US5130120A - Paramagnetic DTPA and EDTA alkoxyalkylamide complexes as MRI agents - Google Patents

Paramagnetic DTPA and EDTA alkoxyalkylamide complexes as MRI agents Download PDF

Info

Publication number
US5130120A
US5130120A US07221425 US22142588A US5130120A US 5130120 A US5130120 A US 5130120A US 07221425 US07221425 US 07221425 US 22142588 A US22142588 A US 22142588A US 5130120 A US5130120 A US 5130120A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
iii
ch
groups
complex
ii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07221425
Inventor
Robert W. Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mallinckrodt Inc
Original Assignee
Mallinckrodt Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/08Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C239/00Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof
    • C07C239/08Hydroxylamino compounds or their ethers or esters
    • C07C239/20Hydroxylamino compounds or their ethers or esters having oxygen atoms of hydroxylamino groups etherified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S514/00Drug, bio-affecting and body treating compositions
    • Y10S514/836Chelate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Abstract

Novel magnetic resonance imaging agents and methods which utilize complexes of paramagnetic ions with alkoxyalkylamide derivatives of diethylenetriaminepentaacetic acid ("DTPA") or ethylenediaminetetraacetic acid ("EDTA"). These novel imaging agents are characterized by excellent NMR image-contrasting properties and by high solubilities in physiological solutions. The complexes are represented by the following formula: ##STR1## wherein A is --CH2 CH2 -- or ##STR2## and M+z is a paramagnetic ion of an element with an atomic number of 21-29, 42-44 or 58-70, and a valence, Z, of 2 or 3; the R groups may be the same or different and are selected from the group consisting of -O.sup.⊖ and lower alkoxyalkylamino groups having from 2 to about 6 carbon atoms, wherein the number of R groups -O.sup.⊖ equals Z and the remaining R groups are lower alkoxyalkylamino, equal to 4-Z when A is --CH2 CH2 --, or 5-Z when A ##STR3##

Description

BACKGROUND OF THE INVENTION

This invention relates to nuclear magnetic resonance (NMR) imaging and, more particularly, to methods and compositions for enhancing NMR imaging.

The recently developed technique of NMR imaging encompasses the detection of certain atomic nuclei utilizing magnetic fields and radio-frequency radiation. It is similar in some respects to x-ray computed tomography (CT) in providing a cross-sectional display of the body organ anatomy with excellent resolution of soft tissue detail. As currently used, the images produced constitute a map of the distribution density of protons and/or their relaxation times in organs and tissues. The technique of NMR imaging is advantageously non-invasive as it avoids the use of ionizing radiation.

While the phenomenon of NMR was discovered in 1945, it is only relatively recently that it has found application as a means of mapping the internal structure of the body as a result of the original suggestion of Lauterbur (Nature, 242, 190-191 (1973)). The fundamental lack of any known hazard associated with the level of the magnetic and radio-frequency fields that are employed renders it possible to make repeated scans on vulnerable individuals. Additionally, any scan plane can readily be selected, including transverse, coronal and sagittal sections.

In an NMR experiment, the nuclei under study in a sample (e.g. protons) are irradiated with the appropriate radio-frequency (RF) energy in a highly uniform magnetic field. These nuclei, as they relax, subsequently emit RF at a sharp resonance frequency. The resonance frequency of the nuclei depends on the applied magnetic field.

According to known principles, nuclei with appropriate spin, when placed in an applied magnetic field (B, expressed generally in units of gauss or Tesla (104 gauss)) align in the direction of the field. In the case of protons, these nuclei precess at a frequency, f, of 42.6 MHz at a field strength of 1 Tesla. At this frequency, an RF pulse of radiation will excite the nuclei and can be considered to tip the net magnetization out of the field direction, the extent of this rotation being determined by the pulse duration and energy. After the RF pulse, the nuclei "relax" or return to equilibrium with the magnetic field, emitting radiation at the resonant frequency. The decay of the emitted radiation is characterized by two relaxation times, i.e., T1, the spin-lattice relaxation time or longitudinal relaxation time, that is, the time taken by the nuclei to return to equilibrium along the direction of the externally applied magnetic field, and T2, the spin-spin relaxation time associated with the dephasing of the initially coherent precession of individual proton spins. These relaxation times have been established for various fluids, organs and tissues in different species of mammals.

In NMR imaging, scanning planes and slice thicknesses can be selected. This selection permits high quality transverse, coronal and sagittal images to be obtained directly. The absence of any moving parts in NMR imaging equipment promotes a high reliability. It is believed that NMR imaging has a greater potential than CT for the selective examination of tissue characteristics in view of the fact that in CT, x-ray attenuation coefficients alone determine image contrast, whereas at least four separate variables (T1, T2, proton density and flow) may contribute to the NMR signal. For example, it has been shown (Damadian, Science, 171, 1151 (1971)) that the values of the T1 and T2 relaxation in tissues are generally longer by about a factor of 2 in excised specimens of neoplastic tissue compared with the host tissue.

By reason of its sensitivity to subtle physicochemical differences between organs and/or tissues, it is believed that NMR may be capable of differentiating different tissue types and in detecting diseases which induce physicochemical changes that may not be detected by x-ray or CT which are only sensitive to differences in the electron density of tissue.

As noted above, two of the principal imaging parameters are the relaxation times, T1 and T2. For protons (or other appropriate nuclei), these relaxation times are influenced by the environment of the nuclei (e.g., viscosity, temperature, and the like). These two relaxation phenomena are essentially mechanisms whereby the initially imparted radiofrequency energy is dissipated to the surrounding environment. The rate of this energy loss or relaxation can be influenced by certain other nuclei which are paramagnetic. Chemical compounds incorporating these paramagnetic nuclei may substantially alter the T1 and T2 values for nearby protons. The extent of the paramagnetic effect of a given chemical compound is a function of the environment within which it finds itself.

In general, paramagnetic divalent or trivalent ions of elements with an atomic number of 21 to 29, 42 to 44 and 58 to 70 have been found effective as NMR image contrasting agents. Suitable such ions include chromium (III), manganese (II), manganese (III), iron (III), iron (II), cobalt (II), nickel (II), copper (II), praseodymium (III), neodymium (III), samarium (III) and ytterbium (III). Because of their very strong magnetic moments, gadolinium (III), terbium (III), dysprosium (III), holmium (III) and erbium (III) are preferred. Gadolinium (III) ions have been particularly preferred as NMR image contrasting agents.

Typically, the divalent and trivalent paramagnetic ions have been administered in the form of complexes with organic complexing agents. Such complexes provide the paramagnetic ions in a soluble, non-toxic form, and facilitate their rapid clearance from the body following the imaging procedure. Gries et al., U.S. Pat. No. 4,647,447, disclose complexes of various paramagnetic ions with conventional aminocarboxylic acid complexing agents. A preferred complex disclosed by Gries et al. is the complex of gadolinium (III) with diethylenetriaminepentaacetic acid ("DTPA"). This complex may be represented by the formula: ##STR4##

Paramagnetic ions, such as gadolinium (III), have been found to form strong complexes with DTPA. These complexes do not dissociate substantially in physiological aqueous fluids. The complexes have a net charge of -2, and generally are administered as soluble salts. Typical such salts are the sodium and N-methylglucamine salts.

The administration of ionizable salts is attended by certain disadvantages. These salts can raise the in vivo ion concentration and cause localized disturbances in osmolality, which in turn, can lead to edema and other undesirable reactions.

Efforts have been made to design non-ionic paramagnetic ion complexes. In general, this goal has been achieved by converting one or more of the free carboxylic acid groups of the complexing agent to neutral, non-ionizable groups. For example, S.C. Quay, in U.S. Pat. Nos. 4,687,658 and 4,687,659, discloses alkylester and alkylamide derivatives, respectively, of DTPA complexes. Similarly, published West German applications P 33 24 235.6 and P 33 24 236.4 disclose mono- and polyhydroxyalkylamide derivatives of DTPA and their use as complexing agents for paramagnetic ions.

The nature of the derivative used to convert carboxylic acid groups to non-ionic groups can have a significant impact on solubility. For example, derivatizing the carboxylic acid groups with hydrophobic alkylamide groups substantially decreases the water solubility of the complex. The solubility of the complexes in physiological fluids can, in turn, affect the tissue selectivity of the complex. Hydrophilic complexes tend to concentrate in the interstitial fluids, whereas hydrophobic complexes tend to associate with cells. Thus, differences in hydrophilicity can lead to different applications of the compounds. See, for example, Weinmann et al., AJR, 142, 679 (Mar. 1984) and Brasch et al., AJR, 142, 625 (Mar. 1984).

Thus, a need continues to exist for new and structurally diverse non-ionic complexes of paramagnetic ions for use as NMR imaging agents.

SUMMARY OF THE INVENTION

The present invention provides novel complexing agents and complexes of complexing agents with paramagnetic ions. The complexes are represented by the following formula: ##STR5## wherein A is --CH2 CH2 -- or ##STR6## and M+z is a paramagnetic ion of an element with an atomic number of 21-29, 42-44 or 58-70, and a valence, Z, of +2 or +3; the R groups may be the same or different and are selected from the group consisting of --O.sup.⊖ and lower alkoxyalkylamino groups having from 2 to about 6 carbon atoms, wherein Z of the R groups are --O.sup.⊖ and 5-Z of the R groups are lower alkoxyalkylamino groups.

Also disclosed is a method of performing an NMR diagnostic procedure which involves administering to a warm-blooded animal an effective amount of the above-described complex and then exposing the warm-blooded animal to an NMR imaging procedure, thereby imaging at least a portion of the body of the warm-blooded animal.

DETAILED DESCRIPTION OF THE INVENTION

The complexing agents employed in this invention are derivatives of the well-known chelating agents, DTPA and ethylenediaminetetraacetic acid ("EDTA"). In these derivatives, free carboxylic acid groups of DTPA (those not involved in the formation of coordination bonds with the paramagnetic ion) are converted to amide groups. Thus, if the paramagnetic ion is trivalent, two of the carboxylic acid groups of DTPA or one of the carboxylic acid groups of EDTA will be derivatized to the amide form. Likewise, if the paramagnetic ion is divalent, three of the carboxylic acid groups of DTPA or two of the carboxylic acid groups of EDTA will be derivatized to the amide form. When reacted with a divalent or trivalent paramagnetic ion, the resulting complexes are substantially non-ionic and neutral.

The amide derivatives of DTPA and EDTA are prepared in a conventional manner. In general, they are prepared by reacting a stoichiometric amount of a primary lower alkoxyalkylamine with a reactive derivative of DTPA or EDTA under amide-forming conditions. Such reactive derivatives include, for example, anhydrides, mixed anhydrides and acid chlorides. In one embodiment, the reactions are conducted in an organic solvent at an elevated temperature. Suitable solvents include those in which the reactants are sufficiently soluble and which are substantially unreactive with the reactants and products. Lower aliphatic alcohols, ketones, ethers, esters, chlorinated hydrocarbons, benzene, toluene, xylene, lower aliphatic hydrocarbons, and the like may advantageously be used as reaction solvents. Examples of such solvents are methanol, ethanol, propanol, butanol, pentanol, acetone, methylethyl ketone, diethylketone, methyl acetate, ethyl acetate, chloroform, methylene chloride, dichloroethane, hexane, heptane, octane, decane, and the like. If a DTPA or EDTA acid chloride is used as the starting material, then the reaction solvent advantageously is one which does not contain reactive functional groups, such as hydroxyl groups, as these solvents can react with the acid chlorides, thus producing unwanted by-products.

The reaction temperature may vary widely, depending upon the starting materials employed, the nature of the reaction solvent and other reaction conditions. Such reaction temperatures may range, for example, from about 0° C. to about 150° C., preferably from about 30° C. to about 70° C.

Following reaction of the reactive DTPA or EDTA derivative with the lower alkoxyalkylamine, any remaining anhydride or acid chloride groups can be hydrolyzed to the carboxylate groups by adding a stoichiometric excess of water to the reaction mixture and heating for a short time.

The lower alkoxyalkylamine advantageously contains from about 2 to about 6 carbon atoms. In preferred amines, the alkoxy portion contains about 1-2 carbon atoms and the alkyl portion contains from about 2 to about 5 carbon atoms. Such amines include, for example, methoxyethylamine, methoxypropylamine, methoxybutylamine, methoxypentylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, and mixtures thereof. A particularly preferred amine is methoxyethylamine.

The resulting DTPA or or EDTA alkoxyalkylamide is recovered from the reaction mixture by conventional procedures. For example, the product may be precipitated by adding a precipitating solvent to the reaction mixture, and recovered by filtration or centrifugation.

The paramagnetic ion is combined with the DTPA di- or trialkoxyalkylamide or EDTA mono- or dialkoxyalkylamide under complex-forming conditions. In general, any of the paramagnetic ions referred to above can be employed in making the complexes of this invention. The complexes can conveniently be prepared by mixing a suitable oxide or salt of the paramagnetic ion with the complexing agent in aqueous solution. To assure complete complex formation, a slight stoichiometric excess of the complexing agent may be used. In addition, an elevated temperature, e.g., ranging from about 20° C. to about 100° C., preferably from about 40° C. to about 80° C., may be employed to insure complete complex formation. Generally, complete complex formation will occur within a period from a few minutes to a few hours after mixing. The complex may be recovered by precipitation using a precipitating solvent such as acetone, and further purified by crystallization, if desired.

The novel complexes of this invention can be formulated into diagnostic compositions for enteral or parenteral administration. These compositions contain an effective amount of the paramagnetic ion complex along with conventional pharmaceutical carriers and excipients appropriate for the type of administration contemplated. For example, parenteral formulations advantageously contain a sterile aqueous solution or suspension of from about 0.05 to 1.0M of a paramagnetic ion complex according to this invention. Preferred parenteral formulations have a concentration of paramagnetic ion complex of 0.1M to 0.5M. Such solutions also may contain pharmaceutically acceptable buffers and, optionally, electrolytes such as sodium chloride. The compositions may advantageously contain a slight excess, e.g., from about 0.1 to about 15 mole % excess, of the complexing agent or its complex with a physiologically acceptable, non-toxic cation to insure that all of the potentially toxic paramagnetic ion is complexed. Such physiologically acceptable, non-toxic cations include calcium ions, magnesium ions, copper ions, zinc ions and the like. Calcium ions are preferred. A typical single dosage formulation for parenteral administration has the following composition:

______________________________________Gadolinium DTPA-di(methoxyethylamide)                     330    mg/mlCalcium DTPA-di(methoxyethylamide)                     14     mg/mlDistilled Water q.s. to   1      mlpH                        7.0______________________________________

Parenteral compositions may be injected directly or mixed with a large volume parenteral composition for systemic administration.

Formulations for enteral administration may vary widely, as is well-known in the art. In general, such formulations are liquids which include an effective amount of the paramagnetic ion complex in aqueous solution or suspension. Such enteral compositions may optionally include buffers, surfactants, thixotropic agents, and the like. Compositions for oral administration may also contain flavoring agents and other ingredients for enhancing their organoleptic qualities.

The diagnostic compositions are administered in doses effective to achieve the desired enhancement of the NMR image. Such doses may vary widely, depending upon the particular paramagnetic ion complex employed, the organs or tissues which are the subject of the imaging procedure, the NMR imaging equipment being used, etc. In general, parenteral dosages will range from about 0.01 to about 1.0 MMol of paramagnetic ion complex per kg of patient body weight. Preferred parenteral dosages range from about 0.05 to about 0.5 MMol of paramagnetic ion complex per kg of patient body weight. Enteral dosages generally range from about 0.5 to about 100 MMol, preferably from about 1.0 to about 20 MMol of paramagnetic ion complex per kg of patient body weight.

The novel NMR image contrasting agents of this invention possess a unique combination of desirable features. The paramagnetic ion complexes exhibit an unexpectedly high solubility in physiological fluids, notwithstanding their substantially non-ionic character. This high solubility allows the preparation of concentrated solutions, thus minimizing the amount of fluid required to be administered. The non-ionic character of the complexes also reduces the osmolarity of the diagnostic compositions, thus preventing undesired edema and other side effects. As illustrated by the data presented below, the compositions of this invention have very low toxicities, as reflected by their high LD50 values.

The diagnostic compositions of this invention are used in the conventional manner. The compositions may be administered to a warm-blooded animal either systemically or locally to the organ or tissue to be imaged, and the animal then subjected to the NMR imaging procedure. The compositions have been found to enhance the magnetic resonance images obtained by these procedures. In addition to their utility in magnetic resonance imaging procedures, the complexing agents of this invention may also be employed for delivery of radiopharmaceuticals or heavy metals for x-ray contrast into the body.

The invention is further illustrated by the following examples, which are not intended to be limiting.

EXAMPLE I Preparation of N,N"-Bis[N-(2-methoxyethyl)-carbamoylmethyl]diethylenetriamine-N,N',N"-triacetic acid.

A stirred suspension of DTPA-dianhydride (10.8 g, 0.030 mole) in 100 ml. of isopropanol was treated with 2-methoxyethylamine (5.0 g, 0.067 mole). The entire mixture was heated at 50° C. for 4 hours in a water bath. The pale yellow solution was filtered through a medium porosity sintered glass funnel to remove undissolved impurities, and the filtrate was taken to dryness under reduced pressure. The resulting amorphous foam was dried (vacuum desiccator) at ambient temperature for 18 hours. The yield of the bis(2-methoxyethylamide) of DTPA was 14.4 g (93.5%). 12 C-NMR (22.49 MHz, D2 O, ref. p-dioxane at δ67.4): δ173.5, 172.3, 170.4, 71.0, 58.8, 57.9, 57.5, 55.9, 52.4, 52.1, 39.6. Analysis calculated for C20 H37 N5 O10 ·0.4H2 O: C, 46.67%; H, 7.25%; N, 13.61%. Found: C, 47.15%; H, 7.42%; N, 13.35%.

EXAMPLE II Preparation of {N,N"-Bis[N-(2-methoxyethyl)-carbamoylmethyl]diethylenetriamine-N,N',N"-triaceto}gadolinium (III)

A mixture of gadolinium (III) oxide (3.3 g, 0.0091 mole) and bis(2-methoxyethylamide) of DTPA produced by the procedure described in Example I (10.2 g, 0.020 mole) in H2 O (100 ml.) was heated at 60-65° C. for 3 hours in a water bath. The pale yellow homogeneous solution was filtered through a fine porosity sintered glass funnel to remove undissolved impurities and the clear filtrate was poured into acetone (2L). The heterogeneous mixture was stirred for 5 minutes and allowed to stand at ambient temperature for 30 minutes. Aqueous acetone was decanted off and the resulting gummy residue was dissolved with methanol (150 ml.). The solution was concentrated under reduced pressure and the complex was precipitated from the solution by adding it to more acetone (lL). The amorphous precipitate was collected, washed with acetone (2×100 ml.) and dried. The yield was 11.2 g (80.7%). The pale cream solid was crystallized from a mixture of methanol and tetrahydrofuran to give a colorless solid. It was 97.4% pure by HPLC. Analysis calculated for C20 H34 N5 O10 Gd·1.4 H2 O: C, 34.95%; H, 5.41%; N, 10.19%; Gd, 22.88%. Found: C, 35.20%; H, 5.42%;, N, 10.27%; Gd, 22.52%.

EXAMPLE III Preparation of N,N"-Bis[N-(2-ethoxyethyl)carbamoyl-methyl]diethylenetriamine-N,N',N"-triacetic acid.

The procedure of Example I is repeated in all essential details, except that ethoxyethylamine (5.97 g, 0.067 mole) is substituted for methoxyethylamine. The procedure produces the title compound in good yield.

EXAMPLE IV Preparation of {N,N"-Bis[N-(2-ethoxyethyl)-carbamoylmethyl]diethylenetriamine-N,N',N"-triaceto}gadolinium (III)

The procedure of Example II is repeated in all essential details, except that the bis(2-ethoxyethylamide) of DTPA produced by the procedure described in Example V is substituted in equimolar amount for the bis(2-methoxyethylamide) of DTPA. The procedure produces the title compound in good yield.

EXAMPLE V Preparation of {N,N"-Bis[N-(2-methoxyethyl)-carbamoylmethyl]diethylenetriamine-N,N',N"-triaceto} iron (III)

The procedure of Example II is repeated in all essential details, except that iron (III) acetylacetonate is substituted in equimolar amount for gadolinium (III) oxide. The procedure produces the title compound in good yield.

EXAMPLE VI Preparation of {N,N"-Bis[N-(2-methoxyethyl)-carbamoylmethyl]diethylenetriamine-N,N',N"-triaceto} Holmium (III)

The procedure of Example II is repeated in all essential details, except that holmium (III) oxide is substituted in equimolar amount for gadolinium (III) oxide. The procedure produces the title compound in good yield.

EXAMPLE VII Preparation of N,N',N"-Tris[N-(2-methoxyethyl) carbamoylmethyl]-diethylenetriamine-N,N"-diacetic Acid

DTPA (1 mol) is dissolved in acetonitrile by adding triethylamine (5 mol) and heating. The solution is cooled to room temperature. While stirring, isobutylchloroformate (3 mol) is added dropwise to this solution. An excess of 2-methoxyethylamine (7 mol) is added immediately and the reaction mixture is stirred until the reaction is complete. The solution is taken to dryness under reduced pressure. The crude product is purified by chromatography on an anion exchange column.

EXAMPLE VIII Preparation of {N,N',N"-Tris[N-(2-methoxyethyl)carbamoylmethyl]-diethylenetriamine-N,N"-diaceto} manganese(II)

An excess of the tris(2-methoxyethylamide) of DTPA produced by the procedure described in Example VII is dissolved in water and MnCO3 is added. The mixture is stirred and heated until the solution becomes homogeneous. The solution is taken to dryness under reduced pressure to give the desired product.

EXAMPLE IX Preparation of N,N'-Bis[N-(2-methoxyethyl)carbamoyl-methyl] ethylenediamine-N,N'-diacetic Acid

2-Methoxyethylamine (3.0 g, 0.02 mol) in 100 ml of methanol was treated with EDTA-dianhydride (5.12 g, 0.02 mol). The reaction mixture was stirred for 5 hours and the solids dissolved. The solution was taken to dryness under reduced pressure. The residue was dried under high vacuum to give 8.5 g of glassy solid. Its 13 C-NMR spectrum was consistent with the desired structure.

EXAMPLE X Preparation of {N,N'-Bis[N-(2-methoxyethyl) carbamoyl-methyl]-ethylenediamine-N,N'-diaceto}manganese(II)

A 15% excess of the bis(2-methoxyethylamide) of EDTA produced by the procedure described in Example XI (1.1 g, 0.0026 mol) was dissolved in water (10 ml) and MnCO3 (0.27 g, 0.0023 mol) was added. Upon warming for 30 minutes, the solution became homogeneous. The solution was taken to dryness under reduced pressure. The resulting glassy solid was very soluble in water.

EXAMPLE XI

The acute intravenous toxicity of the compound of Example II was determined as follows: ICR mice, at 1 to 4 per dose level, received single intravenous injections of the test substance via a lateral tail vein at the rate of approximately 1 ml/minute. The test substances were at concentrations chosen to result in dose volumes of 5 to 75 ml/kg body weight. Dosing began at a volume of 10 ml/kg. Dose adjustments up or down were made to closely bracket the estimated LD50 with 4 animals per group (2 males and 2 females). Observations of the mice were recorded at times 0, 0.5, 1,2,4 and 24 hours and once daily thereafter for up to 7 days post injection. On the 7th day post injection, the mice were euthanized, weighed and necropsied. Abnormal tissues were noted. At this time a decision was made as to whether any histopathology was to be performed and whether or not the tissues should be retained. Necropsies were also performed on mice expiring after 24 hours post-injection, except for dead mice found on the weekends. The LD50 values, along with 95% CI were calculated using a modified Behrens-Reed-Meunch method. The results for the complex of Example II are reported below:

LD50 : 22.5 mmol/kg

95% Confidence Limits: 17.4-29.0 mmol/kg

Sex and Weight Range of Mice: Males(18.0-20.3 g) Females (19.0-21.7 g).

The details of the test results are shown in Table I below. The data demonstrate that the complex of Example II was characterized by a low initial I.v. toxicity (LD50 - 27mmol/kg) within the first 24 hours post injection. Two delayed deaths at 27.2 mmol/kg resulted in lowering the LD50 to 22.5 mmol/kg. Surviving mice, in general, failed to gain weight during the 7-day post-injection period. Only one gross organ abnormality was noted at necropsy: a "pale" colored liver in a female dosed with 20.4 mmol/kg. No other mice at 20.4 mmol/kg or lower showed similar abnormalities. Thus, these preliminary tests suggest that the formulation has a low order of i.v. toxicity.

                                  TABLE I__________________________________________________________________________    DeathsDose  Conc    Immediate           Delayed       Body Weight(mmol/kg) (M)    (0-1 hr)          (1-24 hr)               (1-7 days)                     Total                         Change (g)__________________________________________________________________________ 6.8  0.68    0     0    0     0/2 M: -1.1/F: +2.113.6  0.68    0     0    0     0/2 M: +1.6/F: +1.420.4  0.68    1     0    0     1/4 M: -1.1/F: -3.227.2  0.68    2     0    2     4/4 --34.0  0.68    4     --   --    4/4 --__________________________________________________________________________
EXAMPLE XII

T1 and T2 relaxivity curves of the complex of Example II were obtained using a RADX (10 megahertz) NMR analyzer. The RADX analyzer was thermally stabilized at 37° C. before performing any T1 or T2 measurements. Overall range tuning and mid-range calibration were performed on a 37° C. warmed T1 standard at the beginning of the experiment, according to manufacturer's instructions. Subsequent to calibration, T1 standards were tested to verify calibration and linearity.

Ten millimolar solutions of the complex were prepared in sterile water for injection ("SWFI") and in 4% human serum albumin ("HSA")/0.9% NaCl. A series of lower concentrations (0.25, 0.50, 1.0, 2.5 and 5.0 mM) were prepared to form a concentration curve. A sample of each prepared concentration was warmed to 37° C. in an NMR sample tube prior to assay. Triplicate T1 and T2 values were obtained on each dilution.

Separate linear regressions were determined using the reciprocal T1 and T2 mean values for the complex diluted in SWFI and 4% HSA. The relaxivity curves were generated by plotting the reciprocal T1 or T2 value against concentration. The following relaxation rates were determined for the complex of Example II:

______________________________________Relaxation Rate (mM.sup.-1 sec.sup.-1)T.sub.1                T.sub.2H.sub.2 O    HSA           H.sub.2 O                         HSA______________________________________4.69     4.40          4.81   6.38______________________________________

Claims (41)

I claim:
1. A complex having the following formula: ##STR7## wherein A is selected from the group consisting of --CH2 CH2 -- and ##STR8## wherein M+z is a paramagnetic ion of an element with an atomic number of 21-29, 42-44 or 58-70, and a valence, Z, of 2 or 3; the R groups may be the same or different and are selected from the group consisting of -O.sup.⊖ and lower alkoxyalkylamino groups having from 2 to about 6 carbon atoms, the number of R groups -O.sup.⊖ equals Z and the remaining R groups are lower alkoxyalkylamino, equal to 4- Z when A is --CH2 CH2 --, or 5 - Z when Z is ##STR9## .
2. The complex of claim 1, wherein A is ##STR10##
3. The complex of claim 1, wherein A is --CH2 CH2 --.
4. The complex of claim 2 or 3, wherein R is an alkoxyalkylamino, wherein the alkoxy portions contains 1 or 2 carbon atoms and the alkyl portion contains from about 2 to about 5 carbon atoms.
5. The complex of claim 2 or 3 wherein R is methoxyethylamino, methoxypropylamino, methoxybutylamino, methoxypentylamino, ethoxyethylamino, ethoxypropylamino or ethoxybutylamino.
6. The complex of claim 4, wherein M+z is chromium (III), manganese (II), manganese (III), iron (III), iron (II), cobalt (II), nickel (II), copper (II), praseodymium (III), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), terbium (III), dysprosium (III), holmium (III) or erbium (III).
7. The complex of claim 5, wherein M+z is gadolinium (III), terbium (III), dysprosium (III), holmium (III) or erbium (III).
8. The complex of claim 2, wherein R is methoxyethylamino and M+z is gadolinium (III).
9. A diagnositc composition suitable for enteral or parenteral administration to a warm-blooded animal, which comprises an NMR imaging-effective amount of a complex of a paramagnetic ion having the following formula: ##STR11## wherein A is selected from the group consisting of --CH2 CH2 -- and ##STR12## wherein M+z is a paramagnetic ion of an element with an atomic number of 21-29, 42-44 or 58-70, and a valence, Z, of 2 or 3; the R groups may be the same or different and are selected from the group consisting of --O.sup.⊖ and lower alkoxyalkylamino groups having from 2 to about 6 carbon atoms, the number of R groups --O.sup.⊖ equals Z and the remaining R groups are lower alkoxyalkylamino, equal to 4-Z when A is --CH2 CH2 --, or 5-Z when Z is ##STR13## and a pharmaceutically acceptable carrier.
10. The composition of claim 9, wherein A is ##STR14##
11. The composition of claim 9, wherein A is --CH2 CH2 --.
12. The composition of claim 10 or 11, which is suitable for parenteral administration, wherein R is an alkoxyalkylamino, in which the alkoxy portions contains 1 or 2 carbon atoms and the alkyl portion contains from about 2 to about 5 carbon atoms, and the complex is dissolved or suspended in a sterile aqueous pharmaceutically acceptable carrier at a concentration of from about 0.05 to 1.0M.
13. The composition of claim 12, wherein R is methoxypropylamino, methoxybutylamino, methoxyethylamino, ethoxyethylamino, methoxypentylamino, ethoxypropylamino or ethoxybutylamino, and wherein the concentration of the complex in the composition is from about 0.05 to about 1.0M.
14. The composition of claim 13, wherein M+z is chromium (III), manganese (II), manganese (III), iron (III), iron (II), cobalt (II), nickel (II), copper (II), praseodymium (III), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), terbium (III), dysprosium (III), holmium (III) or erbium (III).
15. The composition of claim 13, wherein M+z is gadolinium (III), terbium (III), dysprosium (III), holmium (III) or erbium (III).
16. The composition of claim 15, wherein R is methoxyethylamino and M+z is gadolinium (III).
17. The composition of claim 13, which further contains a pharmaceutically acceptable buffer.
18. The composition of claim 12, which further contains a pharmaceutically acceptable electrolyte.
19. The composition of claim 11, which further comprises a stoichiometric excess of a complexing agent of the formula ##STR15## wherein A and R are as defined as in claim 11.
20. The composition of claim 19, wherein said excess complexing agent is complexed with a physiologically acceptable, non-toxic cation.
21. The composition of claim 20, wherein said excess complexing agent is employed in an amount ranging from about 0.1 to about 15 mole % excess, relative to the paramagnetic ion, and is complexed with a cation selected from the group consisting of calcium ions, magnesium ions, copper ions and zinc ions.
22. The composition of claim 21, wherein said excess complexing agent is complexed with calcium ions.
23. A method of performing an NMR diagnostic procedure, which comprises administering to a warm-blooded animal an effective amount of a complex of the formula ##STR16## wherein A is selected from the group consisting of ##STR17## wherein M+z is a paramagnetic ion of an element with an atomic number of 21-29, 42-44 or 58-70, and a valence, Z, of 2 or 3; the R groups may be the same or different and are selected from the group consisting of --O.sup.⊖ and lower alkoxyalkylamino groups having from 2 to about 6 carbon atoms, wherein the number of R groups --O.sup.⊖ equals Z and the remaining R groups are lower alkoxyalkylamino, equal to 4-Z when A is --CH2 CH2 --, or 5-Z when A is ##STR18## and then exposing the animal to an NMR imaging procedure, thereby imaging at least a portion of the body of the warm-blooded anmial.
24. The method of claim 23, wherein A is ##STR19##
25. The method of claim 23, wherein A is -CH2 CH2 --.
26. The method of claim 24 or 25, wherein the complex is administered parenterally and wherein R is an alkoxyalkylamino, in which the alkoxy portions contains 1 or 2 carbon atoms and the alkyl portion contains from about 2 to about 5 carbon atoms, and the complex is dissolved or suspended in a sterile aqueous pharmaceutically acceptable carrier at a concentration of from about 0.05 to 1.0M.
27. The method of claim 26, wherein R is methoxypropylamino, methoxybutylamino, methoxyethylamino, ethoxyethylamino, methoxypentylamino, ethoxypropylamino or ethoxybutylamino, and wherein the concentration of the complex in the pharmaceutically acceptable carrier is from about 0.05 to about 1.0M.
28. The method of claim 27, wherein M+z is chromium (III), manganese (II), manganese (III), iron (III), iron (II), cobalt (II), nickel (II), copper (II), praseodymium (III), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), terbium (III), dysprosium (III), holmium (III) or erbium (III).
29. The method of claim 27, wherein M+z is gadolinium (III), terbium (III), dysprosium (III), holmium (III) or erbium (III).
30. The method of claim 27, wherein R is methoxyethylamino and M+z is gadolinium (III).
31. The method of claim 27, wherein the pharmaceutically acceptable carrier contains a pharmaceutically acceptable buffer.
32. The method of claim 27, wherein the pharmaceutically acceptable carrier contains a pharmaceutically acceptable electrolyte.
33. The method of claim 27, wherein the pharmaceutically acceptable carrier contains a stoichiometric excess of a complexing agent of the formula ##STR20## wherein A and R are as defined as in claim 27.
34. The method of claim 33, wherein said excess complexing agent is complexed with a physiologically acceptable, non-toxic cation.
35. The method of claim 34, wherein said excess complexing agent is employed in an amount ranging from about 0.1 to about 15 mole % excess, relative to the paramagnetic ion, and is complexed with a cation selected from the group consisting of calcium ions, magnesium ions, copper ions and zinc ions.
36. The method of claim 35, wherein said excess complexing agent is complexed with calcium ions.
37. A complexing agent of the formula: ##STR21## wherein A is selected from the group consisting of --CH2 CH2 -- and ##STR22## wherein the complexing agent has a valence, Z, of 2 or 3; the R groups may be the same or different and are selected from the group consisting of --O.sup.⊖ and lower alkoxyalkylamino groups having from 3 to about 6 carbon atoms, wherein the number R groups --O.sup.⊖ equals Z and the remaining R groups are lower alkoxyalkylamino, equal to 4-Z when A is --CH2 CH2 --, or 5-Z when Z is ##STR23##
38. The complexing agent of claim 37, wherein A is ##STR24##
39. The complexing agent of claim 37, wherein A is --CH2 CH2 --.
40. The complexing agent of claim 38 or 39, wherein R is an alkoxyalkylamino, in which the alkoxy portions contains 1 or 2 carbon atoms and the alkyl portion contains from about 2 to about 5 carbon atoms.
41. The complexing agent of claim 40, wherein R is methoxyethylamino, methoxypropylamino, methoxybutylamino, methoxypentylamino, ethoxyethylamino, ethoxypropylamino or ethoxybutylamino.
US07221425 1988-07-19 1988-07-19 Paramagnetic DTPA and EDTA alkoxyalkylamide complexes as MRI agents Expired - Lifetime US5130120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07221425 US5130120A (en) 1988-07-19 1988-07-19 Paramagnetic DTPA and EDTA alkoxyalkylamide complexes as MRI agents

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US07221425 US5130120A (en) 1988-07-19 1988-07-19 Paramagnetic DTPA and EDTA alkoxyalkylamide complexes as MRI agents
US07377491 US5137711A (en) 1988-07-19 1989-07-13 Paramagnetic dtpa and edta alkoxyalkylamide complexes as mri agents
AU3988589A AU650615C (en) 1988-07-19 1989-07-19 Novel magnetic resonance imaging agents
DE200712000068 DE122007000068I2 (en) 1988-07-19 1989-07-19 Nuclear Magnetic Resonance Imaging medium
EP19890908787 EP0425571B2 (en) 1988-07-19 1989-07-19 Novel magnetic resonance imaging agents
DE1989627173 DE68927173T3 (en) 1988-07-19 1989-07-19 Nuclear Magnetic Resonance Imaging medium
JP50823089A JPH082855B2 (en) 1988-07-19 1989-07-19 A new magnetic resonance imaging agents
PCT/US1989/003104 WO1990001024A1 (en) 1988-07-19 1989-07-19 Novel magnetic resonance imaging agents
CA 606161 CA1339821C (en) 1988-07-19 1989-07-19 Magnetic resonance imaging agents
SG1996005703A SG49063A1 (en) 1988-07-19 1989-07-19 Novel magnetic resonance imaging agents
AT89908787T AT142614T (en) 1988-07-19 1989-07-19 Nuclear Magnetic Resonance Imaging medium
DE1989627173 DE68927173D1 (en) 1988-07-19 1989-07-19 Nuclear Magnetic Resonance Imaging medium
JP19711695A JP2815556B2 (en) 1988-07-19 1995-07-11 Nonionic paramagnetic ion complex and complexing agent for forming the same
BR1101072A BR1101072A (en) 1988-07-19 1997-05-14 paramagnetic complexes of DTPA and EDTA amide alquoxialquil as MRI agents.
HK130797A HK130797A (en) 1988-07-19 1997-06-26 Novel magnetic resonance imaging agents
NL300299C NL300299I2 (en) 1988-07-19 2007-10-18 New magnetic resonance imaging agents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07377491 Continuation-In-Part US5137711A (en) 1988-07-19 1989-07-13 Paramagnetic dtpa and edta alkoxyalkylamide complexes as mri agents

Publications (1)

Publication Number Publication Date
US5130120A true US5130120A (en) 1992-07-14

Family

ID=22827769

Family Applications (1)

Application Number Title Priority Date Filing Date
US07221425 Expired - Lifetime US5130120A (en) 1988-07-19 1988-07-19 Paramagnetic DTPA and EDTA alkoxyalkylamide complexes as MRI agents

Country Status (1)

Country Link
US (1) US5130120A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412148A (en) * 1986-11-10 1995-05-02 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Amplifier molecules derived from diethylene triaminepentaacetic acid for enhancement of diagnosis and therapy
US5463030A (en) * 1991-05-03 1995-10-31 Research Foundation Of The State Of New York Metal chelating agents for medical application
US5508388A (en) * 1992-07-16 1996-04-16 Mallinckrodt Medical, Inc. Process for manufacturing DTPA-bis amide magnetic resonance imaging
EP0711180A1 (en) * 1993-07-02 1996-05-15 Mallinckrodt Medical, Inc. Functionalized tripodal ligands for imaging applications
US5567411A (en) * 1986-11-10 1996-10-22 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Dendritic amplifier molecules having multiple terminal active groups stemming from a benzyl core group
US5693310A (en) * 1986-09-26 1997-12-02 Schering Aktiengesellschaft Amide complexes
US5756688A (en) * 1992-10-14 1998-05-26 Sterling Winthrop Inc. MR imaging compositions and methods
US5817292A (en) * 1992-10-14 1998-10-06 Nycomed Imaging As MR imaging compositions and methods
US6224935B1 (en) 1999-01-28 2001-05-01 Cornell Research Foundation, Inc. Ordered arrays via metal-initiated self-assembly of ligand containing dendrimers and bridging ligands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647447A (en) * 1981-07-24 1987-03-03 Schering Aktiengesellschaft Diagnostic media
US4687659A (en) * 1984-11-13 1987-08-18 Salutar, Inc. Diamide-DTPA-paramagnetic contrast agents for MR imaging
EP0263059A2 (en) * 1986-09-26 1988-04-06 Schering Aktiengesellschaft Complexes amides
US4826673A (en) * 1985-01-09 1989-05-02 Mallinckrodt, Inc. Methods and compositions for enhancing magnetic resonance imaging
US4957939A (en) * 1981-07-24 1990-09-18 Schering Aktiengesellschaft Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647447A (en) * 1981-07-24 1987-03-03 Schering Aktiengesellschaft Diagnostic media
US4957939A (en) * 1981-07-24 1990-09-18 Schering Aktiengesellschaft Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging
US4963344A (en) * 1981-07-24 1990-10-16 Schering Aktiengesellschaft Method to enhance NMR imaging using chelated paramagnetic ions
US4963344B1 (en) * 1981-07-24 1992-08-25 Schering Ag
US4687659A (en) * 1984-11-13 1987-08-18 Salutar, Inc. Diamide-DTPA-paramagnetic contrast agents for MR imaging
US4826673A (en) * 1985-01-09 1989-05-02 Mallinckrodt, Inc. Methods and compositions for enhancing magnetic resonance imaging
EP0263059A2 (en) * 1986-09-26 1988-04-06 Schering Aktiengesellschaft Complexes amides

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693310A (en) * 1986-09-26 1997-12-02 Schering Aktiengesellschaft Amide complexes
US5567411A (en) * 1986-11-10 1996-10-22 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Dendritic amplifier molecules having multiple terminal active groups stemming from a benzyl core group
US5412148A (en) * 1986-11-10 1995-05-02 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Amplifier molecules derived from diethylene triaminepentaacetic acid for enhancement of diagnosis and therapy
US5463030A (en) * 1991-05-03 1995-10-31 Research Foundation Of The State Of New York Metal chelating agents for medical application
US5508388A (en) * 1992-07-16 1996-04-16 Mallinckrodt Medical, Inc. Process for manufacturing DTPA-bis amide magnetic resonance imaging
US5756688A (en) * 1992-10-14 1998-05-26 Sterling Winthrop Inc. MR imaging compositions and methods
US5817292A (en) * 1992-10-14 1998-10-06 Nycomed Imaging As MR imaging compositions and methods
EP0711180A1 (en) * 1993-07-02 1996-05-15 Mallinckrodt Medical, Inc. Functionalized tripodal ligands for imaging applications
EP0711180A4 (en) * 1993-07-02 1996-11-27 Mallinckrodt Medical Inc Functionalized tripodal ligands for imaging applications
US6224935B1 (en) 1999-01-28 2001-05-01 Cornell Research Foundation, Inc. Ordered arrays via metal-initiated self-assembly of ligand containing dendrimers and bridging ligands

Similar Documents

Publication Publication Date Title
Wang et al. Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues.
US5622687A (en) Calixarene conjugates useful as MRI and CT diagnostic imaging agents
US4880008A (en) Vivo enhancement of NMR relaxivity
US5336762A (en) Polychelating agents for image and spectral enhancement (and spectral shift)
US5143716A (en) Phosphorylated sugar alcohols, Mono- and Di-Saccharides as contrast agents for use in magnetic resonance imaging of the gastrointestinal region
US5116599A (en) Perfluoro-t-butyl-containing compounds for use in fluorine-19 nmr and/or mri
US5310539A (en) Melanin-based agents for image enhancement
US4770183A (en) Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents
US5078986A (en) Method for enhancing magnetic resonance imaging using an image altering agent containing an excess of chelating agent
US5707605A (en) Magnetic resonance imaging agents for the detection of physiological agents
Aime et al. Relaxometric evaluation of novel manganese (II) complexes for application as contrast agents in magnetic resonance imaging
US4838274A (en) Perfluoro-crown ethers in fluorine magnetic resonance imaging
US4728575A (en) Contrast agents for NMR imaging
Port et al. P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results
US4749560A (en) Metal organo phosphorous compounds for NMR analysis
US5155215A (en) Polychelating agents for image and spectral enhancement (and spectral shift)
US5234680A (en) Perfluoro-t-butyl-containing compounds for use in fluorine-19 NMR and/or MRI
US5236915A (en) Meso poly(4-sulfonatophenyl) porphines as MRI image enhancing agents
US6713045B1 (en) Targeted magnetic resonance imaging agents for the detection of physiological processes
Bousquet et al. Gd-DOTA: characterization of a new paramagnetic complex.
US5042488A (en) Methods employing deuterium for obtaining direct, observable deuterium magnetic resonance images in vivo and in situ
US5250285A (en) Hydroxy-aryl metal chelates for diagnostic NMR imaging
US5517993A (en) Copolymers and their use as contrast agents in magnetic resonance imaging and in other applications
Brasch et al. Work in progress: nuclear magnetic resonance study of a paramagnetic nitroxide contrast agent for enhancement of renal structures in experimental animals.
US4899755A (en) Hepatobiliary NMR contrast agents

Legal Events

Date Code Title Description
AS Assignment

Owner name: MALLINCKRODT, INC., 675 MCDONNELL BLVD., ST. LOUIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WEBER, ROBERT W.;REEL/FRAME:004959/0901

Effective date: 19881010

Owner name: MALLINCKRODT, INC., A CORP. OF DE,MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEBER, ROBERT W.;REEL/FRAME:004959/0901

Effective date: 19881010

AS Assignment

Owner name: MALLINCKRODT MEDICAL, INC., 675 MCDONNELL BOULEVAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MALLINCKRODT, INC., A CORP. OF DE;REEL/FRAME:005635/0379

Effective date: 19910227

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12