US5016633A - Artificial retina device - Google Patents
Artificial retina device Download PDFInfo
- Publication number
- US5016633A US5016633A US07/390,562 US39056289A US5016633A US 5016633 A US5016633 A US 5016633A US 39056289 A US39056289 A US 39056289A US 5016633 A US5016633 A US 5016633A
- Authority
- US
- United States
- Prior art keywords
- layer
- retinal
- retina
- cells
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000001525 retina Anatomy 0.000 title claims abstract description 34
- 230000002207 retinal effect Effects 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 210000004027 cell Anatomy 0.000 claims description 22
- 210000003583 retinal pigment epithelium Anatomy 0.000 claims description 11
- 210000004126 nerve fiber Anatomy 0.000 claims description 10
- 239000007943 implant Substances 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 229920005591 polysilicon Polymers 0.000 claims description 7
- 208000003098 Ganglion Cysts Diseases 0.000 claims description 6
- 208000005400 Synovial Cyst Diseases 0.000 claims description 6
- 230000000638 stimulation Effects 0.000 claims description 6
- 206010025421 Macule Diseases 0.000 claims description 5
- 210000002287 horizontal cell Anatomy 0.000 claims description 5
- 210000003786 sclera Anatomy 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 claims description 4
- 241000278713 Theora Species 0.000 claims description 2
- 210000000411 amacrine cell Anatomy 0.000 claims description 2
- 239000003855 balanced salt solution Substances 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims description 2
- 210000005166 vasculature Anatomy 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 230000002950 deficient Effects 0.000 abstract 1
- 230000004283 retinal dysfunction Effects 0.000 abstract 1
- 108091008695 photoreceptors Proteins 0.000 description 10
- 210000003161 choroid Anatomy 0.000 description 9
- 210000001775 bruch membrane Anatomy 0.000 description 5
- 201000004569 Blindness Diseases 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 208000017442 Retinal disease Diseases 0.000 description 2
- 210000003986 cell retinal photoreceptor Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 210000005081 epithelial layer Anatomy 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 210000001328 optic nerve Anatomy 0.000 description 2
- 239000000790 retinal pigment Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000004393 visual impairment Effects 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- PBZHKWVYRQRZQC-UHFFFAOYSA-N [Si+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [Si+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PBZHKWVYRQRZQC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000004233 retinal vasculature Effects 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 210000004127 vitreous body Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0543—Retinal electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/08—Devices or methods enabling eye-patients to replace direct visual perception by another kind of perception
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36046—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
Definitions
- the present invention is directed to a medical product and operation procedure which can be used to correct vision loss or even complete blindness caused by certain retinal diseases.
- a variety of retinal diseases for example, cause vision loss or blindness by destruction of the choroid, choriocapillaris, and the outer retinal layers.
- the outer layers include Bruch's membrane and retinal pigment epithelium, the loss of which results in degeneration of the inner retinal photoreceptor layer. These diseases, however, often spare much of the remaining inner retinal layers of the outer nuclear, outer plexiform, inner nuclear, inner plexiform, ganglion cell and nerve fiber layers.
- the current invention involves the use of an electronic device, a photosensitive array, that is capable of mimicking the signals that would otherwise be produced by the damaged inner retinal photoreceptor layer.
- an electronic device a photosensitive array
- Another prior device involved a unit consisting of a supporting base onto which a photo-sensitive material such as selenium is coated. This device was to have been inserted through an external scleral incision made at the posterior pole resting between the sclera and choroid or between the choroid and retina. Light simulation would then cause a potential to develop on the photosensitive surface causing ions to be produced which would then theoretically migrate into the retina causing stimulation.
- having no discrete surface structure to restrict the directional flow of charges, lateral migration and diffusion of charges would be allowed thereby preventing any resolution capability.
- Placement of this device between the sclera and choroid would also virtually block the discrete migration of ions to the photoreceptor and inner retinal layers due to the presence of the choroid, choriocapillaris, Bruch's membrane and the retinal pigment epithelial layer. Placement of the device between the choroid and the retina would still interpose Bruch's membrane and the retinal pigment epithelial layer in the pathway of discrete ion migration. Also, as this device would have had to be inserted into or through the highly vascular choroid of the posterior pole, severe subchoroidal, intraretinal and or intraorbital hemorrhage would likely have resulted along with disruption of blood flow to the posterior pole. One such device was apparently constructed and implanted into a patient's eye resulting in reported light perception but no formed imagery.
- the artificial retina device of this invention circumvents the limitations of previous devices. It is composed of a plurality of discrete photodiodes with their individual electrodes disposed on one surface of a substrate, the photodiodes each being connected to a common electrical ground on the other side of the substrate. Each photodiode includes an active electrode layer overlaying a photosensitive layer, and each is connected to an electrical ground.
- the photodiodes have electrical outputs that correspond to the amplitude of the light incident on said device, whereby said device can be implanted in the eye intermediate the inner retinal layer and the retinal pigment epithelium of outer layer of the retina, so that each of said photodiodes will stimulate directly individual or small groups of cells in the inner retinal layer corresponding to the light incident on said device.
- an amplitude-modulated electric potential, varying with illumination, produced by each photodiode will stimulate the overlying inner retinal layer consisting of photoreceptors, bipolar cells and horizontal cells. As these cells normally both receive and produce analog amplitude-modulated currents, the analog amplitude-modulated output of the device is well suited for stimulation of these cells.
- the amplitude-modulated signals of the bipolar cells are then modified and converted by the amacrine and ganglion cells to a frequency-modulated signal as is the normal biological event in the innermost area of the inner retinal layer for distant transmission through the optic nerve to the lateral geniculate area of the brain. Because the complex conversion of the amplitude-modulated signal to the frequency-modulated signal is left to intrinsic retinal mechanisms, the formed vision produced is much enhanced compared to devices that attempt to stimulate the nerve fiber layer directly with electronic and amplifier reconstructed frequency-modulated signals.
- FIG. 1A is a perspective view of an artificial retina device of the present invention
- FIG. 1B is a perspective view of an alternative form of an artificial retina device of the present invention.
- FIG. 1C (1)-(4) are perspective views of four alternative embodiments of the present invention.
- FIG. 2A is a perspective, cross-sectional view of a first photodiode array for use in an artificial retina device of the present invention
- FIG. 2B is a perspective, cross-sectional view of a second photodiode array for use in an artificial retina device of the present invention
- FIG. 3A-3C illustrate steps in a surgical procedure for implanting an artificial retina device of the present invention.
- FIG. 4 is an exploded, cross-sectional view of an artificial retinal device of the present invention as implanted in the eye.
- an artificial retina device 10 is generally circular in shape with an integral grasping member (FIG. 1B) or a projecting grasping member (FIG. 1A) to grasp the device while it is being inserted.
- the device ranges from 3 mm to 20 mm in diameter and from 0.005 mm to 2 mm in thickness.
- the device 10 may be round (FIG. 1C (3)), oval (FIG. 1C (4)) elliptical (FIG. 1C (2)), or irregular (FIG. 1C (1)) in shape.
- the surface contours may be flat or curved to match the curvature of the retina.
- the edges or selected areas of the anterior 14 or posterior 16 (FIG. 2A) surfaces may be fashioned with ridges or other protrusions to improve stability within the retina and to improve biological acceptability.
- the device may also have ledges, lips or loops to aid manipulation during implantation. In addition, it may also have openings (not shown) between the two surfaces to allow passage of intraretinal nourishment and tissue ingrowth to maintain the device securely in the retina.
- the details of the photodiode construction of the artificial retina device of the present invention consist of multiple layers of both pure and doped silicon deposited and etched.
- An insulated or noninsulated polysilicon active electrode structure 13a projects from the surface in one embodiment (FIG. 2A), or a flat polysilicon active electrode surface 13b is constructed in another alternative embodiment (FIG. 2B) to transfer a current from the photodiode to the overlying photoreceptor, bipolar and inner retinal cell layers as explained in detail below.
- the polysilicon electrode structure 13a or 13b can be made by standard semiconductor plasma and/or wet etch techniques.
- the artificial retina device of the present invention is, therefore, a large array of photovoltaic microphotodiodes of the PiN type.
- Each microphotodiode consists of a shallow P-doped photoactive layer 18 overlaying an intrinsic layer 20 which in turn overlays a N-doped layer 6.
- a conductive layer 22 of polysilicon that forms the common complimentary electrode or ground.
- a common complimentary electrode is shown, but the device can be constructed with a discrete complimentary electrode for each microphotodiode.
- a layer of silicon nitrate 24 covering the entire surface except for openings (or on the unmasked areas) 26 that establish electrode contact areas for the polysilicon active electrode 13a (or 13b).
- the PiN layers may be reversed (NIP) or modified to facilitate reversal of the device polarity.
- a plurality of nodes 28 are formed from a plurality of microphotodiodes described above.
- the designed current output of each self-powered photodiode node is on the order of 50 nA when the device is exposed to average room lighting. However, the electrical current output may be designed to be greater or less than this value depending upon the stimulation requirement of the overlying cell layer.
- a supplemental bias activation current may also be provided by an insulated wire or series of insulated wires leading from the device from the eye into an external or internally implanted battery unit.
- the device 10 of this invention is inserted into the vitreous cavity of the eye 30 via a pars plana incision 32.
- a horizontal incision 34 (FIG. 3B) is then made through the retina from the vitreous side in the temporal portion of the posterior pole into the potential space between the photoreceptor layer and the retinal pigment epithelium.
- a horizontal incision 34 made at this location will avoid cutting inner retinal vasculature and will be parallel to coursing nerve fiber layers 36, therefore, also avoiding their injury.
- Illumination for the surgical procedure is provided by a optical fiber light pipe 38.
- the potential space is then be opened by canula irrigation of a balanced salt solution into the intraretinal space.
- the device is then placed into the intraretinal cavity (FIG. 3C) at the posterior pole under the macula area. Specifically, the device is placed between the retinal pigment epithelium 58 (FIG. 4) and photoreceptor layer 54, or if photoreceptor layer 54 is atrophied or lost then between the retinal pigment epithelium 58 and the bipolar and horizontal cell layer 52. The device is positioned such that the electrical ground 22 is overlaying the retinal pigment epithelium 58 and the active electrode 13a (or 13b) faces the incident light.
- endolaserphtocoagulation or endocautery burns 39 are made around the periphery of the device to secure the device.
- the scar tissue so formed around the periphery of the device will prevent the device from moving out of position.
- Endolaserphotocoagulation or endocautery 39 may also be used to seal the retinal incision.
- Air or other approved gaseous compounds may also be injected into the vitreous cavity to tamponade the retinal opening during healing. The pars plana incision will be closed in the usual surgical manner.
- An alternate method for implantation would involve making an incision through the sclera just posterior to the ora serata. Dissection would proceed through the choroid, choriocapillaris, Bruch's membrane and retinal pigment epithelium under stereo operating microscrope control into the potential space between the inner and outer retinal layers. The artificial retinal implant would then be inserted into this space and directed posteriorly towards the macula by a pushing action imparted by a formed curved iris spatula. The device will rest in the macula area of posterior pole of the eye between the inner and outer retinal layers.
- the layers of the eye at the posterior pole from inside to outside are shown in FIG. 4: internal limiting membrane 40, nerve fiber layer 42, ganglion and amacrine cell layer 44, inner plexiform 46, inner nuclear layer 48, outer plexiform 50, outer nuclear and bipolar cell layer 52, and photoreceptor layer 54, all of which constitute the inner retinal layer 56.
- the retinal pigment epithelium 58, and Bruch's membrane 60 constitute the outer retinal layer 62.
- the choriocapillaris 64, and choroid 66 comprise the choroidal vasculature 68.
- the outer coat of the eye is the sclera 70.
- an amplitude-modulated current varying with illumination, produced by each photodiode of the device 10 will stimulate the overlying inner retinal layer consisting of photoreceptors (if present) and their cell bodies 54, 52, bipolar cells 48 and horizontal cells 52.
- cells 48-52 normally both receive and produce analog amplitude-modulated currents, the analog amplitude-modulated output of the device is well suited for stimulation of these cells.
- the amplitude-modulated signals of the bipolar cells 48 are then modified and converted by the amacrine and ganglion cells 44 to a frequency-modulated signal as is the normal biological event in the innermost area of the inner retinal layer for distant transmission through the optic nerve to the lateral geniculate area of the brain.
- each photodiode will be automatically amplitude modulated corresponding to the intensity of the incident light
- the resulting stimulation and signal current production of the overlying photoreceptor or bipolar cell layer will also be amplitude modulated thereby duplicating the normal amplitude-modulated character of these cells.
- Stimulating inner retina 56 at the above indicated location will also allow the normal function of the horizontal cell on-off receptor fields thereby allowing contrast appreciation.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Radiology & Medical Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Surgery (AREA)
- Prostheses (AREA)
Abstract
Description
Claims (15)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/390,562 US5016633A (en) | 1989-08-08 | 1989-08-08 | Artificial retina device |
US07/549,094 US5024223A (en) | 1989-08-08 | 1990-07-06 | Artificial retina device |
CA002022544A CA2022544C (en) | 1989-08-08 | 1990-08-02 | Artificial retina device |
ES90308575T ES2110410T3 (en) | 1989-08-08 | 1990-08-03 | ARTIFICIAL RETINA DEVICE. |
EP90308575A EP0460320B1 (en) | 1989-08-08 | 1990-08-03 | Artificial retina device |
DE69031908T DE69031908T2 (en) | 1989-08-08 | 1990-08-03 | Artificial retina |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/390,562 US5016633A (en) | 1989-08-08 | 1989-08-08 | Artificial retina device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/549,094 Continuation-In-Part US5024223A (en) | 1989-08-08 | 1990-07-06 | Artificial retina device |
Publications (1)
Publication Number | Publication Date |
---|---|
US5016633A true US5016633A (en) | 1991-05-21 |
Family
ID=23542978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/390,562 Expired - Lifetime US5016633A (en) | 1989-08-08 | 1989-08-08 | Artificial retina device |
Country Status (1)
Country | Link |
---|---|
US (1) | US5016633A (en) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159927A (en) * | 1989-07-26 | 1992-11-03 | Ferdinand Schmid | Visual prosthesis apparatus and method |
US5397350A (en) * | 1993-05-03 | 1995-03-14 | Chow; Alan Y. | Independent photoelectric artificial retina device and method of using same |
US5476494A (en) * | 1992-09-11 | 1995-12-19 | Massachusetts Institute Of Technology | Low pressure neural contact structure |
DE4424753A1 (en) * | 1994-07-13 | 1996-01-18 | Fraunhofer Ges Forschung | Retina implant with array of polymer-sheathed conductive filaments on insulating substrate |
US5556423A (en) * | 1993-05-03 | 1996-09-17 | Alan Y. Chow | Independent photoelectric artificial retina device and method of using same |
US5597381A (en) * | 1993-06-03 | 1997-01-28 | Massachusetts Eye And Ear Infirmary | Methods for epi-retinal implantation |
US5873901A (en) * | 1995-06-30 | 1999-02-23 | Space Vacuum Epitaxy Center University Of Houston | Treating retinal damage by implanting thin film optical detectors |
US5895415A (en) * | 1995-06-06 | 1999-04-20 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US5935155A (en) * | 1998-03-13 | 1999-08-10 | John Hopkins University, School Of Medicine | Visual prosthesis and method of using same |
US5944747A (en) * | 1998-03-13 | 1999-08-31 | Johns Hopkins University | Method for preferential outer retinal stimulation |
US6032062A (en) * | 1995-08-10 | 2000-02-29 | Nmi Naturwissenschaftliches Und Medizinisches Institut | Microelectrode arrangement |
WO2000056393A1 (en) | 1999-03-24 | 2000-09-28 | Second Sight, Llc | Retinal color prosthesis for color sight restoration |
WO2000056244A2 (en) | 1999-03-24 | 2000-09-28 | Second Sight, Llc | Logarithmic light intensifier for use with photoreceptor-based implanted retinal prosthetics and those prosthetics |
US6230057B1 (en) | 1995-06-06 | 2001-05-08 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US6324429B1 (en) * | 1998-05-08 | 2001-11-27 | Massachusetts Eye And Ear Infirmary | Chronically implantable retinal prosthesis |
US6389317B1 (en) | 2000-03-31 | 2002-05-14 | Optobionics Corporation | Multi-phasic microphotodetector retinal implant with variable voltage and current capability |
WO2002080816A1 (en) * | 2001-03-30 | 2002-10-17 | Nagoya Ind Science Reserach I | Electrode member for retinal stimulation, and artificial retinal device using the electrode member |
US20020169486A1 (en) * | 2000-05-04 | 2002-11-14 | Optobionics Corporation | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
WO2003002070A2 (en) | 2001-06-29 | 2003-01-09 | Optobionics Corporation | Methods for improving damaged retinal cell function using physical and/or mechanical stimulation |
DE10151650A1 (en) * | 2001-10-17 | 2003-05-08 | Univ Eberhard Karls | Electrode arrangement for electrical stimulation of biological material and multi-electrode array for use in such |
US20030097166A1 (en) * | 2001-11-16 | 2003-05-22 | The Regents Of The University Of California | Flexible electrode array for artifical vision |
US20030158588A1 (en) * | 2002-01-17 | 2003-08-21 | Rizzo Joseph F. | Minimally invasive retinal prosthesis |
US20030187491A1 (en) * | 2002-03-28 | 2003-10-02 | Robert Greenberg | Variable pitch electrode array |
WO2004075005A2 (en) * | 2003-02-14 | 2004-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Neural prosthesis based on photomechanical deflectors and tactile sensory cells |
US20040236389A1 (en) * | 2003-05-01 | 2004-11-25 | Wolfgang Fink | Method and system for training a visual prosthesis |
US20050004625A1 (en) * | 2001-06-29 | 2005-01-06 | Chow Alan Y. | Treatment of degenerative retinal disease via electrical stimulation of surface structures |
US20050010266A1 (en) * | 2003-03-24 | 2005-01-13 | Les Bogdanowicz | Device and methodology for ocular stimulation |
US20050033202A1 (en) * | 2001-06-29 | 2005-02-10 | Chow Alan Y. | Mechanically activated objects for treatment of degenerative retinal disease |
US20050062679A1 (en) * | 2002-12-17 | 2005-03-24 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
EP1618922A1 (en) * | 2004-07-23 | 2006-01-25 | Nidek Co., Ltd. | Visual restoration aiding device |
US7037943B2 (en) | 2001-04-10 | 2006-05-02 | Optobionics Corporation | Retinal treatment method |
US20060148254A1 (en) * | 2005-01-05 | 2006-07-06 | Mclean George Y | Activated iridium oxide electrodes and methods for their fabrication |
US7088387B1 (en) * | 1997-08-05 | 2006-08-08 | Mitsubishi Electric Research Laboratories, Inc. | Video recording device responsive to triggering event |
US7127301B1 (en) | 2003-04-28 | 2006-10-24 | Sandia Corporation | Flexible retinal electrode array |
US20070049987A1 (en) * | 2003-03-21 | 2007-03-01 | Greenberg Robert J | Trans-retinal flexible circuit electrode array |
EP1762269A2 (en) | 1999-03-24 | 2007-03-14 | Second Sight Medical Products, Inc. | Visual prothesis |
US20070073359A1 (en) * | 2005-09-16 | 2007-03-29 | Mcclure Kelly H | Downloadable filters for a visual prosthesis |
US20070191909A1 (en) * | 2006-02-15 | 2007-08-16 | Doheny Eye Institute | Wide-field retinal prosthesis |
EP1864690A2 (en) | 1999-03-24 | 2007-12-12 | Second Sight Medical Products, Inc. | Logarithmic light intensifier for use with photoreceptorbased implanted retinal prosthetics and those prosthetics |
US20080046080A1 (en) * | 2006-07-07 | 2008-02-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for forming packaged microelectronic devices and devices thus obtained |
US20080066500A1 (en) * | 2006-09-15 | 2008-03-20 | Shun-Chang Su | Cable lock that is opened forcibly |
US20080228242A1 (en) * | 2003-05-01 | 2008-09-18 | California Institute Of Technology | Method and system for training a visual prosthesis |
US20100204754A1 (en) * | 2009-02-09 | 2010-08-12 | Rainbow Medical Ltd. | Retinal prosthesis |
US20100241060A1 (en) * | 2009-03-18 | 2010-09-23 | Roizman Keith | Surgical devices and methods |
CN101853862A (en) * | 2010-04-29 | 2010-10-06 | 北京大学 | Photoelectric microelectrode array used for artificial retina and manufacturing method thereof |
US20110172736A1 (en) * | 2010-01-14 | 2011-07-14 | Nano-Retina, Inc. | Penetrating electrodes for retinal stimulation |
US8180453B2 (en) | 1999-03-24 | 2012-05-15 | Second Sight Medical Products, Inc. | Electrode array for neural stimulation |
US8428740B2 (en) | 2010-08-06 | 2013-04-23 | Nano-Retina, Inc. | Retinal prosthesis techniques |
US8442641B2 (en) | 2010-08-06 | 2013-05-14 | Nano-Retina, Inc. | Retinal prosthesis techniques |
US8478415B1 (en) * | 2004-11-19 | 2013-07-02 | National Semiconductor Corporation | Heat transfer control for a prosthetic retinal device |
US8571669B2 (en) | 2011-02-24 | 2013-10-29 | Nano-Retina, Inc. | Retinal prosthesis with efficient processing circuits |
US8706243B2 (en) | 2009-02-09 | 2014-04-22 | Rainbow Medical Ltd. | Retinal prosthesis techniques |
US8712542B2 (en) | 2008-11-04 | 2014-04-29 | Boston Scientific Neuromodulation Corporation | Deposited conductive layers for leads of implantable electric stimulation systems and methods of making and using |
US20150246220A1 (en) * | 2012-05-09 | 2015-09-03 | Po-Kang Lin | Structure of Artificial Electronic Retina |
US9331791B2 (en) | 2014-01-21 | 2016-05-03 | Nano Retina Ltd. | Transfer of power and data |
US9370417B2 (en) | 2013-03-14 | 2016-06-21 | Nano-Retina, Inc. | Foveated retinal prosthesis |
US9474902B2 (en) | 2013-12-31 | 2016-10-25 | Nano Retina Ltd. | Wearable apparatus for delivery of power to a retinal prosthesis |
EP3461529A1 (en) | 2017-09-27 | 2019-04-03 | Pixium Vision SA | Tip, inserter attachment and delivery device |
CN109711286A (en) * | 2018-12-11 | 2019-05-03 | 中国科学院深圳先进技术研究院 | A kind of control method and device based on artificial retina spatial perception |
CN109701157A (en) * | 2017-12-29 | 2019-05-03 | 深圳硅基仿生科技有限公司 | Radio-frequency signal detection device and retina stimulator with detection coil |
CN110740776A (en) * | 2017-03-23 | 2020-01-31 | 高丽大学校产学协力团 | Artificial retinal system for improving contrast sensitivity |
CN115376391A (en) * | 2022-08-19 | 2022-11-22 | 中国科学技术大学苏州高等研究院 | Three-dimensional eyeball imitation body and preparation method and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2760483A (en) * | 1953-10-29 | 1956-08-28 | Tassicker Graham Edward | Retinal stimulator |
US3594823A (en) * | 1969-02-11 | 1971-07-27 | Patent Management Inc | Visual substitution system with receptor scanning means |
US3628193A (en) * | 1969-02-19 | 1971-12-21 | Inst Of Medical Sciences The | Tactile image projection system |
US3766311A (en) * | 1972-04-26 | 1973-10-16 | H Boll | Sensory substitution system |
US3848608A (en) * | 1973-07-23 | 1974-11-19 | Gen Electric | Subject integument spatial stimulator |
US3914800A (en) * | 1974-06-06 | 1975-10-28 | Inst Of Medical Sciences | Fluid mechanical tactile oscilloscope to augment the five senses |
US4272910A (en) * | 1979-07-31 | 1981-06-16 | Danz W R | Ocular prosthetic or the like |
US4551149A (en) * | 1982-02-16 | 1985-11-05 | Michael Sciarra | Prosthetic vision system |
US4601545A (en) * | 1984-05-16 | 1986-07-22 | Kern Seymour P | Variable power lens system |
US4628933A (en) * | 1985-07-23 | 1986-12-16 | Michelson Robin P | Method and apparatus for visual prosthesis |
-
1989
- 1989-08-08 US US07/390,562 patent/US5016633A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2760483A (en) * | 1953-10-29 | 1956-08-28 | Tassicker Graham Edward | Retinal stimulator |
US3594823A (en) * | 1969-02-11 | 1971-07-27 | Patent Management Inc | Visual substitution system with receptor scanning means |
US3628193A (en) * | 1969-02-19 | 1971-12-21 | Inst Of Medical Sciences The | Tactile image projection system |
US3766311A (en) * | 1972-04-26 | 1973-10-16 | H Boll | Sensory substitution system |
US3848608A (en) * | 1973-07-23 | 1974-11-19 | Gen Electric | Subject integument spatial stimulator |
US3914800A (en) * | 1974-06-06 | 1975-10-28 | Inst Of Medical Sciences | Fluid mechanical tactile oscilloscope to augment the five senses |
US4272910A (en) * | 1979-07-31 | 1981-06-16 | Danz W R | Ocular prosthetic or the like |
US4551149A (en) * | 1982-02-16 | 1985-11-05 | Michael Sciarra | Prosthetic vision system |
US4601545A (en) * | 1984-05-16 | 1986-07-22 | Kern Seymour P | Variable power lens system |
US4628933A (en) * | 1985-07-23 | 1986-12-16 | Michelson Robin P | Method and apparatus for visual prosthesis |
Non-Patent Citations (2)
Title |
---|
Science News, Feb. 2, 1974, vol. 105, No. 5, p. 105. * |
Science, Jul., 1981. * |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159927A (en) * | 1989-07-26 | 1992-11-03 | Ferdinand Schmid | Visual prosthesis apparatus and method |
US5476494A (en) * | 1992-09-11 | 1995-12-19 | Massachusetts Institute Of Technology | Low pressure neural contact structure |
US5397350A (en) * | 1993-05-03 | 1995-03-14 | Chow; Alan Y. | Independent photoelectric artificial retina device and method of using same |
JP3529780B2 (en) | 1993-05-03 | 2004-05-24 | アレン ワイ チョー | Independent photoelectric subretinal implant |
US5556423A (en) * | 1993-05-03 | 1996-09-17 | Alan Y. Chow | Independent photoelectric artificial retina device and method of using same |
US5597381A (en) * | 1993-06-03 | 1997-01-28 | Massachusetts Eye And Ear Infirmary | Methods for epi-retinal implantation |
DE4424753B4 (en) * | 1994-07-13 | 2004-07-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Retinal implant |
DE4424753A1 (en) * | 1994-07-13 | 1996-01-18 | Fraunhofer Ges Forschung | Retina implant with array of polymer-sheathed conductive filaments on insulating substrate |
US20020087202A1 (en) * | 1995-06-06 | 2002-07-04 | Optobionics Corportion | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US7139612B2 (en) | 1995-06-06 | 2006-11-21 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US6230057B1 (en) | 1995-06-06 | 2001-05-08 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US6611716B2 (en) * | 1995-06-06 | 2003-08-26 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US5895415A (en) * | 1995-06-06 | 1999-04-20 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
US20040088026A1 (en) * | 1995-06-06 | 2004-05-06 | Optobionics Corporation | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system |
JP3514464B2 (en) | 1995-06-06 | 2004-03-31 | ビンセント チョウ | Multiphase microphotodiode retinal implant and corresponding imaging retinal stimulation system |
US5873901A (en) * | 1995-06-30 | 1999-02-23 | Space Vacuum Epitaxy Center University Of Houston | Treating retinal damage by implanting thin film optical detectors |
US6032062A (en) * | 1995-08-10 | 2000-02-29 | Nmi Naturwissenschaftliches Und Medizinisches Institut | Microelectrode arrangement |
US7088387B1 (en) * | 1997-08-05 | 2006-08-08 | Mitsubishi Electric Research Laboratories, Inc. | Video recording device responsive to triggering event |
US5944747A (en) * | 1998-03-13 | 1999-08-31 | Johns Hopkins University | Method for preferential outer retinal stimulation |
US5935155A (en) * | 1998-03-13 | 1999-08-10 | John Hopkins University, School Of Medicine | Visual prosthesis and method of using same |
US6324429B1 (en) * | 1998-05-08 | 2001-11-27 | Massachusetts Eye And Ear Infirmary | Chronically implantable retinal prosthesis |
US20080275528A1 (en) * | 1999-03-24 | 2008-11-06 | Greenberg Robert J | Electrode Array for Visual Stimulation |
US20080077195A1 (en) * | 1999-03-24 | 2008-03-27 | Greenberg Robert J | Package for an Implantable Device |
US7725191B2 (en) | 1999-03-24 | 2010-05-25 | Second Sight Medical Products, Inc. | Package for an implantable device |
US7894911B2 (en) | 1999-03-24 | 2011-02-22 | Second Sight Medical Products, Inc. | Electrode array for neural stimulation |
EP2275166A2 (en) | 1999-03-24 | 2011-01-19 | Second Sight Medical Products, Inc. | Visual prosthesis |
US20090204212A1 (en) * | 1999-03-24 | 2009-08-13 | Greenberg Robert J | Logarithmic Light Intensifier for use with Photoreceptor-Based Implanted Retinal Prosthetics and those Prosthetics |
WO2000056393A1 (en) | 1999-03-24 | 2000-09-28 | Second Sight, Llc | Retinal color prosthesis for color sight restoration |
US8046078B2 (en) | 1999-03-24 | 2011-10-25 | Second Sight Medical Products, Inc. | Logarithmic light intensifier for use with photoreceptor-based implanted retinal prosthetics and those prosthetics |
US8131378B2 (en) | 1999-03-24 | 2012-03-06 | Second Sight Medical Products, Inc. | Inductive repeater coil for an implantable device |
WO2000056244A2 (en) | 1999-03-24 | 2000-09-28 | Second Sight, Llc | Logarithmic light intensifier for use with photoreceptor-based implanted retinal prosthetics and those prosthetics |
US8170676B2 (en) | 1999-03-24 | 2012-05-01 | Second Sight Medical Products, Inc. | Electrode array |
US20070016294A1 (en) * | 1999-03-24 | 2007-01-18 | Greenberg Robert J | Logarithmic light intensifier for use with photoreceptor-based implanted retinal prosthetics and those prosthetics |
US6507758B1 (en) | 1999-03-24 | 2003-01-14 | Second Sight, Llc | Logarithmic light intensifier for use with photoreceptor-based implanted retinal prosthetics and those prosthetics |
EP1864690A2 (en) | 1999-03-24 | 2007-12-12 | Second Sight Medical Products, Inc. | Logarithmic light intensifier for use with photoreceptorbased implanted retinal prosthetics and those prosthetics |
US8090448B2 (en) | 1999-03-24 | 2012-01-03 | Second Sight Medical Products, Inc. | Low profile package for an implantable device |
US7257446B2 (en) | 1999-03-24 | 2007-08-14 | Second Sight Medical Products, Inc. | Package for an implantable medical device |
US7957810B2 (en) | 1999-03-24 | 2011-06-07 | Second Sight Medical Products, Inc. | Motion compensation for a visual prosthesis |
US8355800B2 (en) | 1999-03-24 | 2013-01-15 | Second Sight Medical Products, Inc. | Coating package for an implantable device |
US20060036296A1 (en) * | 1999-03-24 | 2006-02-16 | Greenberg Robert J | Electrode array for neural stimulation |
US7835798B2 (en) | 1999-03-24 | 2010-11-16 | Second Sight Medical Products, Inc. | Electrode array for visual stimulation |
US7840274B2 (en) | 1999-03-24 | 2010-11-23 | Second Sight Medical Products, Inc. | Visual color prosthesis |
US20080097555A1 (en) * | 1999-03-24 | 2008-04-24 | Greenberg Robert J | Inductive Repeater Coil for an Implantable Device |
US8180453B2 (en) | 1999-03-24 | 2012-05-15 | Second Sight Medical Products, Inc. | Electrode array for neural stimulation |
EP2275167A2 (en) | 1999-03-24 | 2011-01-19 | Second Sight Medical Products, Inc. | Visual prosthesis |
US20080077196A1 (en) * | 1999-03-24 | 2008-03-27 | Greenberg Robert J | Motion Compensation for a Visual Prosthesis |
US20090005835A1 (en) * | 1999-03-24 | 2009-01-01 | Greenberg Robert J | Low Profile Package for an Implantable Device |
EP1762269A2 (en) | 1999-03-24 | 2007-03-14 | Second Sight Medical Products, Inc. | Visual prothesis |
US7539544B2 (en) | 1999-03-24 | 2009-05-26 | Second Sight Medical Products, Inc. | Logarithmic light intensifier for use with photoreceptor-based implanted retinal prosthetics and those prosthetics |
US7006873B2 (en) | 2000-03-31 | 2006-02-28 | Optobionics Corporation | Adjustment of electrical stimulus in a retinal implant |
US6389317B1 (en) | 2000-03-31 | 2002-05-14 | Optobionics Corporation | Multi-phasic microphotodetector retinal implant with variable voltage and current capability |
EP1267991A1 (en) * | 2000-03-31 | 2003-01-02 | Optobionics Corporation | Multi-phasic microphotodetector retinal implant with variable voltage and current capability and apparatus for insertion |
EP1267991A4 (en) * | 2000-03-31 | 2005-08-31 | Optobionics Corp | Multi-phasic microphotodetector retinal implant with variable voltage and current capability and apparatus for insertion |
US20040082981A1 (en) * | 2000-03-31 | 2004-04-29 | Optobionics Corporation | Multi-phasic microphotodetector retinal implant with variable voltage and current capability and apparatus for insertion |
US20060142857A1 (en) * | 2000-05-04 | 2006-06-29 | Optobionics Corporation | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
US7003354B2 (en) | 2000-05-04 | 2006-02-21 | Optobionics Corporation | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
US20020169486A1 (en) * | 2000-05-04 | 2002-11-14 | Optobionics Corporation | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
US8306626B2 (en) | 2000-05-04 | 2012-11-06 | Imi Intelligent Medical Implants Ag | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
US7979134B2 (en) * | 2000-05-04 | 2011-07-12 | Imi Intelligent Medical Implants Ag | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
US20110238134A1 (en) * | 2000-05-04 | 2011-09-29 | Imi Intelligent Medical Implants Ag | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment |
WO2002080816A1 (en) * | 2001-03-30 | 2002-10-17 | Nagoya Ind Science Reserach I | Electrode member for retinal stimulation, and artificial retinal device using the electrode member |
US7158836B2 (en) | 2001-03-30 | 2007-01-02 | Satoshi Suzuki | Electrode member for retinal stimulation, and artificial retinal device using the electrode member |
US7037943B2 (en) | 2001-04-10 | 2006-05-02 | Optobionics Corporation | Retinal treatment method |
US20050004625A1 (en) * | 2001-06-29 | 2005-01-06 | Chow Alan Y. | Treatment of degenerative retinal disease via electrical stimulation of surface structures |
US20060142818A1 (en) * | 2001-06-29 | 2006-06-29 | Optobionics | Methods for improving damaged retinal cell function |
US7031776B2 (en) | 2001-06-29 | 2006-04-18 | Optobionics | Methods for improving damaged retinal cell function |
EP1409072A4 (en) * | 2001-06-29 | 2005-12-21 | Optobionics Corp | Methods for improving damaged retinal cell function using physical and/or mechanical stimulation |
US20050033202A1 (en) * | 2001-06-29 | 2005-02-10 | Chow Alan Y. | Mechanically activated objects for treatment of degenerative retinal disease |
EP1409072A2 (en) * | 2001-06-29 | 2004-04-21 | Optobionics Corporation | Methods for improving damaged retinal cell function using physical and/or mechanical stimulation |
US20100121231A1 (en) * | 2001-06-29 | 2010-05-13 | Chow Alan Y | Mechanically activated objects for treatment of degenerative retinal disease |
US7981062B2 (en) | 2001-06-29 | 2011-07-19 | Imi Intelligent Medical Implants Ag | Mechanically activated objects for treatment of degenerative retinal disease |
WO2003002070A2 (en) | 2001-06-29 | 2003-01-09 | Optobionics Corporation | Methods for improving damaged retinal cell function using physical and/or mechanical stimulation |
US20040267344A1 (en) * | 2001-10-17 | 2004-12-30 | Alfred Stett | Electrode arrangement for electrical stimulation of biological material, and a multi-electrode array for use in such an electrode arrangement |
US7272447B2 (en) | 2001-10-17 | 2007-09-18 | Retina Implant Gmbh | Electrode arrangement for electrical stimulation of biological material, and a multi-electrode array for use in such an electrode arrangement |
DE10151650A1 (en) * | 2001-10-17 | 2003-05-08 | Univ Eberhard Karls | Electrode arrangement for electrical stimulation of biological material and multi-electrode array for use in such |
US20030097166A1 (en) * | 2001-11-16 | 2003-05-22 | The Regents Of The University Of California | Flexible electrode array for artifical vision |
US7146221B2 (en) * | 2001-11-16 | 2006-12-05 | The Regents Of The University Of California | Flexible electrode array for artifical vision |
US6976998B2 (en) | 2002-01-17 | 2005-12-20 | Massachusetts Institute Of Technology | Minimally invasive retinal prosthesis |
US20030158588A1 (en) * | 2002-01-17 | 2003-08-21 | Rizzo Joseph F. | Minimally invasive retinal prosthesis |
US9089690B2 (en) | 2002-03-28 | 2015-07-28 | Second Sight Medical Products, Inc. | Variable pitch electrode array |
US7149586B2 (en) | 2002-03-28 | 2006-12-12 | Second Sight Medical Products, Inc. | Variable pitch electrode array |
US20090326623A1 (en) * | 2002-03-28 | 2009-12-31 | Robert Greenberg | Variable pitch electrode array |
US20030187491A1 (en) * | 2002-03-28 | 2003-10-02 | Robert Greenberg | Variable pitch electrode array |
US20050209691A1 (en) * | 2002-12-17 | 2005-09-22 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
US7776087B2 (en) * | 2002-12-17 | 2010-08-17 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
US20050062679A1 (en) * | 2002-12-17 | 2005-03-24 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
US20050065602A1 (en) * | 2002-12-17 | 2005-03-24 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
US20050154457A1 (en) * | 2002-12-17 | 2005-07-14 | Eli Aharoni | Intraocular implants |
US20050222680A1 (en) * | 2002-12-17 | 2005-10-06 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
US7736390B2 (en) | 2002-12-17 | 2010-06-15 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
US7727277B2 (en) | 2002-12-17 | 2010-06-01 | Visioncare Ophthalmic Technologies Inc. | Intraocular implants |
WO2004075005A3 (en) * | 2003-02-14 | 2004-10-21 | Univ Leland Stanford Junior | Neural prosthesis based on photomechanical deflectors and tactile sensory cells |
WO2004075005A2 (en) * | 2003-02-14 | 2004-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Neural prosthesis based on photomechanical deflectors and tactile sensory cells |
US8131375B2 (en) * | 2003-03-21 | 2012-03-06 | Second Sight Medical Products, Inc. | Trans-retinal flexible circuit electrode array |
US20080086183A1 (en) * | 2003-03-21 | 2008-04-10 | Greenberg Robert J | Trans-Retinal Flexible Circuit Electrode Array |
US20070049987A1 (en) * | 2003-03-21 | 2007-03-01 | Greenberg Robert J | Trans-retinal flexible circuit electrode array |
US8447410B2 (en) * | 2003-03-21 | 2013-05-21 | Second Sight Medical Products, Inc. | Trans-retinal drug delivery device |
US7321795B2 (en) | 2003-03-24 | 2008-01-22 | Les Bogdanowicz | Compositions for electric stimulation of the eye |
US20050010266A1 (en) * | 2003-03-24 | 2005-01-13 | Les Bogdanowicz | Device and methodology for ocular stimulation |
US7308317B1 (en) | 2003-04-28 | 2007-12-11 | Sandia Corporation | Micromachined electrode array |
US7127301B1 (en) | 2003-04-28 | 2006-10-24 | Sandia Corporation | Flexible retinal electrode array |
US20080228242A1 (en) * | 2003-05-01 | 2008-09-18 | California Institute Of Technology | Method and system for training a visual prosthesis |
US20040236389A1 (en) * | 2003-05-01 | 2004-11-25 | Wolfgang Fink | Method and system for training a visual prosthesis |
US8260428B2 (en) | 2003-05-01 | 2012-09-04 | California Institute Of Technology | Method and system for training a visual prosthesis |
US7321796B2 (en) | 2003-05-01 | 2008-01-22 | California Institute Of Technology | Method and system for training a visual prosthesis |
US20080154338A1 (en) * | 2003-05-01 | 2008-06-26 | Wolfgang Fink | Method and system for training a visual prosthesis |
US7403822B2 (en) | 2004-07-23 | 2008-07-22 | Nidek Co., Ltd. | Visual restoration aiding device |
EP1618922A1 (en) * | 2004-07-23 | 2006-01-25 | Nidek Co., Ltd. | Visual restoration aiding device |
US20060074461A1 (en) * | 2004-07-23 | 2006-04-06 | Nidek Co., Ltd. | Visual restoration aiding device |
US8478415B1 (en) * | 2004-11-19 | 2013-07-02 | National Semiconductor Corporation | Heat transfer control for a prosthetic retinal device |
US20060148254A1 (en) * | 2005-01-05 | 2006-07-06 | Mclean George Y | Activated iridium oxide electrodes and methods for their fabrication |
US20080046029A1 (en) * | 2005-09-16 | 2008-02-21 | Mcclure Kelly H | Downloadable Filters for a Visual Prosthesis |
US20070073359A1 (en) * | 2005-09-16 | 2007-03-29 | Mcclure Kelly H | Downloadable filters for a visual prosthesis |
US8224454B2 (en) * | 2005-09-16 | 2012-07-17 | Second Sight Medical Products, Inc. | Downloadable filters for a visual prosthesis |
US8571668B2 (en) * | 2005-09-16 | 2013-10-29 | Second Sight Medical Products, Inc. | Downloadable filters for a visual prosthesis |
US20070191909A1 (en) * | 2006-02-15 | 2007-08-16 | Doheny Eye Institute | Wide-field retinal prosthesis |
US8190266B2 (en) * | 2006-02-15 | 2012-05-29 | Dohey Eye Institute | Wide-field retinal prosthesis |
US20080046080A1 (en) * | 2006-07-07 | 2008-02-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for forming packaged microelectronic devices and devices thus obtained |
US20080066500A1 (en) * | 2006-09-15 | 2008-03-20 | Shun-Chang Su | Cable lock that is opened forcibly |
US8712542B2 (en) | 2008-11-04 | 2014-04-29 | Boston Scientific Neuromodulation Corporation | Deposited conductive layers for leads of implantable electric stimulation systems and methods of making and using |
US9265945B2 (en) | 2009-02-09 | 2016-02-23 | Nano-Retina, Inc. | Retinal prosthesis |
US9907969B2 (en) | 2009-02-09 | 2018-03-06 | Nano-Retina, Inc. | Retinal prosthesis with an external power source |
US9566191B2 (en) | 2009-02-09 | 2017-02-14 | Nano-Retina, Inc. | Retinal prosthesis with visible-light filter |
US8150526B2 (en) | 2009-02-09 | 2012-04-03 | Nano-Retina, Inc. | Retinal prosthesis |
US20100204754A1 (en) * | 2009-02-09 | 2010-08-12 | Rainbow Medical Ltd. | Retinal prosthesis |
US9198753B2 (en) | 2009-02-09 | 2015-12-01 | Nano-Retina Inc. | Techniques for powering a retinal prosthesis |
US8706243B2 (en) | 2009-02-09 | 2014-04-22 | Rainbow Medical Ltd. | Retinal prosthesis techniques |
US20100241060A1 (en) * | 2009-03-18 | 2010-09-23 | Roizman Keith | Surgical devices and methods |
US8718784B2 (en) | 2010-01-14 | 2014-05-06 | Nano-Retina, Inc. | Penetrating electrodes for retinal stimulation |
US20110172736A1 (en) * | 2010-01-14 | 2011-07-14 | Nano-Retina, Inc. | Penetrating electrodes for retinal stimulation |
CN101853862A (en) * | 2010-04-29 | 2010-10-06 | 北京大学 | Photoelectric microelectrode array used for artificial retina and manufacturing method thereof |
US8428740B2 (en) | 2010-08-06 | 2013-04-23 | Nano-Retina, Inc. | Retinal prosthesis techniques |
US8442641B2 (en) | 2010-08-06 | 2013-05-14 | Nano-Retina, Inc. | Retinal prosthesis techniques |
US9192464B2 (en) | 2011-02-24 | 2015-11-24 | Nano-Retina, Inc. | Retinal prosthesis with efficient processing circuits |
US8571669B2 (en) | 2011-02-24 | 2013-10-29 | Nano-Retina, Inc. | Retinal prosthesis with efficient processing circuits |
US20150246220A1 (en) * | 2012-05-09 | 2015-09-03 | Po-Kang Lin | Structure of Artificial Electronic Retina |
US9427569B2 (en) * | 2012-05-09 | 2016-08-30 | Po-Kang Lin | Structure of artificial electronic retina |
US9370417B2 (en) | 2013-03-14 | 2016-06-21 | Nano-Retina, Inc. | Foveated retinal prosthesis |
US9474902B2 (en) | 2013-12-31 | 2016-10-25 | Nano Retina Ltd. | Wearable apparatus for delivery of power to a retinal prosthesis |
US9331791B2 (en) | 2014-01-21 | 2016-05-03 | Nano Retina Ltd. | Transfer of power and data |
CN110740776A (en) * | 2017-03-23 | 2020-01-31 | 高丽大学校产学协力团 | Artificial retinal system for improving contrast sensitivity |
CN110740776B (en) * | 2017-03-23 | 2023-06-06 | 高丽大学校产学协力团 | Artificial retina system for improving contrast sensitivity |
EP3461529A1 (en) | 2017-09-27 | 2019-04-03 | Pixium Vision SA | Tip, inserter attachment and delivery device |
WO2019063655A1 (en) | 2017-09-27 | 2019-04-04 | Pixium Vision Sa | Tip, inserter attachment and delivery device |
CN109701157A (en) * | 2017-12-29 | 2019-05-03 | 深圳硅基仿生科技有限公司 | Radio-frequency signal detection device and retina stimulator with detection coil |
CN109711286A (en) * | 2018-12-11 | 2019-05-03 | 中国科学院深圳先进技术研究院 | A kind of control method and device based on artificial retina spatial perception |
CN109711286B (en) * | 2018-12-11 | 2022-11-11 | 中国科学院深圳先进技术研究院 | Control method and device based on artificial retina space perception |
CN115376391A (en) * | 2022-08-19 | 2022-11-22 | 中国科学技术大学苏州高等研究院 | Three-dimensional eyeball imitation body and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5016633A (en) | Artificial retina device | |
US5024223A (en) | Artificial retina device | |
US6389317B1 (en) | Multi-phasic microphotodetector retinal implant with variable voltage and current capability | |
US7139612B2 (en) | Multi-phasic microphotodiode retinal implant and adaptive imaging retinal stimulation system | |
US7031776B2 (en) | Methods for improving damaged retinal cell function | |
US7003354B2 (en) | Artificial retina device with stimulating and ground return electrodes disposed on opposite sides of the neuroretina and method of attachment | |
AU2001243665A1 (en) | Multi-phasic microphotodetector retinal implant with variable voltage and current capability and apparatus for insertion | |
AU2002352103A1 (en) | Methods for improving damaged retinal cell function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: OPTOBIONICS CORPORATION, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOW, ALAN Y.;REEL/FRAME:009075/0395 Effective date: 19980303 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: POLARIS VENTURE PARTNERS FOUNDERS' FUND, L.P., MAS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: POLARIS VENTURE PARTNERS ENTREPRENEURS' FUND III, Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: POLARIS VENTURE PARTNERS FOUNDERS' FUND III, L.P., Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: CHO, ALAN, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: ARCH V ENTREPRENEURS FUND, L.P., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: ARCH VENTURE FUND III, L.P., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: ARCH VENTURE FUND V, L.P., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: POLARIS VENTURE PARTNERS III, L.P., MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: POLARIS VENTURE PARTNERS, L.P., MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: ATV ENTREPRENEURS V, L.P., MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: MEDTRONIC INTERNATIONAL, LTD., MINNESOTA Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 Owner name: ADVANCED TECHNOLOGY VENTURES V, L.P., MASSACHUSETT Free format text: SECURITY AGREEMENT;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:019181/0882 Effective date: 20070412 |
|
AS | Assignment |
Owner name: IMI INTELLIGENT MEDICAL IMPLANTS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPTOBIONICS CORPORATION;REEL/FRAME:020507/0679 Effective date: 20070921 |