US4933036A - Techniques for welding thermoplastic tubes - Google Patents

Techniques for welding thermoplastic tubes Download PDF

Info

Publication number
US4933036A
US4933036A US07/393,687 US39368789A US4933036A US 4933036 A US4933036 A US 4933036A US 39368789 A US39368789 A US 39368789A US 4933036 A US4933036 A US 4933036A
Authority
US
United States
Prior art keywords
tubes
cut ends
wafer
cut
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/393,687
Inventor
John B. Shaposka
Dudley W. C. Spencer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis BPS LLC
Original Assignee
Denco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/099,714 external-priority patent/US4770735A/en
Application filed by Denco Inc filed Critical Denco Inc
Priority to US07/393,687 priority Critical patent/US4933036A/en
Assigned to DENCO, INC., A CORP. OF DE reassignment DENCO, INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SHAPOSKA, JOHN B., SPENCER, DUDLEY W. C.
Application granted granted Critical
Publication of US4933036A publication Critical patent/US4933036A/en
Anticipated expiration legal-status Critical
Assigned to GENESIS BPS, LLC reassignment GENESIS BPS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENCO, INC.
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M39/14Tube connectors; Tube couplings for connecting tubes having sealed ends
    • A61M39/146Tube connectors; Tube couplings for connecting tubes having sealed ends by cutting and welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/16Cutting rods or tubes transversely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface direct heating of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2007Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by the type of welding mirror
    • B29C65/203Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by the type of welding mirror being several single mirrors, e.g. not mounted on the same tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2046Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" using a welding mirror which also cuts the parts to be joined, e.g. for sterile welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2053Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position
    • B29C65/2061Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding
    • B29C65/2069Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding with an angle with respect to the plane comprising the parts to be joined
    • B29C65/2076Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding with an angle with respect to the plane comprising the parts to be joined perpendicularly to the plane comprising the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/741Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area characterised by the relationships between the joining step and the severing step
    • B29C65/7411Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area characterised by the relationships between the joining step and the severing step characterised by the temperature relationship between the joining step and the severing step
    • B29C65/7412Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area characterised by the relationships between the joining step and the severing step characterised by the temperature relationship between the joining step and the severing step the joining step and the severing step being performed at different temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/743Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using the same tool for both joining and severing, said tool being monobloc or formed by several parts mounted together and forming a monobloc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/745Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using a single unit having both a severing tool and a welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0018Joining in special atmospheres characterised by the type of environment being sterile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/004Preventing sticking together, e.g. of some areas of the parts to be joined
    • B29C66/0042Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined
    • B29C66/0044Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined using a separating sheet, e.g. fixed on the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/857Medical tube welding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • B29C66/91423Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools using joining tools having different temperature zones or using several joining tools with different temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Definitions

  • This invention relates to improvements in the welding of thermoplastic tubes.
  • Various techniques are known for such welding operations.
  • Our U.S. Pat. No. 4,793,880 discusses prior techniques as well as the particular techniques which are the subject of that invention.
  • a common use of such techniques is in dialysis when it is necessary to provide a patient with a fresh supply of liquid dialysate. Under such circumstances the tube containing the old dialysate which leads from the patient to the supply is severed.
  • the same apparatus severs a tube leading from the new supply.
  • the conventional techniques involve realigning the cut tubes so that the tube section from the new supply becomes aligned with the tube section from the patient. These aligned tube sections are then welded together to provide the patient with fresh dialysate.
  • An object of this invention is to provide a method of welding thermoplastic tubes which are severed and welded while in their dry or fluid containing undistorted condition.
  • a pair of round tubes are mounted in a holding device and are maintained in their round condition while the welding step takes place.
  • the tubes are mounted in a parallel relation during the severing step and then realigned for the welding step.
  • the tubes are pre-cut and then aligned to eliminate the need for a shifting or realignment step.
  • FIGS. 1-7 are plan views schematically illustrating the sequence of steps in accordance with one practice of this invention.
  • FIGS. 8-11 are plan views schematically illustrating the sequence of steps in accordance with a further practice of this invention.
  • FIGS. 1-7 illustrate a practice of this invention which is remarkably simpler than the conventional practice dealing with the welding of fluid filled tubes since the practice of FIGS. 1-7 could be used with dry tubes.
  • the prior art has concentrated its efforts on the welding of fluid filled thermoplastic tubes such as used in dialysis. There are, however, many circumstances ignored by the prior art where it is desirable to weld thermoplastic tubes which do not contain fluid, but rather are in a dry condition. Such circumstances could include laboratory or test work as well as hospital pharmacy routines or methods wherein fluid is supplied only periodically.
  • FIGS. 1-7 schematically illustrate the principles upon which this aspect of the invention is based. It is to be understood that once given the teachings of this invention those skilled in the art could use any suitable equipment for carrying out the invention. Our U.S.
  • Pat. No. 4,793,880 describes suitable equipment which could be modified to eliminate the clamping steps and otherwise be used in the practice of this invention. Accordingly, the details of that application are incorporated herein by reference thereto, rather than describing those details except as is necessary herein for an understanding of this invention.
  • a pair of tubes 10, 12 made of thermoplastic material such as conventionally known in the prior art is mounted in parallel relation in a holding device 14 which includes a first clamp unit 16 and a second clamp unit 18 spaced from each other to form a gap 20.
  • units 16 and 18 are referred to as clamp units, the only clamping that is necessary is to hold the tubes in place without flattening the tubes which differs from the prior art approach.
  • wafers 22, 24 are heated to their intended temperatures.
  • Wafer 22 is a cutting wafer and is heated, for example, to ambient to about 500° F. and preferably to 350° F.
  • Wafer 22 is preferably provided with a non-stick surface.
  • Wafer 24 is made, for example, of nichrome and is heated to a temperature between 400-2000° F. and preferably 500-1200° F. since it functions in the welding step. Such wafers are known in the art.
  • FIG. 2 illustrates the severing step in which there is relative movement between the holding device 14 and wafer 22 so that warm wafer 22 passes into gap 20 to cut through tubes 10, 12.
  • FIG. 3 shows the sequence of operation wherein clamping unit 16 is moved away from clamping unit 18.
  • FIG. 4 illustrates the realigning step wherein clamping unit 16 is shifted as indicated to that a tube section from tube 10 in clamping unit 16 becomes aligned with a tube section from clamping unit 18. In this step warm wafer 22 is no longer between the cut tubes; rather hot wafer 24 is located between the aligned tube sections.
  • FIG. 5 illustrates the step wherein there is a pause to allow radiant heat from hot wafer 24 to melt and simultaneously sterilize the aligned tube ends.
  • FIG. 6 illustrates the step wherein hot wafer 24 is moved away from the aligned tube ends.
  • FIG. 7 illustrates the final sequence wherein clamping unit 18 is shifted to push the heated aligned tube ends together and effect the weld.
  • FIGS. 1-7 The advantages of the method of FIGS. 1-7 is that it provides a simplified technique for joining round dry tubes.
  • FIGS. 8-11 show a variation of the method of FIGS. 1-7.
  • tube 26 and tube 28 are pre-cut so that their tube ends are reasonably squared.
  • FIG. 8 illustrates the initial step where the pre-cut tubes 26, 28 are mounted in a pair of clamping units 30, 32 similar to units 16, 18 except that units 30, 32 need accommodate only one tube rather than a pair of tubes.
  • tube ends 26, 28 are pressed against a cold wafer 34.
  • FIG. 9 illustrates the next step of operation wherein the wafer 34 is turned on or heated and the tube ends 26, 28 are pressed into contact with wafer 34 by the shifting of clamping units 30, 32. During this step the surface of the tube ends is flattened to assure proper contact during the later welding step. The presence of the non-heated tubes holds down the wafer temperature. The wafer itself could be provided with a built-in temperature control.
  • FIG. 10 illustrates the next step wherein clamping units 30, 32 are moved away from each other to pull the tubes out of contact with and away from wafer 34. This allows the wafer temperature to rise and radiantly melt the exposed tube ends.
  • FIGS. 11 shows the next step wherein wafer 34 is moved away from the tube ends. Clamping units 30, 32 are then moved toward each other to press the tubes together and make the weld.
  • FIGS. 8-11 thus includes all of the advantages of the practice of FIGS. 1-7 but is even more simplified because it eliminates the shifting step.
  • the wafer temperatures would be the same as in the practice of FIGS. 1-7.
  • FIGS. 8-11 has the advantage of eliminating the need for shifting to place the tube ends in alignment.
  • the feature of the invention which uses a cold wafer for severing and a non-contacting hotter wafer to melt the tube ends provides the advantage of no consumables, thus permitting the use of permanent wafers.
  • the invention has been described as being used with dry tubes and with a high temperature radiant source, the tube interior need not be dry. In fact, the tubes can be liquid filled since it has been found that after severing the liquid filled tubes, the liquid recedes slightly to permit a strong weld.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Forests & Forestry (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • External Artificial Organs (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Two thermoplastic tubes are welded together by pre-cutting the tubes to create two ends which are axially aligned when placed in a holding device. A wafer is inserted in the space between the cut ends and the wafer is heated to melt the cut ends while the cut ends are in a non-flattened condition. After the wafer is removed the melted cut ends are pressed against each other to weld the cut ends together.

Description

This application is a continuation in part of application Ser. No. 312,027 filed Feb. 17, 1989, which, in turn is a division of application Ser. No. 195,772, filed May 19, 1988, which, in turn is a division of application Ser. No. 99,714, filed Sept. 22, 1987, now U.S. Pat. No. 4,770,735, issued Sept. 13, 1988.
BACKGROUND OF INVENTION
This invention relates to improvements in the welding of thermoplastic tubes. Various techniques are known for such welding operations. Our U.S. Pat. No. 4,793,880, the details of which are incorporated herein by reference thereto, discusses prior techniques as well as the particular techniques which are the subject of that invention. A common use of such techniques is in dialysis when it is necessary to provide a patient with a fresh supply of liquid dialysate. Under such circumstances the tube containing the old dialysate which leads from the patient to the supply is severed. The same apparatus severs a tube leading from the new supply. The conventional techniques involve realigning the cut tubes so that the tube section from the new supply becomes aligned with the tube section from the patient. These aligned tube sections are then welded together to provide the patient with fresh dialysate.
The main emphasis in the techniques used heretofore have been concerned with the welding of fluid-filled tubes. With such techniques means had to be provided to flatten or seal each tube at two spaced locations so that a cutting device, usually a heated wafer, may cut through the tube between the two spaced locations.
The conventional approaches taken heretofore have also been generally confined to cutting through parallel tubes and then realigning the tube so as to form a single welded tube.
SUMMARY OF INVENTION
An object of this invention is to provide a method of welding thermoplastic tubes which are severed and welded while in their dry or fluid containing undistorted condition.
In accordance with one aspect of this invention a pair of round tubes are mounted in a holding device and are maintained in their round condition while the welding step takes place. In one embodiment of this invention, the tubes are mounted in a parallel relation during the severing step and then realigned for the welding step. In an alternative embodiment the tubes are pre-cut and then aligned to eliminate the need for a shifting or realignment step.
THE DRAWINGS
FIGS. 1-7 are plan views schematically illustrating the sequence of steps in accordance with one practice of this invention; and
FIGS. 8-11 are plan views schematically illustrating the sequence of steps in accordance with a further practice of this invention.
DETAILED DESCRIPTION
FIGS. 1-7 illustrate a practice of this invention which is remarkably simpler than the conventional practice dealing with the welding of fluid filled tubes since the practice of FIGS. 1-7 could be used with dry tubes. As previously indicated the prior art has concentrated its efforts on the welding of fluid filled thermoplastic tubes such as used in dialysis. There are, however, many circumstances ignored by the prior art where it is desirable to weld thermoplastic tubes which do not contain fluid, but rather are in a dry condition. Such circumstances could include laboratory or test work as well as hospital pharmacy routines or methods wherein fluid is supplied only periodically. FIGS. 1-7 schematically illustrate the principles upon which this aspect of the invention is based. It is to be understood that once given the teachings of this invention those skilled in the art could use any suitable equipment for carrying out the invention. Our U.S. Pat. No. 4,793,880, for example, describes suitable equipment which could be modified to eliminate the clamping steps and otherwise be used in the practice of this invention. Accordingly, the details of that application are incorporated herein by reference thereto, rather than describing those details except as is necessary herein for an understanding of this invention.
As shown in FIG. 1 a pair of tubes 10, 12 made of thermoplastic material such as conventionally known in the prior art is mounted in parallel relation in a holding device 14 which includes a first clamp unit 16 and a second clamp unit 18 spaced from each other to form a gap 20. Although units 16 and 18 are referred to as clamp units, the only clamping that is necessary is to hold the tubes in place without flattening the tubes which differs from the prior art approach. During this loading step wafers 22, 24 are heated to their intended temperatures. Wafer 22 is a cutting wafer and is heated, for example, to ambient to about 500° F. and preferably to 350° F. Wafer 22 is preferably provided with a non-stick surface. Wafer 24 is made, for example, of nichrome and is heated to a temperature between 400-2000° F. and preferably 500-1200° F. since it functions in the welding step. Such wafers are known in the art.
FIG. 2 illustrates the severing step in which there is relative movement between the holding device 14 and wafer 22 so that warm wafer 22 passes into gap 20 to cut through tubes 10, 12.
FIG. 3 shows the sequence of operation wherein clamping unit 16 is moved away from clamping unit 18.
FIG. 4 illustrates the realigning step wherein clamping unit 16 is shifted as indicated to that a tube section from tube 10 in clamping unit 16 becomes aligned with a tube section from clamping unit 18. In this step warm wafer 22 is no longer between the cut tubes; rather hot wafer 24 is located between the aligned tube sections.
FIG. 5 illustrates the step wherein there is a pause to allow radiant heat from hot wafer 24 to melt and simultaneously sterilize the aligned tube ends.
FIG. 6 illustrates the step wherein hot wafer 24 is moved away from the aligned tube ends.
FIG. 7 illustrates the final sequence wherein clamping unit 18 is shifted to push the heated aligned tube ends together and effect the weld.
The advantages of the method of FIGS. 1-7 is that it provides a simplified technique for joining round dry tubes.
FIGS. 8-11 show a variation of the method of FIGS. 1-7. As indicated therein tube 26 and tube 28 are pre-cut so that their tube ends are reasonably squared. FIG. 8 illustrates the initial step where the pre-cut tubes 26, 28 are mounted in a pair of clamping units 30, 32 similar to units 16, 18 except that units 30, 32 need accommodate only one tube rather than a pair of tubes. As shown in FIG. 8 tube ends 26, 28 are pressed against a cold wafer 34.
FIG. 9 illustrates the next step of operation wherein the wafer 34 is turned on or heated and the tube ends 26, 28 are pressed into contact with wafer 34 by the shifting of clamping units 30, 32. During this step the surface of the tube ends is flattened to assure proper contact during the later welding step. The presence of the non-heated tubes holds down the wafer temperature. The wafer itself could be provided with a built-in temperature control.
FIG. 10 illustrates the next step wherein clamping units 30, 32 are moved away from each other to pull the tubes out of contact with and away from wafer 34. This allows the wafer temperature to rise and radiantly melt the exposed tube ends.
FIGS. 11 shows the next step wherein wafer 34 is moved away from the tube ends. Clamping units 30, 32 are then moved toward each other to press the tubes together and make the weld.
The practice of FIGS. 8-11 thus includes all of the advantages of the practice of FIGS. 1-7 but is even more simplified because it eliminates the shifting step. The wafer temperatures would be the same as in the practice of FIGS. 1-7.
The practice of FIGS. 8-11 has the advantage of eliminating the need for shifting to place the tube ends in alignment. The feature of the invention which uses a cold wafer for severing and a non-contacting hotter wafer to melt the tube ends provides the advantage of no consumables, thus permitting the use of permanent wafers. Although the invention has been described as being used with dry tubes and with a high temperature radiant source, the tube interior need not be dry. In fact, the tubes can be liquid filled since it has been found that after severing the liquid filled tubes, the liquid recedes slightly to permit a strong weld.

Claims (3)

What is claimed is:
1. In a method of welding two thermoplastic tubes which are cut into sections with a cut end of one tube being aligned with a cut end of another tube and with the aligned cut ends being mounted in a holding device and being heated and then pressed together to become welded, the improvement comprising cutting the tubes before the tubes are mounted in the holding device, mounting the cut ends of the tubes in the holding device with the cut ends aligned, pressing the aligned cut ends against a cold wafer, heating the wafer to flatten the contacting surfaces of the cut ends, manipulating the holding device to withdraw the cut ends out of contact with the wafer, heating the wafer to radiantly melt the cut ends, withdrawing the wafer out of the path of movement of the cut ends, and pressing the melted cut ends into contact with each other to weld the cut ends together.
2. In the method of claim 1 wherein the cut ends are welded together while being of generally round cross section and in a dry condition without fluid in the tubes.
3. In the method of claim 1 wherein the cut ends are welded together while being of generally round cross section and fluid is in the tubes.
US07/393,687 1987-09-22 1989-08-16 Techniques for welding thermoplastic tubes Expired - Fee Related US4933036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/393,687 US4933036A (en) 1987-09-22 1989-08-16 Techniques for welding thermoplastic tubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/099,714 US4770735A (en) 1987-09-22 1987-09-22 Techniques for welding thermoplastic tubes
US07/393,687 US4933036A (en) 1987-09-22 1989-08-16 Techniques for welding thermoplastic tubes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/312,027 Continuation-In-Part US4913756A (en) 1987-09-22 1989-02-17 Techniques for welding thermoplastic tubes

Publications (1)

Publication Number Publication Date
US4933036A true US4933036A (en) 1990-06-12

Family

ID=26796415

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/393,687 Expired - Fee Related US4933036A (en) 1987-09-22 1989-08-16 Techniques for welding thermoplastic tubes

Country Status (1)

Country Link
US (1) US4933036A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158630A (en) * 1990-08-20 1992-10-27 Denco, Inc. Total containment welding or plastic tubes
US5241157A (en) * 1990-04-27 1993-08-31 Georg Fischer Ag Arrangement for butt-welding plastic material components
US5246534A (en) * 1991-11-11 1993-09-21 Georg Fischer Rohrleitungssysteme Ag Apparatus for end face welding of plastic parts
US5248359A (en) * 1990-08-20 1993-09-28 Denco Inc. Sterile entry/exit total containment process for closed systems using plastic tubes
US5370761A (en) * 1990-12-07 1994-12-06 Chitouras; Costa G. Method for resealing a toner cartridge
US5462706A (en) * 1992-08-21 1995-10-31 Pipe Rehab International, Inc. Method for forming a flange on an end of a synthetic liner
US5472334A (en) * 1993-03-23 1995-12-05 Seikoh Giken Co., Ltd. Injection molding die for injection-molding base boards
US5674333A (en) * 1992-10-23 1997-10-07 Denco, Inc. Total containment welding of plastic tubes
US5802689A (en) * 1995-12-08 1998-09-08 Terumo Kabushiki Kaisha Tube connecting apparatus
US5810398A (en) * 1992-10-02 1998-09-22 Pall Corporation Fluid delivery systems and methods and assemblies for making connections
US5868433A (en) * 1992-10-02 1999-02-09 Pall Corporation Connector assembly
US5876541A (en) * 1990-12-07 1999-03-02 Chitouras; Costa G. Method for resealing a toner cartridge
US20030089446A1 (en) * 1999-12-24 2003-05-15 Jean-Francois Baradon Method and apparatus for sterile connection between two flexible tubes
US6596110B1 (en) 1999-08-10 2003-07-22 Costa G. Chitouras Apparatus and method for modifying toner cartridges for sealing
US20030141009A1 (en) * 2002-01-31 2003-07-31 Landherr Frank J. Apparatus and method for connecting and disconnecting flexible tubing
US6655655B1 (en) 1997-05-09 2003-12-02 Pall Corporation Connector assemblies, fluid systems, and methods for making a connection
US20040217043A1 (en) * 2003-04-30 2004-11-04 Institute For Roentgen Optics Polycapillary chromatographic column and method of its manufacturing
US20040251575A1 (en) * 2003-06-13 2004-12-16 Bryan St. Onge Fusion process for conduit
US20050211373A1 (en) * 2004-03-29 2005-09-29 Baxter International, Inc. Method for sterile connection of tubing
US20060060287A1 (en) * 2004-09-23 2006-03-23 Chitouras Costa G Method of sealing remanufactured split toner cartridges
US7275543B2 (en) 2002-09-20 2007-10-02 Baxter International Inc. Coupler member for joining dissimilar materials
US20080023135A1 (en) * 2006-07-31 2008-01-31 Ivansons Ivars V Device for welding plastic tubes
US20080257604A1 (en) * 2007-04-13 2008-10-23 Underground Solutions Technologies Group, Inc. Conduit, manufacture thereof and fusion process therefor
US20090016942A1 (en) * 2007-07-11 2009-01-15 Ivansons Ivars V Ozone infection control device
US20090079183A1 (en) * 2007-09-24 2009-03-26 Cantex, Inc. Non-Metallic Raceway for Wirinig and Fiber Optic Cable and Method of Forming Raceway
US7842769B1 (en) 2003-06-13 2010-11-30 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
US20100314033A1 (en) * 2009-06-10 2010-12-16 Ivansons Ivars V Device for welding plastic tubes
US20100320669A1 (en) * 2009-06-22 2010-12-23 Ivansons Ivars V Clamp locking mechanism in device for welding plastic tubes
EP2420286A1 (en) * 2010-08-18 2012-02-22 Fresenius Kabi Deutschland GmbH Method and device for sterile connection of hoses
US8448992B2 (en) 2011-02-16 2013-05-28 Fenwal, Inc. Sterile docking device, medical fluid flow system with sterile docking device and method of using same
US8454059B2 (en) 2010-09-13 2013-06-04 Pall Corporation Connector assemblies, fluid systems including connector assemblies, and procedures for making fluid connections
US9199070B2 (en) 2011-12-21 2015-12-01 Fenwal, Inc. Fluid flow conduits and apparatus and methods for making and joining fluid conduits
US9308709B2 (en) 2013-06-06 2016-04-12 Fenwal, Inc. Bonding apparatus and method
US9440396B2 (en) 2014-06-19 2016-09-13 Fenwal, Inc. Sterile connection device for making multiple connections
US9839582B2 (en) 2014-12-02 2017-12-12 Fenwal, Inc. Sterile connection syringe assemblies
US10919235B2 (en) 2017-06-07 2021-02-16 Fenwal, Inc. Apparatus and method for mechanically opening a connection site
US11731371B2 (en) 2021-01-25 2023-08-22 Fenwal, Inc. Sterile connection of tubing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263084A (en) * 1979-06-22 1981-04-21 Impala Plastics (Pty) Limited Thermoplastic welding
US4507119A (en) * 1982-07-06 1985-03-26 E. I. Du Pont De Nemours And Company Sterile docking process, apparatus and system
US4737214A (en) * 1985-07-05 1988-04-12 NPBI Nederlands Produktielaboratorium voor Bloedtransfusieapparatuur en Infusievloeistoffen B. V. Method for providing sterile connection of plastic tubes or the like
US4753697A (en) * 1987-02-24 1988-06-28 Denco, Inc. Total-containment sterile process and system
US4793880A (en) * 1987-05-18 1988-12-27 Denco, Inc. Sterile welding of plastic tubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263084A (en) * 1979-06-22 1981-04-21 Impala Plastics (Pty) Limited Thermoplastic welding
US4507119A (en) * 1982-07-06 1985-03-26 E. I. Du Pont De Nemours And Company Sterile docking process, apparatus and system
US4737214A (en) * 1985-07-05 1988-04-12 NPBI Nederlands Produktielaboratorium voor Bloedtransfusieapparatuur en Infusievloeistoffen B. V. Method for providing sterile connection of plastic tubes or the like
US4753697A (en) * 1987-02-24 1988-06-28 Denco, Inc. Total-containment sterile process and system
US4793880A (en) * 1987-05-18 1988-12-27 Denco, Inc. Sterile welding of plastic tubes

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241157A (en) * 1990-04-27 1993-08-31 Georg Fischer Ag Arrangement for butt-welding plastic material components
US5248359A (en) * 1990-08-20 1993-09-28 Denco Inc. Sterile entry/exit total containment process for closed systems using plastic tubes
US5158630A (en) * 1990-08-20 1992-10-27 Denco, Inc. Total containment welding or plastic tubes
US5876541A (en) * 1990-12-07 1999-03-02 Chitouras; Costa G. Method for resealing a toner cartridge
US5370761A (en) * 1990-12-07 1994-12-06 Chitouras; Costa G. Method for resealing a toner cartridge
US5460674A (en) * 1990-12-07 1995-10-24 Chitouras; Costa G. Method for resealing a toner cartridge
US5246534A (en) * 1991-11-11 1993-09-21 Georg Fischer Rohrleitungssysteme Ag Apparatus for end face welding of plastic parts
US5462706A (en) * 1992-08-21 1995-10-31 Pipe Rehab International, Inc. Method for forming a flange on an end of a synthetic liner
US5810398A (en) * 1992-10-02 1998-09-22 Pall Corporation Fluid delivery systems and methods and assemblies for making connections
US5868433A (en) * 1992-10-02 1999-02-09 Pall Corporation Connector assembly
US6341802B1 (en) 1992-10-02 2002-01-29 Pall Corporation Fluid delivery systems and methods and assemblies for making connections
US6536805B2 (en) 1992-10-02 2003-03-25 Pall Corporation Fluid delivery systems and methods and assemblies for making connections
US5674333A (en) * 1992-10-23 1997-10-07 Denco, Inc. Total containment welding of plastic tubes
US5472334A (en) * 1993-03-23 1995-12-05 Seikoh Giken Co., Ltd. Injection molding die for injection-molding base boards
US5802689A (en) * 1995-12-08 1998-09-08 Terumo Kabushiki Kaisha Tube connecting apparatus
US6655655B1 (en) 1997-05-09 2003-12-02 Pall Corporation Connector assemblies, fluid systems, and methods for making a connection
US6596110B1 (en) 1999-08-10 2003-07-22 Costa G. Chitouras Apparatus and method for modifying toner cartridges for sealing
US7175725B2 (en) 1999-08-10 2007-02-13 Chitouras Costa G Apparatus and method for modifying toner cartridges for sealing
US20030205311A1 (en) * 1999-08-10 2003-11-06 Chitouras Costa G. Apparatus and method for modifying toner cartridges for sealing
US20030089446A1 (en) * 1999-12-24 2003-05-15 Jean-Francois Baradon Method and apparatus for sterile connection between two flexible tubes
US7122094B2 (en) * 1999-12-24 2006-10-17 Aventis Pasteur, S.A. Method and apparatus for sterile connection between two flexible tubes
US7459054B2 (en) 2002-01-31 2008-12-02 Baxter International Inc. Apparatus and method for connecting and disconnecting flexible tubing
US20030143352A1 (en) * 2002-01-31 2003-07-31 Tahua Yang Laser weldable flexible medical tubings, films and assemblies thereof
US20090054873A1 (en) * 2002-01-31 2009-02-26 Baxter International Inc. Apparatus and method for connecting and disconnecting flexible tubing
US20030141009A1 (en) * 2002-01-31 2003-07-31 Landherr Frank J. Apparatus and method for connecting and disconnecting flexible tubing
US6913056B2 (en) 2002-01-31 2005-07-05 Baxter International Inc. Apparatus and method for connecting and disconnecting flexible tubing
US8146642B2 (en) 2002-01-31 2012-04-03 Baxter International Inc. Apparatus and method for connecting and disconnecting flexible tubing
US7226649B2 (en) 2002-01-31 2007-06-05 Baxter International Inc. Laser weldable flexible medical tubings, films and assemblies thereof
US20030141634A1 (en) * 2002-01-31 2003-07-31 Sherwin Shang Laser weldable flexible medical tubings, films and assemblies thereof
US7275543B2 (en) 2002-09-20 2007-10-02 Baxter International Inc. Coupler member for joining dissimilar materials
US20040217043A1 (en) * 2003-04-30 2004-11-04 Institute For Roentgen Optics Polycapillary chromatographic column and method of its manufacturing
US6982051B2 (en) * 2003-06-13 2006-01-03 Underground Solutions Technologies Group, Inc. Fusion process for conduit
US20060071365A1 (en) * 2003-06-13 2006-04-06 Underground Solutions Technologies Group, Inc. Fusion process for conduit
US8128853B2 (en) 2003-06-13 2012-03-06 Underground Solutions Technologies Group, Inc. Fusion process for conduit
US8178640B2 (en) 2003-06-13 2012-05-15 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
US8569436B2 (en) 2003-06-13 2013-10-29 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
US8058378B1 (en) 2003-06-13 2011-11-15 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
US7915366B1 (en) 2003-06-13 2011-03-29 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
US7842769B1 (en) 2003-06-13 2010-11-30 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
WO2005005873A3 (en) * 2003-06-13 2005-04-21 Underground Solutions Inc Fusion process for conduit
US20040251575A1 (en) * 2003-06-13 2004-12-16 Bryan St. Onge Fusion process for conduit
US9023263B2 (en) 2003-06-13 2015-05-05 Underground Solutions Technologies Group, Inc. Fusion process for conduit
US8796407B2 (en) 2003-06-13 2014-08-05 Underground Solutions Technologies Group, Inc. Polyvinyl chloride formulations
US8906188B2 (en) 2003-06-13 2014-12-09 Underground Solutions Technologies Group, Inc. Fusion process for conduit
US8162021B2 (en) 2004-03-29 2012-04-24 Baxter International Apparatus for sterile connection of tubing
US20100224329A1 (en) * 2004-03-29 2010-09-09 Baxter International Inc. Apparatus for sterile connection of tubing
US7722733B2 (en) 2004-03-29 2010-05-25 Baxter International Inc. Method for sterile connection of tubing
US20050211373A1 (en) * 2004-03-29 2005-09-29 Baxter International, Inc. Method for sterile connection of tubing
US20060060287A1 (en) * 2004-09-23 2006-03-23 Chitouras Costa G Method of sealing remanufactured split toner cartridges
EP2774747A1 (en) 2006-07-31 2014-09-10 Genesis Bps, Llc Device for welding plastic tubes
US7398813B2 (en) 2006-07-31 2008-07-15 Denco Inc. Device for welding plastic tubes
WO2008016777A2 (en) 2006-07-31 2008-02-07 Denco, Inc. Device for welding plastic tubes
US20080023135A1 (en) * 2006-07-31 2008-01-31 Ivansons Ivars V Device for welding plastic tubes
US20080257604A1 (en) * 2007-04-13 2008-10-23 Underground Solutions Technologies Group, Inc. Conduit, manufacture thereof and fusion process therefor
US20090016942A1 (en) * 2007-07-11 2009-01-15 Ivansons Ivars V Ozone infection control device
US7731914B2 (en) 2007-07-11 2010-06-08 Denco, Inc. Ozone infection control device
US20090079183A1 (en) * 2007-09-24 2009-03-26 Cantex, Inc. Non-Metallic Raceway for Wirinig and Fiber Optic Cable and Method of Forming Raceway
US8167338B2 (en) 2007-09-24 2012-05-01 Cantex, Inc. Non-metallic raceway for wiring and fiber optic cable and method of forming raceway
US8708019B2 (en) 2009-06-10 2014-04-29 Genesis Bps, Llc Device for welding plastic tubes
US9950469B2 (en) 2009-06-10 2018-04-24 Geness BPS, LLc Device for welding plastic tubes
US9205612B2 (en) 2009-06-10 2015-12-08 Genesis Bps, Llc Device for welding plastic tubes
US20100314033A1 (en) * 2009-06-10 2010-12-16 Ivansons Ivars V Device for welding plastic tubes
US8066269B2 (en) 2009-06-22 2011-11-29 Genesis Bps, Llc Clamp locking mechanism in device for welding plastic tubes
US20100320669A1 (en) * 2009-06-22 2010-12-23 Ivansons Ivars V Clamp locking mechanism in device for welding plastic tubes
EP2420286A1 (en) * 2010-08-18 2012-02-22 Fresenius Kabi Deutschland GmbH Method and device for sterile connection of hoses
CN103140259A (en) * 2010-08-18 2013-06-05 弗雷泽纽斯卡比德国有限公司 Method and device for the sterile connection of pipes
CN103140259B (en) * 2010-08-18 2015-04-15 弗雷泽纽斯卡比德国有限公司 Method and device for the sterile connection of pipes
US10040247B2 (en) 2010-08-18 2018-08-07 Fresenius Kabi Deutschland Gmbh Method for the sterile connection of pipes
WO2012022635A3 (en) * 2010-08-18 2012-09-13 Fresenius Kabi Deutschland Gmbh Method and device for the sterile connection of pipes
RU2572987C2 (en) * 2010-08-18 2016-01-20 Фрезениус Каби Дойчланд Гмбх Method and device for sealing of soft tubes
US8454059B2 (en) 2010-09-13 2013-06-04 Pall Corporation Connector assemblies, fluid systems including connector assemblies, and procedures for making fluid connections
US8448992B2 (en) 2011-02-16 2013-05-28 Fenwal, Inc. Sterile docking device, medical fluid flow system with sterile docking device and method of using same
US9199070B2 (en) 2011-12-21 2015-12-01 Fenwal, Inc. Fluid flow conduits and apparatus and methods for making and joining fluid conduits
US10307582B2 (en) 2011-12-21 2019-06-04 Fenwal, Inc. Fluid flow conduits and apparatus and methods for making and joining fluid conduits
US9308709B2 (en) 2013-06-06 2016-04-12 Fenwal, Inc. Bonding apparatus and method
US9440396B2 (en) 2014-06-19 2016-09-13 Fenwal, Inc. Sterile connection device for making multiple connections
US9839582B2 (en) 2014-12-02 2017-12-12 Fenwal, Inc. Sterile connection syringe assemblies
US10919235B2 (en) 2017-06-07 2021-02-16 Fenwal, Inc. Apparatus and method for mechanically opening a connection site
US11325321B2 (en) 2017-06-07 2022-05-10 Fenwal, Inc. Apparatus and method for mechanically opening a connection site
US11731371B2 (en) 2021-01-25 2023-08-22 Fenwal, Inc. Sterile connection of tubing

Similar Documents

Publication Publication Date Title
US4933036A (en) Techniques for welding thermoplastic tubes
US4913756A (en) Techniques for welding thermoplastic tubes
US4770735A (en) Techniques for welding thermoplastic tubes
US4832773A (en) Techniques for welding thermoplastic tubes
US4897138A (en) Sealing of plastic tubes
US4737214A (en) Method for providing sterile connection of plastic tubes or the like
US4695337A (en) Apparatus and method for attaching a fitment to a web of film
CA1315666C (en) Apparatus for sealing a web of film in a packaging machine
CA1204565A (en) Sterile docking process, apparatus and system
US5037500A (en) Method and apparatus for joining tubular plastic parts by welding
US9440396B2 (en) Sterile connection device for making multiple connections
JPH08427B2 (en) Heat insulating means, tube sealing method and device
CA2147245A1 (en) Clamp for applying thermal energy
DK0508474T3 (en) Canned welding of plastic pipes
EP0583582B1 (en) Total containment welding of plastic tubes
EP0277176B1 (en) Apparatus for sealing and severing a web of film
US20030089446A1 (en) Method and apparatus for sterile connection between two flexible tubes
EP0515811B1 (en) Sterile welding of plastic tubes
TW522025B (en) Plastic tube treating process and apparatus
EP0603388B1 (en) Sterile/aseptic connector
KR960021473A (en) Automatic welding device for heat weldable resinous tubular parts, clamping device and heater device for pipes used therein
US5932132A (en) Sterile connector apparatus and method
US3334004A (en) Apparatus for cutting and radiant heat sealing thermoplastics
TW201208867A (en) Method and device for the butt-welding of pipes made of thermoplastic material
US3822160A (en) Method and apparatus for forming a mitered corner in a flexible elastomeric strip

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENCO, INC., WILMINGTON, DE A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SHAPOSKA, JOHN B.;SPENCER, DUDLEY W. C.;REEL/FRAME:005261/0266

Effective date: 19890810

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20020612

AS Assignment

Owner name: GENESIS BPS, LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DENCO, INC.;REEL/FRAME:025517/0820

Effective date: 20101015