US5051693A - Bearing seat encoder mount for rotational parameter sensor apparatus - Google Patents

Bearing seat encoder mount for rotational parameter sensor apparatus Download PDF

Info

Publication number
US5051693A
US5051693A US07/578,404 US57840490A US5051693A US 5051693 A US5051693 A US 5051693A US 57840490 A US57840490 A US 57840490A US 5051693 A US5051693 A US 5051693A
Authority
US
United States
Prior art keywords
bearing seat
shaft
bearing
sensor
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/578,404
Inventor
Michael C. Brauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torrington Co Ltd
Timken US LLC
Original Assignee
Torrington Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torrington Co filed Critical Torrington Co
Assigned to TORRINGTON COMPANY, THE reassignment TORRINGTON COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BRAUER, MICHAEL C.
Priority to US07/578,404 priority Critical patent/US5051693A/en
Priority to MX9100936A priority patent/MX173960B/en
Priority to FR9111005A priority patent/FR2666650A1/en
Priority to ES91402383T priority patent/ES2087981T3/en
Priority to JP3225455A priority patent/JPH086742B2/en
Priority to EP91402383A priority patent/EP0474562B1/en
Priority to DE69117619T priority patent/DE69117619T2/en
Priority to BR919103855A priority patent/BR9103855A/en
Priority to KR1019910015635A priority patent/KR970002060B1/en
Publication of US5051693A publication Critical patent/US5051693A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/16Force connections, e.g. clamping by wedge action, e.g. by tapered or conical parts

Definitions

  • This invention related generally to sensor bearings, and more particularly to a sensor bearing wherein the encoder is rotationally affixed to the bearing seat.
  • ECU Electronic control units amass information from sensors and command the action of many vital functions in automobiles.
  • the major areas in which ECUs have made substantial inroads are the engine, the transmission, the suspension and the anti-lock brakes.
  • the data describing the rotational motion or positional change are fed to the ECU, which prepares a calculated or mapped response ideal for the operational conditions.
  • the ECU then initiates changes in the controlled function to minimize deviation from the ideal condition. High reliability, good resolution and economic costs are desired in sensor bearing technology.
  • Encoder retention and location are very important in the design of sensing systems for rotational position, velocity and acceleration measurements.
  • the encoder has been located in many positions relative to a rotating shaft whose velocity the sensor will measure.
  • the encoder is affixed to the rotating bearing raceway.
  • Other designs have connected the encoder to the rotating shaft either directly of through an separate intermediate member.
  • an apparatus for sensing rotational parameters of a shaft relative to a member comprising a bearing having an inner race with an inner diameter, the inner diameter being greater than the diameter of the shaft.
  • An annular space being formed between the inner diameter and the shaft.
  • a bearing seat is disposed within the space, being fixed to the shaft.
  • An annular encoder is affixed to the bearing seat.
  • a sensor is located in close proximity to the annular encoder, being fixed relative to the member.
  • FIG. 1 is a side cross sectional view illustrating one embodiment of bearing seat and encoder combination to sense relative rotation between a rotary shaft relative to a housing;
  • FIG. 2 is a view similar to FIG. 1, illustrating an alternate embodiment of sensor
  • FIG. 3 is a similar view illustrating an embodiment of bearing seat and encoder combination to sense relative rotation between a rotary housing and a shaft.
  • the apparatus which senses rotational parameters (such as rotational position, velocity and acceleration) is shown generally at 10.
  • the apparatus includes a shaft 12 which rotates relative to fixed point 14.
  • the fixed point 14 may be a part of a vehicle, part of a machine or part of the ground.
  • the instant invention has been found especially applicable to vehicle portions, where space limitations result in locations where a sensor may be located being at a premium.
  • the shaft 12 is supported by bearing means 16.
  • bearing means 16 In many applications where assembly involves placement of the bearing means 16 on the shaft, there is a need for a clearance or space 19 between an inner diameter 18 of an innerrace 20 and an outer diameter 22 of the shaft.
  • a bearing seat 28 is forced (as illustrated by arrow 25) into the space 19.
  • This configuration is especially desirable where the bearing means 16 are angular contact bearings (illustrated in FIG. 1) where this force can be used to preload the bearings.
  • the angular contact bearing may be an angular contact roller, an angular contact ball or any other well known type of bearing which can withstand both a thrust and a radial force.
  • a bearing seat 28 may be applied to one or more of the bearings (as illustrated in FIG. 2 and 1 respectively).
  • the bearing seat will rotate uniformly with the inner race 20 and the shaft12 as one member. Therefore, the rotation of the bearing seat 28 will provide an accurate indication of the rotation of the shaft 12.
  • the above preload may be applied by a securement device 30 such as a nut which is applied to the shaft 12 (FIG. 1).
  • a spring device 31 will be used in conjunction with the securement device 30 (FIG. 2) wherebythe bearings may undergo minor axial deviations relative to the shaft 12 without alteration of the preload force.
  • bearing seat 28 There are at least two configurations of bearing seat 28 which may be used in the instant application.
  • the first configuration known as the split seat bearing seat 32, is illustrated in FIG. 2.
  • the split ring bearing seat design has a slot 34 which permits radial expansion and contraction of the seat. In this manner, a first axial end 36 of the seat 32 may be compressed to conform to the clearance 19.
  • bearing seat 28 (illustrated in FIG. 1), has a first end 38 which is flexible to permit deformation to conform with the clearance 19 when the bearing seat 28 is forced into contact with the bearing means 16.
  • An encoder 40 is attached to, and will rotate as a unitary member with, thebearing seat 28. In this manner, the bearing seat rotation will provide an accurate indication of rotation of the shaft 12.
  • the encoder may be formedas a unitary member with the bearing seat, or may be attached to the bearing seat using adhesives or known fastening devices compatible with the mechanical properties of the encoder.
  • a sensor 42 is located in close proximity to the encoder. Any well known type of sensor may be used in this application, but Hall Effect sensors and magneto resistive sensors have been found especially applicable.
  • FIG. 2 illustrates an axial sensor configuration in which the direction 44 in which the sensor 42 senses the rotational parameters of the shaft is substantially parallel to a rotary axis 46 of the shaft 12.
  • FIG. 1 illustrates a radial sensor configuration in which the direction 48 in which the sensor 42 senses the rotational parameters of the shaft is substantially perpendicular to the rotary axis 46 of the shaft 12.
  • FIG. 3 illustrates a stationary body 70 which a rotating member 72 rotates about.
  • the rotating member 72 is supported by a plurality of bearings 74, 76.
  • a bearing seat 78 properly secures one of the bearings 74, 76.
  • the bearing seat has an annular encoder 80 attached to it, as previously described, and rotates therewith. The encoder thereby gives an accurate indication of the rotation of the rotating member 72.
  • a sensor 82 which is attached to the stationary body 70, measures rotational parameters of the rotating member 72 relative to the body 70.

Abstract

An apparatus for sensing rotational parameters of a shaft relative to a member, the apparatus has a bearing having an inner race with an inner diameter, the inner diameter being greater than the diameter of the shaft. An annular space is formed between the inner diameter and the shaft. A bearing seat is disposed within the space, and is fixed to the shaft. An annular encoder is affixed to the bearing seat. A sensor is located in close proximity to the annular encoder, and is fixed to the member. The bearing seat may be of either the cantilevered or split ring designs. The annular encoder is sensed by the sensor in either an axial or a radial direction.

Description

This invention related generally to sensor bearings, and more particularly to a sensor bearing wherein the encoder is rotationally affixed to the bearing seat.
Electronic control units (ECU) amass information from sensors and command the action of many vital functions in automobiles. The major areas in which ECUs have made substantial inroads are the engine, the transmission, the suspension and the anti-lock brakes.
In all of these cases, the data describing the rotational motion or positional change are fed to the ECU, which prepares a calculated or mapped response ideal for the operational conditions. The ECU then initiates changes in the controlled function to minimize deviation from the ideal condition. High reliability, good resolution and economic costs are desired in sensor bearing technology.
Encoder retention and location are very important in the design of sensing systems for rotational position, velocity and acceleration measurements.
Previously, the encoder has been located in many positions relative to a rotating shaft whose velocity the sensor will measure. In one design, the encoder is affixed to the rotating bearing raceway. Other designs have connected the encoder to the rotating shaft either directly of through an separate intermediate member.
While the above locations are suitable for certain applications, there are situations where design and space criterion restrict use of the encoder in these locations. In these instances, it is desirable to mount the encoder in different locations.
The forgoing illustrates limitations known to exist in present sensor bearings. Thus it is apparent that it would be advantageous to provide an alternative directed to overcoming one or more of the limitations set forth above. Accordingly, a suitable alternative is provided including features more fully disclosed hereinafter.
SUMMARY OF THE INVENTION
In one aspect of the present invention, this is accomplished by an apparatus for sensing rotational parameters of a shaft relative to a member, the apparatus comprising a bearing having an inner race with an inner diameter, the inner diameter being greater than the diameter of the shaft. An annular space being formed between the inner diameter and the shaft. A bearing seat is disposed within the space, being fixed to the shaft. An annular encoder is affixed to the bearing seat. A sensor is located in close proximity to the annular encoder, being fixed relative to the member.
The foregoing and other aspects will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing figures.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
FIG. 1 is a side cross sectional view illustrating one embodiment of bearing seat and encoder combination to sense relative rotation between a rotary shaft relative to a housing;
FIG. 2 is a view similar to FIG. 1, illustrating an alternate embodiment of sensor;
FIG. 3 is a similar view illustrating an embodiment of bearing seat and encoder combination to sense relative rotation between a rotary housing and a shaft.
DETAILED DESCRIPTION
In this disclosure, identical elements in different embodiments may be referenced by identical reference characters.
An apparatus which senses rotational parameters (such as rotational position, velocity and acceleration) is shown generally at 10. The apparatus includes a shaft 12 which rotates relative to fixed point 14. The fixed point 14 may be a part of a vehicle, part of a machine or part of the ground. The instant invention has been found especially applicable to vehicle portions, where space limitations result in locations where a sensor may be located being at a premium.
The shaft 12 is supported by bearing means 16. In many applications where assembly involves placement of the bearing means 16 on the shaft, there isa need for a clearance or space 19 between an inner diameter 18 of an innerrace 20 and an outer diameter 22 of the shaft.
To take up some of this clearance 19, a bearing seat 28 is forced (as illustrated by arrow 25) into the space 19. This configuration is especially desirable where the bearing means 16 are angular contact bearings (illustrated in FIG. 1) where this force can be used to preload the bearings. The angular contact bearing may be an angular contact roller, an angular contact ball or any other well known type of bearing which can withstand both a thrust and a radial force.
To preload an angular contact bearing, a bearing seat 28 may be applied to one or more of the bearings (as illustrated in FIG. 2 and 1 respectively).The bearing seat will rotate uniformly with the inner race 20 and the shaft12 as one member. Therefore, the rotation of the bearing seat 28 will provide an accurate indication of the rotation of the shaft 12.
The above preload may be applied by a securement device 30 such as a nut which is applied to the shaft 12 (FIG. 1). Preferably a spring device 31 will be used in conjunction with the securement device 30 (FIG. 2) wherebythe bearings may undergo minor axial deviations relative to the shaft 12 without alteration of the preload force.
There are at least two configurations of bearing seat 28 which may be used in the instant application. The first configuration, known as the split seat bearing seat 32, is illustrated in FIG. 2. The split ring bearing seat design has a slot 34 which permits radial expansion and contraction of the seat. In this manner, a first axial end 36 of the seat 32 may be compressed to conform to the clearance 19.
The other configuration of bearing seat, known as the cantilevered bearing seat 28, (illustrated in FIG. 1), has a first end 38 which is flexible to permit deformation to conform with the clearance 19 when the bearing seat 28 is forced into contact with the bearing means 16.
An encoder 40 is attached to, and will rotate as a unitary member with, thebearing seat 28. In this manner, the bearing seat rotation will provide an accurate indication of rotation of the shaft 12. The encoder may be formedas a unitary member with the bearing seat, or may be attached to the bearing seat using adhesives or known fastening devices compatible with the mechanical properties of the encoder.
A sensor 42 is located in close proximity to the encoder. Any well known type of sensor may be used in this application, but Hall Effect sensors and magneto resistive sensors have been found especially applicable.
The location at which the sensor 42 is located depends largely upon the configuration of the encoder 40. FIG. 2 illustrates an axial sensor configuration in which the direction 44 in which the sensor 42 senses the rotational parameters of the shaft is substantially parallel to a rotary axis 46 of the shaft 12.
By comparison, FIG. 1 illustrates a radial sensor configuration in which the direction 48 in which the sensor 42 senses the rotational parameters of the shaft is substantially perpendicular to the rotary axis 46 of the shaft 12.
FIG. 3 illustrates a stationary body 70 which a rotating member 72 rotates about. The rotating member 72 is supported by a plurality of bearings 74, 76. A bearing seat 78 properly secures one of the bearings 74, 76. The bearing seat has an annular encoder 80 attached to it, as previously described, and rotates therewith. The encoder thereby gives an accurate indication of the rotation of the rotating member 72. A sensor 82, which is attached to the stationary body 70, measures rotational parameters of the rotating member 72 relative to the body 70.

Claims (25)

What is claimed is:
1. An apparatus for sensing rotational parameters of a shaft relative to a member comprising:
a bearing having an inner race with an inner diameter greater than the diameter of the shaft, an annular space being formed between the inner diameter and the shaft;
a bearing seat disposed within the annular space, the bearing seat being fixed to the shaft;
an annular encoder fixed to the bearing seat; and
a sensor located in close proximity to the annular encoder, the sensor being fixed to the member.
2. The apparatus as described in claim 1, wherein the sensor is a hall effect sensor.
3. The apparatus as described in claim 1, wherein the sensor is a magneto resistive sensor.
4. The apparatus as described in claim 1, further comprising:
a securement means for restricting displacement of the bearing seat away from the bearing means.
5. The apparatus as described in claim 4, further comprising:
a biasing means inserted between the bearing seat and the securement means to bias the bearing seat into contact with the bearing.
6. The apparatus as described in claim 1, wherein the annular encoder and the bearing seat are a unitary member.
7. The apparatus as described in claim 1 wherein the bearing seat applies a preload to the bearing.
8. The apparatus as described in claim 7, wherein the bearing seat is cantilevered.
9. The apparatus as described in claim 7, wherein the bearing seat is formed from a split ring.
10. The apparatus as described in claim 1, wherein the direction in which the sensor senses the encoder is parallel to the axis of rotation of the shaft.
11. The apparatus as described in claim 1, wherein the direction in which the sensor senses the encoder is perpendicular to the axis of rotation of the shaft.
12. An apparatus for sensing rotational parameters of a shaft relative to a member comprising:
a bearing having an inner race with an inner diameter greater than the diameter of the shaft providing an annular space between the inner diameter and the shaft;
bearing seat means disposed within the space for applying a preload to the bearing, the bearing seat means being fixed to the shaft;
an annular encoder fixed to the bearing seat means; and
a sensor located in close proximity to the annular encoder, the sensor being fixed to the member.
13. The apparatus as described in claim 12, wherein the sensor is a hall effect sensor.
14. The apparatus as described in claim 12, wherein the sensor is a magneto resistive sensor.
15. The apparatus as described in claim 12, further comprising a securement means for restricting displacement of the bearing seat means away from the bearing.
16. The apparatus as described in claim 15, further comprising:
a biasing means inserted between the bearing seat means and the securement means to bias the bearing seat means into contact with the bearing.
17. The apparatus as described in claim 12, wherein the annular encoder and the bearing seat means are a unitary member.
18. The apparatus as described in claim 12, wherein the bearing seat means applies a preload to the bearing.
19. The apparatus as described in claim 18, wherein the bearing seat means is cantilevered.
20. The apparatus as described in claim 18, wherein the bearing seat means is formed from a split ring.
21. The apparatus as described in claim 18, wherein the direction in which the sensor senses the encoder is parallel to the axis of rotation of the shaft.
22. The apparatus as described in claim 18, wherein the direction in which the sensor senses the encoder is perpendicular to the axis of rotation of the shaft.
23. An apparatus for sensing rotational parameters of a shaft relative to a vehicular housing comprising:
a bearing having an inner race with an inner diameter greater than the diameter of the shaft, an annular space being formed between the inner diameter and the shaft;
a bearing seat disposed within the space, the bearing seat being fixed to the shaft;
an annular encoder fixed to the bearing seat; and
a sensor, fixed to the vehicular housing, located in close proximity to the annular encoder.
24. An apparatus for sensing rotational parameters of a shaft relative to a member comprising:
a bearing having an inner race with an inner diameter greater than the diameter of the shaft providing an annular space between the inner diameter and the shaft;
bearing seat means disposed within the space for centrally positioning the shaft relative to the bearing, the bearing seat means being fixed to the shaft;
an annular encoder fixed to the bearing seat means; and
a sensor located in close proximity to the annular encoder, the sensor being fixed to the member.
25. An apparatus for sensing rotational parameters of a housing relative to a stationary body, the housing having an inner dimension, the apparatus comprising:
a bearing having an outer race with an outer diameter, the outer diameter being less than the inner dimension of the housing, an annular space being formed between the inner diameter and the housing;
a bearing seat disposed within the annular space, the bearing seat being fixed to the housing;
an annular encoder fixed to the bearing seat; and
a sensor which is fixedly attached to the body, located in close proximity to the annular encoder.
US07/578,404 1990-09-07 1990-09-07 Bearing seat encoder mount for rotational parameter sensor apparatus Expired - Lifetime US5051693A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US07/578,404 US5051693A (en) 1990-09-07 1990-09-07 Bearing seat encoder mount for rotational parameter sensor apparatus
MX9100936A MX173960B (en) 1990-09-07 1991-09-04 ASSEMBLY OF BEARING SEAT ENCODER FOR SENSOR DEVICE
JP3225455A JPH086742B2 (en) 1990-09-07 1991-09-05 Bearing seat encoder mount for sensor device
ES91402383T ES2087981T3 (en) 1990-09-07 1991-09-05 BEARING SLEEVE WITH ENCODER FOR COLLECTOR DEVICE.
FR9111005A FR2666650A1 (en) 1990-09-07 1991-09-05 ENCODER BEARING WITH ENCODER FOR SENSOR DEVICE.
EP91402383A EP0474562B1 (en) 1990-09-07 1991-09-05 Rotating coding sleeve for sensor device
DE69117619T DE69117619T2 (en) 1990-09-07 1991-09-05 Rotating coding sleeve for scanning device
BR919103855A BR9103855A (en) 1990-09-07 1991-09-06 APPLIANCE TO DETECT ROTATIONAL PARAMETERS
KR1019910015635A KR970002060B1 (en) 1990-09-07 1991-09-07 Rotating coding sleeve for sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/578,404 US5051693A (en) 1990-09-07 1990-09-07 Bearing seat encoder mount for rotational parameter sensor apparatus

Publications (1)

Publication Number Publication Date
US5051693A true US5051693A (en) 1991-09-24

Family

ID=24312737

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/578,404 Expired - Lifetime US5051693A (en) 1990-09-07 1990-09-07 Bearing seat encoder mount for rotational parameter sensor apparatus

Country Status (9)

Country Link
US (1) US5051693A (en)
EP (1) EP0474562B1 (en)
JP (1) JPH086742B2 (en)
KR (1) KR970002060B1 (en)
BR (1) BR9103855A (en)
DE (1) DE69117619T2 (en)
ES (1) ES2087981T3 (en)
FR (1) FR2666650A1 (en)
MX (1) MX173960B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191284A (en) * 1990-04-07 1993-03-02 SKF Indsutrie S.p.A. Device for detecting the relative rotational speed of two elements in a vehicle wheel
US5537032A (en) * 1995-04-03 1996-07-16 General Motors Corporation Shape coupled wheel speed sensor
US5975234A (en) * 1997-12-03 1999-11-02 Trw Inc. Electric steering system with plastic motor tube
US20040202392A1 (en) * 2003-02-26 2004-10-14 Francois Niarfeix Instrumented rolling bearing
US20080031562A1 (en) * 2006-06-26 2008-02-07 Thierry Poulle Suspension thrust bearing device and strut
US20080090686A1 (en) * 2006-10-04 2008-04-17 Jean-Luc Gardelle Disengageable pulley device
US20080152272A1 (en) * 2006-12-15 2008-06-26 Franck Debrailly Instrumented rolling bearing device
US20080167150A1 (en) * 2006-10-03 2008-07-10 Jean-Philippe Gaborel Tensioning roller device
US20080230341A1 (en) * 2007-02-27 2008-09-25 Pierre-Julien Barraud Disengageable pulley device
US20080289838A1 (en) * 2007-04-19 2008-11-27 Francois Niarfeix Instrumented joint system
US20090180721A1 (en) * 2005-02-15 2009-07-16 Stellario Barbera Encoding Bearing Device and Rotating Machine
US20090190871A1 (en) * 2008-01-29 2009-07-30 Gm Global Technology Operations, Inc. Automatic transmission
WO2010064088A1 (en) * 2008-12-02 2010-06-10 Aktiebolaget Skf Rolling bearing with integrated sensor
FR2943313A1 (en) * 2009-03-23 2010-09-24 Snecma NON-CAREED PROPELLER HAVING A VARIABLE SHAFT FOR A TURBOMACHINE
WO2014048453A1 (en) * 2012-09-25 2014-04-03 Aktiebolaget Skf Electric motor
US11044848B2 (en) * 2019-06-05 2021-06-29 Deere & Company Bearing housing

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259637A (en) * 1977-07-22 1981-03-31 Ransome Hoffmann Pollard Limited Mechanical assemblies employing sensing means for sensing motion or position
US4415054A (en) * 1982-08-05 1983-11-15 Trw Inc. Steering gear
US4550597A (en) * 1984-04-04 1985-11-05 Trw Inc. Method and apparatus for sensing relative movement between members
US4681182A (en) * 1985-04-11 1987-07-21 Jidosha Kiki Co., Ltd. Electric power steering apparatus
US4703262A (en) * 1984-04-26 1987-10-27 Fanuc Ltd Mounting structure for spindle orientation magnetic sensor system
US4732494A (en) * 1986-06-10 1988-03-22 S. N. R. Roulements Bearing or roller bearing with data sensor
US4795278A (en) * 1986-11-28 1989-01-03 Nippon Seiko Kabushiki Kaisha Bearing assembly
US4797612A (en) * 1986-07-08 1989-01-10 Toyota Jidosha Kabushiki Kaisha Device for detecting rotating speed of vehicle wheel
US4864231A (en) * 1987-07-23 1989-09-05 Koyo Seiko Co., Ltd. Bearing assembly having a wheel speed sensor
US4890059A (en) * 1987-10-23 1989-12-26 Siemens Aktiengesellschaft Digital tachometer with air gap adjusting yoke insertable through holes in the tachometer housing
US4901562A (en) * 1989-03-31 1990-02-20 Dana Corporation Vehicle wheel speed sensor for a drive axle
US4904936A (en) * 1986-03-03 1990-02-27 Emhart Industries, Inc. Automotive wheel speed sensor including ferromagnetic flux carrying cup closing an opening in the wheel bearing housing
US4940936A (en) * 1989-02-24 1990-07-10 The Torrington Company Antifriction bearing with a clip-on sensor cooperating with a shaft mounted magnetic encoder retainer ring

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE353492A (en) *
US3957319A (en) * 1975-01-29 1976-05-18 Reliance Electric Company Pillow block and bearing assembly
JPS5528141A (en) * 1978-08-16 1980-02-28 Mitsubishi Electric Corp Memory unit of electronic computer
JPS6159141A (en) * 1984-08-29 1986-03-26 Toshiba Corp Variable capacity type air conditioner
JPH0786406B2 (en) * 1985-02-08 1995-09-20 株式会社日立製作所 Crank angle sensor
JPS6397456A (en) * 1986-10-09 1988-04-28 Nissan Motor Co Ltd Wheel rotation detecting device
JPS63166601A (en) * 1986-12-27 1988-07-09 Koyo Seiko Co Ltd Bearing unit for wheel of automobile
DE3732958A1 (en) * 1987-09-30 1989-04-20 Bosch Gmbh Robert Rotational position transmitter for sensing the rotational position of a rotating body
FR2642483B1 (en) * 1989-01-20 1991-04-05 Roulements Soc Nouvelle ROTATING SEAL WITH INTEGRATED MAGNETIC ENCODER, PARTICULARLY FOR BEARINGS WITH INFORMATION SENSORS

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259637A (en) * 1977-07-22 1981-03-31 Ransome Hoffmann Pollard Limited Mechanical assemblies employing sensing means for sensing motion or position
US4415054A (en) * 1982-08-05 1983-11-15 Trw Inc. Steering gear
US4550597A (en) * 1984-04-04 1985-11-05 Trw Inc. Method and apparatus for sensing relative movement between members
US4703262A (en) * 1984-04-26 1987-10-27 Fanuc Ltd Mounting structure for spindle orientation magnetic sensor system
US4681182A (en) * 1985-04-11 1987-07-21 Jidosha Kiki Co., Ltd. Electric power steering apparatus
US4904936A (en) * 1986-03-03 1990-02-27 Emhart Industries, Inc. Automotive wheel speed sensor including ferromagnetic flux carrying cup closing an opening in the wheel bearing housing
US4732494A (en) * 1986-06-10 1988-03-22 S. N. R. Roulements Bearing or roller bearing with data sensor
US4797612A (en) * 1986-07-08 1989-01-10 Toyota Jidosha Kabushiki Kaisha Device for detecting rotating speed of vehicle wheel
US4795278A (en) * 1986-11-28 1989-01-03 Nippon Seiko Kabushiki Kaisha Bearing assembly
US4795278B1 (en) * 1986-11-28 1992-11-03 Nippon Seiko Kk Bearing assembly
US4864231A (en) * 1987-07-23 1989-09-05 Koyo Seiko Co., Ltd. Bearing assembly having a wheel speed sensor
US4890059A (en) * 1987-10-23 1989-12-26 Siemens Aktiengesellschaft Digital tachometer with air gap adjusting yoke insertable through holes in the tachometer housing
US4940936A (en) * 1989-02-24 1990-07-10 The Torrington Company Antifriction bearing with a clip-on sensor cooperating with a shaft mounted magnetic encoder retainer ring
US4901562A (en) * 1989-03-31 1990-02-20 Dana Corporation Vehicle wheel speed sensor for a drive axle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191284A (en) * 1990-04-07 1993-03-02 SKF Indsutrie S.p.A. Device for detecting the relative rotational speed of two elements in a vehicle wheel
US5537032A (en) * 1995-04-03 1996-07-16 General Motors Corporation Shape coupled wheel speed sensor
US5975234A (en) * 1997-12-03 1999-11-02 Trw Inc. Electric steering system with plastic motor tube
US7367714B2 (en) * 2003-02-26 2008-05-06 Aktiebolaget Skf Instrumented rolling bearing
US20040202392A1 (en) * 2003-02-26 2004-10-14 Francois Niarfeix Instrumented rolling bearing
US20090180721A1 (en) * 2005-02-15 2009-07-16 Stellario Barbera Encoding Bearing Device and Rotating Machine
US20080031562A1 (en) * 2006-06-26 2008-02-07 Thierry Poulle Suspension thrust bearing device and strut
US8226301B2 (en) 2006-06-26 2012-07-24 Aktiebolaget Skf Suspension thrust bearing device and strut
US7758459B2 (en) 2006-10-03 2010-07-20 Aktiebolaget Skf Tensioning roller device
US20080167150A1 (en) * 2006-10-03 2008-07-10 Jean-Philippe Gaborel Tensioning roller device
US20080090686A1 (en) * 2006-10-04 2008-04-17 Jean-Luc Gardelle Disengageable pulley device
US20080152272A1 (en) * 2006-12-15 2008-06-26 Franck Debrailly Instrumented rolling bearing device
US20080230341A1 (en) * 2007-02-27 2008-09-25 Pierre-Julien Barraud Disengageable pulley device
US8172056B2 (en) 2007-02-27 2012-05-08 Aktiebolaget Skf Disengageable pulley device
US20080289838A1 (en) * 2007-04-19 2008-11-27 Francois Niarfeix Instrumented joint system
US20090190871A1 (en) * 2008-01-29 2009-07-30 Gm Global Technology Operations, Inc. Automatic transmission
EP2085649A1 (en) * 2008-01-29 2009-08-05 GM Global Technology Operations, Inc. Bearing assembly for an output shaft of an automatic transmission
WO2010064088A1 (en) * 2008-12-02 2010-06-10 Aktiebolaget Skf Rolling bearing with integrated sensor
US8840311B2 (en) 2008-12-02 2014-09-23 Aktiebolaget Skf Rolling bearing with integrated sensor
FR2943313A1 (en) * 2009-03-23 2010-09-24 Snecma NON-CAREED PROPELLER HAVING A VARIABLE SHAFT FOR A TURBOMACHINE
WO2010109085A1 (en) * 2009-03-23 2010-09-30 Snecma Non-streamlined propeller having blades with variable setting for a turbine engine
CN102361792A (en) * 2009-03-23 2012-02-22 斯奈克玛 Non-streamlined propeller having blades with variable setting for a turbine engine
US8827653B2 (en) 2009-03-23 2014-09-09 Snecma Unducted fan with variable-pitch blades for a turbine engine
CN102361792B (en) * 2009-03-23 2015-04-22 斯奈克玛 Unducted fan with variable-pitch blades for a turbine engine
WO2014048453A1 (en) * 2012-09-25 2014-04-03 Aktiebolaget Skf Electric motor
US11044848B2 (en) * 2019-06-05 2021-06-29 Deere & Company Bearing housing
US11470780B2 (en) 2019-06-05 2022-10-18 Deere & Company Bearing housing

Also Published As

Publication number Publication date
FR2666650B1 (en) 1994-08-19
BR9103855A (en) 1992-05-26
DE69117619T2 (en) 1996-09-26
KR920006748A (en) 1992-04-28
ES2087981T3 (en) 1996-08-01
MX173960B (en) 1994-04-11
EP0474562A3 (en) 1992-04-08
FR2666650A1 (en) 1992-03-13
DE69117619D1 (en) 1996-04-11
JPH086742B2 (en) 1996-01-29
EP0474562B1 (en) 1996-03-06
KR970002060B1 (en) 1997-02-21
EP0474562A2 (en) 1992-03-11
JPH0694029A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
US5051693A (en) Bearing seat encoder mount for rotational parameter sensor apparatus
US6908229B2 (en) Instrumented roller bearing, in particular for control wheel
US5248939A (en) Apparatus for sensing the direction and speed of a steering wheel shaft using hall effect sensors in a detachable sensor mounting
US6338576B1 (en) Instrumented rolling bearing
CN1021663C (en) Antifriction bearing assembly with speed sensor
US4915512A (en) Thrust bearing with a magnetic field sensor
JPH0555070U (en) Rotational speed detector for wheel bearings
US5097702A (en) Automobile wheel hub
EP1674843B1 (en) Sensor-equipped rolling bearing unit
US5157329A (en) Apparatus for sensing rotation having an encoder biased towards a stationary sensor and a member transmitting rotation to the encoder
US5017866A (en) Magnetic field sensor mounting with sensor arm contacting rotating bearing member
EP0236335B1 (en) Axle assembly
CN110385940A (en) It is provided with the hub for vehicle wheel component of novel sensor holder
US5067350A (en) Sensor to determine rotational parameters
US5125845A (en) Electrical plug-in connection for sensor on bearings
US6375359B1 (en) Rolling bearing unit with rotation speed sensor
KR20050093791A (en) Rolling bearing unit with sensor
KR20050088143A (en) Hub unit with sensor
EP1681479B1 (en) Bearing arrangement
US20040124044A1 (en) Compact braked rolling bearing
US6984071B2 (en) Instrumented antifriction bearing for control wheel
US7241052B2 (en) Monitored roller bearing
US5132616A (en) Polarized magnetic ring for speed sensing bearing assembly
KR100424938B1 (en) Rotating shaft with torsional moment measuring device
KR950014942B1 (en) Sensor to determine rotational parameters

Legal Events

Date Code Title Description
AS Assignment

Owner name: TORRINGTON COMPANY, THE, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BRAUER, MICHAEL C.;REEL/FRAME:005445/0988

Effective date: 19900827

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

REMI Maintenance fee reminder mailed