US5104945A - Heat resistant polycarbonate molding compositions - Google Patents
Heat resistant polycarbonate molding compositions Download PDFInfo
- Publication number
- US5104945A US5104945A US07/510,345 US51034590A US5104945A US 5104945 A US5104945 A US 5104945A US 51034590 A US51034590 A US 51034590A US 5104945 A US5104945 A US 5104945A
- Authority
- US
- United States
- Prior art keywords
- mol
- composition
- alkyl
- silicone rubber
- diphenols
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 50
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 46
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 46
- 238000000465 moulding Methods 0.000 title description 6
- 229920002379 silicone rubber Polymers 0.000 claims abstract description 38
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000004945 silicone rubber Substances 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 11
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 6
- 238000009757 thermoplastic moulding Methods 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 13
- -1 phenyl-N-substituted maleimide Chemical class 0.000 claims description 13
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 claims description 10
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 10
- 229920002554 vinyl polymer Polymers 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 5
- 125000004429 atom Chemical group 0.000 claims description 5
- 229920000578 graft copolymer Polymers 0.000 claims description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 239000006082 mold release agent Substances 0.000 claims description 4
- 239000000049 pigment Substances 0.000 claims description 4
- 239000003381 stabilizer Substances 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 125000006727 (C1-C6) alkenyl group Chemical group 0.000 claims description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims 1
- 229920001971 elastomer Polymers 0.000 abstract description 6
- 239000005060 rubber Substances 0.000 abstract description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- 150000002576 ketones Chemical class 0.000 description 14
- 150000003254 radicals Chemical class 0.000 description 14
- 239000000178 monomer Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 8
- WFDIJRYMOXRFFG-UHFFFAOYSA-N acetic acid anhydride Natural products CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000006887 Ullmann reaction Methods 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- POSWICCRDBKBMH-UHFFFAOYSA-N 3,3,5-trimethylcyclohexan-1-one Chemical compound CC1CC(=O)CC(C)(C)C1 POSWICCRDBKBMH-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 5
- 239000006085 branching agent Substances 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 150000002989 phenols Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000007957 coemulsifier Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000005501 phase interface Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical class C* 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- OXTQEWUBDTVSFB-UHFFFAOYSA-N 2,4,4-Trimethylcyclopentanone Chemical compound CC1CC(C)(C)CC1=O OXTQEWUBDTVSFB-UHFFFAOYSA-N 0.000 description 2
- JEANOXXXGPLTOI-UHFFFAOYSA-N 2,4,4-trimethylcyclohexan-1-one Chemical compound CC1CC(C)(C)CCC1=O JEANOXXXGPLTOI-UHFFFAOYSA-N 0.000 description 2
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 2
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 2
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 2
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 2
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KYPYTERUKNKOLP-UHFFFAOYSA-N Tetrachlorobisphenol A Chemical compound C=1C(Cl)=C(O)C(Cl)=CC=1C(C)(C)C1=CC(Cl)=C(O)C(Cl)=C1 KYPYTERUKNKOLP-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 238000010538 cationic polymerization reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical class OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000012024 dehydrating agents Substances 0.000 description 2
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- IKWBIQNMUMKUPM-UHFFFAOYSA-N 2,2,5-trimethylcycloheptan-1-one Chemical compound CC1CCC(=O)C(C)(C)CC1 IKWBIQNMUMKUPM-UHFFFAOYSA-N 0.000 description 1
- FRKBGJCJGLELLI-UHFFFAOYSA-N 2,2,6-trimethylcycloheptan-1-one Chemical compound CC1CCCC(C)(C)C(=O)C1 FRKBGJCJGLELLI-UHFFFAOYSA-N 0.000 description 1
- KNSPBSQWRKKAPI-UHFFFAOYSA-N 2,2-dimethylcyclohexan-1-one Chemical compound CC1(C)CCCCC1=O KNSPBSQWRKKAPI-UHFFFAOYSA-N 0.000 description 1
- MNKAMLMLSBHWMW-UHFFFAOYSA-N 2,2-dimethylcyclooctan-1-one Chemical compound CC1(C)CCCCCCC1=O MNKAMLMLSBHWMW-UHFFFAOYSA-N 0.000 description 1
- WFQIZSACCHAGQV-UHFFFAOYSA-N 2,3,3,4-tetramethylcyclopentan-1-one Chemical compound CC1CC(=O)C(C)C1(C)C WFQIZSACCHAGQV-UHFFFAOYSA-N 0.000 description 1
- BIQQEOKHAUBBGB-UHFFFAOYSA-N 2,3,3,5-tetramethylcycloheptan-1-one Chemical compound CC1CCC(=O)C(C)C(C)(C)C1 BIQQEOKHAUBBGB-UHFFFAOYSA-N 0.000 description 1
- IWOORFWEZGNMPW-UHFFFAOYSA-N 2,3,3-trimethylcyclohexan-1-one Chemical compound CC1C(=O)CCCC1(C)C IWOORFWEZGNMPW-UHFFFAOYSA-N 0.000 description 1
- RZQRIBYBTHKBPK-UHFFFAOYSA-N 2,3,3-trimethylcyclopentan-1-one Chemical compound CC1C(=O)CCC1(C)C RZQRIBYBTHKBPK-UHFFFAOYSA-N 0.000 description 1
- UPHBNTWDWKUFAT-UHFFFAOYSA-N 2,3,4,4-tetramethylcyclopentan-1-one Chemical compound CC1C(C)C(C)(C)CC1=O UPHBNTWDWKUFAT-UHFFFAOYSA-N 0.000 description 1
- VGVRPFIJEJYOFN-UHFFFAOYSA-N 2,3,4,6-tetrachlorophenol Chemical class OC1=C(Cl)C=C(Cl)C(Cl)=C1Cl VGVRPFIJEJYOFN-UHFFFAOYSA-N 0.000 description 1
- DSBUDTYUVWSSPD-UHFFFAOYSA-N 2,3,5,5-tetramethylcycloheptan-1-one Chemical compound CC1CC(C)(C)CCC(=O)C1C DSBUDTYUVWSSPD-UHFFFAOYSA-N 0.000 description 1
- VPVTXVHUJHGOCM-UHFFFAOYSA-N 2,4-bis[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(C(C)(C)C=2C=CC(O)=CC=2)=CC=1C(C)(C)C1=CC=C(O)C=C1 VPVTXVHUJHGOCM-UHFFFAOYSA-N 0.000 description 1
- NPFPKRBGZLWCPL-UHFFFAOYSA-N 2,4-dimethyl-4-propan-2-ylcyclopentan-1-one Chemical compound CC(C)C1(C)CC(C)C(=O)C1 NPFPKRBGZLWCPL-UHFFFAOYSA-N 0.000 description 1
- OITMBHSFQBJCFN-UHFFFAOYSA-N 2,5,5-trimethylcyclohexan-1-one Chemical compound CC1CCC(C)(C)CC1=O OITMBHSFQBJCFN-UHFFFAOYSA-N 0.000 description 1
- ZACLMVYBDSHRDN-UHFFFAOYSA-N 2,6,6-trimethylcycloheptan-1-one Chemical compound CC1CCCC(C)(C)CC1=O ZACLMVYBDSHRDN-UHFFFAOYSA-N 0.000 description 1
- MAQOZOILPAMFSW-UHFFFAOYSA-N 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=C(CC=3C(=CC=C(C)C=3)O)C=C(C)C=2)O)=C1 MAQOZOILPAMFSW-UHFFFAOYSA-N 0.000 description 1
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 1
- MWXYTNVRKXXINS-UHFFFAOYSA-N 2,7,7-trimethylcyclooctan-1-one Chemical compound CC1CCCCC(C)(C)CC1=O MWXYTNVRKXXINS-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical class OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical class OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- XSVZEASGNTZBRQ-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfinylphenol Chemical class OC1=CC=CC=C1S(=O)C1=CC=CC=C1O XSVZEASGNTZBRQ-UHFFFAOYSA-N 0.000 description 1
- QUWAJPZDCZDTJS-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfonylphenol Chemical class OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1O QUWAJPZDCZDTJS-UHFFFAOYSA-N 0.000 description 1
- NZHZXZREENEERJ-UHFFFAOYSA-N 2-butyl-3,3,4-trimethylcyclohexan-1-one Chemical compound CCCCC1C(=O)CCC(C)C1(C)C NZHZXZREENEERJ-UHFFFAOYSA-N 0.000 description 1
- XWYVLTRWDRKVHU-UHFFFAOYSA-N 2-butyl-3,3,4-trimethylcyclopentan-1-one Chemical compound CCCCC1C(=O)CC(C)C1(C)C XWYVLTRWDRKVHU-UHFFFAOYSA-N 0.000 description 1
- XBQRPFBBTWXIFI-UHFFFAOYSA-N 2-chloro-4-[2-(3-chloro-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(Cl)=CC=1C(C)(C)C1=CC=C(O)C(Cl)=C1 XBQRPFBBTWXIFI-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- MVRPPTGLVPEMPI-UHFFFAOYSA-N 2-cyclohexylphenol Chemical compound OC1=CC=CC=C1C1CCCCC1 MVRPPTGLVPEMPI-UHFFFAOYSA-N 0.000 description 1
- DOKDNTOHNOOUAQ-UHFFFAOYSA-N 2-ethyl-3,5,5-trimethylcyclohexan-1-one Chemical compound CCC1C(C)CC(C)(C)CC1=O DOKDNTOHNOOUAQ-UHFFFAOYSA-N 0.000 description 1
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 1
- DEMDAOTZMLQKIF-UHFFFAOYSA-N 3,3,4,4-tetramethylcyclopentan-1-one Chemical compound CC1(C)CC(=O)CC1(C)C DEMDAOTZMLQKIF-UHFFFAOYSA-N 0.000 description 1
- UTULSHMCEREFCR-UHFFFAOYSA-N 3,3,4-trimethyl-2-propan-2-ylcyclopentan-1-one Chemical compound CC(C)C1C(=O)CC(C)C1(C)C UTULSHMCEREFCR-UHFFFAOYSA-N 0.000 description 1
- JKONWEHOIIXXRN-UHFFFAOYSA-N 3,3,4-trimethylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1(C)C JKONWEHOIIXXRN-UHFFFAOYSA-N 0.000 description 1
- ANEGGVOMHWVLTN-UHFFFAOYSA-N 3,3,4-trimethylcyclopentan-1-one Chemical compound CC1CC(=O)CC1(C)C ANEGGVOMHWVLTN-UHFFFAOYSA-N 0.000 description 1
- MWGDYVWTNUHIQB-UHFFFAOYSA-N 3,3,5,5-tetramethylcycloheptan-1-one Chemical compound CC1(C)CCC(=O)CC(C)(C)C1 MWGDYVWTNUHIQB-UHFFFAOYSA-N 0.000 description 1
- YDDIDKITLCIFAE-UHFFFAOYSA-N 3,3,5-trimethyl-4-propan-2-ylcyclohexan-1-one Chemical compound CC(C)C1C(C)CC(=O)CC1(C)C YDDIDKITLCIFAE-UHFFFAOYSA-N 0.000 description 1
- ZTCPLLGFBZYAKW-UHFFFAOYSA-N 3,3,5-trimethyl-5-propan-2-ylcyclohexan-1-one Chemical compound CC(C)C1(C)CC(=O)CC(C)(C)C1 ZTCPLLGFBZYAKW-UHFFFAOYSA-N 0.000 description 1
- YJYAWHZIAIPEFU-UHFFFAOYSA-N 3,3,5-trimethyl-5-propylcyclohexan-1-one Chemical compound CCCC1(C)CC(=O)CC(C)(C)C1 YJYAWHZIAIPEFU-UHFFFAOYSA-N 0.000 description 1
- HNZBTZAZHHJOBM-UHFFFAOYSA-N 3,3,5-trimethylcycloheptan-1-one Chemical compound CC1CCC(=O)CC(C)(C)C1 HNZBTZAZHHJOBM-UHFFFAOYSA-N 0.000 description 1
- ZEKCYPANSOJWDH-UHFFFAOYSA-N 3,3-bis(4-hydroxy-3-methylphenyl)-1H-indol-2-one Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3NC2=O)C=2C=C(C)C(O)=CC=2)=C1 ZEKCYPANSOJWDH-UHFFFAOYSA-N 0.000 description 1
- RQSOYFCJVXBPSR-UHFFFAOYSA-N 3,3-dimethylcycloheptan-1-one Chemical compound CC1(C)CCCCC(=O)C1 RQSOYFCJVXBPSR-UHFFFAOYSA-N 0.000 description 1
- ZVJQBBYAVPAFLX-UHFFFAOYSA-N 3,3-dimethylcyclohexan-1-one Chemical compound CC1(C)CCCC(=O)C1 ZVJQBBYAVPAFLX-UHFFFAOYSA-N 0.000 description 1
- JSYAQLZSGHPSJD-UHFFFAOYSA-N 3,3-dimethylcyclopentan-1-one Chemical compound CC1(C)CCC(=O)C1 JSYAQLZSGHPSJD-UHFFFAOYSA-N 0.000 description 1
- FPNZOUJIEOSYEB-UHFFFAOYSA-N 3,4,4-trimethylcyclohexan-1-one Chemical compound CC1CC(=O)CCC1(C)C FPNZOUJIEOSYEB-UHFFFAOYSA-N 0.000 description 1
- DIXFJWMIUSSKNT-UHFFFAOYSA-N 3,5,5-trimethylcycloheptan-1-one Chemical compound CC1CC(=O)CCC(C)(C)C1 DIXFJWMIUSSKNT-UHFFFAOYSA-N 0.000 description 1
- HORNXRXVQWOLPJ-UHFFFAOYSA-N 3-chlorophenol Chemical compound OC1=CC=CC(Cl)=C1 HORNXRXVQWOLPJ-UHFFFAOYSA-N 0.000 description 1
- FQCSWWXRWLUNLH-UHFFFAOYSA-N 3-ethyl-3,5,5-trimethylcyclohexan-1-one Chemical compound CCC1(C)CC(=O)CC(C)(C)C1 FQCSWWXRWLUNLH-UHFFFAOYSA-N 0.000 description 1
- SINCOHHNSCMYME-UHFFFAOYSA-N 3-ethyl-3-methyl-4-propan-2-ylcyclohexan-1-one Chemical compound CCC1(C)CC(=O)CCC1C(C)C SINCOHHNSCMYME-UHFFFAOYSA-N 0.000 description 1
- CULUYVDAKOQDJQ-UHFFFAOYSA-N 3-ethyl-3-methyl-4-propan-2-ylcyclopentan-1-one Chemical compound CCC1(C)CC(=O)CC1C(C)C CULUYVDAKOQDJQ-UHFFFAOYSA-N 0.000 description 1
- HPFWICIZVJFFNM-UHFFFAOYSA-N 3-ethyl-3-methylcyclohexan-1-one Chemical compound CCC1(C)CCCC(=O)C1 HPFWICIZVJFFNM-UHFFFAOYSA-N 0.000 description 1
- IUZULRVGAITOOO-UHFFFAOYSA-N 3-ethyl-3-methylcyclopentan-1-one Chemical compound CCC1(C)CCC(=O)C1 IUZULRVGAITOOO-UHFFFAOYSA-N 0.000 description 1
- LOMDULYNXSSXAM-UHFFFAOYSA-N 3-methyl-3-(4-methylpentyl)cyclohexan-1-one Chemical compound CC(C)CCCC1(C)CCCC(=O)C1 LOMDULYNXSSXAM-UHFFFAOYSA-N 0.000 description 1
- VGAKELRUPBNCST-UHFFFAOYSA-N 4,4-dimethyl-2-propan-2-ylcyclopentan-1-one Chemical compound CC(C)C1CC(C)(C)CC1=O VGAKELRUPBNCST-UHFFFAOYSA-N 0.000 description 1
- BYMMLKKZWRAKQV-UHFFFAOYSA-N 4,4-dimethylcycloheptan-1-one Chemical compound CC1(C)CCCC(=O)CC1 BYMMLKKZWRAKQV-UHFFFAOYSA-N 0.000 description 1
- PXQMSTLNSHMSJB-UHFFFAOYSA-N 4,4-dimethylcyclohexan-1-one Chemical compound CC1(C)CCC(=O)CC1 PXQMSTLNSHMSJB-UHFFFAOYSA-N 0.000 description 1
- SUCTVKDVODFXFX-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfonyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 SUCTVKDVODFXFX-UHFFFAOYSA-N 0.000 description 1
- AZZWZMUXHALBCQ-UHFFFAOYSA-N 4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=C(C)C(O)=C(C)C=2)=C1 AZZWZMUXHALBCQ-UHFFFAOYSA-N 0.000 description 1
- BRPSWMCDEYMRPE-UHFFFAOYSA-N 4-[1,1-bis(4-hydroxyphenyl)ethyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=C(O)C=C1 BRPSWMCDEYMRPE-UHFFFAOYSA-N 0.000 description 1
- BWCAVNWKMVHLFW-UHFFFAOYSA-N 4-[1-(4-hydroxy-3,5-dimethylphenyl)cyclohexyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C2(CCCCC2)C=2C=C(C)C(O)=C(C)C=2)=C1 BWCAVNWKMVHLFW-UHFFFAOYSA-N 0.000 description 1
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 1
- RQTDWDATSAVLOR-UHFFFAOYSA-N 4-[3,5-bis(4-hydroxyphenyl)phenyl]phenol Chemical compound C1=CC(O)=CC=C1C1=CC(C=2C=CC(O)=CC=2)=CC(C=2C=CC(O)=CC=2)=C1 RQTDWDATSAVLOR-UHFFFAOYSA-N 0.000 description 1
- OBZFGWBLZXIBII-UHFFFAOYSA-N 4-[3-(4-hydroxy-3,5-dimethylphenyl)-3-methylbutyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CCC(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 OBZFGWBLZXIBII-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- MIJYTDQAOVQRRT-UHFFFAOYSA-N 4-[4,6-bis(4-hydroxyphenyl)-4,6-dimethylhept-2-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)=CC(C)(C=1C=CC(O)=CC=1)CC(C)(C)C1=CC=C(O)C=C1 MIJYTDQAOVQRRT-UHFFFAOYSA-N 0.000 description 1
- CIEGINNQDIULCT-UHFFFAOYSA-N 4-[4,6-bis(4-hydroxyphenyl)-4,6-dimethylheptan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)CC(C)(C=1C=CC(O)=CC=1)CC(C)(C)C1=CC=C(O)C=C1 CIEGINNQDIULCT-UHFFFAOYSA-N 0.000 description 1
- IQNDEQHJTOJHAK-UHFFFAOYSA-N 4-[4-[2-[4,4-bis(4-hydroxyphenyl)cyclohexyl]propan-2-yl]-1-(4-hydroxyphenyl)cyclohexyl]phenol Chemical compound C1CC(C=2C=CC(O)=CC=2)(C=2C=CC(O)=CC=2)CCC1C(C)(C)C(CC1)CCC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 IQNDEQHJTOJHAK-UHFFFAOYSA-N 0.000 description 1
- LIDWAYDGZUAJEG-UHFFFAOYSA-N 4-[bis(4-hydroxyphenyl)-phenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=CC=C1 LIDWAYDGZUAJEG-UHFFFAOYSA-N 0.000 description 1
- BOCLKUCIZOXUEY-UHFFFAOYSA-N 4-[tris(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 BOCLKUCIZOXUEY-UHFFFAOYSA-N 0.000 description 1
- HJSPWKGEPDZNLK-UHFFFAOYSA-N 4-benzylphenol Chemical class C1=CC(O)=CC=C1CC1=CC=CC=C1 HJSPWKGEPDZNLK-UHFFFAOYSA-N 0.000 description 1
- WDDUKJWHQDQCLJ-UHFFFAOYSA-N 4-butyl-3,3,5-trimethylcyclohexan-1-one Chemical compound CCCCC1C(C)CC(=O)CC1(C)C WDDUKJWHQDQCLJ-UHFFFAOYSA-N 0.000 description 1
- BEISIWACDYSFJD-UHFFFAOYSA-N 4-ethyl-2,3,4-trimethylcyclopentan-1-one Chemical compound CCC1(C)CC(=O)C(C)C1C BEISIWACDYSFJD-UHFFFAOYSA-N 0.000 description 1
- LOKSUEDSRBXVJV-UHFFFAOYSA-N 4-ethyl-4-methyl-3-propan-2-ylcyclohexan-1-one Chemical compound CCC1(C)CCC(=O)CC1C(C)C LOKSUEDSRBXVJV-UHFFFAOYSA-N 0.000 description 1
- MABKONZEVCZGAJ-UHFFFAOYSA-N 4-ethyl-4-methylcyclohexan-1-one Chemical compound CCC1(C)CCC(=O)CC1 MABKONZEVCZGAJ-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- SZUWRIBQCMULKV-UHFFFAOYSA-N 5-ethyl-2,5-dimethylcycloheptan-1-one Chemical compound CCC1(C)CCC(C)C(=O)CC1 SZUWRIBQCMULKV-UHFFFAOYSA-N 0.000 description 1
- XWAGBXRBHWUJMU-UHFFFAOYSA-N 5-ethyl-5-methyl-2,4-di(propan-2-yl)cyclohexan-1-one Chemical compound CCC1(C)CC(=O)C(C(C)C)CC1C(C)C XWAGBXRBHWUJMU-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- GIXXQTYGFOHYPT-UHFFFAOYSA-N Bisphenol P Chemical compound C=1C=C(C(C)(C)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 GIXXQTYGFOHYPT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical class OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- YLJJAVFOBDSYAN-UHFFFAOYSA-N dichloro-ethenyl-methylsilane Chemical compound C[Si](Cl)(Cl)C=C YLJJAVFOBDSYAN-UHFFFAOYSA-N 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical class Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Chemical class 0.000 description 1
- 229930195729 fatty acid Chemical class 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 125000005439 maleimidyl group Chemical class C1(C=CC(N1*)=O)=O 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical class OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003510 tertiary aliphatic amines Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/08—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
- C08L51/085—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
Definitions
- the invention relates to heat resistant thermoplastic molding compositions comprising polycarbonates based on specific dihydroxydiphenylcycloalkanes and silicone rubbers, a process for their preparation and their use for the production of shaped articles.
- thermoplastic molding compositions comprising mixtures of
- R 1 and R 2 independently of one another denote hydrogen, halogen, preferably chlorine or bromine, C 1 -C 8 -alkyl, C 5 -C 6 -cycloalkyl, C 6 -C 10 -aryl or C 7 -C 12 -aralkyl,
- n denotes an integer from 4 to 7, preferably 4 or 5
- R 3 and R 4 are selected individually for each X and independently of one another denote hydrogen or C 1 -C 6 -alkyl and
- x denotes carbon
- R 3 and R 4 are simultaneously alkyl on 1-2 atoms X, in particular on only one atom X.
- the preferred alkyl radical is methyl; the X atoms in the ⁇ -position relative to the diphenyl-substituted C atom (C-I) are preferably not dialkyl-substituted, whereas alkyl-disubstitution in the ⁇ -position relative to C-1 is preferred.
- the dihydroxydiphenylcycloalkanes of the formula (I) can be prepared in a manner which is known per se by condensation of phenols of the formula (V) ##STR3## and ketones of the formula (VI) ##STR4## wherein, in the formula (V) and (VI) X, R 1 , R 2 , R 3 , R 4 and m have the meaning given for formula (I).
- the phenols of the formula (V) are either known from the literature or obtainable by processes which are known from the literature (see, for example, for cresols and xylenols Ullmanns Encyclopadie der Technischen Chemie, (Ullmanns Encyclopaedia of Industrial Chemistry), 4th revised and expanded edition, volume 15, pages 61-77, Verlag Chemie Weinheim-New York 1978; for chlorophenols Ullmanns Encyclopadie der Technischen Chemie (Ullmanns Encyclopaedia of Industrial Chemistry), 4th edition, Verlag Chemie, 1975, volume 9, pages 573-582; and for alkylphenols Ullmanns Encyclopadie der Technischen Chemie (Ullmanns Encyclopaedia of Industrial Chemistry), 4th edition, Verlag Chemie 1979, volume 18, pages 191-214).
- Suitable phenols of the formula (V) are: phenol, o-cresol, m-cresol, 2,6-dimethylphenol, 2-chlorophenol, 3-chlorophenol, 2,6-dichloro-phenol, 2-cyclohexylphenol, phenylphenols and o- or p-benzylphenols.
- ketones of the formula (VI) are known from the literature (see, for example, Beilsteins Handbuch der Organischen Chemie (Beilsteins Handbook of Organic Chemistry), 7th volume, 4th edition, Springer-Verlag, Berlin, 1925 and the corresponding supplement volumes 1 to 4, and J. Am. Chem. Soc. vol. 79 (1957), pages 1488, 1490 and 1491, Allen et al. U.S. Pat. No. 2,692,289, J. Chem. Soc., (1954), 2186, 2191 and J. Org. Chem. vol. 38, no. 26, (1973), pages 4431 et seq. and J. Am. Chem. Soc.
- ketones of the formula (VI) are described, for example, in "Organikum, 15th edition, 1977, VEB-Deutscher Verlag dermaschineen, Berlin, page 698.
- ketones of the formula (VI) are: 3,3-dimethylcyclopentanone, 2,2-dimethylcyclohexanone, 3,3-dimethylcyclohexanone, 4,4-dimethylcyclohexanone, 3-ethyl-3-methylcyclopentanone, 2,3,3-trimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, 3,3,4-trimethylcyclopentanone, 3,3-dimethylcycloheptanone, 4,4-dimethylcycloheptanone, 3-ethyl-3-methylcyclohexanone, 4-ethyl-4-methylcyclohexanone, 2,3,3-trimethylcyclohexanone, 2,4,4-trimethylcyclohexanone, 3,3,4-trimethylcyclohexanone, 2,5,5-trimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 3,4,4-trimethylcyclohexanone, 2,3,3,4-tetra
- phenol (V) are used per mol of ketone (VI).
- Preferred reaction times are 1 to 100 hours.
- the reaction is in general carried out at temperatures from -30° C. to 300° C., preferably from -15° C. to 150° C., under pressures of 1 to 20 bar, preferably 1 to 10 bar.
- the condensation is in general carried out in the presence of acid catalysts.
- acid catalysts examples are hydrogen chloride, hydrogen bromide, hydrogen fluoride, boron trifluoride, aluminum trichloride, zinc dichloride, titanium tetrachloride, tin tetrachloride, phosphorus halides, phosphorus pentoxide, phosphoric acid, concentrated hydrochloric acid or sulfuric acid and mixtures of acetic acid and acetic anhydride. It is also possible to use acid ion exchanges.
- reaction may be accelerated by addition of co-catalysts, such as C 1 -C 18 -alkyl-mercaptans, hydrogen sulphide, thiophenols, thio acids and dialkyl sulphides.
- co-catalysts such as C 1 -C 18 -alkyl-mercaptans, hydrogen sulphide, thiophenols, thio acids and dialkyl sulphides.
- the condensation can be carried out without a solvent or in the presence of an inert solvent (e.g. aliphatic and aromatic hydrocarbons or chlorohydrocarbons).
- an inert solvent e.g. aliphatic and aromatic hydrocarbons or chlorohydrocarbons.
- dehydrating agents examples include acetic anhydride, zeolites, polyphosphoric acid and phosphorus pentoxide.
- the reaction does not proceed completely uniformly, i.e. several different products may be formed, so that the desired compound initially has to be isolated from a mixture.
- the reaction can sometimes be controlled by choosing appropriate catalysts and reaction conditions so that the desired compound precipitates or crystallizes, which facilitates its isolation.
- diphenols of the formula (I) can also be used as a mixture with other diphenols, for example with those of the formula
- thermoplastic aromatic polycarbonates for the preparation of high molecular weight thermoplastic aromatic polycarbonates.
- Suitable other diphenols of the formula HO--Z--OH (VII) are those in which Z is an aromatic radical with 6 to 30 C atoms, and may contain one or more aromatic nuclei, and may be substituted and may contain aliphatic radicals or cycloaliphatic radicals other than those of the formula (I) or hetero atoms as bridge members.
- 2,2-bis-(4-hydroxyphenyl)-propane is particularly preferred. These diphenols may be employed either individually or as a mixture.
- the molar ratio of diphenols of the formula (I) to the other diphenols which are also to be used if appropriate, for example those of the formula (VII), should be 100 mol % (1) to 0 mol % other diphenol to 2 mol % (1) to 98 mol % other diphenol, preferably 100 mol % (I) to 0 mol % other diphenol to 5 mol % (I) to 95 mol % other diphenol, and in particular 100 mol % (I) to 0 mol % other diphenol to 10 mol % (I) to 90 mol % other diphenol, and especially 100 mol % (I) to 0 mol % other diphenol to 20 mol % (I) to 80 mol % other diphenol.
- the high molecular weight polycarbonates from the diphenols of the formula (I), optionally in combination with other diphenols, may be prepared by the known polycarbonate preparation processes. In these processes, the various diphenols can be linked to one another either randomly or in blocks.
- the polycarbonates may be branched in a manner which is known per se. If branching is desired, it can be achieved in a known manner by co-condensation of small amounts, preferably amounts between 0.05 and 2.0 mol % (based on the diphenols employed), of compounds having a functionality of three or more, in particular those with three or more phenolic hydroxyl groups. Some branching agents with three or more phenolic hydroxyl groups are
- trifunctional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
- Monofunctional compounds in the customary concentrations are used as chain stoppers for regulation, which is known per se, of the molecular weight of the polycarbonates.
- Suitable compounds are e.g. phenol, tert.-butylphenols or other alkyl-C 1 -C 7 -substituted phenols.
- the content of CH 3 protons is between 47 and 89% and the content of CH and CH 2 protons is between 53 and 11%; also preferably, R is in the o- and/or p-position relative to the OH group, and particularly preferably the upper limit of the ortho-content is 20%.
- the chain stoppers are in general employed in amounts of 0.5 to 10, preferably 1.5 to 8 mol %, based on the diphenols employed.
- the polycarbonates (a) can preferably be prepared in a manner which is known per se by phase interface polycondensation (c.f. H. Schnell, "Chemistry and Physics of Polycarbonates” Polymer Reviews, vol. IX, page 33 et seq., Interscience Publ., 1964).
- phase interface polycondensation c.f. H. Schnell, "Chemistry and Physics of Polycarbonates” Polymer Reviews, vol. IX, page 33 et seq., Interscience Publ., 1964.
- the diphenols of the formula (I) are dissolved in an aqueous alkaline phase.
- mixtures of diphenols of the formula (I) and the other diphenols, for example those of the formula (VII) are employed.
- Chain stoppers, e.g. of the formula (VIII) can be added to regulate the molecular weight.
- the reaction is then carried out in the presence of an inert organic phase, preferably which dissolves polycarbonate, using phosgene by
- the branching agents which may optionally be used (preferably 0.05 to 2 mol %) may either be taken with the diphenols in the aqueous-alkaline phase or added as a solution in the organic solvent before the phosgenation.
- diphenols of the formula (I) and if appropriate other diphenols (VII) it is possible to also use mono- and/or bis-chlorocarbonic acid esters thereof, these being added as a solution in organic solvents.
- the amount of chain stoppers and of branching agents depends on the molar amount of diphenolate radicals corresponding to the formula (I) and if appropriate formula (VII); if chlorocarbonic acid esters are also used, the amount of phosgene can be correspondingly reduced in a known manner.
- Suitable organic solvents for the chain stoppers and if appropriate for the branching agents and the chlorocarbonic acid esters are methylene chloride, chlorobenzene, acetone, acetonitrile and mixtures of these solvents, in particular mixtures of methylene chloride and chlorobenzene. If appropriate, the chain stoppers and branching agents used may be dissolved in the same solvent.
- Methylene chloride, chlorobenzene and mixtures of methylene chloride and chlorobenzene, for example, may be used as the organic phase for the phase interface polycondensation.
- Aqueous NaOH solution for example, is used as the aqueous alkaline phase.
- the formation of the polycarbonates by phase interface polycondensation may be catalyzed in the customary manner by catalysts such as tertiary amines, in particular tertiary aliphatic amines, such as tributylamine or triethylamine; the catalysts may be employed in amounts of 0.05 to 10 mol %, based on the mol of diphenols employed.
- the catalysts can be added before the start of the phosgenation or during or after the phosgenation.
- the polycarbonates may also be prepared by the known process in a homogeneous phase, the so-called “pyridine process” and by the known melt transesterification process, using, for example, diphenyl carbonate instead of phosgene.
- the polycarbonates preferably have molecular weights Mw (weight-average, determined by gel chromatography after prior calibration) of at least 10,000, particularly preferably of 10,000 to 200,000 and in particular of 20,000 to 80,000. They may be linear or branched and include homopolycarbonates or copolycarbonates based on the diphenols of the formula (I).
- Polycarbonates (a) in the sense of the invention are thus high molecular weight thermoplastic aromatic polycarbonates which have Mw (weight-average molecular weight) of at least 15,000, preferably of 20,000 to 180,000, and contain bifunctional carbonate structural units of the formula (Ia) ##STR7## wherein X, R 1 , R 2 , R 3 , R 4 and m have the meaning given for formula (I), in amounts of 100 mol % to 2 mol %, preferably in amounts of 100 mol % to 5 mol %, and in particular in amounts of 100 mol % to 10 mol %, and especially 100 mol % to 20 mol %, in each case based on the total amount of 100 mol % of difunctional carbonate structural units in the polycarbonate.
- Mw weight-average molecular weight
- the polycarbonates thus contain in each case complementary amounts to make up to 100 mol % of other difunctional carbonate structural units, for example those of the formula (VIIa) ##STR8## that is to say in amounts of 0 mol % (inclusive) to 98 mol % inclusive, preferably 0 mol % to 95 mol %, and in particular 0 mol % to 90 mol %, and especially preferably 0 mol % to 80 mol %, in each case based on the total amount of 100 mol % difunctional carbonate structural units in the polycarbonate [--Z-- in formula (VIIa) corresponds to the --Z-- in formula (VII)].
- the preferred polycarbonates are those in which m in the structural units of the formula (Ia) is 4 or 5, and especially those of units of the formula (Ic) ##STR10## wherein R 1 and R 2 have the meaning given for formula (Ia), but particularly preferably are hydrogen.
- the polycarbonate properties can moreover be varied in a favorable manner by any desired combination with other diphenols, in particular with those of the formula (VII).
- aromatic polycarbonates which are known per se and have been prepared from diphenols other than those of the dihydroxydiphenylcycloalkanes of the formula (I).
- Polycarbonates (b) which can be employed are homo- and copolycarbonates, such as are described e.g. in U.S. Pat. Nos. 2,999,835, GB-PS 772 627 and DE-OS 3 334 872. Polycarbonates from bisphenol A are particularly preferred.
- Silicone rubbers (c) used according to the invention consist predominantly of structural units ##STR11## wherein R 1 and R 2 can be identical or different and denote C 1 -C 6 -alkyl or cyclohexyl or C 6 -C 12 -aryl.
- Preferred silicone rubbers (c) are in particle form with an average particle diameter d 50 of 0.09 to 1 ⁇ m, preferably 0.09-0.4 ⁇ m, and a gel content of more than 70 wt. %, in particular 73-98 wt. %, and are obtainable from
- Preferred silicone rubbers (c) contain as organic radicals at least 80 mol % methyl groups.
- the end group is in general a diorganyl-hydroxyl-siloxy unit, preferably a dimethylhydroxysiloxy unit.
- Silanes 1) to 4) which are preferred for the preparation of the silicone rubbers (c) contain chlorine as the halogen substituent.
- silicone rubber (c) does not necessarily have to be prepared from the halogen compounds 1) to 4).
- the intention is also to include silicone rubbers (c) of the same structure which have been prepared from silanes with other hydrolyzable groups, such as e.g. C 1 -C 6 -alkoxy groups, or from cyclic siloxane oligomers.
- Silicone graft rubbers are mentioned as a particularly preferred component (c). These may be prepared, for example, by a three-stage process.
- the crosslinked silicone rubbers are obtained from these cyclic oligomers by addition of mercaptopropylmethyldimethoxysilane by ring-opening cationic polymerization.
- the resulting silicone rubbers which have vinyl and mercapto groups with grafting activity are subjected to free radical grafting polymerization with vinyl monomers (or mixtures).
- mixtures of cyclic siloxane oligomers such as octamethylcyclotetrasiloxane and tetramethyltetravinylcyclotetrasiloxane, are subjected to ring-opening cationic polymerization in emulsion in the second stage.
- the silicone rubbers are obtained in particle form as an emulsion.
- alkylbenzenesulphonic acids which act both as catalysts and as emulsifiers. After the polymerization, the acid is neutralized.
- alkylbenzenesulphonic acids it is also possible to employ n-alkylsulphonic acids. It is also possible for co-emulsifiers also additionally to be employed alongside the sulphonic acids.
- Co-emulsifiers may be nonionic or anionic.
- Anionic co-emulsifiers are, in particular, salts of n-alkyl- or alkylbenzenesulphonic acids.
- Nonionic co-emulsifiers include polyoxyethylene derivatives of fatty alcohols and fatty acids. Examples are POE (3)-lauryl alcohol, POE (20)-oleyl alcohol, POE (7)-nonyl alcohol or POE (10)-stearate.
- the notation POE (number) . . . alcohol means that the number of units of ethylene oxide corresponding to the number has been added onto one molecule of . . . alcohol. POE stands for polyethylene oxide. The number is an average value.
- the groups with crosslinking and grafting activity may be introduced into the silicone rubber using corresponding siloxane oligomers. These are e.g. tetramethyl-tetravinylcyclotetrasiloxane or ⁇ -mercaptopropylmethyldimethoxysilane or the hydrolysate thereof.
- oligomers e.g. octamethylcyclotetrasiloxane
- main oligomer e.g. octamethylcyclotetrasiloxane
- Adequate crosslinking of the silicone rubber may already be achieved if the radicals ⁇ and ⁇ react with one another during the emulsion polymerization, so that the further addition of a crosslinking agent can be dispensed with.
- a crosslinking silane may be added during the second reaction stage in order to increase the degree of crosslinking of the silicone rubber.
- Branchings and crosslinking may be achieved by addition of e.g. tetraethoxysilane or a silane of the formula
- X is a hydrolyzable group, in particular an alkoxy or halogen radical
- y is an organic radical.
- Preferred silanes y-SiX 3 are methyltrimethoxysilane and phenyltrimethoxysilane.
- the average particle diameter d 50 of the silicone rubbers is the diameter above and below which in each case 50 wt. % of the particles lie. It can be determined by ultracentrifuge measurements (W. Scholtan, H. Lange, Kolloid. Z. and Z. Polymere 250 (1972), 782-796).
- the gel content is determined at 25° C. in acetone (c.f. DE-AS 2 521 288, p. 6, 1. 17-37). In the silicone rubbers according to the invention, it is at least 70%, preferably 73-98 wt. %.
- Grafted silicone rubbers (c) may be prepared by free radical grafting polymerization, for example analogously to DE-PS 2 421 288.
- the grafting monomers may be subjected to free radical grafting polymerization in the presence of the silicone rubber, in particular at 40 to 90° C.
- the grafting polymerization may be carried out in suspension, dispersion or emulsion. Continuous or discontinuous emulsion polymerization are preferred.
- This grafting polymerization is carried out with free radical initiators (e.g. peroxides, azo compounds, hydroperoxides, persulphates or perphosphates) and if appropriate using anionic emulsifiers, e.g. carboxonium salts, sulphonic acid salts or organic sulphates.
- Graft polymers with high grafting yields are formed here, i.e. a high content of the polymer of the grafting monomers is bonded chemically to the silicone rubber.
- the silicone rubber has radicals with grafting activity, so that particular measures for heavy grafting are superfluous.
- the grafted silicone rubbers (c) are prepared by grafting polymerization of 5 to 90 parts by wt., preferably 20 to 80 parts by wt., of a vinyl monomer or a vinyl monomer mixture onto 10 to 95, preferably 20 to 80 parts by wt. silicone rubber.
- a particularly preferred vinyl monomer is methyl methacrylate.
- Suitable vinyl monomer mixtures consist of 50-95 parts by wt. styrene, ⁇ -methylstyrene (or other styrenes alkyl- or halogen-substituted in the nucleus) or methyl methacrylate on the one hand and of 5-50 parts by wt. acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride or substituted maleimide on the other hand.
- Acrylic acid esters of primary or secondary aliphatic C 2 -C 10 -alcohols preferably n-butyl acrylate, or the acrylic or methacrylic acid ester of tert.-butanol, preferably t-butyl acrylate, can additionally be present as other vinyl monomers.
- a particularly preferred monomer mixture is 30 to 40 parts by wt. ⁇ -methylstyrene, 52 to 62 parts by wt. methyl methacrylate and 4 to 14 parts by wt. acrylonitrile.
- the silicone rubbers (c) grafted in this way may be worked up in a known manner, e.g. by coagulation of the lattices with electrolytes (salts, acids or mixtures thereof) and subsequent purification and drying.
- grafted silicone rubbers in general free polymers or copolymers of the grafting monomers which form the grafted shell are formed to a certain degree in addition to the actual graft copolymer.
- the product obtained by polymerization of the grafting monomers in the presence of the silicone rubber that is to say, in general a mixture of graft copolymer and free (co-)polymer of the grafting monomers, is called a grafted silicone rubber here.
- the molding compositions according to the invention have optimum properties if the amount of free (co-)polymer does not exceed 50, preferably 30, in particular 20 wt. %, based on component C.
- the molding compositions according to the invention may contain the customary amounts of further additives which are known for their utility in aromatic polycarbonates and for silicone graft rubbers, such as stabilizers, pigments, mold release agents, flameproofing agents and/or antistatics.
- the molding compositions according to the invention may be prepared by mixing the constituents in a known manner and subjecting the mixture to melt compounding or melt extrusion at elevated temperatures, preferably at 200 to 350° C., in the customary devices, such as internal kneaders, extruders or twin-screw extruders.
- the individual components may be mixed in succession or simultaneously.
- the present invention thus also relates to a process for the preparation of thermoplastic molding compositions containing components (a), (b) and (c) and if appropriate stabilizers, pigments, mold release agents, flame-proofing agents and/or antistatics, which is characterized in that components (a), (b) and (c) and if appropriate stabilizers, pigments, mold release agents, flameproofing agents and/or antistatics are mixed in a known manner and the mixture is subjected to melt compounding or melt extrusion at elevated temperatures, preferably at temperatures from 200° C. to 350° C., in customary devices, such as internal kneaders, extruders or twin-screw extruders.
- the molding compositions according to the invention may be used for the production of all types of shaped articles, e.g. by injection molding.
- shaped articles are: housing components (e.g. for domestic appliances, such as juice presses, coffee machines, mixers and microwave utensils), covering plates for the building trade and car components. They are also employed for electrical equipment, e.g. for plug receptacles, coil forms and printed circuit boards.
- Shaped articles can also be produced by thermoforming from previously produced sheets or films.
- the invention thus furthermore relates to the use of the molding compositions described for the production of shaped articles.
- the bisphenolate-free aqueous phase is separated off and, after acidification with phosphoric acid, the organic phase is washed with water until free from electrolytes and freed from the solvent.
- Relative viscosity 1.30 (in methylene chloride at 25° C. and a concentration of 0.5 gm/dl).
- Glass transition temperature T g 206° C. (DSC).
- Polycarbonates of bisphenol A having a relative viscosity of 1.22 in methylene chloride at 25° C. and a concentration of 0.5 gm/dl).
- the emulsion is stirred at 85° C. for 2 hours and then at 20° C. for 36 hours. It is neutralized with 5 N NaOH. A stable emulsion with a solids content of about 36 wt. % results.
- the polymer has a gel content of 82 wt. %, measured in toluene; the average particle diameter d 50 is 300 nm.
- the graft polymers After coagulation with an aqueous magnesium chloride/acetic acid solution, filtration and drying in vacuo, the graft polymers are obtained in the form of a white powder.
- the constituents were homogenized in a 1.3 liter internal kneader at temperatures of 260°-320° C. (see table 1).
- Examples 2-4 according to the invention illustrate that the heat distortion point is improved significantly, the toughness largely being retained.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Thermoplastic molding compositions comprising mixtures of
a) 1-99 wt. % of a specific polycarbonate based on dihydroxydiphenylcycloalkanes,
b) 1-99 wt. % of other polycarbonate, in particular those based on bisphenol A, and
c) 1-95 wt. % of a silicone rubber, in particular silicone graft rubbers,
having improved thermal resistance and being suitable for the preparation of shaped articles, and a process for their preparation are being disclosed.
Description
The invention relates to heat resistant thermoplastic molding compositions comprising polycarbonates based on specific dihydroxydiphenylcycloalkanes and silicone rubbers, a process for their preparation and their use for the production of shaped articles.
The invention relates to thermoplastic molding compositions comprising mixtures of
a) 1-99 wt. %, preferably 10-90 wt. %, of specific polycarbonates based on dihydroxydiphenylcycloalkanes of the formula (I), and
b) 1-99 wt. %, preferably 10-90 wt. %, of other polycarbonates, in particular those based on bisphenol A and
c) 1-95 wt. %, preferably 2-60 wt. %, in particular 3-40 wt %, of silicone rubbers, in particular silicone graft rubbers.
These are specific polycarbonates based on dihydroxydiphenylcycloalkanes of the formula (I) ##STR1## wherein R1 and R2 independently of one another denote hydrogen, halogen, preferably chlorine or bromine, C1 -C8 -alkyl, C5 -C6 -cycloalkyl, C6 -C10 -aryl or C7 -C12 -aralkyl,
m denotes an integer from 4 to 7, preferably 4 or 5,
R3 and R4 are selected individually for each X and independently of one another denote hydrogen or C1 -C6 -alkyl and
x denotes carbon,
with the proviso that on at least one atom X, R3 and R4 are simultaneously alkyl.
The polycarbonates (a) as well as the starting components used in their preparation are described in German Patent Application P 3 832 396.6.
Preferably, in the dihydroxydiphenylcycloalkanes of the formula (I), R3 and R4 are simultaneously alkyl on 1-2 atoms X, in particular on only one atom X. The preferred alkyl radical is methyl; the X atoms in the α-position relative to the diphenyl-substituted C atom (C-I) are preferably not dialkyl-substituted, whereas alkyl-disubstitution in the β-position relative to C-1 is preferred.
Preferred dihydroxydiphenylcycloalkanes of the formula (I) are those with with 5 or 6 ring C atoms in the cycloaliphatic radical (m=4 or 5 in formula (I)), for example the diphenols of the formula ##STR2## 1,1-bis-(4-hydroxyphenyl)3,3,5-trimethylcyclohexane (formula II) being particularly preferred.
The dihydroxydiphenylcycloalkanes of the formula (I) can be prepared in a manner which is known per se by condensation of phenols of the formula (V) ##STR3## and ketones of the formula (VI) ##STR4## wherein, in the formula (V) and (VI) X, R1, R2, R3, R4 and m have the meaning given for formula (I).
The phenols of the formula (V) are either known from the literature or obtainable by processes which are known from the literature (see, for example, for cresols and xylenols Ullmanns Encyclopadie der Technischen Chemie, (Ullmanns Encyclopaedia of Industrial Chemistry), 4th revised and expanded edition, volume 15, pages 61-77, Verlag Chemie Weinheim-New York 1978; for chlorophenols Ullmanns Encyclopadie der Technischen Chemie (Ullmanns Encyclopaedia of Industrial Chemistry), 4th edition, Verlag Chemie, 1975, volume 9, pages 573-582; and for alkylphenols Ullmanns Encyclopadie der Technischen Chemie (Ullmanns Encyclopaedia of Industrial Chemistry), 4th edition, Verlag Chemie 1979, volume 18, pages 191-214).
Examples of suitable phenols of the formula (V) are: phenol, o-cresol, m-cresol, 2,6-dimethylphenol, 2-chlorophenol, 3-chlorophenol, 2,6-dichloro-phenol, 2-cyclohexylphenol, phenylphenols and o- or p-benzylphenols.
The ketones of the formula (VI) are known from the literature (see, for example, Beilsteins Handbuch der Organischen Chemie (Beilsteins Handbook of Organic Chemistry), 7th volume, 4th edition, Springer-Verlag, Berlin, 1925 and the corresponding supplement volumes 1 to 4, and J. Am. Chem. Soc. vol. 79 (1957), pages 1488, 1490 and 1491, Allen et al. U.S. Pat. No. 2,692,289, J. Chem. Soc., (1954), 2186, 2191 and J. Org. Chem. vol. 38, no. 26, (1973), pages 4431 et seq. and J. Am. Chem. Soc. 87, (1965), page 1353 et seq., in particular page 1355). A general process for the preparation of ketones of the formula (VI) is described, for example, in "Organikum, 15th edition, 1977, VEB-Deutscher Verlag der Wissenschaften, Berlin, page 698.
Examples of known ketones of the formula (VI) are: 3,3-dimethylcyclopentanone, 2,2-dimethylcyclohexanone, 3,3-dimethylcyclohexanone, 4,4-dimethylcyclohexanone, 3-ethyl-3-methylcyclopentanone, 2,3,3-trimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, 3,3,4-trimethylcyclopentanone, 3,3-dimethylcycloheptanone, 4,4-dimethylcycloheptanone, 3-ethyl-3-methylcyclohexanone, 4-ethyl-4-methylcyclohexanone, 2,3,3-trimethylcyclohexanone, 2,4,4-trimethylcyclohexanone, 3,3,4-trimethylcyclohexanone, 2,5,5-trimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 3,4,4-trimethylcyclohexanone, 2,3,3,4-tetramethylcyclopentanone, 2,3,4,4-tetramethylcyclopentanone, 3,3,4,4-tetramethylcyclopentanone, 2,2,5-trimethylcycloheptanone, 2,2,6-trimethylcycloheptanone, 2,6,6-trimethylcycloheptanone, 3,3,5-trimethylcycloheptanone, 3,5,5-trimethylcycloheptanone, 5-ethyl-2,5-dimethylcycloheptanone, 2,3,3,5-tetramethylcycloheptanone, 2,3,5,5-tetra-methylcycloheptanone, 3,3,5,5-tetramethylcycloheptanone, 4-ethyl-2,3,4-trimethylcyclopentanone, 2-isopropyl-4,4-dimethylcyclopentanone, 4-isopropyl-2,4-dimethylcyclopentanone, 2-ethyl-3,5,5-trimethylcyclohexanone, 3-ethyl-3,5,5-trimethylcyclohexanone, 3-ethyl-4-isopropyl-3-methylcyclopentanone, 4-sec.-butyl-3,3-dimethylcyclopentanone, 2-isopropyl-3,3,4-trimethylcyclopentanone, 3-ethyl-4-isopropyl-3-methylcyclohexanone, 4-ethyl-3-isopropyl-4-methylcyclohexanone, 3-sec.-butyl-4,4-dimethylcyclohexanone, 3-isopropyl-3,5,5-trimethylcyclohexanone, 4-isopropyl-3,5,5-trimethylcyclohexanone, 3,3,5-trimethyl-5-propylcyclohexanone, 3,5,5-trimethyl-5-propylcyclohexanone, 2-butyl-3,3,4-trimethylcyclopentanone, 2-butyl-3,3,4-trimethylcyclohexanone, 4-butyl-3,3,5-trimethylcyclohexanone, 3-isohexyl-3-methylcyclohexanone, 5-ethyl-2,4-diisopropyl-5-methylcyclohexanone, 2,2-dimethylcyclooctanone, and 3,3,8-trimethylcyclooctanone.
Examples of preferred ketones are ##STR5##
To prepare the bisphenol, in general 2 to 10 mol, preferably 2.5 to 6 mol, phenol (V) are used per mol of ketone (VI). Preferred reaction times are 1 to 100 hours. The reaction is in general carried out at temperatures from -30° C. to 300° C., preferably from -15° C. to 150° C., under pressures of 1 to 20 bar, preferably 1 to 10 bar.
The condensation is in general carried out in the presence of acid catalysts. Examples are hydrogen chloride, hydrogen bromide, hydrogen fluoride, boron trifluoride, aluminum trichloride, zinc dichloride, titanium tetrachloride, tin tetrachloride, phosphorus halides, phosphorus pentoxide, phosphoric acid, concentrated hydrochloric acid or sulfuric acid and mixtures of acetic acid and acetic anhydride. It is also possible to use acid ion exchanges.
The reaction may be accelerated by addition of co-catalysts, such as C1 -C18 -alkyl-mercaptans, hydrogen sulphide, thiophenols, thio acids and dialkyl sulphides.
The condensation can be carried out without a solvent or in the presence of an inert solvent (e.g. aliphatic and aromatic hydrocarbons or chlorohydrocarbons).
In cases where the catalyst simultaneously functions as a dehydrating agent, it is not necessary to employ an additional dehydrating agent, but the latter is advantageous in all cases for achieving good conversions if the catalyst employed does not bond the water of reaction.
Examples of suitable dehydrating agents are acetic anhydride, zeolites, polyphosphoric acid and phosphorus pentoxide.
The phenol (V) and ketone (VI) can be reacted in a molar ratio of (V):(VI)=2:1 to 10:1, preferably 2.5:1 to 6:1, at temperatures of -30° C. to 300° C., preferably -15° C. to 150° C., under pressures of 1 to 20 bar, preferably 1 to 10 bar, in the presence of acid catalysts and optionally in the presence of co-catalysts and/or solvents and/or dehydrating agents.
In some cases, the reaction does not proceed completely uniformly, i.e. several different products may be formed, so that the desired compound initially has to be isolated from a mixture. For details of the condensation, reference is made to Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964. The reaction can sometimes be controlled by choosing appropriate catalysts and reaction conditions so that the desired compound precipitates or crystallizes, which facilitates its isolation.
It is possible to use either one diphenol of the formula (I) to form homopolycarbonates or several diphenols of the formula (I) to form copolycarbonates.
The diphenols of the formula (I) can also be used as a mixture with other diphenols, for example with those of the formula
HO--Z--OH (VII)
for the preparation of high molecular weight thermoplastic aromatic polycarbonates.
Suitable other diphenols of the formula HO--Z--OH (VII) are those in which Z is an aromatic radical with 6 to 30 C atoms, and may contain one or more aromatic nuclei, and may be substituted and may contain aliphatic radicals or cycloaliphatic radicals other than those of the formula (I) or hetero atoms as bridge members.
Examples of diphenols of the formula (VII) are
hydroquinone,
resorcinol,
dihydroxydiphenyls,
bis-(hydroxyphenyl)-alkanes,
bis-(hydroxyphenyl)-cycloalkanes,
bis-(hydroxyphenyl) sulphides,
bis-(hydroxyphenyl) ethers,
bis-(hydroxyphenyl) ketones,
bis-(hydroxyphenyl) sulphones,
bis-(hydroxyphenyl) sulphoxides, α,α'-bis-(hydroxyphenyl)-diisopropylbenzenes
and nuclear-alkylated and nuclear-halogenated compounds thereof.
These and other further suitable diphenols are described e.g. in U.S. Pat. Nos. 3,028,365, 2,999,835, 3,148,172, 3,275,601, 2,991,273, 3271,367, 3,062,781, 2,970,131 and 2,999,846, in German Offenlegungsschriften 1 570 703, 2 063 050, 2 063 052, and 2 211 0956, in French Patent Specification 1 561 518 and in the Monograph "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964".
Examples of preferred other diphenols are:
4,4'-dihydroxydiphenyl,
2,2-bis-(4-hydroxyphenyl)-propane,
2,4-bis-(4-hydroxyphenyl)-2-methylbutane,
1,1-bis-(4-hydroxyphenyl)-cyclohexane,
α,α'-bis-(4-hydroxyphenyl)-p-diisopropylbenzene,
2,2-bis-(3-methyl-4-hydroxyphenyl)-propane,
2,2-bis-(3-chloro-4-hydroxyphenyl)-propane,
bis-(3,5-dimethyl-4-hydroxyphenyl)-methane,
2,2-bis-(3,5-dimethyl-4-hydroxy-phenyl)-propane,
bis-(3,5-dimethyl-4-hydroxyphenyl) sulfone,
2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane,
1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane,
α,α'-bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropyl-benzene,
2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane and
2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane.
Examples of particularly preferred diphenols of the formula (VII) are:
2,2-bis-(4-hydroxyphenyl)-propane,
2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane,
2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane,
2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane and
1,1-bis-(4-hydroxyphenyl)-cyclohexane.
2,2-bis-(4-hydroxyphenyl)-propane is particularly preferred. These diphenols may be employed either individually or as a mixture.
The molar ratio of diphenols of the formula (I) to the other diphenols which are also to be used if appropriate, for example those of the formula (VII), should be 100 mol % (1) to 0 mol % other diphenol to 2 mol % (1) to 98 mol % other diphenol, preferably 100 mol % (I) to 0 mol % other diphenol to 5 mol % (I) to 95 mol % other diphenol, and in particular 100 mol % (I) to 0 mol % other diphenol to 10 mol % (I) to 90 mol % other diphenol, and especially 100 mol % (I) to 0 mol % other diphenol to 20 mol % (I) to 80 mol % other diphenol.
The high molecular weight polycarbonates from the diphenols of the formula (I), optionally in combination with other diphenols, may be prepared by the known polycarbonate preparation processes. In these processes, the various diphenols can be linked to one another either randomly or in blocks.
The polycarbonates may be branched in a manner which is known per se. If branching is desired, it can be achieved in a known manner by co-condensation of small amounts, preferably amounts between 0.05 and 2.0 mol % (based on the diphenols employed), of compounds having a functionality of three or more, in particular those with three or more phenolic hydroxyl groups. Some branching agents with three or more phenolic hydroxyl groups are
phloroglucinol,
4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hept-2-ene,
4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane,
1,3,5-tri-(4-hydroxyphenyl)-benzene,
1,1,1-tri-(4-hydroxyphenyl)-ethane,
tri-(4-hydroxyphenyl)-phenylmethane,
2,2-bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl)-propane,
2,4-bis-(4-hydroxyphenyl-isopropyl)-phenol,
2,6-bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol,
2-(4-hydroxyphenyl)-2-(2,4-hydroxyphenyl)-propane,
hexa-(4-(4-hydroxyphenyl-isopropyl)-phenyl)ortho-terephthalate,
tetra-(4-hydroxyphenyl)-methane,
tetra-(4-(4-hydroxyphenyl-isopropl)-phenoxy)-methane and
1,4-bis-((4'-,4"-dihydroxytriphenyl)-methyl)-benzene.
Some of the other trifunctional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
Monofunctional compounds in the customary concentrations are used as chain stoppers for regulation, which is known per se, of the molecular weight of the polycarbonates. Suitable compounds are e.g. phenol, tert.-butylphenols or other alkyl-C1 -C7 -substituted phenols. Small amounts of phenols of the formula (VIII) ##STR6## wherein R represents a branched C8 - and/or C9 -alkyl radical, are particularly suitable for regulating the molecular weight. Preferably, in the alkyl radical R, the content of CH3 protons is between 47 and 89% and the content of CH and CH2 protons is between 53 and 11%; also preferably, R is in the o- and/or p-position relative to the OH group, and particularly preferably the upper limit of the ortho-content is 20%. The chain stoppers are in general employed in amounts of 0.5 to 10, preferably 1.5 to 8 mol %, based on the diphenols employed.
The polycarbonates (a) can preferably be prepared in a manner which is known per se by phase interface polycondensation (c.f. H. Schnell, "Chemistry and Physics of Polycarbonates" Polymer Reviews, vol. IX, page 33 et seq., Interscience Publ., 1964). In this process, the diphenols of the formula (I) are dissolved in an aqueous alkaline phase. To prepare copolycarbonates with other diphenols, mixtures of diphenols of the formula (I) and the other diphenols, for example those of the formula (VII), are employed. Chain stoppers, e.g. of the formula (VIII), can be added to regulate the molecular weight. The reaction is then carried out in the presence of an inert organic phase, preferably which dissolves polycarbonate, using phosgene by the method of phase interface condensation. The reaction temperature is between 0° C. and 40° C.
The branching agents which may optionally be used (preferably 0.05 to 2 mol %) may either be taken with the diphenols in the aqueous-alkaline phase or added as a solution in the organic solvent before the phosgenation.
In addition to the diphenols of the formula (I) and if appropriate other diphenols (VII), it is possible to also use mono- and/or bis-chlorocarbonic acid esters thereof, these being added as a solution in organic solvents. The amount of chain stoppers and of branching agents depends on the molar amount of diphenolate radicals corresponding to the formula (I) and if appropriate formula (VII); if chlorocarbonic acid esters are also used, the amount of phosgene can be correspondingly reduced in a known manner.
Examples of suitable organic solvents for the chain stoppers and if appropriate for the branching agents and the chlorocarbonic acid esters are methylene chloride, chlorobenzene, acetone, acetonitrile and mixtures of these solvents, in particular mixtures of methylene chloride and chlorobenzene. If appropriate, the chain stoppers and branching agents used may be dissolved in the same solvent.
Methylene chloride, chlorobenzene and mixtures of methylene chloride and chlorobenzene, for example, may be used as the organic phase for the phase interface polycondensation.
Aqueous NaOH solution, for example, is used as the aqueous alkaline phase.
The formation of the polycarbonates by phase interface polycondensation may be catalyzed in the customary manner by catalysts such as tertiary amines, in particular tertiary aliphatic amines, such as tributylamine or triethylamine; the catalysts may be employed in amounts of 0.05 to 10 mol %, based on the mol of diphenols employed. The catalysts can be added before the start of the phosgenation or during or after the phosgenation.
The polycarbonates may also be prepared by the known process in a homogeneous phase, the so-called "pyridine process" and by the known melt transesterification process, using, for example, diphenyl carbonate instead of phosgene.
The polycarbonates preferably have molecular weights Mw (weight-average, determined by gel chromatography after prior calibration) of at least 10,000, particularly preferably of 10,000 to 200,000 and in particular of 20,000 to 80,000. They may be linear or branched and include homopolycarbonates or copolycarbonates based on the diphenols of the formula (I).
Polycarbonates (a) in the sense of the invention are thus high molecular weight thermoplastic aromatic polycarbonates which have Mw (weight-average molecular weight) of at least 15,000, preferably of 20,000 to 180,000, and contain bifunctional carbonate structural units of the formula (Ia) ##STR7## wherein X, R1, R2, R3, R4 and m have the meaning given for formula (I), in amounts of 100 mol % to 2 mol %, preferably in amounts of 100 mol % to 5 mol %, and in particular in amounts of 100 mol % to 10 mol %, and especially 100 mol % to 20 mol %, in each case based on the total amount of 100 mol % of difunctional carbonate structural units in the polycarbonate.
The polycarbonates thus contain in each case complementary amounts to make up to 100 mol % of other difunctional carbonate structural units, for example those of the formula (VIIa) ##STR8## that is to say in amounts of 0 mol % (inclusive) to 98 mol % inclusive, preferably 0 mol % to 95 mol %, and in particular 0 mol % to 90 mol %, and especially preferably 0 mol % to 80 mol %, in each case based on the total amount of 100 mol % difunctional carbonate structural units in the polycarbonate [--Z-- in formula (VIIa) corresponds to the --Z-- in formula (VII)].
By incorporation of the diphenols of the formula (I), new polycarbonates with a high heat distortion point and which also otherwise have good properties have been formed. This particularly applies to the polycarbonates based on the diphenols (I) in which m is 4 or 5, and especially to the polycarbonates based on the diphenols (lb) ##STR9## wherein R1 and R2 independently of one another have the meaning given for formula (I) and especially preferably are hydrogen.
The preferred polycarbonates are those in which m in the structural units of the formula (Ia) is 4 or 5, and especially those of units of the formula (Ic) ##STR10## wherein R1 and R2 have the meaning given for formula (Ia), but particularly preferably are hydrogen.
These polycarbonates based on the diphenols of the formula (Ib) wherein, in particular, R1 and R2 are hydrogen, moreover have, in addition to a high heat distortion point, a good UV stability and good flow properties in the melt, which was not to be expected.
The polycarbonate properties can moreover be varied in a favorable manner by any desired combination with other diphenols, in particular with those of the formula (VII).
These are aromatic polycarbonates which are known per se and have been prepared from diphenols other than those of the dihydroxydiphenylcycloalkanes of the formula (I).
Polycarbonates (b) which can be employed are homo- and copolycarbonates, such as are described e.g. in U.S. Pat. Nos. 2,999,835, GB-PS 772 627 and DE-OS 3 334 872. Polycarbonates from bisphenol A are particularly preferred.
Silicone rubbers (c) used according to the invention consist predominantly of structural units ##STR11## wherein R1 and R2 can be identical or different and denote C1 -C6 -alkyl or cyclohexyl or C6 -C12 -aryl.
Preferred silicone rubbers (c) are in particle form with an average particle diameter d50 of 0.09 to 1 μm, preferably 0.09-0.4 νm, and a gel content of more than 70 wt. %, in particular 73-98 wt. %, and are obtainable from
1) dihalogenoorganosilanes
2) 0-10 mol %, based on 1), of trihalogenosilanes and
3) 0-3 mol %, based on 1), of tetrahalogenosilanes and
4) 0-0.5 mol % based on 1), of halogenotriorganosilanes,
the organic radicals in the compounds 1), 2) and 4) being
α) C1 -C6 -alkyl or cyclohexyl, preferably methyl or ethyl
β) C6 -C12 -aryl, preferably phenyl
γ) C1 -C6 -alkenyl, preferably vinyl or allyl
δ) mercapto-C1 -C6 -alkyl, preferably mercaptopropyl
with the proviso that the sum (γ+δ)is 2-10 mol %, based on all the organic radicals of the compounds 1), 2) and 4), and the molar ratio γ:δ=3:1 to 1:3, preferably 2:1 to 1:2.
Preferred silicone rubbers (c) contain as organic radicals at least 80 mol % methyl groups. The end group is in general a diorganyl-hydroxyl-siloxy unit, preferably a dimethylhydroxysiloxy unit. Silanes 1) to 4) which are preferred for the preparation of the silicone rubbers (c) contain chlorine as the halogen substituent.
"Obtainable" means that the silicone rubber (c) does not necessarily have to be prepared from the halogen compounds 1) to 4). The intention is also to include silicone rubbers (c) of the same structure which have been prepared from silanes with other hydrolyzable groups, such as e.g. C1 -C6 -alkoxy groups, or from cyclic siloxane oligomers.
Silicone graft rubbers are mentioned as a particularly preferred component (c). These may be prepared, for example, by a three-stage process.
In the first stage, monomers, such as dimethyldichlorosilane, vinylmethyldichlorosilane or dichlorosilanes with other substituents, are converted into the cyclic oligomers (octamethylcyclotetrasiloxane or tetravinyltetramethylcyclotetrasiloxane) which are easy to purify by distillation. (C.f. Chemie in unserer Zeit 4 (1987), 121-127.).
In the second stage, the crosslinked silicone rubbers are obtained from these cyclic oligomers by addition of mercaptopropylmethyldimethoxysilane by ring-opening cationic polymerization.
In the third stage, the resulting silicone rubbers which have vinyl and mercapto groups with grafting activity are subjected to free radical grafting polymerization with vinyl monomers (or mixtures).
Preferably, mixtures of cyclic siloxane oligomers, such as octamethylcyclotetrasiloxane and tetramethyltetravinylcyclotetrasiloxane, are subjected to ring-opening cationic polymerization in emulsion in the second stage. The silicone rubbers are obtained in particle form as an emulsion.
The procedure followed is preferably in accordance with GB-PS 1 024 014, with alkylbenzenesulphonic acids which act both as catalysts and as emulsifiers. After the polymerization, the acid is neutralized. Instead of alkylbenzenesulphonic acids, it is also possible to employ n-alkylsulphonic acids. It is also possible for co-emulsifiers also additionally to be employed alongside the sulphonic acids.
Co-emulsifiers may be nonionic or anionic. Anionic co-emulsifiers are, in particular, salts of n-alkyl- or alkylbenzenesulphonic acids. Nonionic co-emulsifiers include polyoxyethylene derivatives of fatty alcohols and fatty acids. Examples are POE (3)-lauryl alcohol, POE (20)-oleyl alcohol, POE (7)-nonyl alcohol or POE (10)-stearate. (The notation POE (number) . . . alcohol means that the number of units of ethylene oxide corresponding to the number has been added onto one molecule of . . . alcohol. POE stands for polyethylene oxide. The number is an average value.)
The groups with crosslinking and grafting activity (vinyl and mercapto groups, c.f. organic radicals γ and δ) may be introduced into the silicone rubber using corresponding siloxane oligomers. These are e.g. tetramethyl-tetravinylcyclotetrasiloxane or δ-mercaptopropylmethyldimethoxysilane or the hydrolysate thereof.
They are added to the main oligomer, e.g. octamethylcyclotetrasiloxane, in the desired amounts in the second stage.
The incorporation of longer-chain alkyl radicals, such as e.g. ethyl, propyl or the like, or the incorporation of phenyl groups can also be achieved analogously.
Adequate crosslinking of the silicone rubber may already be achieved if the radicals γ and δ react with one another during the emulsion polymerization, so that the further addition of a crosslinking agent can be dispensed with. However, a crosslinking silane may be added during the second reaction stage in order to increase the degree of crosslinking of the silicone rubber.
Branchings and crosslinking may be achieved by addition of e.g. tetraethoxysilane or a silane of the formula
y-SiX.sub.3
wherein
X is a hydrolyzable group, in particular an alkoxy or halogen radical, and
y is an organic radical.
Preferred silanes y-SiX3 are methyltrimethoxysilane and phenyltrimethoxysilane.
The average particle diameter d50 of the silicone rubbers is the diameter above and below which in each case 50 wt. % of the particles lie. It can be determined by ultracentrifuge measurements (W. Scholtan, H. Lange, Kolloid. Z. and Z. Polymere 250 (1972), 782-796).
The gel content is determined at 25° C. in acetone (c.f. DE-AS 2 521 288, p. 6, 1. 17-37). In the silicone rubbers according to the invention, it is at least 70%, preferably 73-98 wt. %.
Grafted silicone rubbers (c) may be prepared by free radical grafting polymerization, for example analogously to DE-PS 2 421 288.
To prepare the grafted silicone rubber in the third stage, the grafting monomers may be subjected to free radical grafting polymerization in the presence of the silicone rubber, in particular at 40 to 90° C. The grafting polymerization may be carried out in suspension, dispersion or emulsion. Continuous or discontinuous emulsion polymerization are preferred. This grafting polymerization is carried out with free radical initiators (e.g. peroxides, azo compounds, hydroperoxides, persulphates or perphosphates) and if appropriate using anionic emulsifiers, e.g. carboxonium salts, sulphonic acid salts or organic sulphates. Graft polymers with high grafting yields are formed here, i.e. a high content of the polymer of the grafting monomers is bonded chemically to the silicone rubber. The silicone rubber has radicals with grafting activity, so that particular measures for heavy grafting are superfluous.
The grafted silicone rubbers (c) are prepared by grafting polymerization of 5 to 90 parts by wt., preferably 20 to 80 parts by wt., of a vinyl monomer or a vinyl monomer mixture onto 10 to 95, preferably 20 to 80 parts by wt. silicone rubber.
A particularly preferred vinyl monomer is methyl methacrylate. Suitable vinyl monomer mixtures consist of 50-95 parts by wt. styrene, α-methylstyrene (or other styrenes alkyl- or halogen-substituted in the nucleus) or methyl methacrylate on the one hand and of 5-50 parts by wt. acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride or substituted maleimide on the other hand. Smaller amounts of acrylic acid esters of primary or secondary aliphatic C2 -C10 -alcohols, preferably n-butyl acrylate, or the acrylic or methacrylic acid ester of tert.-butanol, preferably t-butyl acrylate, can additionally be present as other vinyl monomers. A particularly preferred monomer mixture is 30 to 40 parts by wt. α-methylstyrene, 52 to 62 parts by wt. methyl methacrylate and 4 to 14 parts by wt. acrylonitrile.
The silicone rubbers (c) grafted in this way may be worked up in a known manner, e.g. by coagulation of the lattices with electrolytes (salts, acids or mixtures thereof) and subsequent purification and drying.
In the preparation of the grafted silicone rubbers (c), in general free polymers or copolymers of the grafting monomers which form the grafted shell are formed to a certain degree in addition to the actual graft copolymer. The product obtained by polymerization of the grafting monomers in the presence of the silicone rubber, that is to say, in general a mixture of graft copolymer and free (co-)polymer of the grafting monomers, is called a grafted silicone rubber here.
The molding compositions according to the invention have optimum properties if the amount of free (co-)polymer does not exceed 50, preferably 30, in particular 20 wt. %, based on component C.
The molding compositions according to the invention may contain the customary amounts of further additives which are known for their utility in aromatic polycarbonates and for silicone graft rubbers, such as stabilizers, pigments, mold release agents, flameproofing agents and/or antistatics.
The molding compositions according to the invention may be prepared by mixing the constituents in a known manner and subjecting the mixture to melt compounding or melt extrusion at elevated temperatures, preferably at 200 to 350° C., in the customary devices, such as internal kneaders, extruders or twin-screw extruders. The individual components may be mixed in succession or simultaneously.
The present invention thus also relates to a process for the preparation of thermoplastic molding compositions containing components (a), (b) and (c) and if appropriate stabilizers, pigments, mold release agents, flame-proofing agents and/or antistatics, which is characterized in that components (a), (b) and (c) and if appropriate stabilizers, pigments, mold release agents, flameproofing agents and/or antistatics are mixed in a known manner and the mixture is subjected to melt compounding or melt extrusion at elevated temperatures, preferably at temperatures from 200° C. to 350° C., in customary devices, such as internal kneaders, extruders or twin-screw extruders.
The molding compositions according to the invention may be used for the production of all types of shaped articles, e.g. by injection molding. Examples of shaped articles are: housing components (e.g. for domestic appliances, such as juice presses, coffee machines, mixers and microwave utensils), covering plates for the building trade and car components. They are also employed for electrical equipment, e.g. for plug receptacles, coil forms and printed circuit boards.
Shaped articles can also be produced by thermoforming from previously produced sheets or films.
The invention thus furthermore relates to the use of the molding compositions described for the production of shaped articles.
7.5 mol (705 gm) phenol and 0.15 mol (30.3 gm) dodecylthiol are initially introduced into a 1 liter round-bottomed flask with a stirrer, dropping funnel, thermometer, reflux condenser and gas inlet tube and are saturated with dry HCl gas at 28°-30° C. A solution of 1.5 mol (210 gm) dihydroisophorone (3,3,5-trimethyl-cyclohexane-1-one) and 1.5 mol (151 gm) phenol are added dropwise to this solution in the course of 3 hours, HCl gas still being passed through the reaction solution. HCl gas is then passed in for a further 5 hours. The mixture is allowed to after-react at room temperature for 8 hours. The excess phenol is then removed by steam distillation. The residue is extracted hot twice with petroleum ether (60-90) and once with methylene chloride and filtered off.
Yield: 370 gm
Melting point: 205°-207° C. ##STR12##
1,436.4 gm (6.3 mol) bisphenol A (2,2-bis(4-hydroxyphenyl)propane), 2,387.0 gm (7.7 mol) bisphenol of the formula (I), 7,476.0 gm (84 mol) 45% NaOH and 33.7 liter water are dissolved in an inert gas atmosphere, while stirring. A solution of 36.9 gm (0.392 mol) phenol in 11 liter methylene chloride and 13 liter chlorobenzene is then added. 2,772 gm (28 mol) phosgene are passed into the well-stirred solution at pH 13-14 and 21-25° C. Thereafter, 14 milliliter ethylpiperidine are added and the mixture is stirred for a further 45 min. The bisphenolate-free aqueous phase is separated off and, after acidification with phosphoric acid, the organic phase is washed with water until free from electrolytes and freed from the solvent. Relative viscosity=1.30 (in methylene chloride at 25° C. and a concentration of 0.5 gm/dl). Glass transition temperature Tg =206° C. (DSC).
Polycarbonates of bisphenol A having a relative viscosity of 1.22 in methylene chloride at 25° C. and a concentration of 0.5 gm/dl).
The following are initially introduced into a reactor:
2,107 parts by wt. latex according to 1) and
1,073 parts by wt. water.
After initiation with a solution of 7.5 parts by wt. potassium peroxydisulphate in 195 parts by wt. water at 65° C., in each case the following solutions are fed in uniformly in the course of 4 hours for preparation of the graft rubber:
Solution 1:
540 parts by wt. styrene and
210 parts by wt. acrylonitrile;
Solution 2:
375 parts by wt. water and
15 parts by wt. sodium salt of C14 -C18 -alkylsuphonic acids.
Polymerization is then brought to completion in each case at 65° C. within 6 hours. A latex with a solids content of about 33 wt. % results.
After coagulation with an aqueous magnesium chloride/acetic acid solution, filtration and drying in vacuo, the graft polymers are obtained in the form of a white powder.
The constituents were homogenized in a 1.3 liter internal kneader at temperatures of 260°-320° C. (see table 1).
Bars measuring 80×10×4 mm were then molded on an injection molding machine and the notched impact strength ak according to Izod (ISO 180) and the heat distortion point Vicat B (DIN 53 460) were determined.
TABLE 1 ______________________________________ Example 1* 2 3 4 ______________________________________ Polycarbonate (a) parts by wt. -- 10 20 40 Polycarbonate (b) parts by wt. 80 70 60 40 Silicone rubber (c) parts by wt. 20 20 20 20 a.sub.k [kj/m.sup.2 ] +20° C. 54 52 49 42 -20° C. 44 43 41 31 Vicat B/120 [°C.] 140 145 150 161 ______________________________________ a.sub.k : notched impact strength *: comparison experiment
Examples 2-4 according to the invention illustrate that the heat distortion point is improved significantly, the toughness largely being retained.
Claims (10)
1. A thermoplastic molding composition comprising a mixture of
(a) 1-99 wt. % polycarbonates prepared from a mixture of diphenols comprising
(1) 100 to 2 mol %, based on the total of diphenols (a), of a dihydroxydiphenylcycloalkane of the formula ##STR13## wherein R1 and R2 independently denote hydrogen, halogen, C1 -C8 -alkyl, C5 -C6 -cycloalkyl, C6 -C10 -aryl or C7 -C12 -aralkyl,
m denotes an integer from 4 to 7,
R3 and R4 are selected individually for each X and independently of one another denote hydrogen or C1 -C6 -alkyl, and
X denotes carbon,
with the proviso that on at least one atom X, R3 and R4 are both alkyl,
(2) 2 to 98 mol %, based on the total of diphenols (a), of a diphenol different from component (a)(1);
(b) 1-99 wt. % of other polycarbonates; and
(c) 1-95 wt. % of a silicone rubber.
2. The composition of claim 1, in which component (b) is a polycarbonate or copolycarbonate based on bisphenol A.
3. The composition of claim 1, in which component (c) is a grafted silicone rubber.
4. The composition of claim 1 in which component (c) is a grafted silicone comprising a graft polymer of
(1) 5-90 parts by wt. of a mixture of
(i) 50-95 parts by wt. styrene or styrene substituted in the aromatic nucleus by at least one member selected from the group consisting of halogen and methyl, α-methylstyrene, methyl methacrylate, or mixtures of these compounds, and
(ii) 5-50 parts by wt. acrylonitrile, methacrylonitrile, C1 -C8 -alkyl acrylates, C1 -C16 -alkyl methacrylates, maleic anhydride, C1 -C4 -alkyl or phenyl-N-substituted maleimide, or mixtures of these compounds,
grafted on
(2) 10-95 parts by wt. silicone rubber having an average particle diameter d50 of 0.09 to 1 μm and a gel content of more than 70.
5. The composition of claim 4 in which the silicone rubber is obtained from
(1) dihalogenodiorganosilanes,
(2) 0-10 mol % trahalogenoorganosilane,
(3) 0-3 mol % tetrahalogenosilane and
(4) 0-0.5 mol % halogenotriorganosilanes,
wherein the organic radicals of the compounds (1), (2), and (4) are one or more substituents selected from the group consisting of
(α) C1 -C6 -alkyl or cyclohexyl,
(β) C6 -C12 -aryl,
(γ) C1 -C6 -alkenyl, and
(δ) mercapto-C1 -C6 -alkyl,
with the proviso that the sum (γ+δ) is 2 to 10 mol %, based on all the organic radicals of the compounds (1), (2), and (4), and the molar ratio γ:δ is 3:1 to 1:3.
6. The composition of claim 4, in which the particle diameter d50 of the silicone rubber is 0.09 to 0.4 μm.
7. The composition of claim 4, in which the gel content of the silicone rubber is 73 to 98 wt. %.
8. The composition of claim 5, in which at least 80 mol % of the organic radicals of components (1), (2), and (4) are methyl, the radicals γ are vinyl and/or allyl groups and the radicals δ are mercaptopropyl radicals.
9. The composition of claim 1, which additionally contains at least one member selected from the group consisting of stabilizers, pigments, mold release agents, flameproofing agents and antistatics.
10. A process for the preparation of the composition of claim 1 comprising
(1) forming a mixture of components (a), (b) and (c) and
(2) subjecting said mixture to melt compounding or melt extrusion at an elevated temperature in an internal kneader, an extruder, or a twin-screw extruder.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3913114 | 1989-04-21 | ||
DE3913114A DE3913114A1 (en) | 1989-04-21 | 1989-04-21 | THERMO-RESISTANT POLYCARBONATE MOLDS |
Publications (1)
Publication Number | Publication Date |
---|---|
US5104945A true US5104945A (en) | 1992-04-14 |
Family
ID=6379133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/510,345 Expired - Fee Related US5104945A (en) | 1989-04-21 | 1990-04-17 | Heat resistant polycarbonate molding compositions |
Country Status (4)
Country | Link |
---|---|
US (1) | US5104945A (en) |
EP (1) | EP0393454A3 (en) |
JP (1) | JPH02300258A (en) |
DE (1) | DE3913114A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5556908A (en) * | 1995-07-06 | 1996-09-17 | Bayer Corporation | Toughened thermoplastic molding composition |
US5623026A (en) * | 1994-07-08 | 1997-04-22 | Bayer Aktiengesellschaft | Siloxanes containing epoxy groups, and mixtures thereof with polycarbonates |
US5668204A (en) * | 1991-03-26 | 1997-09-16 | Bayer Aktiengesellschaft | Stabilization of polycarbonates having high heat distortion temperatures |
US20020188063A1 (en) * | 1998-12-07 | 2002-12-12 | Craig Daniel Horace | Emulsion polymerized silicone rubber-based impact modifiers, method for making, and blends thereof |
US10392506B2 (en) | 2015-07-06 | 2019-08-27 | Covestro Deutschland Ag | Polycarbonate compositions for galvanic applications having a high requirement for heat distortion point |
US11359051B2 (en) | 2017-03-03 | 2022-06-14 | Ems-Patent Ag | Microwave-resistant mouldings |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3918406A1 (en) * | 1989-06-06 | 1990-12-13 | Bayer Ag | USE OF POLYCARBONATE MIXTURES IN OPTICS |
DE19828539A1 (en) * | 1998-06-26 | 1999-12-30 | Bayer Ag | Fire-resistant polycarbonate molding material, useful for the production of molded parts for domestic appliances, office machines, cars and electrical goods |
CN1180025C (en) * | 2000-05-01 | 2004-12-15 | 通用电气公司 | Clear polycarbonate blends |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806593A (en) * | 1986-09-17 | 1989-02-21 | Bayer Aktiengesellschaft | Thermoplastic moulding materials having good resistance to ageing and good low-temperature impact strength |
US4982014A (en) * | 1988-08-12 | 1991-01-01 | Bayer Aktiengesellschaft | Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2999835A (en) * | 1959-01-02 | 1961-09-12 | Gen Electric | Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same |
GB1519561A (en) * | 1976-08-26 | 1978-08-02 | Gen Tire & Rubber Co | Polycarbonate composition |
US4554309A (en) * | 1982-12-27 | 1985-11-19 | General Electric Company | Polycarbonate from cycloalkylidene tetra alkyl substituted diphenol |
US4469833A (en) * | 1983-05-27 | 1984-09-04 | General Electric Company | Flame retardant polycarbonate compositions |
DE3832396A1 (en) * | 1988-08-12 | 1990-02-15 | Bayer Ag | Dihydroxydiphenylcycloalkanes, their preparation, and their use for the preparation of high-molecular-weight polycarbonates |
-
1989
- 1989-04-21 DE DE3913114A patent/DE3913114A1/en not_active Withdrawn
-
1990
- 1990-04-07 EP EP19900106722 patent/EP0393454A3/en not_active Withdrawn
- 1990-04-17 US US07/510,345 patent/US5104945A/en not_active Expired - Fee Related
- 1990-04-18 JP JP2100526A patent/JPH02300258A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806593A (en) * | 1986-09-17 | 1989-02-21 | Bayer Aktiengesellschaft | Thermoplastic moulding materials having good resistance to ageing and good low-temperature impact strength |
US4982014A (en) * | 1988-08-12 | 1991-01-01 | Bayer Aktiengesellschaft | Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5668204A (en) * | 1991-03-26 | 1997-09-16 | Bayer Aktiengesellschaft | Stabilization of polycarbonates having high heat distortion temperatures |
US5623026A (en) * | 1994-07-08 | 1997-04-22 | Bayer Aktiengesellschaft | Siloxanes containing epoxy groups, and mixtures thereof with polycarbonates |
US5556908A (en) * | 1995-07-06 | 1996-09-17 | Bayer Corporation | Toughened thermoplastic molding composition |
US20020188063A1 (en) * | 1998-12-07 | 2002-12-12 | Craig Daniel Horace | Emulsion polymerized silicone rubber-based impact modifiers, method for making, and blends thereof |
US10392506B2 (en) | 2015-07-06 | 2019-08-27 | Covestro Deutschland Ag | Polycarbonate compositions for galvanic applications having a high requirement for heat distortion point |
US11359051B2 (en) | 2017-03-03 | 2022-06-14 | Ems-Patent Ag | Microwave-resistant mouldings |
Also Published As
Publication number | Publication date |
---|---|
JPH02300258A (en) | 1990-12-12 |
EP0393454A3 (en) | 1992-05-06 |
DE3913114A1 (en) | 1990-10-25 |
EP0393454A2 (en) | 1990-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4882381A (en) | Moulding compounds of aromatic polyesters and grafted silicone rubber | |
US4746701A (en) | Thermoplastics moulding compositions based on polysiloxane/polycarbonate block copolymers | |
US4812515A (en) | Ageing-resistant thermoplastic moulding materials of good impact strength | |
US5010135A (en) | Moulding compounds of aromatic polyesters, vinyl copolymers and grafted silicone rubber | |
US5132154A (en) | Polycarbonate mixtures in optical applications | |
US4927880A (en) | Low gloss molded articles using polyorganosiloxane/polyvinyl-based graft polymers | |
US4963619A (en) | Mixtures of polycarbonates with siloxane-containing graft polymers | |
US5126404A (en) | Polycarbonate molding compositions | |
JPH0391528A (en) | Polycarbonate based on substituted cyclohexylidene bisphenol | |
EP3464467B1 (en) | Process for producing a stabilizer dispersion and process for producing a thermoplastic composition stabilized with the stabilizer dispersion | |
TW200846413A (en) | Impact-resistance-modified filled polycarbonate compositions | |
JP3242960B2 (en) | Polycarbonate molding material stable against photoaging | |
TWI302160B (en) | Extrudable polycarbonate molding compositions | |
US5104945A (en) | Heat resistant polycarbonate molding compositions | |
US5157065A (en) | Thermoplastic polycarbonate moulding compositions with flame-resistant properties | |
US4987184A (en) | Mixtures of polycarbonates with siloxane-containing graft polymers | |
US5145911A (en) | Polycarbonate molding composition | |
JP2874961B2 (en) | High heat resistant polycarbonate / ABS composition | |
JPH02191661A (en) | Thermoplastic molding composition containing polyorganosiloxane/polyvinyl base graft polymer modifier | |
CN102037074B (en) | Polycarbonate blends with low-temperature toughness | |
JP3034020B2 (en) | Flame-resistant thermoplastic polycarbonate molding material | |
US4622363A (en) | Thermoplastic moulding compositions with an improved heat distortion point | |
TWI304428B (en) | Flame-resistant polycarbonate compositions having increased chemical resistance | |
TWI329121B (en) | Poly(ester)carbonate molding compositions | |
US5240978A (en) | Thermoplastic polycarbonate moulding compositions with flame-resistant properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAYER AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:ECKEL, THOMAS;WITTMANN, DIETER;FREITAG, DIETER;AND OTHERS;REEL/FRAME:005292/0577 Effective date: 19900323 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19960417 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |