US5256757A - Thermosetting coating compositions - Google Patents
Thermosetting coating compositions Download PDFInfo
- Publication number
- US5256757A US5256757A US07/954,993 US95499392A US5256757A US 5256757 A US5256757 A US 5256757A US 95499392 A US95499392 A US 95499392A US 5256757 A US5256757 A US 5256757A
- Authority
- US
- United States
- Prior art keywords
- residues
- component
- enamel composition
- comprised
- residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000008199 coating composition Substances 0.000 title description 10
- 229920001187 thermosetting polymer Polymers 0.000 title description 6
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 210000003298 dental enamel Anatomy 0.000 claims abstract description 37
- 238000000576 coating method Methods 0.000 claims abstract description 34
- 229920000728 polyester Polymers 0.000 claims abstract description 33
- 239000002253 acid Substances 0.000 claims abstract description 17
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 50
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 claims description 25
- 150000001261 hydroxy acids Chemical group 0.000 claims description 17
- 150000002009 diols Chemical group 0.000 claims description 16
- 239000003431 cross linking reagent Substances 0.000 claims description 13
- 150000004072 triols Chemical group 0.000 claims description 12
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 239000000049 pigment Substances 0.000 claims description 9
- 125000001931 aliphatic group Chemical group 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid group Chemical group C(CCCCC(=O)O)(=O)O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical group OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 150000007519 polyprotic acids Polymers 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims 2
- 229920005989 resin Polymers 0.000 description 43
- 239000011347 resin Substances 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 9
- -1 PHBA diol Chemical class 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 5
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- BNCADMBVWNPPIZ-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n,6-n-hexakis(methoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound COCN(COC)C1=NC(N(COC)COC)=NC(N(COC)COC)=N1 BNCADMBVWNPPIZ-UHFFFAOYSA-N 0.000 description 4
- 229920003270 Cymel® Polymers 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 4
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 3
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 3
- 150000007974 melamines Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229920002601 oligoester Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000011877 solvent mixture Substances 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910003556 H2 SO4 Inorganic materials 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920003265 Resimene® Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- ARVUDIQYNJVQIW-UHFFFAOYSA-N (4-dodecoxy-2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC(OCCCCCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 ARVUDIQYNJVQIW-UHFFFAOYSA-N 0.000 description 1
- TUBQDCKAWGHZPF-UHFFFAOYSA-N 1,3-benzothiazol-2-ylsulfanylmethyl thiocyanate Chemical compound C1=CC=C2SC(SCSC#N)=NC2=C1 TUBQDCKAWGHZPF-UHFFFAOYSA-N 0.000 description 1
- LHJGJYXLEPZJPM-UHFFFAOYSA-N 2,4,5-trichlorophenol Chemical compound OC1=CC(Cl)=C(Cl)C=C1Cl LHJGJYXLEPZJPM-UHFFFAOYSA-N 0.000 description 1
- JLZIIHMTTRXXIN-UHFFFAOYSA-N 2-(2-hydroxy-4-methoxybenzoyl)benzoic acid Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1C(O)=O JLZIIHMTTRXXIN-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 description 1
- VJMGCRKBPXGKAH-UHFFFAOYSA-N 3,4,4-trimethyl-1,3-oxazolidine Chemical compound CN1COCC1(C)C VJMGCRKBPXGKAH-UHFFFAOYSA-N 0.000 description 1
- UUTSCMBZWMGAGB-UHFFFAOYSA-N 3-(3-acetyl-4-hydroxyphenyl)pentan-3-ylphosphonic acid Chemical compound CCC(CC)(P(O)(O)=O)C1=CC=C(O)C(C(C)=O)=C1 UUTSCMBZWMGAGB-UHFFFAOYSA-N 0.000 description 1
- GUQMDNQYMMRJPY-UHFFFAOYSA-N 4,4-dimethyl-1,3-oxazolidine Chemical compound CC1(C)COCN1 GUQMDNQYMMRJPY-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- 125000005274 4-hydroxybenzoic acid group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000010934 O-alkylation reaction Methods 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- APQHKWPGGHMYKJ-UHFFFAOYSA-N Tributyltin oxide Chemical compound CCCC[Sn](CCCC)(CCCC)O[Sn](CCCC)(CCCC)CCCC APQHKWPGGHMYKJ-UHFFFAOYSA-N 0.000 description 1
- 239000013036 UV Light Stabilizer Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- YJVBLROMQZEFPA-UHFFFAOYSA-L acid red 26 Chemical compound [Na+].[Na+].CC1=CC(C)=CC=C1N=NC1=C(O)C(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=CC=C12 YJVBLROMQZEFPA-UHFFFAOYSA-L 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QBLDFAIABQKINO-UHFFFAOYSA-N barium borate Chemical compound [Ba+2].[O-]B=O.[O-]B=O QBLDFAIABQKINO-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- HDLHSQWNJQGDLM-UHFFFAOYSA-N bicyclo[2.2.1]heptane-2,5-dicarboxylic acid Chemical compound C1C2C(C(=O)O)CC1C(C(O)=O)C2 HDLHSQWNJQGDLM-UHFFFAOYSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- VNZQQAVATKSIBR-UHFFFAOYSA-L copper;octanoate Chemical compound [Cu+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O VNZQQAVATKSIBR-UHFFFAOYSA-L 0.000 description 1
- JXGWDGNWDNGFJB-UHFFFAOYSA-L copper;quinoline-8-carboxylate Chemical compound [Cu+2].C1=CN=C2C(C(=O)[O-])=CC=CC2=C1.C1=CN=C2C(C(=O)[O-])=CC=CC2=C1 JXGWDGNWDNGFJB-UHFFFAOYSA-L 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- JEQRBTDTEKWZBW-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1=C(O)OC(C)=CC1=O JEQRBTDTEKWZBW-UHFFFAOYSA-N 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Natural products CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- JYIMWRSJCRRYNK-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4] JYIMWRSJCRRYNK-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- HOXINJBQVZWYGZ-UHFFFAOYSA-N fenbutatin oxide Chemical group C=1C=CC=CC=1C(C)(C)C[Sn](O[Sn](CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C1=CC=CC=C1 HOXINJBQVZWYGZ-UHFFFAOYSA-N 0.000 description 1
- HKIOYBQGHSTUDB-UHFFFAOYSA-N folpet Chemical compound C1=CC=C2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C2=C1 HKIOYBQGHSTUDB-UHFFFAOYSA-N 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- UWNADWZGEHDQAB-UHFFFAOYSA-N i-Pr2C2H4i-Pr2 Natural products CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical class C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 239000004306 orthophenyl phenol Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- TVPFLPJBESCUKI-UHFFFAOYSA-M potassium;n,n-dimethylcarbamodithioate Chemical compound [K+].CN(C)C([S-])=S TVPFLPJBESCUKI-UHFFFAOYSA-M 0.000 description 1
- QDESFMLRHRZCSV-UHFFFAOYSA-M potassium;n-(hydroxymethyl)-n-methylcarbamodithioate Chemical compound [K+].OCN(C)C([S-])=S QDESFMLRHRZCSV-UHFFFAOYSA-M 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- GDESWOTWNNGOMW-UHFFFAOYSA-N resorcinol monobenzoate Chemical compound OC1=CC=CC(OC(=O)C=2C=CC=CC=2)=C1 GDESWOTWNNGOMW-UHFFFAOYSA-N 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000012970 tertiary amine catalyst Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
Definitions
- This invention belongs to the field of polymer chemistry. More particularly, this invention relates to improved phenolic-functional polyester coating compositions.
- thermotropic liquid crystal polymers possess many advantages over conventional thermoplastics.
- the self-reinforcement of the ordered polymeric molecules in the liquid crystalline (LC) state generally yield thermoplastics with exceptionally high strength and high modulus.
- LCPs have also been shown to have excellent solvent resistance, chemical resistance (e.g., acid, base, detergent), and weatherability. As described above, these properties are highly desirable in surface coatings. Recently, coating scientists have attempted to apply the LCP technology to the coatings art.
- U.S. Pat. No. 5,043,192 discloses the application of liquid crystalline polyesters to the coatings industry, while displaying high hardness and high impact resistance.
- linear oligoester diols were prepared and modified with p-hydroxybenzoic acid (PHBA) to yield LC oligoesters.
- PHBA diol mole ratio varied from 2.1/1 to 13/1. It was suggested that the excess of PHBA formed repeating p-oxybenzoyl LC segments in the oligoester chain ends.
- the resulting resins however, were highly colored (i.e., brownish).
- the use of large quantities of the expensive raw material, PHBA also made the resins commercially impractical.
- European Patent Application No. 419088 discloses non liquid crystalline esterphenol-capped liquid polymer and polyol compositions in combination with an amino crosslinking agent which provided films having superior properties.
- the resins were prepared by following a procedure similar to that of Jones at a lower reaction temperature (i.e., ⁇ 200° C. )
- a PHBA aliphatic hydroxyl equivalent ratio of 1/1 was used mostly, although it was suggested the ratio could be ranged from about 0.05 to about 1.25.
- This reference teaches that the coatings showed improved hardness and impact resistance. However, by repeating their examples we found the coatings did not exhibit high acid resistance.
- Curable resin compositions modified with hydroxybenzoic acid had also been reported by others.
- U.S. Pat. No. 2,993,873 disclosed that drying times and coating properties of oil-modified alkyd resins could be improved by replacing part of unsaturated fatty acids with hydroxybenzoic acid in the resin formulations. The coatings were cured by air dry or baking without the presence of a crosslinking agent.
- U.S. Pat. Nos. 4,267,239 and 4,298,658 describe the modification of alkyd resins with PHBA. The resulting resins could be rapidly cured at ambient temperatures with isocyanates in the presence of a tertiary amine vapor.
- 4,343,839 and 3,836,491 disclose a coating composition which is rapidly curable at room temperature in the presence of a tertiary amine catalyst vapor.
- the coating compositions comprised phenolic terminated polyesters and multi-isocyanate curing agents.
- U.S. Pat. No. 4,331,782 discloses the improved synthesis of a phenol-functional polyester polymer which utilizes a preformed adduct of a hydroxybenzoic acid and an epoxy compound.
- Japanese Patents No. 75 40,629, 76 56,839, 76 44,130, and 77 73,929 disclose powder coating compositions containing phenolic hydroxy end groups. These resins had high softening points and were applied to the surface as powders.
- U.S. Pat. No. 4,189,421 taught the synthesis of solid addition products having a softening point above 100° F. by the reaction of a monohydroxy, single-ring aromatic compound and a hexakis(alkoxymethyl)amino-triazine ring (e.g., hexamethoxymethylmelamine, HMMM). They found the phenol compound not only could react with HMMM to form ether linkages (O-alkylation) but it could also form methylene bridges at the phenol ortho- or para-position (C-alkylation). The extent of both reactions was essentially equal. Further ring closure of the resulting product could also have occurred.
- a monohydroxy, single-ring aromatic compound and a hexakis(alkoxymethyl)amino-triazine ring
- HMMM hexamethoxymethylmelamine
- PHBA a smaller amount of PHBA was incorporated into the resins (i.e., about 15-16 mole %) to provide phenolic functionalities.
- no organic solvent was used for the synthesis of the resin. This feature allows the resins to be used in waterborne coating compositions. Further, this process is suitable for economical industrial production.
- a branching agent, trimethylolpropane(TMP) was also incorporated into the resins which provided higher crosslink density. Further, I have discovered that the presence of TMP, a trifunctional compound, is required in order to yield higher molecular weight resins containing PHBA.
- PHBA should be viewed as a monofunctional monomer which could terminate the polymer chain growth.
- a triol such as TMP helps to propagate the growth of the polymer chain and affords surprisingly higher molecular weight resins; the coatings made possible by this discovery have strikingly better properties. This effect was found to be especially significant when PHBA was reacted with an excess of TMP only in the first stage of the resin synthesis as described below in the Examples. In these examples, the carboxyl group of the PHBA was capped by TMP to form a diol adduct in the first stage.
- the diol adduct was then polymerized with other diols and diacids in the second stage without causing the problem of decarboxylation of PHBA.
- the resulting resin had a number average molecular weight of greater than 2300 which was much higher than other resins containing a similar ratio of PHBA.
- attempts at end-capping the resins with PHBA in the final stage of the reaction were unsuccessful in providing resins with higher molecular weight-these attempts resulted in significant PHBA sublimation as well as degradation of the polymer chain due ostensibly to ester interchange reactions.
- the mole ratios of the resin compositions were adjusted as necessary to afford coatings having the highest pencil hardness while still retaining the best impact resistance.
- the coatings also exhibited exceptionally high acid resistance in addition to other desirable properties.
- the present invention provides oil-free polyester resin compositions containing phenolic functional groups which are prepared by an improved direct polycondensation process which is suitable for economical, large-sale production.
- the phenolic functional resins thus produced are useful as coatings binders and thus may be dissolved in conventional solvents and formulated into thermosetting coating compositions which exhibit an extraordinary combination of pencil hardness and impact resistance as well as acid resistance.
- substantially all of the hydroxy acid residues exist at the ends of the curable polyester chain, i.e., >90%.
- the term "acid resistance” is intended to mean coatings which show very little degradative effect after exposure to 50% H 2 SO 4 for 24 hours and whose free-standing films do not decompose in concentrated H 2 SO 4 over a period of at least 30 minutes. Accordingly, these coatings compositions are especially useful for applications where extreme environmental impact may be expected, e.g., automobile body exteriors.
- the present invention provides an enamel composition which when applied to a substrate and cured provides a coating having a pencil hardness of greater than 4H, an impact resistance of greater than 140 lb.-in., and being substantially resistant to acidic corrosion, said composition comprising
- (III) about 30 to about 70 weight percent of an organic solvent, based on the total weight of (I), (II), and (III), the total being 100 percent.
- a water-borne enamel composition which comprises
- curable polyesters which are useful in the preparation of thermosetting coating compositions.
- Especially preferred curable polyesters having as component (a), residues of neopentyl glycol; as component (b), residues of trimethylolpropane; as component (c), residues of adipic acid; as component (d), residues of isophthalic acid; and as component (e), residues of p-hydroxybenzoic acid.
- the reactants be combined neat, and heated to a temperature of about 175° C. to about 230° C. Typical reaction times range from 5 hrs to about 20 hrs.
- the reaction generally requires the use of a steam heated partial-condenser to remove the condensate, water and/or alcohol, and at the same time condense back the volatile reactants.
- the reaction is preferably carried out under the constant flow of nitrogen gas.
- a process for preparing a curable polyester having a number average molecular weight of about 1500 to about 3500 and a weight average molecular weight of about 10,000 to about 70,000, comprising
- component (e) about 12 to about 20 mole percent, based on the total moles of (a), (b), (c), (d), and (e), of hydroxy acid residues selected from residues of ##STR3## wherein substantially all of said hydroxy acid residues are at the ends of said curable polyester; which comprises combining component (b) triol with component (e) in the presence of a condensation catalyst, followed by heating to a temperature sufficient to induce condensation, followed by addition of components (a), (d) and optionally (c), followed by continued heating until said condensation is substantially complete.
- triols include trimethylolpropane, trimethylolethane, glycerol, and the like. Trimethylolpropane is the most highly preferred triol.
- the aliphatic and aromatic dicarboxylic acid residues of the curable polyesters are selected from residues of oxalic; malonic, dimethylmalonic; succinic; glutaric; adipic; trimethyladipic; pimelic, 2,2-dimethylglutaric; azelaic; sebacic; fumaric; maleic; itaconic; phthalic; terephthalic; isophthalic; 2,5-norbornanedicarboxylic; 1,4-naphthalic; diphenic; 4,4'-oxydibenzoic, diglycolic; thiodipropionic; 4,4'-oxydibenzoic, diglycolic; thiodipropionic; 4,4'-sulfonyldibenzoic; 4,4'-biphenyldicarboxylic, and 2,6-naphthalenedicarboxylic acids.
- the curable polyesters provided herein preferably have an acid number of not greater than 80 and a hydroxyl number of at least 10.
- lower alkyl i.e., C 1 -C 6 alkyl, esters can be utilized in the above direct polycondensation, and in such an instance, the by-product of the condensation will be a lower (C 1 -C 6 ) alcohol.
- Component (e) above can be chosen from a wide variety of hydroxy acids.
- preferred monomers include: ##STR4## wherein A is halogen, C 1 -C 6 alkyl, or phenyl; ##STR5##
- An especially preferred hydroxy acid is p-hydroxy benzoic acid.
- curable polyesters provided by the process above are useful as binders in thermosetting coating compositions.
- Suitable solvents for the curable enamel composition include xylenes, cyclohexanone, ketones, (for example, methyl amyl ketone), 2-butoxyethanol, ethyl-3-ethoxypropionate, toluene, n-butanol, and other volatile inert solvents typically used in industrial baking (i.e., thermosetting) enamels.
- amino cross linking agent is preferably a melamine-formaldehyde type cross-linking agent, i.e., a cross-linking agent having a plurality of --N(CH 2 OR 3 ) 2 functional groups, wherein R 3 is C 1 -C 4 alkyl, preferably methyl.
- the cross-linking agent may be selected from compounds of the following formulae, wherein R 3 is independently C 1 -C 4 alkyl: ##STR6##
- preferred cross-linking agents include hexamethoxymethylmelamine, tetramethoxymethylbenzoguanamine, tetramethoxymethylurea, mixed butoxy/methoxy substituted melamines, and the like.
- the most preferred cross-linking agent is hexamethoxymethylmelamine.
- a curable enamel composition further comprising one or more cross-linking catalysts.
- catalysts include p-toluenessulfonic acid, and the NACURETM 155, 5076, 1051, catalysts sold by Kind Industries.
- a cross-linkable enamel composition as described above, further comprising one or more leveling, rheology, and flow control agents such as silicones, fluorocarbons or cellulosics; flatting agents; pigment wetting and dispersing agents; surfactants; ultraviolet (UV) absorbers; UV light stabilizers; tinting pigments; defoaming and antifoaming agents; anti-settling, anti-sag and bodying agents; anti-skinning agents; anti-flooding and anti-floating agents; fungicides and mildewicides; corrosion inhibitors; thickening agents; or coalescing agents.
- one or more leveling, rheology, and flow control agents such as silicones, fluorocarbons or cellulosics; flatting agents; pigment wetting and dispersing agents; surfactants; ultraviolet (UV) absorbers; UV light stabilizers; tinting pigments; defoaming and antifoaming agents; anti-settling, anti-sag and bodying agents;
- flatting agents examples include synthetic silica, available from the Davison Chemical Division of W. R. Grace & Company under the trademark SYLOID®; polypropylene, available from Hercules Inc., under the trademark HERCOFLAT®; synthetic silicate, available from J. M. Huber Corporation under the trademark ZEOLEX®.
- dispersing agents and surfactants include sodium bis(tridecyl) sulfosuccinnate, di(2-ethyl hexyl) sodium sulfosuccinnate, sodium dihexylsulfosuccinnate, sodium dicyclohexyl sulfosuccinnate, diamyl sodium sulfosuccinnate, sodium diisobutyl sulfosuccinnate, disodium iso-decyl sulfosuccinnate, disodium ethoxylated alcohol half ester of sulfosuccinnic acid, disodium alkyl amido polyethoxy sulfosuccinnate, tetrasodium N-(1,2-dicarboxy-ethyl)-N-oxtadecyl sulfosuccinnamate, disodium N-octasulfosuccinnamate, sulfated ethoxylated nonyl
- viscosity, suspension, and flow control agents examples include polyaminoamide phosphate, high molecular weight carboxylic acid salts of polyamine amides, and alkyl amine salt of an unsaturated fatty acid, all available from BYK Chemie U.S.A. under the trademark ANTI TERRA®.
- Further examples include polysiloxane copolymers, polyacrylate solution, cellulose esters, hydroxyethyl cellulose, hydrophobically-modified hydroxyethyl cellulose, hydroxypropyl cellulose, polyamide wax, polyolefin wax, carboxymethyl cellulose, ammonium polyacrylate, sodium polyacrylate, and polyethylene oxide.
- fungicides examples include 4,4-dimethyloxazolidine, 3,4,4-trimethyloxazolidine, midified barium metaborate, potassium N-hydroxy-methyl-N-methyldithiocarbamate, 2-(thiocyanomethylthio) benzothiazole, potassium dimethyl dithiocarbamate, adamantane, N-(trichloromethylthio) phthalimide, 2,4,5,6-tetrachloroisophthalonitrile, orthophenyl phenol, 2,4,5-trichlorophenol, dehydroacetic acid, copper naphthenate, copper octoate, organic arsenic, tributyl tin oxide, zinc naphthenate, and copper 8-quinolinate.
- U.V. absorbers and U.V. light stabilizers include substituted benzophenone, substituted benzotriazole, hindered amine, and hindered benzoate, available from American Cyanamide Company under the tradename Cyasorb UV, and available from Ciba Geigy under the tradename Tinuvin, and diethyl-3-acetyl-4-hydroxy-benzyl-phosphonate, 4-dodecyloxy-2-hydroxy benzophenone, and resorcinol monobenzoate.
- Such paint or coating additives as described above form a relatively minor proportion of the enamel composition, preferably about 0.05 weight % to about 5.00 weight %.
- a curable enamel composition optionally containing one or more of the above-described additives, further comprising one or more pigments.
- Pigments suitable for use in the enamel compositions envisioned by the present invention are the typical organic and inorganic pigments, well-known to one of ordinary skill in the art of surface coatings, especially those set forth by the Colour Index, 3d Ed., 2d Rev., 1982, published by the Society of Dyers and Colourists in association with the American Association of Textile Chemists and Colorists. Examples include but are not limited to the following: CI Pigment White 6 (titanium dioxide); CI Pigment Red 101 (red iron oxide); CI Pigment Yellow 42, CI Pigment Blue 15, 15:1, 15:2, 15:3, 15:4 (copper phthalocyanines); CI Pigment Red 49:1, and CI Pigment Red 57:1.
- the curable enamel composition is then applied to the desired substrate or article, e.g., steel, aluminum, or galvanized sheeting (either primed or unprimed), heated (i.e., cured) to a temperature of about 140° C. to about 175° C., for a time period of 5-60 minutes and subsequently allowed to cool.
- the desired substrate or article e.g., steel, aluminum, or galvanized sheeting (either primed or unprimed)
- heated i.e., cured
- a shaped or formed article which has been coated with the thermosetting coating compositions of the present invention and cured.
- TMP trimethylolpropane
- PHBA p-hydroxy benzoic acid
- the control resin contains the same equivalent ratio of PHBA, whereas it has a lower percentage of TMP (14 mole %).
- the synthesis of the control is shown in Example 3.
- the resin (20 g) was dissolved in a suitable solvent mixture (20-40 g) above. To this solution were added the crosslinker, hexamethoxymethyl melamine (HMMM, CYMEL 303, 5 g), the acid catalyst (40% p-toluene sulfonic acid in isopropanol, 0.2-0.4 g), and a flourocarbon flow control additive (20% FLOURAD FC-430 in isopropanol, 0.3 g). The mixture was stirred in a mixer to give a clear enamel (resin:HMM ratio was 80:20). The enamel was applied to cold rolled steel test panels and baked at 175° C. for 20 minutes. The film thickness was about 1.0-1.5 mil. These panels were used in the following tests.
- HMMM hexamethoxymethyl melamine
- CYMEL 303 CYMEL 303, 5 g
- the acid catalyst 50% p-toluene sulfonic acid in isopropanol
- the acid-etch resistance of the coatings was carried out by adding a few drops (e.g., 6 drops) of 10% sulfuric acid onto the film surfaces of the above coated panels and baked in an oven at various temperatures (i.e., 40°, 50°, 60°, 70°, and 80° C.) for 30 minutes. The residual acid solutions were then washed off, and their effects on the coating listed in Table II below.
- the acid-etch resistance of the coatings based on the resins of the present invention have been improved significantly over the previous phenolic-functional resin.
- RESIMENE 755 half butylated and half methylated melamine, available from Monsanto
- CYMEL 303 fully methylated melamine, available from American Cyanamid
- Resin 2 (40 g) was heated to 180° C. and stirred in a round-bottom flask equipped with a water condenser. Trimellitic anhydride (1 g) was then added to the above resin and stirred for 30 minutes. After the mixture was cooled to 80° C., a co-solvent, ethylene glycol monobutyl ether (10 g) was added, followed by DMAE (1.25 g). The resulting viscous solution was then dispersed in distilled water (60 g) at 50° C. followed by the addition of CYMEL 303 (16 g), and FLUORAD FC-430 (20% in isopropanol, 0.6 g) to yield a water-borne enamel.
- Trimellitic anhydride (1 g) was then added to the above resin and stirred for 30 minutes. After the mixture was cooled to 80° C., a co-solvent, ethylene glycol monobutyl ether (10 g) was added, followed by DMAE (1.25 g).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyesters Or Polycarbonates (AREA)
- Paints Or Removers (AREA)
Abstract
Description
TABLE I
______________________________________
Molecular Weight (MW)
resin number average MW
weight average MW
______________________________________
1 3,200 66,000
2 2,300 18,000
control 1 2,500 11,000
______________________________________
TABLE II
______________________________________
Acid-Etch Resistance
resin 40°
50°
60°
70°
80° C.
______________________________________
1 1 1 1 1-2 6
2 1 1 1 1-2 6
control 1
1 1 4
______________________________________
1 = no effect
2 = partial loss of gloss
3 = loss of gloss
4 = partial loss of gloss
5 = loss of adhesion
6 = decomposition of film
TABLE III
______________________________________
Accelerated Weathering Tests
60°/20° % gloss
retention after 500 hours
resin Carbon Arc QUV
______________________________________
1 81/64 99/99
2 90/83 100/100
control 1 43/14 97/90
______________________________________
Claims (16)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/954,993 US5256757A (en) | 1991-06-10 | 1992-10-01 | Thermosetting coating compositions |
| US08/106,750 US5312891A (en) | 1991-06-10 | 1993-08-16 | Thermosetting coating compositions |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US71238091A | 1991-06-10 | 1991-06-10 | |
| US07/883,509 US5256758A (en) | 1991-06-10 | 1992-05-15 | Thermosetting coating compositions |
| US07/954,993 US5256757A (en) | 1991-06-10 | 1992-10-01 | Thermosetting coating compositions |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/883,509 Continuation-In-Part US5256758A (en) | 1991-06-10 | 1992-05-15 | Thermosetting coating compositions |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/106,750 Division US5312891A (en) | 1991-06-10 | 1993-08-16 | Thermosetting coating compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5256757A true US5256757A (en) | 1993-10-26 |
Family
ID=27418900
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/954,993 Expired - Fee Related US5256757A (en) | 1991-06-10 | 1992-10-01 | Thermosetting coating compositions |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5256757A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5312891A (en) * | 1991-06-10 | 1994-05-17 | Eastman Kodak Company | Thermosetting coating compositions |
| US5312892A (en) * | 1991-06-10 | 1994-05-17 | Eastman Kodak Company | Thermosetting coating compositions |
| US5393840A (en) * | 1993-11-01 | 1995-02-28 | Eastman Chemical Company | Thermosetting coating compositions |
| US5416187A (en) * | 1994-04-04 | 1995-05-16 | Eastman Chemical Company | Process for the preparation of phenol-functional polyester resins |
| US20030083425A1 (en) * | 2001-07-06 | 2003-05-01 | Osamu Morimoto | Aqueous resin composition, aqueous coating material containing the composition, coating provided by the material, and metal plate coated with the material |
| EP1340779A1 (en) * | 2002-02-27 | 2003-09-03 | Toyo Boseki Kabushiki Kaisha | Polyester resin composition |
| US6657016B2 (en) | 2002-03-14 | 2003-12-02 | Toyo Boseki Kabushiki Kaisha | Polyester resin composition |
Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2993873A (en) * | 1958-08-28 | 1961-07-25 | Exxon Research Engineering Co | Modification of alkyd resins with metaor para-hydroxy benzoic acids |
| US3778410A (en) * | 1972-09-28 | 1973-12-11 | Eastman Kodak Co | Process for preparing a final copolyester by reacting a starting polyester with an acyloxy aromatic carboxylic acid |
| US3836491A (en) * | 1971-01-26 | 1974-09-17 | Ashland Oil Inc | Novel compositions comprising polyisocyanates and hydroxybenzoic acid capped polymers curable with tertiary amines and process of curing same |
| JPS5040629A (en) * | 1973-08-16 | 1975-04-14 | ||
| JPS5144130A (en) * | 1974-10-15 | 1976-04-15 | Asahi Chemical Ind | Funtaitoryoyo jushisoseibutsu |
| JPS5156839A (en) * | 1974-11-15 | 1976-05-18 | Asahi Chemical Ind | FUNTAITORYOYONIKAIRY OSARETA SOSEIBUTSU |
| JPS5273929A (en) * | 1975-12-18 | 1977-06-21 | Asahi Chem Ind Co Ltd | Resinous composition of powder coating |
| US4189421A (en) * | 1975-04-10 | 1980-02-19 | The Sherwin-Williams Company | Crosslinking agent for powder coatings |
| US4267239A (en) * | 1979-09-19 | 1981-05-12 | J.G.L. Chemicals Ltd. | Vapor permeation curable coatings based on alkyd resins |
| EP0034919A2 (en) * | 1980-02-20 | 1981-09-02 | Whittaker Corporation | Branched polyesters for adhesives and coating compositions |
| US4298658A (en) * | 1979-09-19 | 1981-11-03 | J.G.L. Chemicals Ltd. | Vapor permeation curable coatings based on alkyd resins |
| US4331782A (en) * | 1981-03-05 | 1982-05-25 | Ashland Oil, Inc. | Hydroxybenzoic acid-epoxy adduct capping agents for polyester resins |
| US4331783A (en) * | 1980-09-17 | 1982-05-25 | S.K.Y. Polymers | Novel block copolymers including acrylonitrile sequences and glutarimide units and processes for preparing same |
| US4340718A (en) * | 1980-06-02 | 1982-07-20 | Eastman Kodak Company | Stabilized copolyester material |
| US4343839A (en) * | 1980-12-15 | 1982-08-10 | Ashland Oil, Inc. | Vapor permeation curable polyester resin coating compositions for flexible substrates |
| US4355133A (en) * | 1981-07-27 | 1982-10-19 | Celanese Corporation | Polyester of 6-hydroxy-2-naphthoic acid, 4-hydroxy benzoic acid, 1,4-cyclohexanedicarboxylic acid, and aromatic diol capable of readily undergoing melt processing to form articles possessing high impact properties |
| EP0286444A2 (en) * | 1987-04-10 | 1988-10-12 | Chisso Corporation | Process for producing a liquid crystalline polyester of a cyclohexanedicarboxylic acid and an aromatic diol |
| EP0287233A2 (en) * | 1987-03-27 | 1988-10-19 | North Dakota State University | Polymeric vehicle for coatings |
| EP0419088A1 (en) * | 1989-09-06 | 1991-03-27 | Exxon Chemical Patents Inc. | Liquid polymer compositions |
| US5043192A (en) * | 1988-03-15 | 1991-08-27 | North Dakota State University | Polymeric vehicle for coating |
-
1992
- 1992-10-01 US US07/954,993 patent/US5256757A/en not_active Expired - Fee Related
Patent Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2993873A (en) * | 1958-08-28 | 1961-07-25 | Exxon Research Engineering Co | Modification of alkyd resins with metaor para-hydroxy benzoic acids |
| US3836491A (en) * | 1971-01-26 | 1974-09-17 | Ashland Oil Inc | Novel compositions comprising polyisocyanates and hydroxybenzoic acid capped polymers curable with tertiary amines and process of curing same |
| US3778410A (en) * | 1972-09-28 | 1973-12-11 | Eastman Kodak Co | Process for preparing a final copolyester by reacting a starting polyester with an acyloxy aromatic carboxylic acid |
| JPS5040629A (en) * | 1973-08-16 | 1975-04-14 | ||
| JPS5144130A (en) * | 1974-10-15 | 1976-04-15 | Asahi Chemical Ind | Funtaitoryoyo jushisoseibutsu |
| JPS5156839A (en) * | 1974-11-15 | 1976-05-18 | Asahi Chemical Ind | FUNTAITORYOYONIKAIRY OSARETA SOSEIBUTSU |
| US4189421A (en) * | 1975-04-10 | 1980-02-19 | The Sherwin-Williams Company | Crosslinking agent for powder coatings |
| JPS5273929A (en) * | 1975-12-18 | 1977-06-21 | Asahi Chem Ind Co Ltd | Resinous composition of powder coating |
| US4298658A (en) * | 1979-09-19 | 1981-11-03 | J.G.L. Chemicals Ltd. | Vapor permeation curable coatings based on alkyd resins |
| US4267239A (en) * | 1979-09-19 | 1981-05-12 | J.G.L. Chemicals Ltd. | Vapor permeation curable coatings based on alkyd resins |
| EP0034919A2 (en) * | 1980-02-20 | 1981-09-02 | Whittaker Corporation | Branched polyesters for adhesives and coating compositions |
| US4340718A (en) * | 1980-06-02 | 1982-07-20 | Eastman Kodak Company | Stabilized copolyester material |
| US4331783A (en) * | 1980-09-17 | 1982-05-25 | S.K.Y. Polymers | Novel block copolymers including acrylonitrile sequences and glutarimide units and processes for preparing same |
| US4343839A (en) * | 1980-12-15 | 1982-08-10 | Ashland Oil, Inc. | Vapor permeation curable polyester resin coating compositions for flexible substrates |
| US4331782A (en) * | 1981-03-05 | 1982-05-25 | Ashland Oil, Inc. | Hydroxybenzoic acid-epoxy adduct capping agents for polyester resins |
| US4355133A (en) * | 1981-07-27 | 1982-10-19 | Celanese Corporation | Polyester of 6-hydroxy-2-naphthoic acid, 4-hydroxy benzoic acid, 1,4-cyclohexanedicarboxylic acid, and aromatic diol capable of readily undergoing melt processing to form articles possessing high impact properties |
| EP0287233A2 (en) * | 1987-03-27 | 1988-10-19 | North Dakota State University | Polymeric vehicle for coatings |
| EP0286444A2 (en) * | 1987-04-10 | 1988-10-12 | Chisso Corporation | Process for producing a liquid crystalline polyester of a cyclohexanedicarboxylic acid and an aromatic diol |
| US5043192A (en) * | 1988-03-15 | 1991-08-27 | North Dakota State University | Polymeric vehicle for coating |
| EP0419088A1 (en) * | 1989-09-06 | 1991-03-27 | Exxon Chemical Patents Inc. | Liquid polymer compositions |
Non-Patent Citations (24)
| Title |
|---|
| Chen and Jones, J. Appl. Polym. Sci., 1988, 36, 141. * |
| Chen and Jones, J. Coat. Technology, 1988, 60, 39. * |
| Delvin and Ober, Polymer Bulletin, 20, 45 51 (1988). * |
| Delvin and Ober, Polymer Bulletin, 20, 45-51 (1988). |
| Derwent Publication Ltd., London, GB; AN 90 103274 and JP, A, 2 053 881 (Towa Kasei Kogyo) Feb. 22, 1990. * |
| Derwent Publication Ltd., London, GB; AN 90-103274 and JP, A, 2 053 881 (Towa Kasei Kogyo) Feb. 22, 1990. |
| Dimian and Jones, "Liquid Crystalline Oligoester Diols as Thermoset Coatings Binders," Ch. 22 Cross-Linked Polymers, ACS Symposium Series 367. |
| Dimian and Jones, Liquid Crystalline Oligoester Diols as Thermoset Coatings Binders, Ch. 22 Cross Linked Polymers, ACS Symposium Series 367. * |
| Jackson et al., Bs. Polym. J., 1980, 12, 154. * |
| Jackson et al., J. Polym. Sci., Polym, Chem. Ed., 1976, 12, 2043. * |
| Jin et al., British Polymer Journal, Dec., 1980, pp. 132 146. * |
| Jin et al., British Polymer Journal, Dec., 1980, pp. 132-146. |
| Jones, et al., Liquid Crystalline Polymers as Binders for Coatings, Fifteenth International Conference in Organic Coatings Science and Technology, Athens, Greece, Jul. 10, 14, 1989. * |
| K. Maruyama, et al., Japan. Kokai 75 40,629, 1975; Chem. Abstr. 1975, 83, 133572y. * |
| K. Maruyama, et al., Japan. Kokai 76 56,839, 1976; Chem. Abstr. 1976, 85, 110175y. * |
| Lenz and Jin, Polymer News, 1986, 11, 200. * |
| P. W. Morgan, Macromolecules, 1977, 10, 1381. * |
| Patent Abstract of Japan, vol. 14, No. 232 (C 719) (4175) May 17, 1990 and JP, A, 25 8 559 (Hitachi Chem. Co. Ltd.) Feb. 27, 1990. * |
| Patent Abstract of Japan, vol. 14, No. 232 (C-719) (4175) May 17, 1990 and JP, A, 25 8 559 (Hitachi Chem. Co. Ltd.) Feb. 27, 1990. |
| S. Nogami, et al., Japan. Kokai 76 44,130, 1976; Chem. Abstr. 1976, 85, 79835n. * |
| S. Nogami, et al., Japan. Kokai 77 73,929, 1977; Chem. Abstr. 1978, 88, 8624u. * |
| S. P. Pappas, J. Coat. Technol., 1989, 61, 51. * |
| Wang and Jones, "Synthesis of Cross-Linkable Heterogenous Oligoester Diols by Direct Esterification with p-Hydroxybenzoic Acid," Ch. 23, Cross-Linked Polymers, ACS Symposium Series 367. |
| Wang and Jones, Synthesis of Cross Linkable Heterogenous Oligoester Diols by Direct Esterification with p Hydroxybenzoic Acid, Ch. 23, Cross Linked Polymers, ACS Symposium Series 367. * |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5312891A (en) * | 1991-06-10 | 1994-05-17 | Eastman Kodak Company | Thermosetting coating compositions |
| US5312892A (en) * | 1991-06-10 | 1994-05-17 | Eastman Kodak Company | Thermosetting coating compositions |
| US5393840A (en) * | 1993-11-01 | 1995-02-28 | Eastman Chemical Company | Thermosetting coating compositions |
| US5416187A (en) * | 1994-04-04 | 1995-05-16 | Eastman Chemical Company | Process for the preparation of phenol-functional polyester resins |
| US20030083425A1 (en) * | 2001-07-06 | 2003-05-01 | Osamu Morimoto | Aqueous resin composition, aqueous coating material containing the composition, coating provided by the material, and metal plate coated with the material |
| US20050176873A1 (en) * | 2001-07-06 | 2005-08-11 | Osamu Morimoto | Aqueous resin composition, aqueous coating material containing the composition, coating provided by the material, and metal plate coated with the material |
| US7030197B2 (en) | 2001-07-06 | 2006-04-18 | Toyo Boseki Kabushiki Kaisha | Aqueous resin composition, aqueous coating material containing the composition, coating provided by the material, and metal plate coated with the material |
| US7452938B2 (en) | 2001-07-06 | 2008-11-18 | Toyo Boseki Kabushiki Kaisha | Aqueous resin composition, aqueous coating material containing the composition, coating provided by the material, and metal plate coated with the material |
| EP1340779A1 (en) * | 2002-02-27 | 2003-09-03 | Toyo Boseki Kabushiki Kaisha | Polyester resin composition |
| US6657016B2 (en) | 2002-03-14 | 2003-12-02 | Toyo Boseki Kabushiki Kaisha | Polyester resin composition |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5256756A (en) | Thermosetting coating compositions | |
| US5358789A (en) | Thermosetting coating compositions | |
| US5256759A (en) | Thermosetting coating compositions | |
| US5393840A (en) | Thermosetting coating compositions | |
| US5359025A (en) | Thermosetting coating compositions | |
| KR20080012326A (en) | Thermosetting Powder Composition | |
| WO1994014871A1 (en) | Polyester coatings containing covalently-bound mesogenic monomers | |
| EP1194493A1 (en) | Fast-dry, high solids coatings based on modified alkyd resins | |
| EP1194469B1 (en) | Polyester resin intermediate compositions and preparation and uses thereof | |
| US4186227A (en) | Coating substances | |
| US5976706A (en) | Low viscosity, high solids polyesterdiols and compositions containing same | |
| US5256757A (en) | Thermosetting coating compositions | |
| US5922474A (en) | Solventless coatings based on low-viscosity polyesters | |
| US5312891A (en) | Thermosetting coating compositions | |
| US5466863A (en) | Thermosetting coating compositions | |
| CA2083225C (en) | Hard, flexible and durable architectural coating | |
| US5368945A (en) | Resin composition based on a polyester resin, an amino resin and an epoxy resin | |
| US5055548A (en) | Sovlent-borne alkyd resin compositions | |
| US5312892A (en) | Thermosetting coating compositions | |
| WO1994016026A1 (en) | Water-borne coating compositions | |
| JPH0286669A (en) | Coating resin composition | |
| JPH0987581A (en) | Coating composition and coated metal sheet using the same | |
| JP2001089703A (en) | Paint composition and coated metal plate using the same | |
| AU7251900A (en) | Low viscosity, high solids polyesterdiols and compositions containing same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KUO, THAUMING;REEL/FRAME:006434/0624 Effective date: 19920928 |
|
| AS | Assignment |
Owner name: EASTMAN CHEMICAL COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:007115/0776 Effective date: 19940223 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19971029 |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |