US5218304A - Electronic pH and ORP indicator - Google Patents
Electronic pH and ORP indicator Download PDFInfo
- Publication number
 - US5218304A US5218304A US07/846,504 US84650492A US5218304A US 5218304 A US5218304 A US 5218304A US 84650492 A US84650492 A US 84650492A US 5218304 A US5218304 A US 5218304A
 - Authority
 - US
 - United States
 - Prior art keywords
 - electrode
 - sensor
 - fluid
 - water
 - solid state
 - Prior art date
 - Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 - Expired - Lifetime
 
Links
- 239000012530 fluid Substances 0.000 claims abstract description 40
 - 239000007787 solid Substances 0.000 claims abstract description 18
 - 238000005259 measurement Methods 0.000 claims abstract description 17
 - 238000001139 pH measurement Methods 0.000 claims abstract description 16
 - XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
 - 229910052801 chlorine Inorganic materials 0.000 claims description 23
 - 239000000460 chlorine Substances 0.000 claims description 23
 - ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 21
 - 230000033116 oxidation-reduction process Effects 0.000 claims description 15
 - BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
 - 229910052751 metal Inorganic materials 0.000 claims description 9
 - 239000002184 metal Substances 0.000 claims description 9
 - 229910052697 platinum Inorganic materials 0.000 claims description 7
 - 238000000576 coating method Methods 0.000 claims description 5
 - 239000011248 coating agent Substances 0.000 claims description 4
 - 239000004973 liquid crystal related substance Substances 0.000 claims description 3
 - 229910044991 metal oxide Inorganic materials 0.000 claims description 3
 - 150000004706 metal oxides Chemical class 0.000 claims description 3
 - 229920000642 polymer Polymers 0.000 claims description 3
 - 150000003839 salts Chemical class 0.000 claims description 3
 - TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 3
 - IQDRAVRWQIIASA-VZPOTTSCSA-N phlorin Chemical compound C/1=C(N2)\C=C\C2=C\C(N2)=CC=C2CC(N2)=CC=C2\C=C2\C=CC\1=N2 IQDRAVRWQIIASA-VZPOTTSCSA-N 0.000 claims description 2
 - 229910021607 Silver chloride Inorganic materials 0.000 claims 2
 - HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims 2
 - 229910052741 iridium Inorganic materials 0.000 claims 2
 - GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims 2
 - 229910000457 iridium oxide Inorganic materials 0.000 claims 2
 - 229910052709 silver Inorganic materials 0.000 claims 2
 - 239000004332 silver Substances 0.000 claims 2
 - HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims 2
 - 230000020477 pH reduction Effects 0.000 claims 1
 - 238000000034 method Methods 0.000 description 10
 - 230000009182 swimming Effects 0.000 description 8
 - 239000003990 capacitor Substances 0.000 description 7
 - 239000000758 substrate Substances 0.000 description 7
 - 239000000463 material Substances 0.000 description 6
 - 235000013305 food Nutrition 0.000 description 5
 - 230000008569 process Effects 0.000 description 5
 - CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
 - GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 4
 - 238000001816 cooling Methods 0.000 description 4
 - WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
 - 239000007788 liquid Substances 0.000 description 3
 - OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
 - KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
 - RJVIHTRUFYZOGY-UHFFFAOYSA-N [Ir].[Ir]=O Chemical compound [Ir].[Ir]=O RJVIHTRUFYZOGY-UHFFFAOYSA-N 0.000 description 2
 - 239000000853 adhesive Substances 0.000 description 2
 - 230000001070 adhesive effect Effects 0.000 description 2
 - 229960005070 ascorbic acid Drugs 0.000 description 2
 - 235000010323 ascorbic acid Nutrition 0.000 description 2
 - 239000011668 ascorbic acid Substances 0.000 description 2
 - 239000003086 colorant Substances 0.000 description 2
 - 238000010586 diagram Methods 0.000 description 2
 - 239000003651 drinking water Substances 0.000 description 2
 - 235000020188 drinking water Nutrition 0.000 description 2
 - 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
 - 230000007257 malfunction Effects 0.000 description 2
 - 239000000203 mixture Substances 0.000 description 2
 - 229920005989 resin Polymers 0.000 description 2
 - 239000011347 resin Substances 0.000 description 2
 - 239000004065 semiconductor Substances 0.000 description 2
 - 230000000007 visual effect Effects 0.000 description 2
 - 241000894006 Bacteria Species 0.000 description 1
 - 229920002799 BoPET Polymers 0.000 description 1
 - WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
 - 241000195493 Cryptophyta Species 0.000 description 1
 - 240000002129 Malva sylvestris Species 0.000 description 1
 - 235000006770 Malva sylvestris Nutrition 0.000 description 1
 - 229920000557 Nafion® Polymers 0.000 description 1
 - GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
 - 229910052794 bromium Inorganic materials 0.000 description 1
 - 239000000919 ceramic Substances 0.000 description 1
 - 230000008859 change Effects 0.000 description 1
 - 235000013351 cheese Nutrition 0.000 description 1
 - 239000003638 chemical reducing agent Substances 0.000 description 1
 - 239000004020 conductor Substances 0.000 description 1
 - 238000010411 cooking Methods 0.000 description 1
 - 239000008162 cooking oil Substances 0.000 description 1
 - 238000013461 design Methods 0.000 description 1
 - 238000005516 engineering process Methods 0.000 description 1
 - 230000005183 environmental health Effects 0.000 description 1
 - 239000010408 film Substances 0.000 description 1
 - -1 for example Substances 0.000 description 1
 - 235000015203 fruit juice Nutrition 0.000 description 1
 - PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
 - 229910052737 gold Inorganic materials 0.000 description 1
 - 239000010931 gold Substances 0.000 description 1
 - 239000012535 impurity Substances 0.000 description 1
 - 239000010687 lubricating oil Substances 0.000 description 1
 - 238000004519 manufacturing process Methods 0.000 description 1
 - 238000012986 modification Methods 0.000 description 1
 - 230000004048 modification Effects 0.000 description 1
 - 239000003921 oil Substances 0.000 description 1
 - 239000007800 oxidant agent Substances 0.000 description 1
 - 229910052763 palladium Inorganic materials 0.000 description 1
 - 229920006267 polyester film Polymers 0.000 description 1
 - 238000002360 preparation method Methods 0.000 description 1
 - 239000011369 resultant mixture Substances 0.000 description 1
 - 238000005070 sampling Methods 0.000 description 1
 - 238000004544 sputter deposition Methods 0.000 description 1
 - 238000012360 testing method Methods 0.000 description 1
 - 239000010409 thin film Substances 0.000 description 1
 - 238000007704 wet chemistry method Methods 0.000 description 1
 
Images
Classifications
- 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
 - G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
 - G01N27/416—Systems
 - G01N27/4166—Systems measuring a particular property of an electrolyte
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F1/00—Treatment of water, waste water, or sewage
 - C02F1/72—Treatment of water, waste water, or sewage by oxidation
 - C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
 - C02F2103/42—Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F2209/00—Controlling or monitoring parameters in water treatment
 - C02F2209/04—Oxidation reduction potential [ORP]
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
 - C02F2209/00—Controlling or monitoring parameters in water treatment
 - C02F2209/06—Controlling or monitoring parameters in water treatment pH
 
 
Definitions
- This invention relates to a sensor which may be used over an extended period of time in a fluid to indicate the pH and the oxidation-reduction potential (ORP) of the fluid.
 - ORP oxidation-reduction potential
 - this invention relates to a sensor which can be immersed in swimming pools, or other bodies of water which contain chlorine, for an extended period of time to continuously indicate the pH and chlorine content of the water.
 - a common method for measuring the pH of a body of water such as that found in a swimming pool requires daily sampling using wet chemistry in which a sample of the water being tested is mixed with an indicator fluid and the color of the resultant mixture is compared to the colors shown on a chart to determine the pH of the water.
 - This process is often inconvenient, especially for a homeowner with a swimming pool, and it often provides incorrect readings of the pH of the water.
 - the measurement of the sample of water and of the indicator fluid is often inexact and, as a result, the color of the mixture varies.
 - the visual comparison of the color of the mixture with the colors shown on the chart is also inexact.
 - the measured pH may vary a great deal from the actual pH of the water and any treatment of the water based upon that measurement may not be correct.
 - This invention is directed to a sensor which will remain for an extended period of time in a fluid, such as a body of water to continuously measure and indicate the pH and the oxidation-reduction (ORP) potential of the fluid.
 - the sensor may also be called an indicator, or other similar names, and these names are considered to be equivalent.
 - the invention is a sensor which may be immersed in a fluid to measure the pH and the ORP potential of the fluid.
 - the sensor which will be within a fluid-tight enclosure, has three solid state electrodes which extend into the fluid.
 - the first electrode is a pH sensing electrode
 - the second is a reference electrode for the first and third electrodes
 - the third is an ORP potential sensing electrode.
 - the enclosure further contains a display means visible from outside the enclosure for indicating the pH measurement and the ORP potential.
 - FIG. 1 is a side view of a sealed enclosure that houses the sensor showing the position of the electrodes and the display means.
 - FIG. 2 is a view of the face of the enclosure showing the display means.
 - FIG. 3 is a view of the back of the enclosure showing electrodes which extend from the enclosure into the fluid.
 - FIG. 4 is a view of a portion of the enclosure surface showing an alternate position for the electrodes.
 - FIG. 5 is a circuit diagram illustrating an electrical circuit for the sensor.
 - FIGS. 1 through 4 show the invention which is a sensor 10 which will remain immersed for an extended period of time in a fluid containing a material whose presence creates an oxidation-reduction (ORP) potential in the fluid to continuously indicate the pH and the OR potential of the fluid.
 - the fluid may be water for any use such as, for example, industrial cooling and process water, drinking water, and water for swimming pools, aquariums and spas.
 - the fluid may also be a food product such as, for example, juices, cheeses and other food products containing liquids, or cooking and lubricating oils, organic resins or other liquids in manufacturing processes and food preparation.
 - the sensor 10 will be most useful in swimming pools, spas, aquariums, cooling towers and other similar bodies of water in which the measurement of the pH and the chlorine content must be routinely and repetitively performed.
 - the sensor 10 has a fluid- or water-tight, sealed enclosure 11 that is preferably immersed in, but may be allowed to float on, the fluid to provide a continuous indication of the pH and the oxidation-reduction (ORP) potential of the fluid.
 - the sensor 10 has three solid state electrodes which extend into the fluid.
 - the first electrode 15 is a solid state junction-type metal/metal oxide pH sensing electrode which may be, for example, an iridium-iridium oxide electrode such as the electrode described in U.S. Pat. No. 4,818,365, the specification of which is incorporated by reference.
 - the second electrode 16 is a solid state junction-type metal/metal salt reference electrode which may be, for example, a silver-silver chloride electrode such as the electrode described in U.S.
 - the third electrode 17 is an electrode for measuring the oxidation-reduction (ORP) potential of the fluid. It is preferred that the third electrode 17 be a platinum electrode; however, the electrode may alternatively be made of other similar materials such as gold and palladium. If electrode 17 is platinum, it may be a platinum wire but it preferably may be produced, for example, by sputtering platinum on a nonconductive substrate, such as ceramic, or on a thin polyester film, such as Mylar® produced by E. I. duPont de Nemoirs and Company.
 - the second electrode 16 serves as the reference electrode for both the pH measurement and the ORP potential measurement. It is contemplated that the first and second electrodes, 15 and 16, can be coated with a perfluorocarbon coating such as the Nafion® polymer made by the E. I. duPont de Nemoirs and Company.
 - the electrodes will extend through one surface, or wall, 13 of the enclosure 11, as shown in FIG. 1, so that the electrodes are in contact with the fluid.
 - the electrodes pass through seals (not shown), such as o-ring seals or other commonly known seals, in the surface 13 which prevent the fluid from entering the water-tight, sealed enclosure 11.
 - the electrodes may be produced in a manner different from that described above.
 - the electrodes may, for example, be produced as coatings on the surface of a conductive material embedded in a nonconductive substrate as described in pending U.S. patent application Ser. No. 07/450,783, filed Dec. 14, 1989, the specification of which is incorporated by reference. If the electrodes are produced in this manner, the nonconductive substrate, instead of the electrodes as described above, would extend through surface 13 of enclosure 11 to provide contact between the electrodes and the fluid.
 - the nonconductive substrate may be attached to the exterior of the enclosure 11 by adhesives, or any other commonly known method, and wires from the electrodes to the sensor electronics would extend through a seal in the surface 13 of enclosure 11.
 - the electrodes may also be produced by coating the appropriate material on thin substrates such as films.
 - the enclosure 11 may be modified as shown in FIG. 4 to provide one or more apertures or windows 18 in the sides of the enclosure so that the electrodes may be mounted within the enclosure 11 while maintaining contact with the fluid.
 - the thin substrate supporting the electrodes is mounted within the enclosure 11 with the electrodes centered within the opening of the aperture 18 and facing outward from the enclosure.
 - Each electrode may be positioned within a separate aperture 18 or the three electrodes may be centered within a single aperture 18.
 - the surface between the aperture or the inner wall of the enclosure 11 surrounding the aperture 18 and the surface of the substrate supporting the electrodes is sealed using any commonly known method such as a gasket or adhesive.
 - the sensor 10 also includes display means 20, visible from the exterior of the enclosure 11, for indicating that the pH of the fluid is within the desired range and that there is a sufficient ORP potential present in the fluid.
 - the display means 20 is mounted on an interior surface 14 of enclosure 11 and is visible from the exterior of the enclosure 11 through the transparent panel or window 12.
 - the display means 20 may be any appropriate indicator such as lights, meters or liquid crystal displays that will provide a visual display of the measured values. While meters are easily read, it is preferred that the display means 20 be indicator lights such as colored light emitting diodes (LED) which are easily seen but require very little electrical power to operate.
 - LED colored light emitting diodes
 - display means 20 includes a first light, a green light, 21 which flashes if the measured pH level is too low, a second light, a red light, 22 which flashes if the measured pH level is too high, and a third light, a yellow light, 23 that flashes if the measured ORP potential is too low.
 - the red light 22 is also used to indicate that the sensor is operating properly. If the sensor malfunctions, the red light 22 glows steadily. It is also desired to provide an indication of how much the measured values for the pH and ORP potential of the fluid deviate from the desired levels. To provide this indication, the flashing of the lights is varied with the flashing becoming more rapid as the measured value deviates farther from the desired levels.
 - Power for the sensor is provided by batteries within the enclosure 11.
 - the power required, and the size of the battery depends upon the design of the electrical circuit, the desired operational life of the sensor before the battery must be replaced, and the space available within the enclosure for the battery. For this sensor, six volts are provided by four expendable AA size dry cell batteries.
 - a light may be provided or one of the lights of the display means may be used to indicate that battery power for the sensor is getting low, that is, that the batteries are becoming discharged and that they should be replaced to maintain the proper operation of the sensor.
 - FIG. 5 is an electrical circuit diagram for the sensor of this invention.
 - the integrated circuit devices used in the circuit and the other circuit elements are identified in Table 1.
 - Table 1 the values of the resistors are shown in ohms, with "M” indicating megohms and "K” indicating kilo-ohms, and the value of the capacitors is shown in microfarads. While this is the circuit used with this invention, it is recognized that other circuits may be designed and that the other circuits may perform the same function equally well.
 - ORP oxidation-reduction potential
 - the senor 10 is in a sealed, water-tight enclosure 11 from which three electrodes extend.
 - the electrodes are a solid state iridium-iridium oxide electrode 15 for the measurement of pH, a platinum electrode 17 for the measurement of the amount of chlorine present and a solid state silver-silver chloride reference electrode 16 that functions as a reference electrode for both of the measurement electrodes.
 - the enclosure 11 includes a transparent panel or window 12 through which the indicator lights, colored light emitting diodes, that form display means 20 may be seen.
 - Display means 20 includes a first light, a green light, 21 which flashes if the measured pH level is lower than the desired minimum of 7.0 pH, a second light, a red light, 22 which flashes if the measured pH level is higher than the desired maximum of 8.0 pH, and a third light, a yellow light, 23 that flashes if the measured chlorine level is lower than the desired minimum of 1 to 2 parts per million of chlorine in the water.
 - the appropriate light will flash a warning when the measured pH of the water is outside the desired range of 7.0-8.0 pH and when the chlorine content of the water is less than the safe minimum. If the sensor 10 is not functioning properly, the red light 22 will operate continuously, that is it will glow steadily instead of flashing, to provide a warning of the malfunction of the sensor 10.
 - the sensor has been described as being self-contained within a sealed enclosure. However, it is also possible to separate the electrodes from the electrical circuit and the display means to provide a display of the pH and ORP measurement at a location remote from the fluid.
 - the electrodes are mounted in a sealed enclosure, such as the enclosure described above for the sensor, which can be immersed so that the electrodes are in contact with the fluid.
 - the electrodes and the enclosure may be produced as described above.
 - the electrical circuit and the display means which are also produced as described above, are contained within a second enclosure that may be mounted at any convenient location and an electrical cable, with the necessary number of wires, is used to connect the electrodes to the electrical circuit.
 
Landscapes
- Chemical & Material Sciences (AREA)
 - Life Sciences & Earth Sciences (AREA)
 - Health & Medical Sciences (AREA)
 - Physics & Mathematics (AREA)
 - Chemical Kinetics & Catalysis (AREA)
 - Electrochemistry (AREA)
 - Molecular Biology (AREA)
 - Analytical Chemistry (AREA)
 - Biochemistry (AREA)
 - General Health & Medical Sciences (AREA)
 - General Physics & Mathematics (AREA)
 - Immunology (AREA)
 - Pathology (AREA)
 - Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
 
Abstract
A sensor which may be immersed in a fluid to measure the pH and the ORP potential of the fluid is taught. The sensor has three solid state electrodes, a pH sensing electrode, a reference electrode and an ORP potential sensing electrode, which extend from a fluid-tight enclosure. The enclosure further contains a display means for indicating the pH measurement and the ORP potential measurement.
  Description
This invention relates to a sensor which may be used over an extended period of time in a fluid to indicate the pH and the oxidation-reduction potential (ORP) of the fluid.
    More particularly, this invention relates to a sensor which can remain in water for an extended period of time to continuously indicate the pH and the oxidation-reduction potential (ORP) of the water.
    More particularly, this invention relates to a sensor which can be immersed in swimming pools, or other bodies of water which contain chlorine, for an extended period of time to continuously indicate the pH and chlorine content of the water.
    Bodies of treated water are required for many purposes in industry, recreation and education and for each user the problems encountered in maintaining the quality of the water require great efforts. Typically the efforts of industry to maintain cooling tower and process water and the efforts of governments and individuals to maintain many other bodies of water such as, for example, drinking water supplies, swimming pools and aquariums require constant attention to the water conditions and, in particular, to the pH of the water and to the amount of chlorine that is present. These measurements must be taken frequently and the results are often inaccurate.
    Similar problems are encountered by the users and producers of many other fluids such as oils, organic resins and food products such as juices and other food products containing liquids. Producers of fruit juices, for example, are concerned about the pH of their product and about the amount of ascorbic acid that is present. Numerous materials can create an ORP potential in a fluid and examples of these materials are chlorine, bromine and permanganates which are oxidizing agents and ascorbic acid, formaldehyde and hydrazine which are reducing agents. Measurement and control of these and other similar materials are of concern in many processes.
    The problems often encountered in the control of the pH and ORP potentials of a fluid may be shown by an example. A common method for measuring the pH of a body of water such as that found in a swimming pool requires daily sampling using wet chemistry in which a sample of the water being tested is mixed with an indicator fluid and the color of the resultant mixture is compared to the colors shown on a chart to determine the pH of the water. This process is often inconvenient, especially for a homeowner with a swimming pool, and it often provides incorrect readings of the pH of the water. The measurement of the sample of water and of the indicator fluid is often inexact and, as a result, the color of the mixture varies. Furthermore, the visual comparison of the color of the mixture with the colors shown on the chart is also inexact. Thus, the measured pH may vary a great deal from the actual pH of the water and any treatment of the water based upon that measurement may not be correct.
    This invention is directed to a sensor which will remain for an extended period of time in a fluid, such as a body of water to continuously measure and indicate the pH and the oxidation-reduction (ORP) potential of the fluid. The sensor may also be called an indicator, or other similar names, and these names are considered to be equivalent.
    The invention is a sensor which may be immersed in a fluid to measure the pH and the ORP potential of the fluid. The sensor, which will be within a fluid-tight enclosure, has three solid state electrodes which extend into the fluid. The first electrode is a pH sensing electrode, the second is a reference electrode for the first and third electrodes and the third is an ORP potential sensing electrode. The enclosure further contains a display means visible from outside the enclosure for indicating the pH measurement and the ORP potential.
    These and other features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
    
    
    FIG. 1 is a side view of a sealed enclosure that houses the sensor showing the position of the electrodes and the display means.
    FIG. 2 is a view of the face of the enclosure showing the display means.
    FIG. 3 is a view of the back of the enclosure showing electrodes which extend from the enclosure into the fluid.
    FIG. 4 is a view of a portion of the enclosure surface showing an alternate position for the electrodes.
    FIG. 5 is a circuit diagram illustrating an electrical circuit for the sensor.
    
    
    FIGS. 1 through 4 show the invention which is a sensor  10 which will remain immersed for an extended period of time in a fluid containing a material whose presence creates an oxidation-reduction (ORP) potential in the fluid to continuously indicate the pH and the OR potential of the fluid. The fluid may be water for any use such as, for example, industrial cooling and process water, drinking water, and water for swimming pools, aquariums and spas. The fluid may also be a food product such as, for example, juices, cheeses and other food products containing liquids, or cooking and lubricating oils, organic resins or other liquids in manufacturing processes and food preparation. However, it is contemplated that the sensor  10 will be most useful in swimming pools, spas, aquariums, cooling towers and other similar bodies of water in which the measurement of the pH and the chlorine content must be routinely and repetitively performed.
    The description of the use of the sensor in swimming pools hereinafter is not meant to limit the applicability of the sensor for use in other applications such as spas, cooling towers and aquariums, nor is it meant to limit the applicability of the sensor for use in fluids other than water.
    The sensor  10 has a fluid- or water-tight, sealed enclosure 11 that is preferably immersed in, but may be allowed to float on, the fluid to provide a continuous indication of the pH and the oxidation-reduction (ORP) potential of the fluid. The sensor  10 has three solid state electrodes which extend into the fluid. The first electrode  15 is a solid state junction-type metal/metal oxide pH sensing electrode which may be, for example, an iridium-iridium oxide electrode such as the electrode described in U.S. Pat. No. 4,818,365, the specification of which is incorporated by reference. The second electrode  16 is a solid state junction-type metal/metal salt reference electrode which may be, for example, a silver-silver chloride electrode such as the electrode described in U.S. Pat. No. 4,908,117, the specification of which is incorporated by reference. The third electrode  17 is an electrode for measuring the oxidation-reduction (ORP) potential of the fluid. It is preferred that the third electrode  17 be a platinum electrode; however, the electrode may alternatively be made of other similar materials such as gold and palladium. If electrode  17 is platinum, it may be a platinum wire but it preferably may be produced, for example, by sputtering platinum on a nonconductive substrate, such as ceramic, or on a thin polyester film, such as Mylar® produced by E. I. duPont de Nemoirs and Company. The second electrode  16 serves as the reference electrode for both the pH measurement and the ORP potential measurement. It is contemplated that the first and second electrodes, 15 and 16, can be coated with a perfluorocarbon coating such as the Nafion® polymer made by the E. I. duPont de Nemoirs and Company.
    If the three solid state electrodes are produced in accordance with the patents described above, then the electrodes will extend through one surface, or wall, 13 of the enclosure 11, as shown in FIG. 1, so that the electrodes are in contact with the fluid. The electrodes pass through seals (not shown), such as o-ring seals or other commonly known seals, in the surface  13 which prevent the fluid from entering the water-tight, sealed enclosure 11.
    It is also contemplated that the electrodes may be produced in a manner different from that described above. The electrodes may, for example, be produced as coatings on the surface of a conductive material embedded in a nonconductive substrate as described in pending U.S. patent application Ser. No. 07/450,783, filed Dec. 14, 1989, the specification of which is incorporated by reference. If the electrodes are produced in this manner, the nonconductive substrate, instead of the electrodes as described above, would extend through surface  13 of enclosure 11 to provide contact between the electrodes and the fluid. Alternatively, the nonconductive substrate may be attached to the exterior of the enclosure 11 by adhesives, or any other commonly known method, and wires from the electrodes to the sensor electronics would extend through a seal in the surface  13 of enclosure 11.
    The electrodes may also be produced by coating the appropriate material on thin substrates such as films. For electrodes produced on thin films, the enclosure 11 may be modified as shown in FIG. 4 to provide one or more apertures or windows  18 in the sides of the enclosure so that the electrodes may be mounted within the enclosure 11 while maintaining contact with the fluid. The thin substrate supporting the electrodes is mounted within the enclosure 11 with the electrodes centered within the opening of the aperture  18 and facing outward from the enclosure. Each electrode may be positioned within a separate aperture  18 or the three electrodes may be centered within a single aperture  18. The surface between the aperture or the inner wall of the enclosure 11 surrounding the aperture  18 and the surface of the substrate supporting the electrodes is sealed using any commonly known method such as a gasket or adhesive.
    The sensor  10 also includes display means 20, visible from the exterior of the enclosure 11, for indicating that the pH of the fluid is within the desired range and that there is a sufficient ORP potential present in the fluid. The display means 20 is mounted on an interior surface  14 of enclosure 11 and is visible from the exterior of the enclosure 11 through the transparent panel or window  12. The display means 20 may be any appropriate indicator such as lights, meters or liquid crystal displays that will provide a visual display of the measured values. While meters are easily read, it is preferred that the display means 20 be indicator lights such as colored light emitting diodes (LED) which are easily seen but require very little electrical power to operate. As an example, display means 20 includes a first light, a green light, 21 which flashes if the measured pH level is too low, a second light, a red light, 22 which flashes if the measured pH level is too high, and a third light, a yellow light, 23 that flashes if the measured ORP potential is too low. The red light  22 is also used to indicate that the sensor is operating properly. If the sensor malfunctions, the red light  22 glows steadily. It is also desired to provide an indication of how much the measured values for the pH and ORP potential of the fluid deviate from the desired levels. To provide this indication, the flashing of the lights is varied with the flashing becoming more rapid as the measured value deviates farther from the desired levels.
    Power for the sensor is provided by batteries within the enclosure 11. The power required, and the size of the battery, depends upon the design of the electrical circuit, the desired operational life of the sensor before the battery must be replaced, and the space available within the enclosure for the battery. For this sensor, six volts are provided by four expendable AA size dry cell batteries. Optionally, a light may be provided or one of the lights of the display means may be used to indicate that battery power for the sensor is getting low, that is, that the batteries are becoming discharged and that they should be replaced to maintain the proper operation of the sensor.
    FIG. 5 is an electrical circuit diagram for the sensor of this invention. The integrated circuit devices used in the circuit and the other circuit elements are identified in Table 1. In Table 1 the values of the resistors are shown in ohms, with "M" indicating megohms and "K" indicating kilo-ohms, and the value of the capacitors is shown in microfarads. While this is the circuit used with this invention, it is recognized that other circuits may be designed and that the other circuits may perform the same function equally well.
                  TABLE 1                                                     
______________________________________                                    
                                 MANU-                                    
LABEL  DESCRIPTION   VALUE       FACTURER                                 
______________________________________                                    
R1     Resistor      2.2M                                                 
R2     Resistor      24K                                                  
R3     Resistor      2.2M                                                 
R4     Resistor      100K                                                 
R5     Resistor      2.2M                                                 
R6     Resistor      150K                                                 
R7     Resistor      1.2M                                                 
R8     Resistor      22K                                                  
R9     Resistor      1.2M                                                 
R10    Resistor      33K                                                  
R11    Resistor      220K                                                 
R12    Resistor      1K                                                   
R13    Resistor      1K                                                   
R14    Resistor      47K                                                  
R15    Resistor      470K                                                 
R16    Resistor      1K                                                   
R17    Resistor      1.8M                                                 
R18    Resistor      3.6M                                                 
R19    Resistor      1M                                                   
R20    Resistor      270K                                                 
R21    Resistor      3.3M                                                 
R22    Resistor      680K                                                 
R23    Resistor      3.3M                                                 
R24    Potentiometer 1M                                                   
R25    Resistor      4.7M                                                 
R26    Resistor      100K                                                 
R27    Potentiometer 1M                                                   
R28    Potentiometer 200K                                                 
R29    Potentiometer 200K                                                 
R30    Potentiometer 500K                                                 
R31    Potentiometer 100K                                                 
R32    Potentiometer 50K                                                  
R33    Resistor      1K                                                   
C1     Capacitor     0.1 μF                                            
C2     Capacitor     10 μF                                             
C3     Capacitor     1 μF                                              
C4     Capacitor     0.01 μF                                           
C5     Capacitor     1 μF                                              
C6     Capacitor     0.01 μF                                           
D1     Light Emitting                                                     
       diode - Red                                                        
D2     Light Emitting                                                     
       Diode Green                                                        
D3     Light Emitting                                                     
       Diode Yellow                                                       
D4     Diode         IN 4001                                              
D5     Diode         IN 4001                                              
D6     Diode         IN 4001                                              
D7     Diode         IN 4001                                              
D8     Diode         IN 4001                                              
Q1     Transistor    PN 2222A                                             
Q2     Transistor    PN 2222A                                             
Q3     Transistor    PN 2222A                                             
Q4     Transistor    PN 2222A                                             
U1     Integrated Circuit                                                 
                     TLC274ACN/P Texas                                    
                                 Instrument                               
U2     Integrated Circuit                                                 
                     TLC274ACN/P Texas                                    
                                 Instrument                               
U3     Integrated Circuit                                                 
                     CD4071BE    Harris                                   
U4     Integrated Circuit                                                 
                     CD4081BE    Harris                                   
U5     Integrated Circuit                                                 
                     TLC555CN/P  National Semi-                           
                                 conductor                                
U6     Integrated Circuit                                                 
                     TL011CLP    Texas                                    
                                 Instruments                              
U7     Integrated Circuit                                                 
                     LM2931-5AQ  Motorolla                                
U8     Integrated Circuit                                                 
                     TLC555CN/P  National Semi-                           
                                 conductor                                
U9     Integrated Circuit                                                 
                     LM741/P     Signetics                                
E1     pH Sensing                                                         
       Electrode                                                          
E2     ORP Sensing                                                        
       Electrode                                                          
Ground Reference                                                          
       Electrode                                                          
B      Battery                                                            
______________________________________                                    
    
    Normally, it is presumed that maintaining a free-chlorine residual of two milligrams per liter or two parts per million, provides good water quality. Within the past few years, the National Environmental Health Association and the National Sanitation Foundation have indicated that the measurement of the oxidation-reduction potential (ORP) is more important because it will distinguish between free and combined chlorine. ORP is defined as the oxidation-reduction potential of a sanitizer such as chlorine. These oxidizers "burn-off" impurities in the water, including body wastes, algae and bacteria. An ORP sensor measures the potential generated by the active form of the sanitizer, and not the inactive forms such as combined chlorine. ORP testing is an ongoing electronic process that monitors sanitation levels. It has been determined that the free chlorine levels are more than adequate if the ORP measurement at platinum is at an acceptable level of approximately 650 millivolts or greater relative to a silver-silver chloride reference electrode, depending upon the pH of the fluid. The third electrode  17, discussed above regarding the measurement of the amount of chlorine in the water, is actually measuring the oxidation-reduction potential of the free-chlorine in the water. The yellow light  23 flashes whenever the measured potential is less than approximately 650 millivolts, relative to the silver-silver chloride reference electrode, to indicate that additional chlorine should be added to the water.
    For a swimming pool the sensor  10 is in a sealed, water-tight enclosure 11 from which three electrodes extend. The electrodes are a solid state iridium-iridium oxide electrode  15 for the measurement of pH, a platinum electrode  17 for the measurement of the amount of chlorine present and a solid state silver-silver chloride reference electrode  16 that functions as a reference electrode for both of the measurement electrodes. The enclosure 11 includes a transparent panel or window  12 through which the indicator lights, colored light emitting diodes, that form display means 20 may be seen. Display means 20 includes a first light, a green light, 21 which flashes if the measured pH level is lower than the desired minimum of 7.0 pH, a second light, a red light, 22 which flashes if the measured pH level is higher than the desired maximum of 8.0 pH, and a third light, a yellow light, 23 that flashes if the measured chlorine level is lower than the desired minimum of 1 to 2 parts per million of chlorine in the water. Thus the appropriate light will flash a warning when the measured pH of the water is outside the desired range of 7.0-8.0 pH and when the chlorine content of the water is less than the safe minimum. If the sensor  10 is not functioning properly, the red light  22 will operate continuously, that is it will glow steadily instead of flashing, to provide a warning of the malfunction of the sensor  10.
    The sensor has been described as being self-contained within a sealed enclosure. However, it is also possible to separate the electrodes from the electrical circuit and the display means to provide a display of the pH and ORP measurement at a location remote from the fluid. For this configuration, the electrodes are mounted in a sealed enclosure, such as the enclosure described above for the sensor, which can be immersed so that the electrodes are in contact with the fluid. The electrodes and the enclosure may be produced as described above. The electrical circuit and the display means, which are also produced as described above, are contained within a second enclosure that may be mounted at any convenient location and an electrical cable, with the necessary number of wires, is used to connect the electrodes to the electrical circuit. Since this configuration moves the electrical circuit and the display means to a location remote from the fluid, it is possible to replace the batteries that provide power for the sensor with another source of power. With a small change to the electrical circuit, it is possible to use a direct current source or an alternating current source to provide power for the sensor.
    It will be apparent from the foregoing that many other variations and modifications may be made in the apparatus and methods herein before described, by those having experience in this technology, without departing from the concept of the present invention. Accordingly, it should be clearly understood that the apparatus and methods depicted in the accompanying drawings and referred to in the foregoing description are illustrative only and not intended to have limitations on the scope of the invention.
    
  Claims (20)
1. A sensor for measuring the pH and the oxidation-reduction potential of a fluid comprising a first, a second and a third solid state electrode, said first electrode being a pH sensing electrode, said second electrode being a reference electrode for said first and third electrodes and said third electrode being an oxidation-reduction potential sensing electrode, said electrodes extending from a fluid-tight enclosure having display means for indicating said pH and oxidation-reduction potential measurement.
    2. The sensor of claim 1 wherein said first electrode is a solid state metal/metal oxide pH sensing electrode and said second electrode is a solid state metal/metal salt reference electrode.
    3. The sensor of claim 2 wherein said first electrode is a solid state iridium/iridium oxide pH measurement electrode and said second electrode is a solid state silver/silver chloride reference electrode.
    4. The sensor of claim 3 wherein said first and said second electrodes are coated with a perfluorocarbon polymer coating.
    5. The sensor of claim 1 wherein said third electrode is a platinum electrode for measuring the oxidation-reduction potential of said fluid.
    6. The sensor of claim 1 wherein said display means comprises a first light for indicating low pH, a second light for indicating high pH, and a third light for indicating low oxidation-reduction potential.
    7. The sensor of claim 1 wherein said display means comprises a meter for indicating said pH measurement and a light for indicating said oxidation-reduction potential measurement.
    8. The sensor of claim 1 wherein said display means comprises a liquid crystal display.
    9. The sensor of claim 1 wherein said fluid-tight enclosure floats on the surface of said fluid.
    10. The sensor of claim 1 wherein said fluid-tight enclosure is immersed in said fluid.
    11. A sensor for measuring the pH and the chlorine content of a body of water comprising a first, a second and a third solid state electrode, said first electrode being a pH sensing electrode, said second electrode being a reference electrode for said first and third electrodes and said third electrode being a chlorine sensing electrode, said electrodes extending from a water-tight enclosure having display means for indicating said pH and chlorine measurement.
    12. The sensor of claim 11 wherein said first electrode is a solid state metal/metal oxide pH sensing electrode and said second electrode is a solid state metal/metal salt reference electrode.
    13. The sensor of claim 12 wherein said first electrode is a solid state iridium/iridium oxide pH measurement electrode and said second electrode is a solid state silver/silver chloride reference electrode.
    14. The sensor of claim 13 wherein said first and said second electrodes are coated with a perfluorocarbon polymer coating.
    15. The sensor of claim 11 wherein said third electrode is a platinum electrode for measuring the amount of chlorine present in the water.
    16. The sensor of claim 11 wherein said display means comprises a first light for indicating low pH, a second light for indicating high pH, and a third light for indicating low chlorine content.
    17. The sensor of claim 11 wherein said display means comprises a meter for indicating said pH measurement and a light for indicating said chlorine measurement.
    18. The sensor of claim 11 wherein said display means comprises a liquid crystal display.
    19. The sensor of claim 11 wherein said water-tight enclosure floats on the surface of said water.
    20. The sensor of claim 11 wherein said water-tight enclosure is immersed in said water.
    Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US07/846,504 US5218304A (en) | 1992-03-06 | 1992-03-06 | Electronic pH and ORP indicator | 
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US07/846,504 US5218304A (en) | 1992-03-06 | 1992-03-06 | Electronic pH and ORP indicator | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| US5218304A true US5218304A (en) | 1993-06-08 | 
Family
ID=25298116
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US07/846,504 Expired - Lifetime US5218304A (en) | 1992-03-06 | 1992-03-06 | Electronic pH and ORP indicator | 
Country Status (1)
| Country | Link | 
|---|---|
| US (1) | US5218304A (en) | 
Cited By (38)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5268092A (en) * | 1992-02-03 | 1993-12-07 | H.E.R.C., Inc. | Two water control system using oxidation reduction potential sensing | 
| US5332494A (en) * | 1992-02-03 | 1994-07-26 | H.E.R.C. Incorporated | Water control system using oxidation reduction potential sensing | 
| US5342510A (en) * | 1992-02-03 | 1994-08-30 | H.E.R.C. Incorporated | Water control system using oxidation reduction potential sensing | 
| WO1996015444A3 (en) * | 1994-11-16 | 1996-08-01 | Waldemar Gottardi | Process for determining the equilibrium concentrations of halogen, halogenide, trihalogenide, hypohalogenite and hypohalogenic acid components in aqueous solutions | 
| US5689089A (en) * | 1996-09-20 | 1997-11-18 | Motorola, Inc. | Electronic control module having fluid-tight seals of a polymer material which expands when wet | 
| US5798940A (en) * | 1996-07-05 | 1998-08-25 | Bratton; Wes | In situ oxidation reduction potential measurement of soils and ground water | 
| US6238553B1 (en) * | 1999-11-18 | 2001-05-29 | Fong-Jei Lin | Buoyant water chlorinator with temperature, pH measurement and chlorine concentration displays | 
| US20030130631A1 (en) * | 1997-10-14 | 2003-07-10 | Springer John S. | Method and apparatus for indicating the conditions in an absorbent article | 
| WO2003006982A3 (en) * | 2001-07-10 | 2003-07-24 | Digital Concepts Of Missouri I | Galvanic probes as ph oxidation reduction potential sensors, control devices employing such probes, and related methods | 
| WO2004019295A1 (en) * | 2002-08-23 | 2004-03-04 | Aqua Products Inc. | Pool cleaner with on-board water analysis, data recording and transmission device | 
| US20040144699A1 (en) * | 2003-01-27 | 2004-07-29 | Fong-Jei Lin | Buoyant water chlorinator with range indicators for temperature , pH measurement and chlorine concentration | 
| US20050017380A1 (en) * | 2003-06-26 | 2005-01-27 | Namespetra Justin L. | Sanitization system and system components | 
| US6875328B2 (en) * | 2000-09-06 | 2005-04-05 | Horiba, Ltd. | pH sensor | 
| US20050232844A1 (en) * | 2004-03-02 | 2005-10-20 | Diner Bruce A | Reversible oxidation of carbon nanotubes | 
| US20060070429A1 (en) * | 2004-10-05 | 2006-04-06 | Yi-Chia Liao | Water quality measuring apparatus | 
| US20060163174A1 (en) * | 2003-06-26 | 2006-07-27 | Namespetra Justin L | System and containers for water filtration and item sanitization | 
| US20060249386A1 (en) * | 2005-05-05 | 2006-11-09 | Bower Michael M | Use of an osmotic pump to create a flowing reference junction for ionic-activity sensors | 
| US20080285012A1 (en) * | 2007-05-14 | 2008-11-20 | Simon Adam Shakespeare | METHOD FOR MEASURING CHEMICAL LEVELS USING pH SHIFT | 
| US20080285011A1 (en) * | 2007-05-14 | 2008-11-20 | Simon Adam Shakespeare | APPARATUS FOR MEASURING CHEMICAL LEVELS USING pH SHIFT | 
| CN100458432C (en) * | 2006-06-27 | 2009-02-04 | 浙江大学 | Anti-interference metal/metal oxide pH electrode and preparation method | 
| US20090302856A1 (en) * | 2005-09-20 | 2009-12-10 | Endress + Hauser Conducta Gmbh + Co. Kg | Plug-In Module for a Liquid or Gas Sensor | 
| US20100182022A1 (en) * | 2009-01-16 | 2010-07-22 | Kyungpook National University Industry-Academic Cooperation Foundation | Ph measurement system using glass ph sensor | 
| US20130032494A1 (en) * | 2009-12-14 | 2013-02-07 | Gomila Munoz Isabel | PORTABLE DEVICE FOR ANALYSING pH OR ANOTHER VARIABLE BY ELECTROCHEMICAL MEASUREMENT | 
| US8894750B2 (en) | 2009-10-02 | 2014-11-25 | Steve L. Hengsperger | Holding tank-less water ozonating system | 
| US20150226701A1 (en) * | 2012-08-10 | 2015-08-13 | National University Corporation Toyohashi Univers- ity of Technology | Device for Measuring Oxidation-Reduction Potential and Method for Measuring Oxidation-Reduction Potential | 
| US9150443B2 (en) | 2010-11-02 | 2015-10-06 | Tersano Inc. | Holding tank-less water ozonating system using electrolytic decomposition of water | 
| US20150362471A1 (en) * | 2011-06-21 | 2015-12-17 | Miura Co., Ltd. | Water quality measuring device | 
| EP2966438A1 (en) * | 2014-07-10 | 2016-01-13 | Bleu Electrique (SAS) | Method and device for colour grading measuring and displaying of physico-chemical data | 
| US9851337B2 (en) * | 2013-12-06 | 2017-12-26 | The University Of Akron | Universal water condition monitoring device | 
| US10005682B1 (en) | 2009-10-02 | 2018-06-26 | Tersano Inc. | Holding tank-less water ozonating system | 
| US10252926B2 (en) | 2015-08-31 | 2019-04-09 | Ecolab Usa Inc. | Wastewater treatment process for removing chemical oxygen demand | 
| DE102020129629A1 (en) | 2020-11-10 | 2022-05-12 | Matthias Gross | Multi-ion sensor, flow cell and system for measuring ions in aqueous systems | 
| US11385200B2 (en) * | 2017-06-27 | 2022-07-12 | Avails Medical, Inc. | Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives | 
| TWI774038B (en) * | 2019-08-12 | 2022-08-11 | 大衛 喬治 巴洛 | Monitor and indicator system | 
| US20230121751A1 (en) * | 2019-08-12 | 2023-04-20 | David George Barlow | Monitor and Indicator System | 
| US11655494B2 (en) | 2017-10-03 | 2023-05-23 | Avails Medical, Inc. | Apparatus, systems, and methods for determining the concentration of microorganisms and the susceptibility of microorganisms to anti-infectives based on redox reactions | 
| US12379373B2 (en) | 2018-12-03 | 2025-08-05 | Avails Medical, Inc. | Apparatus, systems, and methods for quantifying infectious agents | 
| US12422343B2 (en) | 2017-12-05 | 2025-09-23 | Avails Medical, Inc. | Apparatus, systems, and methods for preparing an output sample comprising a defined concentration of an infectious agent for downstream testing | 
Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3726777A (en) * | 1970-04-30 | 1973-04-10 | Gen Electric | Iridium-iridium oxide electrode for measuring ph of blood and other fluids | 
| US3959087A (en) * | 1969-09-05 | 1976-05-25 | Fischer & Porter Co. | In-line residual chlorine analyzer | 
| US4028197A (en) * | 1974-03-29 | 1977-06-07 | Olin Corporation | Method for monitoring available chlorine in swimming pools | 
| US4033871A (en) * | 1975-11-13 | 1977-07-05 | Paddock Of California, Inc. | Integrated monitor and control system for continuously monitoring and controlling pH and free halogen in swimming pool water | 
| US4090925A (en) * | 1976-08-09 | 1978-05-23 | J & M Instruments Corp. | PH measuring instrument and method | 
| DE2719015A1 (en) * | 1977-04-28 | 1978-11-09 | Karl Heinz Hertneck | Chlorine content measuring transducer - has pair of immersed electrodes having current flow monitored by differential amplifier supplying signal to comparator | 
| US4176031A (en) * | 1978-03-17 | 1979-11-27 | Fischer & Porter Co. | Digital hypochlorous acid analyzer | 
| DE2830313A1 (en) * | 1978-07-10 | 1980-01-24 | Gruenbeck Josef Wasseraufb | Measurement chamber monitoring device - has electrode pair in cylindrical section above bottom inlet and below conical section | 
| US4224154A (en) * | 1978-12-20 | 1980-09-23 | Steininger Jacques M | Swimming pool chemical control system | 
| DE3004494A1 (en) * | 1980-02-07 | 1981-08-13 | Intec Industrie Electronic GmbH & Co, 7000 Stuttgart | Cell for measuring oxidant concn. in liquids - esp. chlorine content of water, where cell contains glass beads agitated by water flow and cleaning electrodes in cell | 
| FR2492531A1 (en) * | 1980-10-17 | 1982-04-23 | Fay Marcel | Microprocessor control of chlorination in swimming pools etc. - adjusts pH valve and compensates for temp. before regulating chlorine level | 
| US4338175A (en) * | 1979-03-21 | 1982-07-06 | Mcnab, Incorporated | All solid state electrode system | 
| US4442405A (en) * | 1982-05-03 | 1984-04-10 | Emhart Industries, Inc. | Float assembly for a sensor | 
| US4657670A (en) * | 1985-07-11 | 1987-04-14 | Sierra Design And Development, Inc. | Automatic demand chlorination system | 
| US4801886A (en) * | 1986-05-19 | 1989-01-31 | Steininger Jacques M | Mounting means for water chemistry analysis device | 
| US4825207A (en) * | 1984-09-15 | 1989-04-25 | E.D.A. Research & Development Limited | Monitoring of fluids | 
| US4940946A (en) * | 1988-12-13 | 1990-07-10 | Sampson Nazaryan | Pool water sensor with an extendible pronged probe for determining pH and chlorine levels | 
| US5103179A (en) * | 1990-03-05 | 1992-04-07 | Industrial Chemical Measurement, Inc. | Water analyzer with multiple electrodes | 
- 
        1992
        
- 1992-03-06 US US07/846,504 patent/US5218304A/en not_active Expired - Lifetime
 
 
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3959087A (en) * | 1969-09-05 | 1976-05-25 | Fischer & Porter Co. | In-line residual chlorine analyzer | 
| US3726777A (en) * | 1970-04-30 | 1973-04-10 | Gen Electric | Iridium-iridium oxide electrode for measuring ph of blood and other fluids | 
| US4028197A (en) * | 1974-03-29 | 1977-06-07 | Olin Corporation | Method for monitoring available chlorine in swimming pools | 
| US4033871A (en) * | 1975-11-13 | 1977-07-05 | Paddock Of California, Inc. | Integrated monitor and control system for continuously monitoring and controlling pH and free halogen in swimming pool water | 
| US4090925A (en) * | 1976-08-09 | 1978-05-23 | J & M Instruments Corp. | PH measuring instrument and method | 
| DE2719015A1 (en) * | 1977-04-28 | 1978-11-09 | Karl Heinz Hertneck | Chlorine content measuring transducer - has pair of immersed electrodes having current flow monitored by differential amplifier supplying signal to comparator | 
| US4176031A (en) * | 1978-03-17 | 1979-11-27 | Fischer & Porter Co. | Digital hypochlorous acid analyzer | 
| DE2830313A1 (en) * | 1978-07-10 | 1980-01-24 | Gruenbeck Josef Wasseraufb | Measurement chamber monitoring device - has electrode pair in cylindrical section above bottom inlet and below conical section | 
| US4224154A (en) * | 1978-12-20 | 1980-09-23 | Steininger Jacques M | Swimming pool chemical control system | 
| US4338175A (en) * | 1979-03-21 | 1982-07-06 | Mcnab, Incorporated | All solid state electrode system | 
| DE3004494A1 (en) * | 1980-02-07 | 1981-08-13 | Intec Industrie Electronic GmbH & Co, 7000 Stuttgart | Cell for measuring oxidant concn. in liquids - esp. chlorine content of water, where cell contains glass beads agitated by water flow and cleaning electrodes in cell | 
| FR2492531A1 (en) * | 1980-10-17 | 1982-04-23 | Fay Marcel | Microprocessor control of chlorination in swimming pools etc. - adjusts pH valve and compensates for temp. before regulating chlorine level | 
| US4442405A (en) * | 1982-05-03 | 1984-04-10 | Emhart Industries, Inc. | Float assembly for a sensor | 
| US4825207A (en) * | 1984-09-15 | 1989-04-25 | E.D.A. Research & Development Limited | Monitoring of fluids | 
| US4657670A (en) * | 1985-07-11 | 1987-04-14 | Sierra Design And Development, Inc. | Automatic demand chlorination system | 
| US4801886A (en) * | 1986-05-19 | 1989-01-31 | Steininger Jacques M | Mounting means for water chemistry analysis device | 
| US4940946A (en) * | 1988-12-13 | 1990-07-10 | Sampson Nazaryan | Pool water sensor with an extendible pronged probe for determining pH and chlorine levels | 
| US5103179A (en) * | 1990-03-05 | 1992-04-07 | Industrial Chemical Measurement, Inc. | Water analyzer with multiple electrodes | 
Non-Patent Citations (6)
| Title | 
|---|
| Canelli, Edmondo "Evaluation of A Portable Bare-Electrode Amperometic Analyzer For Determining Free Chlorine In Potable And Swimming-Pool Water" Water Res., 14(10), 1533-40; 1980, Dec. Abstract. | 
| Canelli, Edmondo Evaluation of A Portable Bare Electrode Amperometic Analyzer For Determining Free Chlorine In Potable And Swimming Pool Water Water Res., 14(10), 1533 40; 1980, Dec. Abstract. * | 
| Hu, Hua Ching, Chronoamperometric Determination of Free Chlorine By Using A Wax Impregnated Carbon Electrode , J Am Water Works Assoc., 73(3), 150 3; 1981, Dec. (Abstract). * | 
| Hu, Hua-Ching, "Chronoamperometric Determination of Free Chlorine By Using A Wax-Impregnated Carbon-Electrode", J-Am Water Works Assoc., 73(3), 150-3; 1981, Dec. (Abstract). | 
| Strantrol Operation/Maintenance Manual For Model 720 1991 Stranco, Ltd. Rev. May 1991. 700 20 MF86. * | 
| Strantrol Operation/Maintenance Manual For Model 720 1991 Stranco, Ltd. Rev. May 1991. 700-20-MF86. | 
Cited By (60)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5268092A (en) * | 1992-02-03 | 1993-12-07 | H.E.R.C., Inc. | Two water control system using oxidation reduction potential sensing | 
| US5332494A (en) * | 1992-02-03 | 1994-07-26 | H.E.R.C. Incorporated | Water control system using oxidation reduction potential sensing | 
| US5342510A (en) * | 1992-02-03 | 1994-08-30 | H.E.R.C. Incorporated | Water control system using oxidation reduction potential sensing | 
| WO1996015444A3 (en) * | 1994-11-16 | 1996-08-01 | Waldemar Gottardi | Process for determining the equilibrium concentrations of halogen, halogenide, trihalogenide, hypohalogenite and hypohalogenic acid components in aqueous solutions | 
| US5798940A (en) * | 1996-07-05 | 1998-08-25 | Bratton; Wes | In situ oxidation reduction potential measurement of soils and ground water | 
| US5689089A (en) * | 1996-09-20 | 1997-11-18 | Motorola, Inc. | Electronic control module having fluid-tight seals of a polymer material which expands when wet | 
| US6617488B1 (en) * | 1997-10-14 | 2003-09-09 | Indicator Technologies, Inc. | Method and apparatus for indicating the conditions in an absorbent article | 
| US20030130631A1 (en) * | 1997-10-14 | 2003-07-10 | Springer John S. | Method and apparatus for indicating the conditions in an absorbent article | 
| US6238553B1 (en) * | 1999-11-18 | 2001-05-29 | Fong-Jei Lin | Buoyant water chlorinator with temperature, pH measurement and chlorine concentration displays | 
| US6875328B2 (en) * | 2000-09-06 | 2005-04-05 | Horiba, Ltd. | pH sensor | 
| WO2003006982A3 (en) * | 2001-07-10 | 2003-07-24 | Digital Concepts Of Missouri I | Galvanic probes as ph oxidation reduction potential sensors, control devices employing such probes, and related methods | 
| US6653842B2 (en) * | 2001-07-10 | 2003-11-25 | Digital Concepts Of Missouri | Galvanic probes as pH and oxidation reduction potential sensors, control devices employing such probes, and related methods | 
| US20040104130A1 (en) * | 2001-07-10 | 2004-06-03 | Mosley Michael David | Galvanic probes as pH and oxidation reduction potential sensors, control devices employing such probes, and related methods | 
| WO2004019295A1 (en) * | 2002-08-23 | 2004-03-04 | Aqua Products Inc. | Pool cleaner with on-board water analysis, data recording and transmission device | 
| US20040144699A1 (en) * | 2003-01-27 | 2004-07-29 | Fong-Jei Lin | Buoyant water chlorinator with range indicators for temperature , pH measurement and chlorine concentration | 
| US7959872B2 (en) | 2003-06-26 | 2011-06-14 | Tersano Inc. | System and device for water filtration and purification | 
| US20100176037A1 (en) * | 2003-06-26 | 2010-07-15 | Tersano Inc. | System and device for water filtration and purification | 
| US20060163174A1 (en) * | 2003-06-26 | 2006-07-27 | Namespetra Justin L | System and containers for water filtration and item sanitization | 
| US20050017380A1 (en) * | 2003-06-26 | 2005-01-27 | Namespetra Justin L. | Sanitization system and system components | 
| US7767168B2 (en) * | 2003-06-26 | 2010-08-03 | Tersano Inc. | Sanitization system and system components | 
| US7708958B2 (en) | 2003-06-26 | 2010-05-04 | Tersano Inc. | System and containers for water filtration and item sanitization | 
| US7429371B2 (en) * | 2004-03-02 | 2008-09-30 | E. I. Du Pont De Nemours And Company | Reversible oxidation of carbon nanotubes | 
| US20050232844A1 (en) * | 2004-03-02 | 2005-10-20 | Diner Bruce A | Reversible oxidation of carbon nanotubes | 
| US20060070429A1 (en) * | 2004-10-05 | 2006-04-06 | Yi-Chia Liao | Water quality measuring apparatus | 
| US20060249386A1 (en) * | 2005-05-05 | 2006-11-09 | Bower Michael M | Use of an osmotic pump to create a flowing reference junction for ionic-activity sensors | 
| US8847602B2 (en) * | 2005-09-20 | 2014-09-30 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Plug-in module for a liquid or gas sensor | 
| US20090302856A1 (en) * | 2005-09-20 | 2009-12-10 | Endress + Hauser Conducta Gmbh + Co. Kg | Plug-In Module for a Liquid or Gas Sensor | 
| CN100458432C (en) * | 2006-06-27 | 2009-02-04 | 浙江大学 | Anti-interference metal/metal oxide pH electrode and preparation method | 
| US20080285012A1 (en) * | 2007-05-14 | 2008-11-20 | Simon Adam Shakespeare | METHOD FOR MEASURING CHEMICAL LEVELS USING pH SHIFT | 
| US7671994B2 (en) | 2007-05-14 | 2010-03-02 | Watkins Manufacturing Corporation | Method for measuring chemical levels using pH shift | 
| US7639361B2 (en) | 2007-05-14 | 2009-12-29 | Watkins Manufacturing Corporation | Apparatus for measuring chemical levels using pH shift | 
| US20080285011A1 (en) * | 2007-05-14 | 2008-11-20 | Simon Adam Shakespeare | APPARATUS FOR MEASURING CHEMICAL LEVELS USING pH SHIFT | 
| US20100182022A1 (en) * | 2009-01-16 | 2010-07-22 | Kyungpook National University Industry-Academic Cooperation Foundation | Ph measurement system using glass ph sensor | 
| US8436621B2 (en) * | 2009-01-16 | 2013-05-07 | Kyungpook National University Industry-Academic Corporation Foundation | pH measurement system using glass pH sensor | 
| US8894750B2 (en) | 2009-10-02 | 2014-11-25 | Steve L. Hengsperger | Holding tank-less water ozonating system | 
| US10005682B1 (en) | 2009-10-02 | 2018-06-26 | Tersano Inc. | Holding tank-less water ozonating system | 
| US20130032494A1 (en) * | 2009-12-14 | 2013-02-07 | Gomila Munoz Isabel | PORTABLE DEVICE FOR ANALYSING pH OR ANOTHER VARIABLE BY ELECTROCHEMICAL MEASUREMENT | 
| EP2515104A4 (en) * | 2009-12-14 | 2017-06-28 | Universitat de les Illes Balears | Portable device for analysing ph or another variable by electrochemical measurement | 
| US9150443B2 (en) | 2010-11-02 | 2015-10-06 | Tersano Inc. | Holding tank-less water ozonating system using electrolytic decomposition of water | 
| US20150362471A1 (en) * | 2011-06-21 | 2015-12-17 | Miura Co., Ltd. | Water quality measuring device | 
| US9612230B2 (en) * | 2011-06-21 | 2017-04-04 | Miura Co., Ltd. | Water quality measuring device | 
| JPWO2014025044A1 (en) * | 2012-08-10 | 2016-07-25 | 国立大学法人豊橋技術科学大学 | Apparatus and method for measuring redox potential | 
| US9689837B2 (en) * | 2012-08-10 | 2017-06-27 | National University Corporation Toyohashi University Of Technology | Device for measuring oxidation-reduction potential and method for measuring oxidation-reduction potential | 
| US20150226701A1 (en) * | 2012-08-10 | 2015-08-13 | National University Corporation Toyohashi Univers- ity of Technology | Device for Measuring Oxidation-Reduction Potential and Method for Measuring Oxidation-Reduction Potential | 
| US9851337B2 (en) * | 2013-12-06 | 2017-12-26 | The University Of Akron | Universal water condition monitoring device | 
| US20160012705A1 (en) * | 2014-07-10 | 2016-01-14 | Bleu Electrique | Method and device for colorimetric measuring and display of physicochemical data | 
| FR3023616A1 (en) * | 2014-07-10 | 2016-01-15 | Bleu Electr | METHOD AND DEVICE FOR COLORIMETRIC MEASUREMENT AND DISPLAY OF PHYSICO-CHEMICAL DATA | 
| EP2966438A1 (en) * | 2014-07-10 | 2016-01-13 | Bleu Electrique (SAS) | Method and device for colour grading measuring and displaying of physico-chemical data | 
| US10252926B2 (en) | 2015-08-31 | 2019-04-09 | Ecolab Usa Inc. | Wastewater treatment process for removing chemical oxygen demand | 
| US11385200B2 (en) * | 2017-06-27 | 2022-07-12 | Avails Medical, Inc. | Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives | 
| US12276634B2 (en) | 2017-06-27 | 2025-04-15 | Avails Medical, Inc. | Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives | 
| US11655494B2 (en) | 2017-10-03 | 2023-05-23 | Avails Medical, Inc. | Apparatus, systems, and methods for determining the concentration of microorganisms and the susceptibility of microorganisms to anti-infectives based on redox reactions | 
| US12275981B2 (en) | 2017-10-03 | 2025-04-15 | Avails Medical, Inc. | Apparatus, systems, and methods for determining the concentration of microorganisms and the susceptibility of microorganisms to anti-infectives based on redox reactions | 
| US12422343B2 (en) | 2017-12-05 | 2025-09-23 | Avails Medical, Inc. | Apparatus, systems, and methods for preparing an output sample comprising a defined concentration of an infectious agent for downstream testing | 
| US12379373B2 (en) | 2018-12-03 | 2025-08-05 | Avails Medical, Inc. | Apparatus, systems, and methods for quantifying infectious agents | 
| TWI774038B (en) * | 2019-08-12 | 2022-08-11 | 大衛 喬治 巴洛 | Monitor and indicator system | 
| US11555800B2 (en) * | 2019-08-12 | 2023-01-17 | David George Barlow | Monitor and indicator system | 
| US20230121751A1 (en) * | 2019-08-12 | 2023-04-20 | David George Barlow | Monitor and Indicator System | 
| US12292402B2 (en) * | 2019-08-12 | 2025-05-06 | David George Barlow | Monitor and indicator system | 
| DE102020129629A1 (en) | 2020-11-10 | 2022-05-12 | Matthias Gross | Multi-ion sensor, flow cell and system for measuring ions in aqueous systems | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| US5218304A (en) | Electronic pH and ORP indicator | |
| US6238553B1 (en) | Buoyant water chlorinator with temperature, pH measurement and chlorine concentration displays | |
| AU592278B2 (en) | Electronic water chemistry analysis device with linear bargraph readouts | |
| Lambrou et al. | A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems | |
| US9005416B2 (en) | pH sensor | |
| US4033871A (en) | Integrated monitor and control system for continuously monitoring and controlling pH and free halogen in swimming pool water | |
| US4049382A (en) | Total residual chlorine | |
| US20180143152A1 (en) | Amperometric Sensor System | |
| US6284198B1 (en) | Self appearing warning sign device and method of manufacture | |
| US3948746A (en) | Dissolved oxygen probe | |
| Ficklin et al. | Field methods for sampling and analysis of environmental samples for unstable and selected stable constituents | |
| US4581121A (en) | Free chlorine gas analyzer | |
| GB2352299A (en) | Electrochemical sensor | |
| US5898374A (en) | Sump alarm with radon detection | |
| EP2980576A1 (en) | Electrochemical sensor system and sensing method | |
| US8362432B2 (en) | Optical liquid sensor | |
| Priyadarshini et al. | AQUASENSE: Sensor Based Water Quality Monitoring Device | |
| KR101526211B1 (en) | On-Line Smart pH Analyzer | |
| US20040144699A1 (en) | Buoyant water chlorinator with range indicators for temperature , pH measurement and chlorine concentration | |
| US4440603A (en) | Apparatus and method for measuring dissolved halogens | |
| Khor et al. | Recent developments and sustainability in monitoring chlorine residuals for water quality control: a critical review | |
| CA2325409A1 (en) | Water sensor device | |
| JP3484579B2 (en) | Electrolytic water flow characteristics detector | |
| CN221281026U (en) | Low-power consumption monitoring system for pipe network | |
| Gangar et al. | Emerging Role of Internet of Things (IoT) for Wastewater Management: Sensing, Treatment and Process Optimization | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| AS | Assignment | 
             Owner name: MONSANTO COMPANY, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:KINLEN, PATRICK J.;WAGENKNECHT, JOHN H.;REEL/FRAME:006049/0475 Effective date: 19920303  | 
        |
| STCF | Information on status: patent grant | 
             Free format text: PATENTED CASE  | 
        |
| FEPP | Fee payment procedure | 
             Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 4  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 8  | 
        |
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment | 
             Year of fee payment: 12  |