techniques disclosed herein, it has been found possible to obtain uniform reproducible distribution of fibers throughout a shaped body, even in those cases involving relatively complex shapes and with fibers having aspect ratios of from about 20-100:1.

SHAPED BODIES

The shaped bodies according to the present invention comprise a mass of short inorganic fibers or whiskers dispersed throughout the body with a high degree of randomness. Such fibers amount to at least about 5% and preferably at least 10% by volume and may or may not be bonded to one another at their points of contact. Such fibers are uniformly dispersed throughout the body. It is also contemplated that such bodies may include a residual amount of a thermoplastic material which bonds the ceramic whiskers to one another at their points of contact. In other applications, residual organics are not desirable.

A shaped body or preform, according to a presently preferred embodiment of the invention, comprises a mass of three-dimensionally random oriented uniformly dispersed ceramic whiskers which form a predetermined shape. These whiskers have lengths of between about 5 and more than 1,000 microns and diameters of about 0.05 to 5 microns. In addition, the fibers make up from about 10% to about 40% by volume of the body and may or may not be bonded to one another at their points of contact. Initially, the fibers may be bound together by residual wax or by a fugitive material which can be carbonized by heat. And then the carbonized material is subjected to higher temperatures in the order of 800° C. to thereby form a carbon bond. In some cases, there is no residual material and the fibers or whiskers are bound together by mechanical means such as being held together by entanglement, static charge, Van der Waals forces, or other means which are not understood.

In essence, the shaped bodies disclosed herein are made up of a mass of three-dimensionally random oriented inorganic fibers or whiskers. Such whiskers may, for example, be silicon carbide, silicon nitride, alumina, aluminum nitride, boron carbide, mullite, magnesium oxide, or the like. The fibers may also be carbon or graphite, silica, mullite, iron, titanium, tungsten, etc. In essence, the fibers have an average diameter of from about 0.01 microns to 25 microns, a length from about 5 to over 1000 microns. In addition, such bodies, according to a preferred to embodiment, consist essentially of ceramic whiskers and are free of other materials except for the small amount of particulate material which is contained in or carried by the ceramic whiskers.

In another embodiment of the invention, the ceramic whiskers are silicon carbide and amount to from about 10% to about 40% by volume of the shaped body. In addition, the fibers have an average diameter of about 0.4 micrometers and length of about 25 to 75 micrometers. In this form, the fibers may be bonded together at their points of contact by a residual amount of about 1-3% by volume of the paraffin material, by oxidation to form silicon dioxide or by forces arising from the entanglement and contact of the whiskers one with another.

In addition, such bodies may be densified by sintering, hot pressing, reaction bonding or hot isostatic pressing (HIPing).

METAL MATRIX COMPOSITES

Fiber and particulate reinforced composites, according to the present invention, have improved stiffness and strength as compared to unreinforced alloys and, as compared to other reinforced composites as currently produced. This improved strength and stiffness is due to a relatively high volume of ceramic whiskers or fibers and the uniform distribution of whiskers which are dispersed in a nonplanar or three-dimensional array.

A shaped body or preform as described above contains about 10% to about 40% by volume of silicon carbide whiskers. These whiskers are dispersed uniformly throughout the preform with a high degree of randomness. The whisker orientation could be described as uniformly, but randomly, oriented, i.e., with approximately the same fiber density throughout the preform but with a very low or minimal percentage of fibers exhibiting planar or parallel orientation.

In view of the importance of the three-dimensional random orientation of fibers or whiskers in applicants' shaped bodies, applicants calculated the average angular deviation of the fibers as follows:

Referring to the photomicrograph shown in FIG. 11, an arbitrary line was drawn on the photomicrograph and the line of a whisker was extended to intersect the arbitrary line. At the point of interaction, a circle was drawn to intersect both the whisker and the arbitrary line. And then the shortest distance from the point where the whisker intersects the circle to the arbitrary line was measured and divided by the radius of the circle. The result was the sine of the angle which the whisker makes with the arbitrary line. If the whisker is on one side of the line, the angle is considered positive and to the other negative.

After making a number of such calculations, the angles were added together without regard to sign, and divided by the total number of measurements to give an average deviation from the line. In the case of the three-dimensionally random oriented fibers shown in FIG. 11, the value was 53 degrees which compares well with a value of 45 degrees that would indicate a perfectly random or non-oriented array of fibers.

In considering the photomicrograph (FIG. 12) of the approximately parallel oriented whiskers, the arbitrary line was drawn as close as the eye could estimate to the general orientation of the whiskers. In other words, the arbitrary line provides an approximation of the whisker orientation. In this case, adding together the positive angles and subtracting the negatives gave a total of approximately zero which indicate that the eye had selected a good mean value. And then, adding the angles, without regard to their signs, and dividing by the total number of measurements, gave an average deviation from the line of three degrees which indicates a relatively high degree of fiber orientation.

It is presently thought that an average angular deviation of between about 30 degrees and 60 degrees are preferred for a shaped body having optimal characteristics. However, it is also thought that an average angular deviation of less than about 15 degrees or more than 75 degrees may not be suitable for most applications.

Metal matrix composites as described herein take advantage of high fiber or whisker packing density and an increase in the three-dimensional random orientation of the fibers or whiskers. The composites also take advantage of the fact that the performance of these reinforcements is significantly greater than provided by particulate reinforcements. And, it has been found that even though the inorganic fibers or ceramic whiskers are inherently more expensive than particles, the improved physical characteristics of the composite offset the increase in cost.

It has also been found that for certain applications, it may be desirable to include an amount of ceramic powder together with the ceramic fibers for producing optimal properties. For example in one embodiment of the invention the preform contains about 20% by volume of silicon carbide whiskers. And then an additional 20% by volume of silicon carbide powder having a particle size in the range of 0.1 to 2.0 micron may be added to increase the total content of ceramic reinforcement in the composite. The powder can be added before or after the addition of a surfactant. It may also be possible to disperse the particulates or powdered material in the molten metal prior to infiltration of the preform. However, higher percentages (i.e., above 20-30% by volume of particulate) in the molten metal may cause problems with the infiltration of the preform. Nevertheless, preforms having a total volume fraction of solids of between 0.10 up to as much as about 0.80 are contemplated.

METHOD FOR PRODUCING SHAPED BODIES

A presently preferred method for forming shaped bodies in accordance with the present invention includes the step of providing and heating a mass of thermoplastic material such as a mixture of paraffin wax. Other thermoplastic materials such as polyolefins, acrylic resins, ethyl-vinyl acetate, and the like, may be used, as well as other waxes such as carnuba, polyethylene, synthetic hydrocarbon, etc.

The thermoplastic mass is heated to a liquid state, and a mass of short inorganic fibers, such as silicon carbide whiskers, is added to the melt. These fibers can have average diameters ranging from about 0.1 microns to about 25 microns, preferably about 0.3 to about 10 microns, and average aspect (i.e., length to diameter) ratios of from about 20 to about 100. The fibers or whiskers are added in sufficient quantity to produce a mix having from about 5 to about 50% by volume fiber, but preferably from about 10 to about 40% by volume.

Organic surfactants in the amount from about 0.1 to 5% by weight are added to aid in the wetting and dispersion of the fibers or whiskers. There are many surfactants which can aid in the wetting of the fiber surfaces by the molten thermoplastic mass. However, stearic acid, oleic acid, and sorbitan monostearate are presently preferred.

It is also sometimes desirable, particularly at fiber or whisker concentrations of less than 20% by volume, to add fugitive materials that improve the theology of the mix with regard to molding. The fugitive materials are later removed from the shaped body by melting, thermal degradation, combustion, chemical leaching, vacuum distillation, or the like. Examples of such materials are very finely divided polymeric organic compounds, and short carbon or organic fibers.

The molten mix of thermoplastic material, fibers or whiskers, surfactants, and other additives is then subjected to high shear mixing for a period sufficient to develop a uniform, three-dimensionally random dispersion of the fibers. A number of high shear mixers such as sigma, cam, roller, double planetary, kneader-extruder, etc., can be employed. However, in the present embodiment of the invention, a double planetary mixer is employed. It is also advantageous to carry out at least the last stage of mixing with the mixer bowl under vacuum. This removes any entrained air from the mix, improving the uniformity of the mix and the quality of the castings made therefrom.

The molten mix of thermoplastic material containing a uniform, three-dimensionally random dispersion of inorganic fiber or whiskers, is then introduced into a mold cavity defining a predetermined shape, without destroying the uniform, three-dimensionally random orientation of the fibers or whiskers. In a preferred embodiment of this invention, this is accomplished by low pressure injection molding, i.e., at between about 10 to about 150 psi.

The cooled molded or shaped mixture is removed from the mold, and at least about 95% by volume of the thermoplastic material is then removed from the shaped body. Removal can be accomplished by thermal distillation, thermal decomposition, vacuum distillation, chemical leaching, etc. It is also desirable to control the rate of removal and/or to support the shaped body during this step to prevent disruption, distortion, or slumping of the body. In a preferred embodiment of this invention, the part is tightly packed into a bed of finely divided absorbent inorganic powder. The temperature of this powder bed containing the shaped part is raised at a controlled rate and as the temperature reaches and exceeds the melting points of the organic materials contained in the shaped body, these constituents are wicked into and absorbed by the powder bed. In this preferred embodiment, the part is supported by the presence of the tightly packed powder bed, so that the part does not slump or distort during removal of the organic phase.

In a number of cases it is also desirable to prevent oxidation of the high surface area whiskers or fine particles. To prevent such oxidation which could adversely effect later infiltration by a molten metal, the shaped body is packed in carbon or engulfed in an inert atmosphere such as nitrogen, argon, helium, hydrogen, etc.

After at least about 95% by volume of the thermoplastic material has been removed from the molded body, the resulting shaped fiber or whisker body, or preform, will have sufficient strength to allow handling and infiltration by molten metal and the like. If desired, the body can be subjected to additional thermal treatment to decompose a carbon precursor included in the initial molding mix, or introduced subsequently by infiltration of the preform, to provide a carbon bond between the fibers or whiskers at their points of contact. Alternately, the preform can be subjected to a suitable temperature, in a proper atmosphere, to develope ceramic bonds at the points of contact of the fibers or whiskers. Other means of accomplishing bonding between the fibers, when this is desirable, would include the addition of carbon, silica, alumina, zirconia infiltration of the preform with a suspension of colloidal material, gelation of a sol which had been introduced into the preform, chemical vapor infiltration, etc., followed by subsequent thermal treatment sintering, oxidation, etc., when desired.

It should be noted that difficulties in obtaining satisfactory rheological characteristics of the mix were encountered with fiber content of less than about 25% by volume fiber. Nevertheless, it was found that the low percentages of fiber that is in the order of 20% by volume or less could be subsequently molded satisfactorily if a fugitive material such as powdered polymeric organic material was added. The presently preferred fugitive material consists essentially of a powdered phenolic or polyethylene.

A majority if not all of the thermoplastic material including any fugitive material is generally removed by heating the molded organic ceramic article to a temperature of about 250° C. at normal atmospheric pressure. However, it may be desirable to remove the wax at a lower temperature which can be done by heating it in a vacuum. This approach can also be used to speed up the process by combining vacuum with increased temperature. The limitation is the combination at which evaporation of the organics causes disruption of the body.

Another method for forming a ceramic bond between fibers or fiber and ceramic particles is by reaction bonding. In reaction bonding the organic material includes a paraffin wax and a fugitive material such as a phenolic resin. The resin and or wax provides sufficient green strength for handling the preform even after a majority of the wax has been removed. The shaped fiber product is then placed in an oven or furnace and heated to remove a majority of the organic phase but also to decompose a portion of the organic leaving a carbon residue at the points of fiber contact for example, the body may be heated to about 400° C. to carbonize a phenolic resin. This carbon residue is reacted with silicon liquid or vapor to form a silicon carbide bond.

In general this reaction can be commenced at above the melting point of silicon preferably at 1600° to 1700° C. at atmospheric pressure or at 1400° to 1500° C. under vacuum. It is true that the reaction bonding will leave traces of silicon metal which may be undesirable. However the silicon metal can be removed by acid etching with a mixture of hydrofluoric acid (HF) and nitric acid (HNO3) or by subsequent heating in the presence of excess carbon. Another approach is to heat the shaped body in air at about 800° C. to form SiO2 bridges or bonds at the fiber junction, and, another option is to infiltrate the body after removal of the organics with colloidal silica, colloidal alumina or colloidal zirconia. After drying, the body is heated to generate a ceramic bond at the whisker intersection.

METHOD FOR FORMING A METAL MATRIX COMPOSITE

A metal matrix composite having a reinforcing phase of three-dimensionally oriented short inorganic fibers or whiskers according to the present invention can be formed by immersing a shaped body or preform as described above in molten metal, allowing the molten metal to infiltrate the fiber preform, and cooling the metal to incorporate the preform. The body can be slowly immersed to remove air or immersed under vacuum to avoid problems such as entrapped air.

The processing of metal matrix composites is described in an article by Mortensen et al. in the February, 1988 issue of Journal of Metals. Pages 12-19 which are incorporated herein by reference describe specifically two techniques that have been developed for the net-shaped solidification processing of metal matrix composites: infiltration of a preform with molten metal and slurry casting. The details of these processes will of course be understood by those skilled in the art. As described in the aforementioned article there are several techniques

which are disclosed for promoting the wettability of the reinforcement by metals such as aluminum.

In order to minimize reaction and fiber degradation, it has been found desirable to use short exposure times with the molten aluminum solidified by rapid cooling as is done in a typical squeeze casting process. Another method to prevent degradation is to deposit inert coatings on the fiber by chemical vapor deposition or chemical vapor reaction. For example, the reaction of the surfaces of silicon carbide whiskers to form silicon dioxide which promotes wetting of the whiskers by aluminum. It is also desirable to keep the temperature of the material as low as possible and the exposure of the fiber to molten metal as short as possible to limit any reaction between the fibers and the metals.

In addition it is desirable to form a metal matrix composite with a minimum of porosity which can be accomplished by higher pressures such as squeeze casting. However, care should be taken to avoid fiber breakage. This may be done by injecting the metal at a low pressure until the preform is filled and then increasing the pressure to about 10,000-15,000 psi to fully densify the body.

One method of refining the grain size which is specific to metal matrix composites is by casting the metal into a fiber preform which is held at a temperature below the melting point of the molten metal.

A metal matrix composite according to the present invention can be produced by pressure or squeeze casting. In essence, pressure casting can be considered to include all methods of infiltrating a preform that includes the application of pressure to the infiltrated liquid. For example, the silicon carbide whisker preform of Example 2, which contained 0.200 volume fraction silicon carbide whiskers, was heated, placed into a suitable mold, and molten aluminum was squeezed cast into the preform. Photomicrographs of the resulting whisker reinforced metal matrix, illustrating the uniform three-dimensional orientation of the reinforcing whisker phase, is presented as FIGS. 6 and 7.

While the preferred embodiment of the invention have been described herein it is to be understood that alternatives and modifications may be made without departing from the scope of the appended claims.

Claims (17)

What is claimed is:
1. A method for making a metal matrix composite comprising the steps of:
(a) providing a mass of inorganic short fibers;
(b) providing a mass of hot thermoplastic compound which is heated to a fluid state;
(c) adding the short inorganic fibers into the heated thermoplastic compound to provide a mix having from about 10 to about 40% by volume of fiber;
(d) adding additional organic ingredients to the fiber containing compound to form a moldable mixture;
(e) subjecting the moldable mixture from step (d) to high shear mixing to thereby provide a high degree of three dimensional random orientation of fiber within the mixture;
(f) providing a mold defining a predetermined shaped cavity;
(g) introducing the moldable mixture from step (e) into the mold and cooling the mixture while maintaining the high degree of three dimensional random orientation;
(h) removing the cooled molded or shaped mixture from the mold and extracting at least about 95% by volume of the organic material to thereby provide a shaped preform of fibers having sufficient strength to allow handling of the preform; and
(i) introducing a molten metal into the preform while maintaining the structural integrity of the preform.
2. A method for making a metal matrix composite according to claim 1 in which the molten metal is introduced into the platform by capillary action.
3. A method for making a metal matrix composite according to claim 1 in which the molten metal is introduced into the platform by pressure assisted infiltration.
4. A method for making a metal matrix composite according to claim 1 in which the molten metal is introduced into the platform by vacuum infiltration.
5. A method for making a metal matrix composite according to claim 1 in which the molten metal is introduced into the preform by squeeze casting.
6. A method for making a metal matrix composite according to claim 1 which includes the step of supporting the shaped mixture during the extraction of the thermoplastic organic compound with a particulate inorganic material.
7. A method for making a metal matrix composite according to claim 1 wherein the mixture from step (d) is subjected to high shear for a period of at least about 30 minutes.
8. A method for making a metal matrix composite according to claim 1 wherein the hot mixture in step (g) is injected into a mold with a pressure of between about 10 to about 150 psi.
9. A method for making a metal matrix composite according to claim 1 which includes the step of forming ceramic bonds between the fibers at their points of contact.
10. A method for making a metal matrix composite according to claim 9 which includes the step of sintering the shaped body to thereby form a bond between the fibers at their points of contact.
11. A method for making a metal matrix composite according to claim 1 in which the fibers are bonded to one another at their points of contact by oxidation.
12. A method for making a metal matrix composite according to claim 1 which includes the step of adding ceramic particles to the thermoplastic organic compound.
13. A method for making a metal matrix composite according to claim 1 which includes the step of adding a metallic powder to the thermoplastic organic compound.
14. A method for making a metal matrix composite according to claim 13 which includes the step of sintering the metallic powder.
15. A method for making a metal matrix composite according to claim 13 which includes the step of densifying the shaped body.
16. A method for making a metal matrix composite according to claim 13 which includes the step of chemically converting the metal phase to form a ceramic compound.
17. A method for making a metal matrix composite according to claim 1 which includes the step of removing any entrapped air from the mixture before introducing the mixture into the mold.
US07/863,765 1989-02-15 1992-04-06 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies Expired - Fee Related US5335712A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/310,381 US5108964A (en) 1989-02-15 1989-02-15 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US07/690,347 US5153057A (en) 1989-02-15 1991-04-24 Shaped bodies containing short inorganic fibers or whiskers within a metal matrix
US07/863,765 US5335712A (en) 1989-02-15 1992-04-06 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/863,765 US5335712A (en) 1989-02-15 1992-04-06 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US08/197,797 US5458181A (en) 1989-02-15 1994-02-16 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US08/476,351 US5529620A (en) 1989-02-15 1995-06-07 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/690,347 Division US5153057A (en) 1989-02-15 1991-04-24 Shaped bodies containing short inorganic fibers or whiskers within a metal matrix

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/197,797 Division US5458181A (en) 1989-02-15 1994-02-16 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies

Publications (1)

Publication Number Publication Date
US5335712A true US5335712A (en) 1994-08-09

Family

ID=23202248

Family Applications (4)

Application Number Title Priority Date Filing Date
US07/310,381 Expired - Fee Related US5108964A (en) 1989-02-15 1989-02-15 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US07/863,765 Expired - Fee Related US5335712A (en) 1989-02-15 1992-04-06 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US08/197,797 Expired - Fee Related US5458181A (en) 1989-02-15 1994-02-16 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US08/476,351 Expired - Fee Related US5529620A (en) 1989-02-15 1995-06-07 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/310,381 Expired - Fee Related US5108964A (en) 1989-02-15 1989-02-15 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies

Family Applications After (2)

Application Number Title Priority Date Filing Date
US08/197,797 Expired - Fee Related US5458181A (en) 1989-02-15 1994-02-16 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
US08/476,351 Expired - Fee Related US5529620A (en) 1989-02-15 1995-06-07 Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies

Country Status (5)

Country Link
US (4) US5108964A (en)
EP (1) EP0458865A1 (en)
JP (1) JPH05504599A (en)
CA (1) CA2047739A1 (en)
WO (1) WO1990009461A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693305A (en) * 1995-10-19 1997-12-02 Advanced Refractory Technologies, Inc. Method for synthesizing aluminum nitride whiskers
US5908587A (en) * 1997-06-26 1999-06-01 General Motors Corporation Method of making fibrillose articles
US6635357B2 (en) 2002-02-28 2003-10-21 Vladimir S. Moxson Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same
US20070111878A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extrudable mixture for forming a porous block
US20070220871A1 (en) * 2005-11-16 2007-09-27 Bilal Zuberi Method and Apparatus for Filtration of a Two-Stroke Engine Exhaust
US20080179782A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
US20080179783A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
US20080241014A1 (en) * 2005-11-16 2008-10-02 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
US20080242530A1 (en) * 2005-11-16 2008-10-02 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including nonstoichiometric cordierite fibers and methods of manufacture
US20090035511A1 (en) * 2007-07-31 2009-02-05 Geo2 Technologies, Inc. Fiber-Based Ceramic Substrate and Method of Fabricating the Same
US20090092786A1 (en) * 2005-11-16 2009-04-09 Geo2 Technologies, Inc. Fibrous aluminum titanate substrates and methods of forming the same
US20090166910A1 (en) * 2005-11-16 2009-07-02 Geo2 Technologies, Inc. System and Method for Twin Screw Extrusion of a Fibrous Porous Substrate
US20090309252A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Method of controlling evaporation of a fluid in an article
US20090309262A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Manufacturing apparatus and method for producing a preform
US20100047570A1 (en) * 2008-08-25 2010-02-25 Snu R&Db Foundation Manufacturing nanocomposites
US20100048374A1 (en) * 2005-11-16 2010-02-25 James Jenq Liu System and Method for Fabricating Ceramic Substrates
US8039050B2 (en) 2005-12-21 2011-10-18 Geo2 Technologies, Inc. Method and apparatus for strengthening a porous substrate
US20120104649A1 (en) * 2008-08-28 2012-05-03 Snu R&Db Foundation Manufacturing nanocomposites

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK336689D0 (en) * 1989-07-06 1989-07-06 Risoe Forskningscenter Preparation of materials
US5216813A (en) * 1991-02-26 1993-06-08 The Furukawa Electric Co., Ltd. Clamping tool
CA2081656C (en) * 1991-10-29 1996-08-27 Hideyuki Fujishiro Fiber shaped-article for fiber-reinforced composite members and method of producing the same
FR2717172B1 (en) * 1994-01-14 1996-04-12 Atochem Elf Sa Porous body comprising aluminum nitride particles, their preparation process and their applications.
DE4406191A1 (en) * 1994-02-25 1995-09-07 Ks Aluminium Technologie Ag Plain bearing
DE4407760C2 (en) * 1994-03-08 2000-05-31 Bayer Ag Thermoplastic molding compositions and their use
TW280037B (en) * 1994-04-22 1996-07-01 Handotai Energy Kenkyusho Kk Drive circuit of active matrix type display device and manufacturing method
US5679041A (en) * 1994-09-29 1997-10-21 General Motors Corporation Metal matrix composite and preform therefor
US6132674A (en) * 1995-10-12 2000-10-17 Bristol-Myers Squibb Company Method of making an orthopaedic implant having a porous surface
JP3374627B2 (en) * 1995-12-05 2003-02-10 東レ株式会社 Polyester film and method for producing the same
GB9607718D0 (en) * 1996-04-13 1996-06-19 Apv Uk Plc Injection moulding processes especially metal imjection moulding processed
US6390304B1 (en) 1997-06-02 2002-05-21 Hitco Carbon Composites, Inc. High performance filters comprising inorganic fibers having inorganic fiber whiskers grown thereon
US6264045B1 (en) 1997-06-02 2001-07-24 Hitco Carbon Composites, Inc. High performance filters comprising an inorganic composite substrate and inorganic fiber whiskers
JP3496488B2 (en) * 1997-10-31 2004-02-09 トヨタ自動車株式会社 Method for producing aluminum oxide fiber
US6155432A (en) 1999-02-05 2000-12-05 Hitco Carbon Composites, Inc. High performance filters based on inorganic fibers and inorganic fiber whiskers
US6247519B1 (en) 1999-07-19 2001-06-19 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Preform for magnesium metal matrix composites
US6193915B1 (en) 1999-09-03 2001-02-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Process for fabricating low volume fraction metal matrix preforms
US6214279B1 (en) 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
US6561793B1 (en) * 2000-08-14 2003-05-13 Honeywell Asca Inc. Infrared heater with improved matrix
DE10101650C1 (en) * 2001-01-16 2002-08-29 Daimler Chrysler Ag Reinforced structural element
US6630153B2 (en) * 2001-02-23 2003-10-07 Smith & Nephew, Inc. Manufacture of bone graft substitutes
US7037459B2 (en) * 2001-03-12 2006-05-02 General Cable Technologies Corporation Methods of making compositions comprising thermoplastic and curable polymers and articles made from such methods
US20030024611A1 (en) * 2001-05-15 2003-02-06 Cornie James A. Discontinuous carbon fiber reinforced metal matrix composite
EP1406836B1 (en) * 2001-07-18 2007-09-26 Industrial Ceramic Solutions LLC Whisker-free silicon carbide fibers
JP3837104B2 (en) * 2002-08-22 2006-10-25 日精樹脂工業株式会社 Composite molding method of carbon nanomaterial and metal material and composite metal product
US20040173291A1 (en) * 2002-11-18 2004-09-09 Rozenoyer Boris Y. Metal matrix composite
EP1593337B1 (en) 2003-02-11 2008-08-13 Olympus Corporation Overtube
JP4005058B2 (en) * 2003-07-23 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same, carbon fiber composite molded article and method for producing the same
US7459110B2 (en) * 2003-12-04 2008-12-02 Ceramtec Ag Porous fiber-ceramic composite
JP4224407B2 (en) * 2004-01-29 2009-02-12 日信工業株式会社 Method for producing composite metal material
JP4245514B2 (en) * 2004-05-24 2009-03-25 日信工業株式会社 Carbon fiber composite material and method for producing the same, method for producing carbon fiber composite metal material, method for producing carbon fiber composite non-metal material
JP4224438B2 (en) * 2004-07-16 2009-02-12 日信工業株式会社 Method for producing carbon fiber composite metal material
US8052918B2 (en) * 2004-07-21 2011-11-08 Nissin Kogyo Co., Ltd. Carbon-based material and method of producing the same, and composite material and method of producing the same
JP4293957B2 (en) * 2004-09-03 2009-07-08 日信工業株式会社 Carbon-based material, manufacturing method thereof, and manufacturing method of composite material
JP4279220B2 (en) * 2004-09-09 2009-06-17 日信工業株式会社 Composite material and manufacturing method thereof, composite metal material and manufacturing method thereof
JP4279221B2 (en) * 2004-09-10 2009-06-17 日信工業株式会社 Composite metal material and manufacturing method thereof, caliper body, bracket, disk rotor, drum, and knuckle
US7153379B2 (en) * 2004-10-15 2006-12-26 General Electric Company Methods of producing a ceramic matrix composite
US20060086434A1 (en) * 2004-10-22 2006-04-27 Metal Matrix Cast Composites, Llc Spray deposition apparatus and methods for metal matrix composites
TWI327556B (en) * 2006-10-19 2010-07-21 Ind Tech Res Inst Ultraviolet absorber formulation
US20090011247A1 (en) * 2007-07-02 2009-01-08 Oil States Industries, Inc. Molded Composite Mandrel for a Downhole Zonal Isolation Tool
US9283734B2 (en) 2010-05-28 2016-03-15 Gunite Corporation Manufacturing apparatus and method of forming a preform
WO2011153482A1 (en) * 2010-06-04 2011-12-08 Triton Systems, Inc. Discontinuous short fiber preform and fiber-reinforced aluminum billet and methods of manufacturing the same
WO2013166275A1 (en) 2012-05-02 2013-11-07 Intellectual Property Holdings, Llc Ceramic preform and method
CN103341613B (en) * 2013-06-27 2015-11-04 重庆罗曼耐磨新材料股份有限公司 The preparation method of the precast body of ceramet composite wear-resistant part
US9714686B2 (en) 2014-10-20 2017-07-25 Intellectual Property Holdings, Llc Ceramic preform and method
US10017424B2 (en) 2014-12-04 2018-07-10 Rolls-Royce Corporation Ceramic matrix composites and methods of making the same
CN104529487B (en) * 2014-12-15 2017-02-08 山东大学 Ultrahigh-temperature magnesium oxide fibre product and preparation method thereof
US10357846B2 (en) 2015-12-31 2019-07-23 Intellectual Property Holdings, Llc Metal matrix composite vehicle component and method
WO2017146936A1 (en) * 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Coating compositions for oriented strand boards and associated methods of use

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608170A (en) * 1969-04-14 1971-09-28 Abex Corp Metal impregnated composite casting method
US4233256A (en) * 1978-12-18 1980-11-11 The Carborundum Company Process for injection molding sinterable carbide ceramic materials
US4424179A (en) * 1981-05-18 1984-01-03 Societe Anonyme Dite: Ceraver Method of manufacturing a sintered silicon carbide ceramic part
JPS62161460A (en) * 1986-01-13 1987-07-17 Nippon Kokan Kk <Nkk> Production of preform to produce composite metallic material
JPH02179350A (en) * 1988-12-29 1990-07-12 Honda Motor Co Ltd Manufacture of fiber reinforced metallic member
US4995444A (en) * 1987-03-02 1991-02-26 Battelle Memorial Institute Method for producing metal or alloy casting composites reinforced with fibrous or particulate materials
US4998578A (en) * 1988-01-11 1991-03-12 Lanxide Technology Company, Lp Method of making metal matrix composites
JPH0371967A (en) * 1989-08-08 1991-03-27 Toyota Motor Corp Manufacture of dispersing reinforcing metal composite material
US5082607A (en) * 1987-04-30 1992-01-21 Okura Kogyo Kabushiki Kaisha Process of producing porous ceramics
US5167271A (en) * 1988-10-20 1992-12-01 Lange Frederick F Method to produce ceramic reinforced or ceramic-metal matrix composite articles
US5176857A (en) * 1987-11-23 1993-01-05 Imperial Chemical Industries Plc Method of producing inorganic oxide fibers with axially aligned porosity

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828839A (en) * 1973-04-11 1974-08-13 Du Pont Process for preparing fiber reinforced metal composite structures
US4036599A (en) * 1973-07-12 1977-07-19 E. I. Du Pont De Nemours And Company Polycrystalline alumina fibers as reinforcement in magnesium matrix
US4012204A (en) * 1974-11-11 1977-03-15 E. I. Du Pont De Nemours And Company Aluminum alloy reinforced with alumina fibers and lithium wetting agent
CA1066830A (en) * 1976-01-07 1979-11-20 Ronald J. Tabar Sacrificial binders for molding particulate solids and the molding thereof
JPH02422B2 (en) * 1981-03-20 1990-01-08 Honda Motor Co Ltd
JPS57164946A (en) * 1981-03-31 1982-10-09 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material
JPS6150912B2 (en) * 1981-04-01 1986-11-06 Kureha Chemical Ind Co Ltd
US4463058A (en) * 1981-06-16 1984-07-31 Atlantic Richfield Company Silicon carbide whisker composites
JPS6150131B2 (en) * 1981-11-30 1986-11-01 Toyota Motor Co Ltd
JPS6044280B2 (en) * 1982-02-25 1985-10-02 Tokai Carbon Kk
JPS6254381B2 (en) * 1982-10-08 1987-11-14 Toyota Motor Co Ltd
FR2555933A2 (en) * 1983-12-01 1985-06-07 Ceraver Process for producing a composite structure reinforced with ceramic material
JPH0421739B2 (en) * 1984-06-25 1992-04-13 Mitsubishi Aluminium
KR920008955B1 (en) * 1984-10-25 1992-10-12 마쓰모또 기요시 Composite material reinforced with alumina-silica fibers including mullite crystalline form
JPS61201744A (en) * 1985-03-01 1986-09-06 Toyota Motor Corp Metallic composite material reinforced with alumina-silica fiber and mineral fiber
JPS61253334A (en) * 1985-03-01 1986-11-11 Toyota Motor Corp Alumina fiber-and mineral fiber-reinforced metallic composite material
JPH0142340B2 (en) * 1985-09-02 1989-09-12 Toyota Motor Co Ltd
US4652413A (en) * 1985-10-16 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Method for preparing configured silicon carbide whisker-reinforced alumina ceramic articles
DE3686239D1 (en) * 1985-11-14 1992-09-03 Ici Plc Fiber reinforced composite with metal matrix.
JPS63145727A (en) * 1986-12-08 1988-06-17 Shin Etsu Chem Co Ltd Production of whisker formed body
JPH0548288B2 (en) * 1988-01-18 1993-07-21 Honda Motor Co Ltd
US4946808A (en) * 1988-11-10 1990-08-07 Ceramics Process Systems Corporation Method for preparing dense, pressureless sintered SiC whisker reinforced composite ceramics
US5024978A (en) * 1989-05-30 1991-06-18 Corning Incorporated Compositions and methods for making ceramic matrix composites

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608170A (en) * 1969-04-14 1971-09-28 Abex Corp Metal impregnated composite casting method
US4233256A (en) * 1978-12-18 1980-11-11 The Carborundum Company Process for injection molding sinterable carbide ceramic materials
US4424179A (en) * 1981-05-18 1984-01-03 Societe Anonyme Dite: Ceraver Method of manufacturing a sintered silicon carbide ceramic part
JPS62161460A (en) * 1986-01-13 1987-07-17 Nippon Kokan Kk <Nkk> Production of preform to produce composite metallic material
US4995444A (en) * 1987-03-02 1991-02-26 Battelle Memorial Institute Method for producing metal or alloy casting composites reinforced with fibrous or particulate materials
US5082607A (en) * 1987-04-30 1992-01-21 Okura Kogyo Kabushiki Kaisha Process of producing porous ceramics
US5176857A (en) * 1987-11-23 1993-01-05 Imperial Chemical Industries Plc Method of producing inorganic oxide fibers with axially aligned porosity
US4998578A (en) * 1988-01-11 1991-03-12 Lanxide Technology Company, Lp Method of making metal matrix composites
US5167271A (en) * 1988-10-20 1992-12-01 Lange Frederick F Method to produce ceramic reinforced or ceramic-metal matrix composite articles
JPH02179350A (en) * 1988-12-29 1990-07-12 Honda Motor Co Ltd Manufacture of fiber reinforced metallic member
JPH0371967A (en) * 1989-08-08 1991-03-27 Toyota Motor Corp Manufacture of dispersing reinforcing metal composite material

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693305A (en) * 1995-10-19 1997-12-02 Advanced Refractory Technologies, Inc. Method for synthesizing aluminum nitride whiskers
US5908587A (en) * 1997-06-26 1999-06-01 General Motors Corporation Method of making fibrillose articles
US6635357B2 (en) 2002-02-28 2003-10-21 Vladimir S. Moxson Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same
US20080242530A1 (en) * 2005-11-16 2008-10-02 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including nonstoichiometric cordierite fibers and methods of manufacture
US20070220871A1 (en) * 2005-11-16 2007-09-27 Bilal Zuberi Method and Apparatus for Filtration of a Two-Stroke Engine Exhaust
US8057568B2 (en) 2005-11-16 2011-11-15 Geo2 Technologies, Inc. Extruded porous substrate and products using the same
US7959704B2 (en) 2005-11-16 2011-06-14 Geo2 Technologies, Inc. Fibrous aluminum titanate substrates and methods of forming the same
US20080241014A1 (en) * 2005-11-16 2008-10-02 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
US20070111878A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extrudable mixture for forming a porous block
US7938876B2 (en) 2005-11-16 2011-05-10 GE02 Technologies, Inc. Low coefficient of thermal expansion materials including nonstoichiometric cordierite fibers and methods of manufacture
US20090092786A1 (en) * 2005-11-16 2009-04-09 Geo2 Technologies, Inc. Fibrous aluminum titanate substrates and methods of forming the same
US20090136709A1 (en) * 2005-11-16 2009-05-28 Bilal Zuberi Extruded Porous Substrate having Inorganic Bonds
US20090166910A1 (en) * 2005-11-16 2009-07-02 Geo2 Technologies, Inc. System and Method for Twin Screw Extrusion of a Fibrous Porous Substrate
US7938877B2 (en) 2005-11-16 2011-05-10 Geo2 Technologies, Inc. Low coefficient of thermal expansion materials including modified aluminosilicate fibers and methods of manufacture
US7901480B2 (en) 2005-11-16 2011-03-08 Geo2 Technologies, Inc. Extruded porous substrate having inorganic bonds
US7862641B2 (en) 2005-11-16 2011-01-04 Geo2 Technologies, Inc. Extruded porous substrate and products using the same
US7640732B2 (en) 2005-11-16 2010-01-05 Geo2 Technologies, Inc. Method and apparatus for filtration of a two-stroke engine exhaust
US20100048374A1 (en) * 2005-11-16 2010-02-25 James Jenq Liu System and Method for Fabricating Ceramic Substrates
US8039050B2 (en) 2005-12-21 2011-10-18 Geo2 Technologies, Inc. Method and apparatus for strengthening a porous substrate
US20080179782A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
US20080179783A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
US20090035511A1 (en) * 2007-07-31 2009-02-05 Geo2 Technologies, Inc. Fiber-Based Ceramic Substrate and Method of Fabricating the Same
US7781372B2 (en) 2007-07-31 2010-08-24 GE02 Technologies, Inc. Fiber-based ceramic substrate and method of fabricating the same
US9803265B2 (en) 2008-06-17 2017-10-31 Gunite Corporation Metal matrix composite
US20110061830A1 (en) * 2008-06-17 2011-03-17 Century, Inc. Method of Manufacturing a Metal Matrix Composite
US20090309252A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Method of controlling evaporation of a fluid in an article
US20090309262A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Manufacturing apparatus and method for producing a preform
US20090311541A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Method of manufacturing a metal matrix composite
US8016018B2 (en) 2008-06-17 2011-09-13 Century, Inc. Method of manufacturing a metal matrix composite
US7793703B2 (en) 2008-06-17 2010-09-14 Century Inc. Method of manufacturing a metal matrix composite
US20090312174A1 (en) * 2008-06-17 2009-12-17 Century, Inc. Ceramic article
US8153541B2 (en) 2008-06-17 2012-04-10 Century, Inc. Ceramic article
US8550145B2 (en) 2008-06-17 2013-10-08 Century, Inc. Method of manufacturing a metal matrix composite
US8455379B2 (en) 2008-06-17 2013-06-04 Century, Inc. Ceramic article
US9044881B2 (en) 2008-08-25 2015-06-02 Snu R&Db Foundation Manufacturing nanocomposites
US20100047570A1 (en) * 2008-08-25 2010-02-25 Snu R&Db Foundation Manufacturing nanocomposites
US8501064B2 (en) * 2008-08-28 2013-08-06 Snu R&Db Foundation Manufacturing nanocomposites
US20120104649A1 (en) * 2008-08-28 2012-05-03 Snu R&Db Foundation Manufacturing nanocomposites

Also Published As

Publication number Publication date
EP0458865A1 (en) 1991-12-04
US5529620A (en) 1996-06-25
US5108964A (en) 1992-04-28
WO1990009461A2 (en) 1990-08-23
CA2047739A1 (en) 1990-08-16
WO1990009461A3 (en) 1990-10-04
JPH05504599A (en) 1993-07-15
US5458181A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
Bhandare et al. Preparation of aluminium matrix composite by using stir casting method
US5840221A (en) Process for making silicon carbide reinforced silicon carbide composite
US4662429A (en) Composite material having matrix of aluminum or aluminum alloy with dispersed fibrous or particulate reinforcement
CA1096895A (en) Molten silicon infiltration reaction products
US4011291A (en) Apparatus and method of manufacture of articles containing controlled amounts of binder
US6447852B1 (en) Method of manufacturing a diamond composite and a composite produced by same
US4818633A (en) Fibre-reinforced metal matrix composites
US6709747B1 (en) Method of manufacturing a diamond composite and a composite produced by same
Mutsuddy et al. Ceramic injection molding
US6939388B2 (en) Method for making materials having artificially dispersed nano-size phases and articles made therewith
AU2002220202B2 (en) Investment casting mold and method of manufacture
Mehrabian et al. Preparation and casting of metal-particulate non-metal composites
JP2617752B2 (en) Abrasive material and method for producing the same
EP0161494B1 (en) A method for the freeze-pressure molding of inorganic powders
Loh et al. Production of metal matrix composite part by powder injection molding
Zhang et al. Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting
Lange Powder processing science and technology for increased reliability
Moon et al. Fabrication of functionally graded reaction infiltrated SiC–Si composite by three-dimensional printing (3DP™) process
US5494868A (en) Inverse shape replication method of making ceramic composite articles
KR0121461B1 (en) Method for forming metal matrix composites having variable filler loadings
EP0274702B1 (en) Molding process and device therefor
US5214011A (en) Process for preparing ceramic-metal composite bodies
US5035724A (en) Sol-gel alumina shaped bodies
EP1600469B1 (en) Carbon fiber composite material and method of producing the same, carbon fiber-metal composite material and method of producing the same, and carbon fiber-nonmetal composite material and method of producingthe same
US4259112A (en) Process for manufacture of reinforced composites

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20020809