US511916A - Nikola tesla - Google Patents

Nikola tesla Download PDF


Publication number
US511916A US511916DA US511916A US 511916 A US511916 A US 511916A US 511916D A US511916D A US 511916DA US 511916 A US511916 A US 511916A
United States
Prior art keywords
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US511916A publication Critical patent/US511916A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current




    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output


(No Model.) 2 Sheets-Sheet 1.
No. 511,916. Patented Jan. 2,1894.
[F IE TWO 1 (I! K .M I M HI l P 7 0 V H 7H? JV G A i E E a I c lxhmeom I I awqmboz' W M M NNNNNNNNNNNNN mouum counmv.
wAwm'rou. 0. c4
(No Model.) 2 Sheets-Sheet 2.
No. 511,916. Patented Jan. 2,1894.
WW/LGOOGO fhweutoz we umloxu. umcmm wm co: AAAAAA v,
SPECIFICATION forming part of Letters Patent No. 511,916, dated January 2, 1894.
Application filed August 19,1893. Serial No. 483,562. (No model.)
To all whont it may concern.-
Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York,in the county and State of New York, have invented certain new and useful Improvements in Electric Generators, of which the following is a specification, reference being had to the drawings accompanying and forming a part of the same.
In an application of even date herewith, Serial No. $3,563, I have shown and described a form of engine invented by me, which, under the influence of an applied force such as the elastic tension of steam or a gas under pressure, yields an oscillation of constant period.
In order that my present invention may be more readily understood I will explain the conditions which are to be observed in order to secure this result.
It is a well known mechanical principle that it a spring possessing a sensible inertia be brought under tension, as by being stretched, and then freed, it will perform vibrations which are isoehronous, and as to period, in the main, dependent upon the rigidity of the spring, and ts own inertia or that of the system of which it may form an immediate part. This is known to-be true in all cases where the force which tends to bring the spring or movable system into a given position is proportionate to the displacement.
In the construction of my engine above referred to I have followed and applied this principle, that is to say, I employ a cylinder and a piston which in any suitable manner I maintain in reciprocation by steam or gas under pressure. To the moving piston or to the cylinder, in case the latter rec1proeate and the piston remain stationary, a spring is connected so as to be maintained in vibration thereby, and whatever may be the inertia of the piston or of the moving system and the rigidity of the spring relatively to each other, provided, the practical limits within which the law holds true that the forces whichtend to bring the moving system to a given'position are proportionate to the displacement, are not exceeded, the impulses of the power impelled piston and the natural vibrations of the spring will always correspond in direction and coincide in time. In the case of the engine referred to,the ports are so arranged that the movement of the piston within the cylinder in either direction ceases when the force tending to impel it and the momentum which it has acquired are counterbalanced by the increasing pressure of the steam or compressed air in that end of the cylinder toward which it is moving, and as in its movement the piston has shut oif at a given point, the pressure that impelled itand established the pressure that tends to return it, it is then impelled in the opposite direction, and this action is continued as long as the requisite pressure is applied. The length of the stroke will vary with the pressure, but the rate or period of reciprocation is no more dependent upon the pressure applied to drive the piston, than would be the period of oscillation of a pendulum permanently maintained in vibration, upon the force which periodically impels it, the effectot variations in such force being merely to produce corresponding variations in the length of stroke or amplitude of vibration respectively.
In practice I have found that the best results are secured by the employment of an air spring, that is, a body of confined air or gas which is compressed and rarefied by the movements of the piston, and in order to secure a spring of constant rigidity I prefer to employ a separate chamber or cylinder containing air at the normal atmospheric pressure, although it might be at any other pressure, and in which works a plunger connected with or carried by the piston rod. The main reason why no engine heretofore has been capable of producing results of this nature is that it has been customary to connect with the reciprocating parts a heavy fly-wheel or some equivalent rotary system of relatively very great inertia, or in other cases where no rotary system was employed, as in certain reciprocating engines or tools, no regard has been paid to the obtainment of the conditions essential to the end which I have in View, nor would the pressure of such conditions in said devices appear to result in any special advantage.
Such an engine as I have described affords a means for accomplishing a result heretofore unattained, the continued production of electric currents of constant period, by imparting the movements of the piston to a core or oscillation to such an extent as to throw itout of isochronism. This, forinstance, might occur when the electro-magnetic reaction is very great in comparison to the powerof the en-' gine, and there is'a retardation of the current so that the electromagnetic reaction might have an effect similar to that which would result from a variation of the tension of the spring, but if the circuit of the generator be so adj ustedthat the phases of the electromotive force and current coincide .in time, that is to say, when the current is not retarded, then the generator driven by the engine acts merely as a frictional resistance and will not, as a rule, alter the period of the mechanical vibration, although it may varyits amplitude. This condition may be readily secured by properly proportioning the self induction and capacity of the circuit including the generator. 'I have, however, observed the further fact in connection with the use of such engines as a means for running a generator, that it is advantageous that the period of the engineand the natural period of electrical vibration of the generator should be the same, as in such case-"thebestconditions for electrical resonance are established and the possibility of disturbing the period of mechanical vibrations is reduced to a minimum. Ihave found that even if the theoretical conditions necessary for maintaining a constant period in the engine itself are not exactly maintained, still the engine and generator combined will vibrate at a constant period. For example, if instead of usingin the engine an independent cylinder and plunger, as an air spring of practically constant rigidity, I cause the piston to impinge upon air cushions at the ends of its own cylinder, although the rigidity of such cushions or springs might be considerably affected and Varied by the variations of pressure within the cylinder, still by combining with such an engine a generator which has a period of its own approximately that of the engine, constant vibration may be maintained even through a considerable range of varying pressure, owing to the controlling action of the electro-magnetic system. I have even found that under certain conditions the influence of the electromagnetic system may be made so great as to entirely control the period of the mechanical vibration within wide limits of varying pressure. This is likely to occur in those instances where the power of the engine while fully capable of maintaining a vibration once started, is not sufficient to change its rate. So, for the sake of illustration, if a pendulum is started in vibration,
and a small force applied periodically in the proper direction to maintain it in motion, this force would have no substantial control over the period of the oscillation, unless the inertia of the pendulum be small inlcomparison to the impelling force, and this would be true no matter through what fraction of the period the force may be applied. In the case under consideration the engine is merely an agent for maintaining the vibration once started, although it will be understood that this does not preclude the performance of useful work which would simply result in a shortening of the stroke. My invention, therefore, involves the combination of a piston free to reciprocate under the influence of steam or a gas under pressure and the movableelement of e an electric generator which is in direct mechanical connection with the piston, and it is more especially the object of my invention to secure from such combination electric cur-' rents of a constant period. In the attainment of this object I have found it preferable to construct the engine so that it of itself controls the period, but as I have stated before, I may so modify the elements of the combination that the electro-magnetic system may exert a partial or even complete control of the period. I
Inillustration of the manner in which the invention is carried out I now refer to the accompanying drawings.
Figure l is a central sectional .view of an engine and generator embodying the invention. Fig. 2 is a modification of the same.
Referring to Fig. 1 A is themain cylinder in which works a piston B. Inlet ports C 0 pass through the sides of the cylinder opening at the middle portion thereof and on oppo site sides. Exhaust ports D D extend through the walls of the cylinder and are formed with branches that open into the interiorof the cylinder on each side of the inlet ports and on opposite sides of the cylinder. The piston B is formed with two circumferential grooves E F which communicate through openings G in the piston with-the cylinder on opposite sides of said piston respectively.
The particular construction of the cylinder, the piston and the ports controlling it may be very much varied, and is not in itself ma-' terial, except that in the special case now un der consideration it is .desirable that all the ports, and more especially the exhaust ports should be made very much larger than is usually the case so that no force due to the action of the steam or compressed air will tend to retard or afiect the return of the piston in either direction. The piston B is secured to a piston rod H which works in suitable stufiing boxes in the heads of the cylinder A. This rod is prolonged on one side and extends through bearings V in a cylinder I suitably mounted or supported in linewith the first,
and within which is a disk or plunger J carried by the rod H. The cylinder I is without ports of any kind and is air-tight except as a IIO small leakage may occur through the bearings V, which experience has shown need not be fitted with any very considerable accuracy. The cylinder I is surrounded by a jacket K which leaves an open space or chamber around it. The bearings V in the cylinder I, extend through the jacket K to the outside air and the chamber between the cylinder and jacket is made steam or air-tight as by a suitable packing. The main supply pipe L for steam or compressed air leads into this chamber, and the two pipes that lead to the cylinder A run from the said chamber, oil cups M being conveniently arranged to deliver oil into the said pipes for lubricating the piston. In the particular form of engine shown, the jacket K which contains the cylinder I is provided with a flange N by which it is screwed to the end of the cylinder A. small chamber 0 is thus formed which has air vents P in its sides and drip pipes Q leading out from it through which the oil which collects in it is carried off.
To explain now the operation of the engine described,in the position of the parts shown, or when the piston is at the middle point of its stroke, the plunger J is at the center of the cylinder I and the air on both sides of the same is at the normal pressure of the outside atmosphere. It a source of steam or compressed air be then connected to the inlet ports 0 O of the cylinder A and a movement be imparted to the piston as by a sudden blow, the latter is caused to reciprocate in a manner well understood. The movements of the piston compress and rarefy the air in the cylinder I at opposite ends of the same alternately. A forward stroke compresses the air ahead of the plunger J which acts as a spring to return it. Similarly on the back strdke the air is compressed on the opposite side of the plunger J and tends to drive it forward. The compressions of the air in the cylinder I and the consequent loss of energy due mainly to the imperfect elasticity of the air, give rise to a very considerable amount of heat. This heat I utilize by conducting the steam or compressed air to the engine cylinder through the chamber formed by the jacket surrounding the air-spring cylinder. The heat thus taken up and used to raise the temperature of the steam or air acting upon the piston is availed of to increase the e'liiciency of the engine. In any given engine of this kind the normal pressure will produce a stroke of determined length, and this will be increased or diminished according to the increase of pressure above or the reduction of pressure below the normal.
In constructing the apparatus proper allowance is made for a variation in the length of stroke by giving to the confining cylinder I of the air spring properly determined dimensions. The greater the pressure upon the piston, the higher the degree of compression of the air-spring, and the consequent coun teracting force upon the plunger. The rate or period of reciprocation of the piston, however, is mainly determined as described above by the rigidity of the air spring and the inertia of the moving system, and any period of oscillation within very wide limits may be secured by properly portioning these factors, as by varying the dimensions of the air chamber which is equivalent to varying the rigidity of the spring, or by adjusting the weight of the moving parts. These conditions are all readily determinable, and an engine constructed as herein described may be made to follow the principle of operation above stated and maintain a perfectly uniform period through very wide limits of pressure.
The pressure of the air confined in the cylinder when the plunger I is in its central position will always be practically that of the surrounding atmosphere, for while the cylinder is so constructed as 'not to permit such sudden escape of air as to sensibly impair or modify the action of the air spring there will still be a slow leakage of air into or out of it around the piston rod according to the pressure therein, so that the pressure of the air on opposite sides of the plunger will always tend to remain at that of the outside atmosphere.
To the piston rod II is secured a conductor or coil of wire D which by the movements of the piston is oscillated in the magnetic field produced by two magnets B B which may be permanent magnets or energized by coils G 0 connected with a source of continuous currents E. The movement of the coil D across the lines of force established by the magnets gives rise to alternating currents in the coil. These currents, if the period of mechanical oscillation be constant will be of constant period, and may be utilized for any purpose desired.
In the case under consideration it is assumed as a necessary condition that the inertia of the movable element of the generator and the electro-maguetic reaction which it exerts will not be of such character as to materially disturb the action of the engine.
Fig. 2 is an example of a combination in which the engine is not of itself capable of determining entirely the period of oscillation, but in which the generator contributes to this end. In this figure the engine is the same as in Fig. 1. The exterior air spring is however omitted and the air spaces at the ends of the cylinder A relied on for accomplishing the same purpose. As the pressure in these spaces is liable to variations from variations in the steam or gas used in impelling the piston they might affect the period of oscillation, and the conditions are not as stable and certain as in the case of an engine constructed as in Fig. 1. But if the natural period of vibration of the elastic system be made to approximately accord with the average period of the engine such tendencies to variation are very largely overcome and the engine will preserve its period even through a considerable range of variations of pressure.
generator in this case is composed of a magnetic casing F in which a laminated core G secured to the piston rod H is caused to vibrate. Surrounding the plunger are two exciting coils O' O, and one or more induced coils D D. The coils C O are connected with a generator of continuous currents E and are wound to produce consequent poles in the core G. Any movement of the latter will therefore shift the lines of force through coils D D and produce currents therein.
In the circuit of coils D is shown a condenser H; It need only be said that by the use of a proper condenser the self induction of this circuit may be neutralized. Such a circuit will have a certain natural period of vibration, that is to say that when the electricity therein is disturbed in any way an electrical or electromagnetic vibration of a certain period takes place, and as this depends upon the capacity and self induction, such period may be varied to approximately accord with the period of the engine.
' In case the power of the engine be comparatively small, as when the pressure is applied through a very small fraction of the total stroke, the electrical vibration will tend to control the period, and it is clear that if the character of such vibration be not very widely different from the average period of vibration of the engine under ordinary working conditions such control may be entirely adequate to produce the desired results.
Having now described my invention, what I claim is 1. The combination with the piston or equivalent element of an engine which is free to reciprocate under the action thereon of steam or a gas under pressure, of the moving conductor or element of an electric generator in direct mechanical connection therewith.
2. The combination with the piston or equivalent element of an engine which is free to reciprocate under the action of steam or a gas under pressure, of the moving conductor or element of an electric generator in direct mechanical connection therewith, the engine and generator being adapted by their relative adjustment with respect to period to produce currents of constant period, as set forth.
3. The combination with an engine comprising a piston which is free to reciprocate under the action of steam or a gas under pressure, and an electric generator having inducing and induced elements one of which is capable of oscillation in the field of force, the said movable element being carried by the piston rod of the engine, as set forth.
4. The combination with an engine operated by steam or a gas under pressure and having a constant period of reciprocation, of an electric generator, the moving element of which is carried by the reciprocating part of the engine, the generator and its circuit being so related to the engine with respect to the period of electrical vibration as not to disturb the period of the engine, as set forth.
5. The combination with'a cylinder and a piston reciprocated by steamor a gas under pressure of a spring maintained in vibration by the movement of the piston, and an electric generator, the movable conductor or element of which is connected with the piston, these elements being constructed and adapted in the manner set forth for producing a current of constant period.
6. The method of producing electric currents of constant period herein described which consists in imparting the oscillations of an engine to the moving element of an electric generator and regulating the period of mechanical oscillation by an adjustment of the reaction of the electric generator, as herein set forth.
NIKOLA TESLA. Witnesses:
US511916D Nikola tesla Expired - Lifetime US511916A (en)

Publications (1)

Publication Number Publication Date
US511916A true US511916A (en) 1894-01-02



Family Applications (1)

Application Number Title Priority Date Filing Date
US511916D Expired - Lifetime US511916A (en) Nikola tesla

Country Status (1)

Country Link
US (1) US511916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232792A1 (en) * 2003-05-22 2004-11-25 Erfourth Eric J. Generator
DE102017000657A1 (en) 2016-01-26 2017-07-27 Alf Holger Tschersich Fusion devices and methods for cold hydrogen fusion
DE102018002854A1 (en) 2017-04-11 2018-10-11 Alf Holger Tschersich Cold dynamic hydrogen fusion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232792A1 (en) * 2003-05-22 2004-11-25 Erfourth Eric J. Generator
US7382072B2 (en) 2003-05-22 2008-06-03 Erfurt & Company Generator
DE102017000657A1 (en) 2016-01-26 2017-07-27 Alf Holger Tschersich Fusion devices and methods for cold hydrogen fusion
DE102018002854A1 (en) 2017-04-11 2018-10-11 Alf Holger Tschersich Cold dynamic hydrogen fusion

Similar Documents

Publication Publication Date Title
US2895063A (en) Air driven reed electric generator
US4511805A (en) Convertor for thermal energy into electrical energy using Stirling motor and integral electrical generator
US1720574A (en) Power-transmitting means by oscillatory movements
US511916A (en) Nikola tesla
US2351623A (en) Oscillating electric motor
US2685838A (en) Electromagnetic pump
US1907531A (en) Speed regulator
US2226571A (en) Vibration neutralizer
US585755A (en) Fritz haselwander
US2788457A (en) Network for damping vibrations of mechanical structures
US514169A (en) Reciprocating engine
US694547A (en) Valve-gear for engines.
WO2021123754A1 (en) Power coupling for free piston mover
US2966148A (en) Floating piston engines
US2198506A (en) Pumping apparatus
US517900A (en) Steam—Engine
US1934994A (en) Electro-magnetic pump with vibratory movement for gaseous fluids
US1488975A (en) Magneto
US2899125A (en) Chausson
US822673A (en) Governing mechanism for prime movers.
US525005A (en) The korhis pctcrs co
US1491883A (en) Speed-controlling apparatus
USRE12356E (en) Reciprocating electric engine
US1415762A (en) Stator for electrical machines
SU450292A1 (en) A device for producing a slow rotary motion