US5078135A - Apparatus for in vivo analysis of biological compounds in blood or tissue by microdialysis and mass spectrometry - Google Patents

Apparatus for in vivo analysis of biological compounds in blood or tissue by microdialysis and mass spectrometry Download PDF

Info

Publication number
US5078135A
US5078135A US07359475 US35947589A US5078135A US 5078135 A US5078135 A US 5078135A US 07359475 US07359475 US 07359475 US 35947589 A US35947589 A US 35947589A US 5078135 A US5078135 A US 5078135A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
dialysate
drug
microdialysis
mass spectrometer
apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07359475
Inventor
Richard M. Caprioli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Texas System
Original Assignee
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14525Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using microdialysis
    • A61B5/14528Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using microdialysis invasively
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/412Detecting or monitoring sepsis

Abstract

The present invention combines microdialysis with mass spectrometry, for example continuous flow fast atom bombardment, to follow the pharmacokinetics of drugs or other compounds directly in the blood stream or tissues of a live animal. After intramuscular injection of the drug, the blood dialysate from a microdialysis probe inserted into a blood vessel or tissue of the animal, is allowed to flow into the mass spectrometer via the continuous flow fast atom bombardment interface. Tandem mass spectrometry allows for isolating and recording the ion fragments produced from the drug as the dialysate is exposed to the ionization process. The detected concentration of the drug or other compounds of interest can be used to adjust the rate of administration of the drug.

Description

BACKGROUND OF THE INVENTION

The invention relates to an apparatus and method for the determination of concentrations of biological compounds, such as drugs and their metabolites, in vivo using microdialysis in combination with mass spectrometry.

Sepsis is a major problem in surgical critical care today. Infections, septic shock and multiple organ failure attributed to overwhelming sepsis are among the leading causes of complications, death and excessive financial burdens in tertiary surgical intensive care units. While surgical drainage and debridement techniques are often essential in control of sepsis, antibiotic infusions are usually relied upon as a cornerstone of therapy.

The development and availability of new drugs such as antibiotics and immunosuppressive agents have revolutionized the approach of modern medicine to the treatment of many conditions and diseases. The potency of many new antibiotics is extremely high and they are effective against many new resistant strains. Unfortunately, many of these drugs are also toxic to man and have deleterious effects on various organs and systems in the body. In addition, their metabolic fates can be complex, with some of the metabolites having strong physiological effects as well. This has resulted in many, if not most, critically ill patients being actually underdosed with regard to the antibiotic levels required for optimal inhibition of bacterial growth.

The determination of blood levels of these powerful new therapeutic agents and their metabolites is essential both in their clinical use and their use in the research laboratory. Methods which would allow such analyses in vivo and in real-time would be particularly advantageous in providing i) blood and/or tissue levels of patients during critical periods to maximize therapeutic value and minimize toxic effects, ii) tissue responses at specific sites in the body and in a time-course study, iii) verification of the presence and accumulation of intermediate metabolites which may have significant clinical implications, iv) improved quantification due to decreased sample handling losses and variable extraction efficiencies, and v) ease of use and time saving advantages because individual extraction, purification and derivatization steps are not required.

Modern mass spectrometric techniques, such as fast atom bombardment (FAB) mass spectrometry, offer unique analytical capabilities for quantification of drugs and their metabolites because they are effective in providing mass specific detection of compounds in complex mixtures derived from biological sources without the need for extraction and derivatization methods. However, samples for FAB analysis, for example, are typically prepared with high concentrations of glycerol or other suitable viscous liquids so that the samples remain in a liquid state during the introduction into the high vacuum chamber of the system throughout the analysis period. The presence of the added viscous liquid matrix results in several severe limitations including high background interfering solvent or matrix ion clusters, and relatively poor sensitivity.

SUMMARY OF THE INVENTION

In the disclosed embodiment, the present invention enjoys the advantage of FAB analysis without the above-mentioned disadvantages, by combining microdialysis with continuous flow fast atom bombardment (CF-FAB) to provide in vivo on line analysis of biological compounds, such as drugs and their metabolites. The microdialysis probe is implanted into a blood vessel or tissue of a live animal, and perfusate is passed through the probe and into a CF-FAB system. The invention can also be used to administer optimum doses of antibiotics, and the like, by adjusting an amount of drug being administered based on the CF-FAB analysis. Other mass spectrometric techniques are also usable in combination with microdialysis.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is the apparatus of the present invention being applied according to the method of the present invention to detect and control drug levels in a rat;

FIG. 2 is the microdialysis probe used in the present invention;

FIGS. 3A and 3B are graphs comparing the in vivo results of the present invention with in vitro results;

FIG. 4 is a graph comparing the results of the present invention with a known analysis technique.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, the present invention applied to detect drug and metabolite levels in a rat is disclosed. It should be emphasized that the present apparatus and method can be applied to other animals, including humans. Microdialysis probe 11 is inserted inside a 22-gauge needle cannula (not shown) surgically placed in the jugular vein of a 330 gram Sprague Dawley male rat 12. A microliter syringe pump 13 is connected to microdialysis probe 11 by tube 14 and is used to controllably provide perfusate to microdialysis probe 11 through tube 14. Syringe pump 13 can be a Model 2274 pump available from the Harvard Apparatus Co., of Milford, Mass. In the preferred embodiment, the perfusate is 95% water and 5% glycerol provided at a rate of 4.8+/-0.2 microliters per minute.

The dialysate output from microdialysis probe 11 is connected through tube 16 to injection switch valve 17 which can be, for example, a Rheodyne Model 7410 injection switch valve. During collection, injection switch valve 17 is positioned so that dialysate passing through tube 16 passes through 20 microliter collection loop 18. Excess dialysate passes through waste tube 19 and is collected in waste container 21. Collection loop 18 may contain a trapping agent in order to purify and concentrate the biological compound of interest.

After dialysate is collected in collection loop 18 for approximately ten minutes, injection switch valve 17 is positioned so that the dialysate in collection loop 18 is forced into mass spectrometer 22 for approximately ten additional minutes with the aid of pump 23 and tubes 24 and 26, at a rate of approximately 4.6+/-1.8 microliters per minute. Pump 23 can be a Waters Model 590 HPLC pump.

Thus, the pharmacokinetic data is obtained through a series of collection/analysis cycles using sample collection loop 18 for a 20-minute total collection/analysis cycle time. Longer or shorter cycle times, or faster or slower perfusate and dialysate flow rates can be used without departing from the scope of the invention.

Mass spectrometer 22 is preferably a Finnigan MAT TSQ 70 mass spectrometer available from the Finnigan MAT Corp of San Jose, Calif. FAB mass spectrometer 22 includes a FAB gun 27 and a continuous flow FAB interface 28. The FAB ionization process gives rise to molecular (M+H)+ or (M-H)- ions from all or most of the compounds in the continuously flowing sample. The molecular ion species of interest is selected by a first stage quadrupole 29 and is allowed to pass into collision region (second stage quadrupole) 31 where collision activated decomposition occurs as a result of collision of ions with argon gas admitted into region 31. The fragment ions produced in the collision activated decomposition process together with any surviving molecular ion species are then transmitted to third stage quadrupole 32 and then to ion detector 33 for detection and recording. The resulting mass spectrum 34 represents a specific fragment mass map of one specific molecular species which was selected by the first stage 29 of FAB mass spectrometer 22.

Automatic control of the administration of a drug can be accomplished by appropriately connecting the output of ion detector 33 to microliter syringe pump 35 which controls the rate of drug administration to rat 12 through tube 36. Pump 35 can also be a Model 2274 syringe pump available from Harvard Apparatus Co.

Referring now to FIG. 2, the details of microdialysis probe 11 used in the present invention are disclosed. Probe 11 includes an input tube 14 which is connected to an input portion of channel 10 of probe 11. Channel 10 of probe 11 includes perfusate channel 37, dialyzing membrane and channel 41. Perfusate flowing in tube 14 passes through perfusate channel 37 to the bottom portion 38 of probe 11. Perfusate then begins flowing upwardly in probe 11 past dialyzing membrane 39 and continues flowing upward through channel 41 and eventually exits probe 11 as dialysate through tube 16. When probe 11 is implanted in a blood vessel or tissue of a living animal, dialyzing membrane 39 acts to allow extraction of chemical substances from the living animal, without the removal of body fluids, through the process of diffusion of chemical substances from a relatively high concentration in the blood vessel or tissue to a relatively low concentration in the perfusate flowing in probe 11. The preferred source for microdialysis probe 11 is Bioanalytical Systems, Inc. of Lafayette, Ind.

FIG. 3A shows the negative ion mass spectrum of penicillin G taken during an in vivo test using the present invention of FIG. 1 approximately 1.5 hours after the administration of an intramuscular dose. The vertical axis of FIG. 3A is measured in units of relative intensity (intensity relative to the peak detected ion), and the horizontal axis is in units of mass-to-charge (m/z) ratio. The most intense ion at m/z 192 represents the major daughter ion of the parent (M-H)- ion. The proposed structure of this ion is: ##STR1##

Some surviving (M-H)- molecular ion can be seen at m/z 333. For comparison, FIG. 3B shows the same spectrum, with identical axes, taken from the direct injection of penicillin G in a physiological saline. As can be seen, the spectra match quite well.

The efficiency of transfer of a drug in blood and subsequent analysis of the dialysate using the present invention is dependent on a number of factors. These include the time of exposure of a drug, the rate of perfusion of the microdialysis device, and the total sampling time. To determine the efficiency of the analysis of penicillin G under the experimental conditions used in the in vivo studies, a 1 milliliter portion of saline solution containing 30 micrograms of penicillin G was analyzed with the microdialysis device using the flow-injection method of the invention. Peak areas produced by monitoring the fragment ion at m/z 192 were measured, giving an average of 1.85×105 ion counts for three measurements. These measurements were repeated using a 20 microliter sample of the same solution for a sample injection, eliminating the microdialysis step. The average of three measurements gave peak areas of 1.16×106 ion counts. Thus, for this protocol, the recovery was calculated to be 15.9%. This compares favorably with the literature provided by Bioanalytic Systems which shows an average recovery of a number of low molecular weight compounds of about 14% at a 4 microliter per minute perfusion rate.

The linearity of the response of the analytical procedure of the present invention was measured by analyzing saline solutions containing 5, 10 and 30 micrograms per milliliter of sodium penicillin G. A linear response was observed, with the correlation coefficient for a linear least squares fit being 0.9889. A signal-to-noise ratio of 3.15 was recorded for analyses of samples of the antibiotic containing 5 micrograms per milliliter.

FIG. 4 is a graph of an in vivo pharmacokinetic analysis using the present invention, compared with a prior art analytical technique.

A 330 gram rat was injected with a dose of 15 milligrams of sodium penicillin G dissolved in 0.3 milliliters of physiological saline solution. Negative ions were recorded in the mass spectrometric analysis of the dialysate in order to obtain maximum sensitivity. FIG. 4 shows the time-dependent rise and fall in the concentration of free drug (non-protein bound) in the rat following injection of the drug. The solid curve 42 was produced using a non-linear least squares fit of the data points shown obtained using the present invention. The drug peaked at a concentration of approximately 24 micrograms per milliliter at about 30 minutes. This peak-time is in good agreement with published data (The Pharmacological Basis of Therapeutics, fifth edition, MacMillan, (1975), p. 1130), which has reported the intramuscular administration of this antibiotic to peak in about 26-30 minutes, as shown by the broken curve 43 in FIG. 4.

A combination of microdialysis and mass spectrometry can be used in a wide variety of applications to provide on-line and direct monitoring of aqueous biological samples including in vivo drug monitoring. In addition, the present invention can be used as a fast and efficient method for simultaneously screening complex biological fluids for several low molecular weight compounds of interest since the molecular weight cut-off of the dialysis membrane used in the microdialysis probe of the present invention will preclude dialysis of proteins and other molecules above about 20,000 daltons. In addition, the present invention can also be used in a clinical laboratory for the direct analysis of body fluids, including the detection of illicit substances such as cocaine. Further, the present invention provides a simple and clean method to sample and monitor enzymic reactions, cell cultures, fermentation processes, or other batch processes where the compound of interest is within the mass and sensitivity range of modern mass spectrometers.

In addition, the present invention is particularly applicable to the continuous monitoring of antibiotic levels in infected tissue to indicate the degree of tissue antibiotic penetration, allowing appropriate therapeutic adjustments of the amount of antibiotic administered. Automatic control of the delivery of the drug using data supplied by the microdialysis/mass spectrometry of the present invention is also an important aspect. The monitored antibiotic levels are preferably maintained consistently above those levels necessary for bacterial growth inhibition, and below the toxic levels for the selected antibiotic, thereby enhancing the potential for an early resolution of the infectious process.

Claims (3)

What is claimed is:
1. An apparatus for measuring specific biological compounds in a living animal, comprising:
an implantable microdialysis probe having a channel with a perfusate input and a dialysate output, said channel including a dialyzing membrane;
a continuous source of perfusate connected to said perfusate input;
mass spectrometer means for measuring an amount of specific biological compounds in said dialysate; and
switch valve means, connected between said dialysate output and said mass spectrometer means, positionable in a first position to collect dialysate and positionable in a second position to transfer collected dialysate to said mass spectrometer means.
2. The apparatus of claim 1, further comprising:
means, connected to said mass spectrometer means, for administering a drug to a live animal according to said amount of said specific biological compounds in said dialysate.
3. The apparatus of claim 1, wherein said mass spectrometer means is a continuous flow fast atom bombardment mass spectrometer.
US07359475 1989-05-31 1989-05-31 Apparatus for in vivo analysis of biological compounds in blood or tissue by microdialysis and mass spectrometry Expired - Fee Related US5078135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07359475 US5078135A (en) 1989-05-31 1989-05-31 Apparatus for in vivo analysis of biological compounds in blood or tissue by microdialysis and mass spectrometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07359475 US5078135A (en) 1989-05-31 1989-05-31 Apparatus for in vivo analysis of biological compounds in blood or tissue by microdialysis and mass spectrometry
PCT/US1990/002668 WO1990014791A1 (en) 1989-05-31 1990-05-11 Apparatus for analysis of biological compounds by mass spectrometry

Publications (1)

Publication Number Publication Date
US5078135A true US5078135A (en) 1992-01-07

Family

ID=23413949

Family Applications (1)

Application Number Title Priority Date Filing Date
US07359475 Expired - Fee Related US5078135A (en) 1989-05-31 1989-05-31 Apparatus for in vivo analysis of biological compounds in blood or tissue by microdialysis and mass spectrometry

Country Status (2)

Country Link
US (1) US5078135A (en)
WO (1) WO1990014791A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209919A (en) * 1990-07-13 1993-05-11 Regents Of The University Of California Method of measurement in biological systems
US5222941A (en) * 1990-01-12 1993-06-29 Don Michael T Anthony Method of dissolving an obstruction in a vessel
US5361761A (en) * 1992-06-17 1994-11-08 Wisconsin Alumni Research Foundation Method and apparatus for measuring blood iodine concentration
US5460610A (en) * 1990-01-12 1995-10-24 Don Michael; T. Anthony Treatment of obstructions in body passages
US5954959A (en) * 1997-05-09 1999-09-21 Battelle Memorial Institute Microdialysis unit for molecular weight separation
US5981946A (en) * 1995-11-16 1999-11-09 Leco Corporation Time-of-flight mass spectrometer data acquisition system
US6020208A (en) * 1994-05-27 2000-02-01 Baylor College Of Medicine Systems for surface-enhanced affinity capture for desorption and detection of analytes
US6124137A (en) * 1993-05-28 2000-09-26 Baylor College Of Medicine Surface-enhanced photolabile attachment and release for desorption and detection of analytes
US6190316B1 (en) * 1998-03-25 2001-02-20 Hitachi, Ltd. Method of mass-analyzing body fluid and apparatus therefor
US20040014143A1 (en) * 2002-05-29 2004-01-22 Haskins William E. Method and apparatus for detecting and monitoring peptides, and peptides identified therewith
US20040238738A1 (en) * 1993-05-28 2004-12-02 Hutchens T. William Method and apparatus for desorption and ionization of analytes
US6986755B2 (en) * 1998-05-20 2006-01-17 Disetronic Licensing Ag Sensor system including port body
WO2006126002A1 (en) * 2005-05-26 2006-11-30 Pa Knowledge Limited Blood sampling catheter
US20070239367A1 (en) * 2004-02-05 2007-10-11 Medpro Holdings, Llc On-site method of providing analysis of potency and purity of pharmaceutical compounds
US20080029697A1 (en) * 2006-07-12 2008-02-07 Willis Peter M Data Acquisition System and Method for a Spectrometer
US20080113875A1 (en) * 2006-09-08 2008-05-15 Pierre Chaurand Molecular detection by matrix free desorption ionization mass spectrometry
US20100134794A1 (en) * 2004-02-05 2010-06-03 Medpro Holdings, Llc Analyzer for determining the concentration, potency and purity of pharmaceutical compounds
WO2012009554A3 (en) * 2010-07-14 2012-05-18 The Regents Of The University Of Colorado, A Body Corporate Methods and systems for in vivo clinical data measurement of analytes
US8439258B1 (en) 2011-08-17 2013-05-14 Darden Gwaltney Hood Counterfeit detection system and method
US8931696B2 (en) 2011-08-17 2015-01-13 Darden Gwaltney Hood Counterfeit detection system and method
US9167997B2 (en) 2009-11-16 2015-10-27 Maquet Critical Care Ab Self-flowing measuring system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9226147D0 (en) * 1992-12-15 1993-02-10 Inst Of Neurology Dialysis probes
GB9320850D0 (en) * 1993-10-09 1993-12-01 Terwee Thomas H M Monitoring the concentration of a substance or a group of substances in a body fluid of a human or an animal
FR2725356B1 (en) * 1994-10-06 1997-04-18 Univ Henri Poincare Nancy I A combined measurement of tissue blood flow and composition of the extracellular fluid
EP0782459B1 (en) * 1994-11-14 2003-04-02 Cma/Microdialysis Ab A microdialysis device
ES2532030B2 (en) * 2013-09-20 2015-12-28 Universidad Complutense De Madrid Method of measuring the ex vivo vascular tone and flow chamber

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649199A (en) * 1970-03-26 1972-03-14 Varian Associates Method for detecting trace quantities of an organic drug material in a living animal
US3952730A (en) * 1973-10-30 1976-04-27 National Research Development Corporation Instrument for use in the measurement of blood gases
US4123353A (en) * 1976-11-30 1978-10-31 Gambro Ab Method and apparatus for measuring the content of a low-molecular weight compound in a complex medium
GB2017907A (en) * 1978-04-03 1979-10-10 Perkin Elmer Corp Transmission of low pressure gas samples
US4253456A (en) * 1977-08-23 1981-03-03 Dr. Eduard Fresenius Chemisch-Pharmazeutisch Industrie Kg, Apparatebau Kg Artificial endocrinal gland
EP0134758A2 (en) * 1983-04-18 1985-03-20 Giuseppe Bombardieri Device for the controlled insulin or glucose infusion in diabetic subjects
EP0211645A2 (en) * 1985-08-21 1987-02-25 Kratos Analytical Limited Apparatus and methods for use in the mass analysis of chemical samples
US4694832A (en) * 1982-12-01 1987-09-22 Ungerstedt Carl U Dialysis probe
US4705503A (en) * 1986-02-03 1987-11-10 Regents Of The University Of Minnesota Metabolite sensor including a chemical concentration sensitive flow controller for a drug delivery system
US4705616A (en) * 1986-09-15 1987-11-10 Sepragen Corporation Electrophoresis-mass spectrometry probe
US4726381A (en) * 1986-06-04 1988-02-23 Solutech, Inc. Dialysis system and method
US4832034A (en) * 1987-04-09 1989-05-23 Pizziconi Vincent B Method and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649199A (en) * 1970-03-26 1972-03-14 Varian Associates Method for detecting trace quantities of an organic drug material in a living animal
US3952730A (en) * 1973-10-30 1976-04-27 National Research Development Corporation Instrument for use in the measurement of blood gases
US4123353A (en) * 1976-11-30 1978-10-31 Gambro Ab Method and apparatus for measuring the content of a low-molecular weight compound in a complex medium
US4253456A (en) * 1977-08-23 1981-03-03 Dr. Eduard Fresenius Chemisch-Pharmazeutisch Industrie Kg, Apparatebau Kg Artificial endocrinal gland
GB2017907A (en) * 1978-04-03 1979-10-10 Perkin Elmer Corp Transmission of low pressure gas samples
US4694832A (en) * 1982-12-01 1987-09-22 Ungerstedt Carl U Dialysis probe
EP0134758A2 (en) * 1983-04-18 1985-03-20 Giuseppe Bombardieri Device for the controlled insulin or glucose infusion in diabetic subjects
US4633878A (en) * 1983-04-18 1987-01-06 Guiseppe Bombardieri Device for the automatic insulin or glucose infusion in diabetic subjects, based on the continuous monitoring of the patient's glucose, obtained without blood withdrawal
EP0211645A2 (en) * 1985-08-21 1987-02-25 Kratos Analytical Limited Apparatus and methods for use in the mass analysis of chemical samples
US4705503A (en) * 1986-02-03 1987-11-10 Regents Of The University Of Minnesota Metabolite sensor including a chemical concentration sensitive flow controller for a drug delivery system
US4726381A (en) * 1986-06-04 1988-02-23 Solutech, Inc. Dialysis system and method
US4705616A (en) * 1986-09-15 1987-11-10 Sepragen Corporation Electrophoresis-mass spectrometry probe
US4832034A (en) * 1987-04-09 1989-05-23 Pizziconi Vincent B Method and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Brodbelt et al., "In Vivo Mass Spectrometric Determination of Organic Compounds in Blood with a Membrane Probe", Analytical Chemistry, vol. 59, No. 3, Feb. 1, 1987.
Brodbelt et al., In Vivo Mass Spectrometric Determination of Organic Compounds in Blood with a Membrane Probe , Analytical Chemistry, vol. 59, No. 3, Feb. 1, 1987. *
Urban Ungerstedt, "Microdialysis--A New Bioanalytical Sampling Technique", Current Separations, vol. 7, No. 2 (1986).
Urban Ungerstedt, Microdialysis A New Bioanalytical Sampling Technique , Current Separations, vol. 7, No. 2 (1986). *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222941A (en) * 1990-01-12 1993-06-29 Don Michael T Anthony Method of dissolving an obstruction in a vessel
US5460610A (en) * 1990-01-12 1995-10-24 Don Michael; T. Anthony Treatment of obstructions in body passages
US5209919A (en) * 1990-07-13 1993-05-11 Regents Of The University Of California Method of measurement in biological systems
US5361761A (en) * 1992-06-17 1994-11-08 Wisconsin Alumni Research Foundation Method and apparatus for measuring blood iodine concentration
US7074619B2 (en) 1993-05-28 2006-07-11 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US20090256069A1 (en) * 1993-05-28 2009-10-15 Baylor College Of Medicine Apparatus for desorption and ionization of analytes
US8748193B2 (en) 1993-05-28 2014-06-10 Baylor College Of Medicine Apparatus for desorption and ionization of analytes
US6124137A (en) * 1993-05-28 2000-09-26 Baylor College Of Medicine Surface-enhanced photolabile attachment and release for desorption and detection of analytes
US7491549B2 (en) 1993-05-28 2009-02-17 Baylor College Of Medicine Apparatus for desorption and ionization of analytes
US20010014479A1 (en) * 1993-05-28 2001-08-16 Hutchens T. William Method and apparatus for desorption and ionization of analytes
US6528320B2 (en) 1993-05-28 2003-03-04 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US7449150B2 (en) 1993-05-28 2008-11-11 Baylor College Of Medicine Probe and apparatus for desorption and ionization of analytes
US7413909B2 (en) * 1993-05-28 2008-08-19 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US20040191922A1 (en) * 1993-05-28 2004-09-30 Hutchens T. William Method and apparatus for desorption and ionization of analytes
US20040238738A1 (en) * 1993-05-28 2004-12-02 Hutchens T. William Method and apparatus for desorption and ionization of analytes
US20040245450A1 (en) * 1993-05-28 2004-12-09 Hutchens T. William Method and apparatus for desorption and ionization of analytes
US20040266020A1 (en) * 1993-05-28 2004-12-30 Hutchens T William Method and apparatus for desorption and ionization of analytes
US20040266019A1 (en) * 1993-05-28 2004-12-30 T. William Hutchens Method and apparatus for desorption and ionization of analytes
US7294515B2 (en) 1993-05-28 2007-11-13 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US20070065949A1 (en) * 1993-05-28 2007-03-22 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US20060134797A1 (en) * 1993-05-28 2006-06-22 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US7071003B2 (en) 1993-05-28 2006-07-04 Baylor College Of Medicine Surface-enhanced laser desorption/Ionization for desorption and detection of analytes
US6734022B2 (en) 1993-05-28 2004-05-11 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US6020208A (en) * 1994-05-27 2000-02-01 Baylor College Of Medicine Systems for surface-enhanced affinity capture for desorption and detection of analytes
US5981946A (en) * 1995-11-16 1999-11-09 Leco Corporation Time-of-flight mass spectrometer data acquisition system
US5954959A (en) * 1997-05-09 1999-09-21 Battelle Memorial Institute Microdialysis unit for molecular weight separation
EP0945893A3 (en) * 1998-03-25 2006-04-12 Hitachi, Ltd. Method of mass-analyzing body fluid and apparatus therefor
US6190316B1 (en) * 1998-03-25 2001-02-20 Hitachi, Ltd. Method of mass-analyzing body fluid and apparatus therefor
US6986755B2 (en) * 1998-05-20 2006-01-17 Disetronic Licensing Ag Sensor system including port body
US20040014143A1 (en) * 2002-05-29 2004-01-22 Haskins William E. Method and apparatus for detecting and monitoring peptides, and peptides identified therewith
US20100134794A1 (en) * 2004-02-05 2010-06-03 Medpro Holdings, Llc Analyzer for determining the concentration, potency and purity of pharmaceutical compounds
US20070239367A1 (en) * 2004-02-05 2007-10-11 Medpro Holdings, Llc On-site method of providing analysis of potency and purity of pharmaceutical compounds
US7660678B2 (en) * 2004-02-05 2010-02-09 Medpro Holdings, Llc On-site method of providing analysis of potency and purity of pharmaceutical compounds
US20090024057A1 (en) * 2005-05-26 2009-01-22 Pa Knowledge Limited Catheter
WO2006126002A1 (en) * 2005-05-26 2006-11-30 Pa Knowledge Limited Blood sampling catheter
US20110212478A1 (en) * 2005-05-26 2011-09-01 Pa Knowledge Limited Catheter
US20090014642A1 (en) * 2006-07-12 2009-01-15 Leco Corporation Data acquisition system for a spectrometer using horizontal accumulation
US7501621B2 (en) 2006-07-12 2009-03-10 Leco Corporation Data acquisition system for a spectrometer using an adaptive threshold
US20090072134A1 (en) * 2006-07-12 2009-03-19 Willis Peter M Data Acquisition System for a Spectrometer Using Various Filters
US20090014643A1 (en) * 2006-07-12 2009-01-15 Willis Peter M Data Acquisition System for a Spectrometer that Generates Stick Spectra
US9082597B2 (en) 2006-07-12 2015-07-14 Leco Corporation Data acquisition system for a spectrometer using an ion statistics filter and/or a peak histogram filtering circuit
US20080029697A1 (en) * 2006-07-12 2008-02-07 Willis Peter M Data Acquisition System and Method for a Spectrometer
US7825373B2 (en) 2006-07-12 2010-11-02 Leco Corporation Data acquisition system for a spectrometer using horizontal accumulation
US7884319B2 (en) 2006-07-12 2011-02-08 Leco Corporation Data acquisition system for a spectrometer
US8017907B2 (en) 2006-07-12 2011-09-13 Leco Corporation Data acquisition system for a spectrometer that generates stick spectra
US20090090861A1 (en) * 2006-07-12 2009-04-09 Leco Corporation Data acquisition system for a spectrometer
US8063360B2 (en) 2006-07-12 2011-11-22 Leco Corporation Data acquisition system for a spectrometer using various filters
US20080113875A1 (en) * 2006-09-08 2008-05-15 Pierre Chaurand Molecular detection by matrix free desorption ionization mass spectrometry
US9167997B2 (en) 2009-11-16 2015-10-27 Maquet Critical Care Ab Self-flowing measuring system
WO2012009554A3 (en) * 2010-07-14 2012-05-18 The Regents Of The University Of Colorado, A Body Corporate Methods and systems for in vivo clinical data measurement of analytes
US8439258B1 (en) 2011-08-17 2013-05-14 Darden Gwaltney Hood Counterfeit detection system and method
US8931696B2 (en) 2011-08-17 2015-01-13 Darden Gwaltney Hood Counterfeit detection system and method

Also Published As

Publication number Publication date Type
WO1990014791A1 (en) 1990-12-13 application

Similar Documents

Publication Publication Date Title
Lee et al. Distribution of Bungarus multicinctus venom following envenomation
Ahmed et al. Increased plasma arginine vasopressin in clinical adrenocortical insufficiency and its inhibition by glucosteroids
Bill et al. Production and drainage of aqueous humor in the cynomolgus monkey (Macaca irus)
Svensmark et al. 5, 5‐Diphenylhydantoin (Dilantin®) Blood Levels after Oral or Intravenous Dosage in Man 1
Fogh A sensitive erythropoietin assay on mice exposed to CO-hypoxia
Shipkova et al. Determination of the acyl glucuronide metabolite of mycophenolic acid in human plasma by HPLC and Emit
Manery et al. The penetration of radioactive sodium and phosphorus into the extra-and intracellular phases of tissues
Juhn et al. Nature of blood-labyrinth barrier in experimental conditions
Milliner et al. Use of the deferoxamine infusion test in the diagnosis of aluminum-related osteodystrophy
Goldbaum An ultraviolet spectrophotometric procedure for the determination of barbiturates
Francis et al. The Mazzotti reaction following treatment of onchocerciasis with diethylcarbamazine: clinical severity as a function of infection intensity
Beermann et al. Absorption, metabolism, and excretion of hydrochlorothiazide
Hardison et al. Micellar theory of biliary cholesterol excretion
Ribeiro et al. Amblyomma americanum: characterization of salivary prostaglandins E2 and F2α by RP-HPLC/bioassay and gas chromatography-mass spectrometry
Nadler et al. Characterization of putative amino acid transmitter release from slices of rat dentate gyrus
Garlick et al. Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a ‘flooding dose’of [1-13C] leucine
Osnes et al. Exocrine pancreatic secretion and immunoreactive secretin (IRS) release after intraduodenal instillation of bile in man.
Ohlsson et al. Single dose kinetics of deuterium labelled Δ1‐tetrahydrocannabinol in heavy and light cannabis users
Allain et al. Determination of iodine and bromine in plasma and urine by inductively coupled plasma mass spectrometry
US4908202A (en) Use of 2-oxo-1-pyrrolidineacetamide for the determination of the glomerular filtration rate in humans
Franconi et al. Determination of theophylline in plasma ultrafiltrate by reversed phase high pressure liquid chromatography
De Matteis et al. Experimental hepatic porphyria caused by feeding 3, 5-diethoxycarbonyl-1, 4-dihydro-2, 4, 6-trimethylpyridine. Comparison with sedormid porphyria
Hare et al. Rapid and sensitive ion-exchange fluorometric measurement of γ-aminobutyric acid in physiological fluids
Skinner et al. Luteinizing hormone (LH)-releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge
Crigler et al. Effect of sodium phenobarbital on bilirubin metabolism in an infant with congenital, nonhemolytic, unconjugated hyperbilirubinemia, and kernicterus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOARD OF REGENTS, UNIVERSITY OF TEXAS SYSTEM, THE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CAPRIOLI, RICHARD M.;REEL/FRAME:005112/0632

Effective date: 19890717

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20000107