US4841398A - Non linear magnetoresistive sensor - Google Patents

Non linear magnetoresistive sensor Download PDF

Info

Publication number
US4841398A
US4841398A US07/015,200 US1520087A US4841398A US 4841398 A US4841398 A US 4841398A US 1520087 A US1520087 A US 1520087A US 4841398 A US4841398 A US 4841398A
Authority
US
United States
Prior art keywords
sensor
magnetic
magnetoresistive
strip
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/015,200
Inventor
Greg S. Mowry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Magnetic Peripherals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnetic Peripherals Inc filed Critical Magnetic Peripherals Inc
Priority to US07/015,200 priority Critical patent/US4841398A/en
Assigned to MAGNETIC PERIPHERALS INC., C/O CONTROL DATA CORPORATION, A CORP. OF DE. reassignment MAGNETIC PERIPHERALS INC., C/O CONTROL DATA CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MOWRY, GREG S.
Priority claimed from US07/152,783 external-priority patent/US4851944A/en
Publication of US4841398A publication Critical patent/US4841398A/en
Application granted granted Critical
Assigned to SECURITY PACIFIC NATIONAL BANK, AS AGENT reassignment SECURITY PACIFIC NATIONAL BANK, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAGNETIC PERIPHERALS, INC.
Assigned to SEAGATE TECHNOLOGY, INC. reassignment SEAGATE TECHNOLOGY, INC. MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 07/02/1990 DELAWARE Assignors: MAGNETIC PHERIPHERALS INC.
Assigned to SEAGATE TECHNOLOGY, INC. reassignment SEAGATE TECHNOLOGY, INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANKAMERICA
Assigned to SEAGATE TECHNOLOGY LLC reassignment SEAGATE TECHNOLOGY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SEAGATE TECHNOLOGY, INC.
Assigned to THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT reassignment THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SEAGATE TECHNOLOGY LLC
Assigned to JPMORGAN CHASE BANK, AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SEAGATE TECHNOLOGY LLC
Assigned to SEAGATE TECHNOLOGY LLC reassignment SEAGATE TECHNOLOGY LLC RELEASE OF SECURITY INTERESTS IN PATENT RIGHTS Assignors: JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK AND JPMORGAN CHASE BANK), AS ADMINISTRATIVE AGENT
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices, e.g. Hall effect devices; using magneto-resistive devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices, e.g. Hall effect devices; using magneto-resistive devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Abstract

A non linear magnetoresistive sensor having a magnetoresistive strip with no transverse biasing (either permanent or current) such that the sensor is operated in its non linear mode. The sensor is useful in its non linear mode to determine the location of pulse peaks from encoded data from a medium by differentiating and determining the zero crossings of the detected signal.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the field of magnetoresistive sensors and more particularly to magnetoresistive heads for magnetic disk drives.

2. Brief Summary of the Prior Art

Magnetoresistive sensors responsive to a change in resistivity caused by the presence of magnetic fields are increasingly employed as read transducers in the heads of magnetic disk drives primarily because the change of resistivity is independent of disk speed, depending only on the magnetic flux and secondarily because sensor output may be scaled by the sense current.

These sensors typically comprise a thin strip of NiFe alloy (Permalloy) magnetized along an easy axis of low coercivity. Many other ferromagnetic alloys are also candidates. The strips are usually mounted in the head such that the easy axis is transverse the direction of disk rotation and parallel to the plane of the disk. The magnetic flux from the disk causes rotation of the magnetization vector of the strip, which in turn causes a change in resistivity to a sense current flowing between lateral contacts. The resistivity varies approximately according to the cosine-squared of the angle between the magnetization vector and the current vector (i.e., delta-rho=rho-max * cosine-squared theta, where theta is the angle between the magnetization and current vectors and rho is the resistivity). Due to this cosine-squared relationship, if the magnetization and current vectors are initially aligned, the initial change in resistivity due to disk magnetic flux is low and unidirectional. Typically, therefore, either the easy axis magnetization vector or the current vector is biased to approximately 45° to increase responsiveness to angular change in the magnetization vector and to linearize the sensor output.

One problem encountered with magnetoresistive sensors is Barkhausen noise caused by the irreversible motion of magnetic domains in the presence of an applied field, i.e., coherent rotation of the magnetization vector is non-uniform and suppressed, and depends upon domain wall behavior. This noise mechanism is eliminated by creating a single magnetic domain in the sense current region of the strip.

Many different means have been employed to both linearize the sensor output and to provide for a single domain in the sense region. To cause single domain in the sense region, it is known, for example, to increase the length of a strip relative to its height. Multiple closure domains are known to occur at the ends of long strips. These migrate toward the center under the influence of external fields. However, long strips may be subject to cross-talk in lateral portions of the strip and may conduct magnetic flux from adjacent tracks to the sense region of the strip. Short strips, in contrast, almost invariably spontaneously "fracture" into multiple domains.

Efforts have been made to provide single domains in the sensor region by shaping the strip so as to reduce edge demagnetizing fields while providing a relatively short physical dimension in the sensor region. See e.g., Kawakami et al. U.S. Pat. No. 4,503,394, at FIG. 4a, wherein upper and lower horizontal sections with opposed easy axes are connected at the ends with vertical sections to comprise an endless loop. See also, U.S. Pat. No. 4,555,740 in which the strip has two intermediate, upwardly extending legs. However, even shaped strips "fracture" into multiple domains in the presence of strong transverse magnetic fields caused by the inductive write poles between which the magnetoresistive sensors are conventionally mounted (the poles act as soft-magnetic shields to isolate the sensor from magnetic fields not directly adjacent to the sensor).

Efforts have also been made to form single domains by providing a longitudinal magnetic field in "long" or shaped strips, prior to reading. Such a magnetic field has to be strong enough to cause the formation of a relatively stable, single domain in the central sensor region. This initialization field is generally provided by a barber pole, which is also used to cant the direction of the sense current relative to the easy axis magnetic vector.

For short strips, efforts have been made to maintain single domains by permanent longitudinal biasing from adjacent permanent magnets or atomically coupled antiferromagnetic material which results in exchange biasing. Such biasing means are also provided in some applications to transverse-bias the magnetic vector away from the easy axis to linearize the sensor output, as mentioned above.

Both of these biasing schemes (initialization and permanent) have the drawback in that the biasing magnetic field could adversely affect the information prerecorded on the magnetic disk, and further, a permanent biasing field (both transverse and longitudinal) increases the effective anisotropy of the sensor thereby decreasing sensitivity to disk magnetic flux. The barber pole (canted current) design has the additional disadvantage that the effective length of the sensor area is less than the longitudinal distance between the sensor contacts. The barber pole design also requires precise lithographic processes to apply the canted contacts and shorting stripes.

Exchange-biasing is not commonly used in practice because of the presence of two dissimilar materials (the magnetoresistive material and the antiferromagnetic material) at an exposed interface. This can lead to corrosion which can destroy a head. Further, because exchange biasing is a quantum-mechanical interaction effect, reliable atomic interaction is a must, but such processing is difficult and yields are low. Further, the effect has a strong temperature dependence, being substantially reduced in the typical operating environments of conventional disk drives.

SUMMARY OF THE INVENTION

The invention comprises a series of incremental improvements which address the several problems of prior magnetoresistive heads and leads either alone, or in combination, to an improved head. This disclosure is common to several co-pending applications, each claiming individual improvements which combine to form an improved magnetoresistive sensor and head.

These improvements include shaping the strip in the form of a pseudo-ellipse. This shape has a very stable single domain in the central sense region of the strip. Next exchange biasing antiferromagnetic material may be atomically coupled to the ends of an arbitrarily shape strip for the purpose of maintaining the central region in a single domain state. Due to the quantum-mechanical effect of the exchange material, the material does not have to cover the entire ends of the strip, but may be recessed away from the exposed interface region reducing the susceptability to corrosion. Once stability has been established via the pseudo ellipsoid shape and/or boundary control exchange stabilization, only two canted contacts are needed to change current direction for the purpose of linearzing the MR sensor. This completely eliminates the need for any barber poles used for stabilizing a domain state and reduces the number of electrical contacts to only two--the sense contacts--because barber poles are are no longer needed.

The canted current design is further improved by patterning the strip to cant the easy axis of the strip relative to the horizontal plane of the magnetic disk and correspondingly relaxing the angular cant of the contacts. This leads a greater effective longitudinal sense region.

Further, transverse biasing may be eliminated entirely in coded digital applications where the location of data rather than its magnetic strength or direction is important by operating the sensor in its non-linear mode. While reducing the dynamic range to a small extent, zero crossing determinations from the derivative of the sensed read signals are improved by the increased slope of the non-linear response. Finally, the sensor is preferably located to outside of the inductive write gap to avoid the deleterious effect of multiple domain formations caused by the strong magnetic fields present during write operations. An additional gap structure is added having a broad central shield/pole to shield an elongated magnetoresistive sensor while providing good write/read characteristics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an elevation of a pseudo-ellipsoid magnetoresistive sensor strip.

FIG. 2 is the strip of FIG. 1 having exchange-biasing material at the ends.

FIG. 3 illustrated the essential steps for depositing exchange-biased only on the ends of a magnetoresistive strip.

FIG. 4 is an elongated magnetoresistive strip having upwardly projecting ends with exchange-biased material at the ends.

FIG. 5 is a cross section of a magnetoresistive head having a magnetoresistive sensor with recessed exchange-biased material.

FIG. 6 shows the layer structure of a double-gap magnetoresistive head.

FIG. 7 is an elevation view of the essential elements of a double-gap magnetoresistive head.

FIG. 8 shows the prior art canted current contacts and electrical circuits connected thereto.

FIG. 9 shows the easy axis pattern-biased strip of the present invention and relaxed canted current contacts.

FIG. 10 shows an easy axis, patterned-biased pseudo-ellipsoid magnetoresistive strip.

FIG. 11 shows the relative response of a magnetoresistive sensor in linear and non-linear modes.

FIG. 12 is a pseudo-ellipsoid magnetoresistive sensor having uncanted contacts for a non-linear response.

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 shows the pseudo ellipsoid structure of a magnetoresistive sensor 10 magnetized along an easy axis M. The central portion, indicated by L, has relatively flat sides, rather than curved as in a true ellipse. The aspect ratio, AR of overall length to height is less than 3, but can be greater with no loss of effect. From the central region L, the sides converge to apices in which small magnetic domains 12 and 14 spontaneously form. Preferably W≦L and E, the length of an end, is on the order of L at a minimum, having no known maximum. The structure forms a very stable central region single domain indicated by the large right arrow.

Experimentation with this structure shows that a thin layer of 200-500 anstroms NI: 82 Fe: 18 alloy, with an overall length of 25 microns, an L portion of 9 microns, and a width W of 8 microns requires 35 Oe to switch the magnetization vector of the central region to the hard axis, while only 0.75 Oe is required in an unpatterned bulk film. This translates to a factor of 46 improvement.

Where high transverse fields can be expected, such as when an unshielded sensor is placed between or next to the poles an inductive write head, longitudinal biasing is still required to initialize or maintain a single domain state. As hitherto discussed, there are many different means for accomplishing this. For example, barber pole biasing generates a longitudinal field. In addition permanent magnetic biasing or exchange biasing can also provide a longitudinal field. A novel stabilization means is disclosed in FIG. 2.

Prior exchange stabilization/biasing techniques have been typically prepared by first depositing a ferromagnetic layer upon a substrate and then depositing an antiferromagnetic layer upon the ferromagnetic layer such that after patterning, the two layers coincide. Exchange biasing can result in a signal loss due to shunting effects. Longitudinal exchange fields have a negative temperature dependence. And finally, the possibility exists of corrosion due to bimetallic film structure.

The domain stabilization process can be understood by recognizing that if the magnetization is somehow pinned at the boundaries of a thin film strip then the equilibrium magnetization direction can be controlled in the central region between the boundaries. By depositing FeMn in the crosshatched regions shown in FIG. 2, the previously indicated drawbacks to standard exchange-biasing techniques can be avoided. First, since there is no exchange material in the central active region, there can be no signal loss due to current shunting. Secondly, this stabilization technique is extremely temperature insensitive since the requirement is made that only the direction of the magnetization be fixed; not the magnitude of the longitudinal exchange field. And finally, by proper patterning, the bimetallic interface can be eliminated at any exposed edge.

In the preferred embodiment, the exchange biasing material is FeMn because it is electrically conductive.

An embodiment having a stable single-domain central region employing exchanged-biased ends is shown in FIG. 2. Here, the strip has a C shape with a relatively narrow central region and with the lateral ends having upwardly extending legs 26 and 28 for conducting the demagnetizing field further away from the central region. This improves the stability of single domains in the central region. Exchange bias material 32, 34 and contact metallization (not shown in the figure) are applied to these ends using the process next described in the pattern shown in the Figure, which generally conforms to the pattern of canted current end contacts (not shown) to be applied later. This pattern of exchange material eliminates edge and end domains and provides a stable central single domain sense region. To avoid the aforementioned corrosion problem at exposed interfaces, the resist pattern is so shaped as to provide a recess S of between the exchange material and the lower edge of the strip 10, the edge exposed to the magnetic disk in most designs.

The process for forming the structure shown in FIG. 2 is shown in FIG. 3. Step 1: a strip of magnetoresistive material is evaporated, sputtered or the like on a substrate, not shown for the purpose of clarity, in a uniform magnetic field directed along an easy axis and patterned. Step 2: A photo resist layer is laid down and patterned using conventional processes to form an island resist layer 20 with inwardly inclined sides. Step 3: Next the exchange material 22 is evaporated, sputtered or the like onto the combination. Step 4: deposit contact metallization 23. Step 5: Using a lift-off process, the resist, exchange material 24 and metal 23 clinging to it are removed.

FIG. 4 shows a pseudo-ellipsoid strip with exchange material on its ends extending to the flattened central region L. A similar recess S 36 should be provided.

FIG. 5 shows a cross section of the exchange-biased strip 10 of either FIG. 2 or 4 mounted between shields 42 and 44 of a typical head above a magnetic disk 50. In the Figure, the exchange material 32 is recessed a short distance 36 above the head surface and the contact metal 38 has a leg 40 extending to the strip 10 and shielding the exchange material 32 from exposure. At least one of the shields 42 and 44 also comprise one of the poles of an inductive write apparatus. The shields are separated via spacers 52 typically composed of a non magnetic material such as Al2 O3. By providing the recess 36, the contact 38 has a leg 40 directly contacting the magnetoresistive material 10. This shields the exchange material 32 from exposure. Most heads land on the disk surface 50 when disk rotation stops, burnishing small amounts of head material away. The amount of recess verses the degree of burnishing determines the lifetime of the head until the exchange material is exposed leading to potential corrosion.

The existence of strong transverse magnetic fields causes relatively stable single domain regions to "fracture" into multiple domains, the source of Barkhausen noise. Strong magnetic fields are present between the pole tips of an inductive write apparatus, the conventional location of most magnetoresistive heads. To reduce affect of the inductive write pole tips on the magnetoresistive head, it is known to place the head along side the inductive write pole tips. See e.g., Lee, 4,321,641. This type of structure requires a soft-magnetic shield, a shield/trailing pole tip, and a leading pole tip. The design of this patent is not entirely satisfactory, primarily due to the extension of the MR material 76, 78 (see FIG. 4 or 7 of '641) beyond the shield of the trailing pole tip 90. The design of FIGS. 6 and 7 provide a very magnetically quiet region for the magnetoresistive sensor. The residual flux from the magnetic poles of the inductive write transducer is so low as to permit the reliable operation of very stable, shaped, single-domain sensors (e.g., the pseudo-ellipse 10 of FIG. 1) without longitudinal biasing.

FIG. 6 is a cross section of the essential elements of the improved design. A layer of oxide, preferably aluminum oxide 62 is deposited upon a soft-magnetic substrate 60, preferably NiZn. Next, the magnetoresistive sensor material 64 is deposited in a magnetic field and patterned. (Exchange biasing material may then be deposited and patterned if desired). Metal contacts 66 are then deposited on the magnetoresistive strip 64. A second layer of oxide 68 is then deposited. These two oxide layers, 62 and 68, comprise the read gap. A layer of polyimide or photo resist 70 is then deposited and patterned as shown to remove the layer adjacent the gap end of the head. Next a layer of ferromagnetic material 70 is laid down, preferably NiFe (Permalloy). This layer 70 comprises the trailing pole/shield. Next, a write gap oxide, 75 (aluminum oxide or silicon dioxide), is deposited followed by a second layer of polyimide or photo resist 74. Metal coils 78 are deposited and patterned. Two layers of polyimide or photo-resist 76 are deposited and patterned to remove the portion not adjacent the coils 78. And finally, a final layer of a ferromagnetic material 79 is deposited to encompass the coils and contact the other ferromagnetic layer 72 to form a continuous flux path. After the package is formed, it is typically sealed in a suitable non magnetic material and the gap end processed (usually lapped) to expose the gap(s) an provide a reliable gap height.

FIG. 7 is an end view of the essential elements of the double gap head of the preferred embodiment. Spacing layers are omitted for clarity. Shown in the Figure are the ferrite substrate 60, the magnetoresistive strip 64, its lateral metal contacts 66 defining a central sensor region 65 of length L, and the ferromagnetic trailing pole/shield 72, and the leading pole 79. The length of the leading pole 79 defines the written track width via magnetic mirroring with the trailing pole/shield as shown in the Figure. This length corresponds to the length L (plus a processing guard band wherein the length L is intentionally made smaller than the written track width to avoid possible cross talk) of the central region 65 of the magnetoresistive strip 64. Typically, the magnetoresistive strip is longer than a track width to assist in providing a stable central region single domain. It is essential that the trailing pole/shield 72 be as long as the magnetoresistive sensor 64 to completely shield it from side fringing fields originating during the writing process. This makes the lead and trailing poles 79, 72 of different lengths. But it has been discovered that this does not affect the written track width, which is defined by the length of the leading pole 79 and the above mentioned mirroring effects.

For many applications, such as audio, linear operation of a magnetoresistive sensor is desirable. As mentioned above, linearization either requires the canting of the easy axis magnetization vector or the canting of the current vector. Canting of the magnetization vector typically increases anisotropy and reduces the range of resistivity change and thus sensitivity of the sensor. Canting the current likewise causes a comparable loss in sensitivity as better illustrated in FIG. 8.

FIG. 8 shows a typical canted current biasing technique wherein conductors 80, 82, intimately contacting a magnetoresistive strip 92 of length L provide a canted current from a source 88 generally in the direction Leff between the contacts. The current direction is generally perpendicular to the surfaces 84, 86 of the contacts. These surfaces are generally canted at an angle theta sub B of between 40 and 45 degrees for greatest linearity and sensitivity. The change in resistivity is sensed by means 90 (which can be a voltage sensor if 88 is a constant current source, a transimpedance current sensor if 88 is a constant voltage source, or a power sensor if 88 is a "soft" source). The change is resistivity is generally proportional to the length Leff, which by inspection, is less than the length L between the contacts in the longitudinal direction. L, in turn, is approximately the track width of narrow track and defines the length of the sense region. Thus, the sensitivity of the device is reduced by the ratio Leff / L. Making Leff comparable to track width is not desirable because L would then be long enough to pick up significant cross talk from adjacent tracks.

FIG. 9 shows the improved canted current sensor which relaxes the cant of the contact surfaces 84, 86 to an angle theta sub B' of approximately 50 degrees. This substantially increases Leff and thereby sensitivity while maintaining the approximately 40 to 45 degree angle with the easy axis. The reason for this is that the magnetoresistive strip is patterned such that its easy axis is itself canted by an angle theta sub EA of approximately 10 degrees.

In the Figure, the contact surfaces 84, 86 are each canted at an angle theta sub B' which is preferably 50 degrees. The magnetoresistive strip's lower edge 96 is parallel to the magnetic disk surface as in the prior art, but the upper edge 98 is patterned at an angle theta sub P thereto to give a resultant easy axis magnetization vector M at an angle theta sub EA of approximately 10 degrees with the lower edge.

The strip 94 is formed from a bulk film deposited on a suitable substrate in an uniform magnetic field directed parallel to the lower edge 96. The bulk film is thereafter patterned using conventional lithographic techniques to form the pattern illustrated with the upper edge forming an upwardly extending angle with the lower edge. This shape inherently cants the easy axis magnetization vector upwards, though to a lesser degree than the angle of the upper edge. To achieve the net easy axis rotation of 10 degrees, the designer will have to balance the strength of the undeflected easy axis vector with the size, length, thickness, and composition of the magnetoresistive material with the degree of upward edge angle.

In the preferred embodiment, the strip 94 is composed of 80:20 NiFe alloy, approximately 500 angstroms thick, with L approximately equal to 9 microns, h (the height of the sensor at point 104) approximately equal to 8 microns, and theta sub P is 10 degrees, where theta sub B' is 50 degrees and theta sub EA is 10 degrees. FIG. 10 shows an example of a canted easy axis psuedo-ellipsoid 100 and its relative orientation with contact surfaces 84 and 86 (the balance of the contacts are not shown in the Figure).

For most digital applications, data is written on the disk in code (e.g., variable length 2,7) where only the location of a transition (pulse peak) rather than its direction and magnitude is important. Pulse amplitude serves the function of triggering qualifiers to discern between signal and noise. Thus except for improved initial sensitivity to magnetization vector rotation, there is no good reason to operate the sensor linearly. Thus the final improvements to the magnetoresistive sensor are to provide no transverse biasing at all, except perhaps the patterned biasing just described, operate the sensor in a non linear mode and design the magnetoresistive sensor and disk flux such that the magnetization vector rotation in response to disk flux is on the order of 40 to 50 degrees.

Because the location of a transition (pulse peak) is important, the signal from the disk is conventionally differentiated and the zero crossing detected. Noise makes the location of the zero crossing uncertain, and for this reason, noise ultimately limits the data density. However, by not biasing the sensor, the sensor will operate in its non linear mode (see the equation in the Description of the Prior Art) and the differential will have a steeper zero crossing slope than that of a linearly biased sensor. This increased zero-crossing slope leads to less sensitivity to noise, and to a more accurate detection of zero crossing locations, all other things being equal.

In order to achieve a proper non linear signal out of the sensor, the magnetization vector must be made to rotate to a greater degree than in the biased case, see FIG. 11 for an illustration of the principle. The upper portion of the Figure graphs half of the normalized magnetoresistive response (the cosine-squared equation previously mentioned). The lower portions of the Figure graph two disk flux input signals, the left 104 represent the input signal to a non linear magnetoresistive sensor, the right the input to a linear magnetoresistive sensor. While the two signals are shown with greatly different magnitudes, they may actually be the same magnitude if the relative response of the magnetoresistive sensor is proportional to the relative difference shown. Actually, it may be preferable to adjust the relative response of both the disk and the sensor.

In a linear mode of operation, the input pulse 106 passes through states 1, 2, 3, and 4 and the sensor responds by moving through resistivity states 1', 2', 3' and 4' (for an oppositely polarized pulse, the states would be on the opposite side of 1'). For all states, the inputs and outputs are linear replications.

In a non linear mode, the input signal 104 passes through states A→F and the sensor responds with states A'→F' (an oppositely polarized signal pulse would result in the same output, but from the other half of the resistivity curve.) The output is non linear until region D'→F', where it again becomes a linear replication of the input.

It can be seen from the Figure that the total response of the non linear sensor (from A' to F') is greater than the total response from the linear sensor (from 1' to 4'). Thus total sensitivity is greater, and transition centers (pulse peaks) can be more accurately located. Actual sensor output is increase by 25 to 30%.

While there are many possible choices of materials to achieve the response indicated in FIG. 11, the preferred choice is a sensor comprised of permalloy and a magnetic disk material with sufficient flux to yield the magnetization vector rotation indicated with a head mounted on a conventional flyer.

FIG. 12 shows the preferred magnetoresistive sensor comprised of a pseudo-ellipsoid 10 uncanted contacts 84 86, a constant current source 88, a voltage sensor 90. This sensor is preferably mounted in the double gap head of FIGS. 6 and 7. By providing no biasing whatever, the sensor operates in a non linear mode. Its shape and location in the shielded second gap of the double gap head maintains the sensor in a single domain state. If this implementation is not robust enough for a given application, then stability can be further enhanced by providing for exchange material in regions 110 and 112 as previously described.

Claims (1)

I claim:
1. Apparatus comprising:
a magnetoresistive sensor mounted in a recording head adjacent a magnetic recording medium comprising:
a sense region having a magnetization vector M aligned parallel to the easy axis in the absence of external magnetic fields from said recording medium;
means for providing a sense current in the sense region having a vector J substantially parallel with said easy axis magnetization vector M;
said magnetic recording medium mounted adjacent to said head such that relative motion between them can occur; the magnetic medium having a plurality of magnetization transitions recorded thereon providing magnetic flux pulses to the sense region as a transition passes the sensor, the peak flux amplitude of the pulse being sufficient to rotate the sense region magnetization vector M away from the sense current vector J so that the angle between them is in the range of 40 to 50 degrees, whereby the sensor operates in a non linear mode because of the initial alignment of sense current and magnetization vectors in absence of magnetic flux from the magnetic medium, and wherein the sensor's response in the region of the pulse peak from magnetic flux from the magnetic medium is approximately a linear function of magnetic flux of the transition.
US07/015,200 1987-02-17 1987-02-17 Non linear magnetoresistive sensor Expired - Lifetime US4841398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/015,200 US4841398A (en) 1987-02-17 1987-02-17 Non linear magnetoresistive sensor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US07/015,200 US4841398A (en) 1987-02-17 1987-02-17 Non linear magnetoresistive sensor
CA000556744A CA1322597C (en) 1987-02-17 1988-01-18 Magnetoresistive sensor
DE19883882243 DE3882243D1 (en) 1987-02-17 1988-01-27 Head with a magnetoresistive Suited.
DE19883882243 DE3882243T2 (en) 1987-02-17 1988-01-27 Head with a magnetoresistive sensor.
EP88300683A EP0279535B1 (en) 1987-02-17 1988-01-27 Head comprising a magnetoresistive sensor
AU11362/88A AU1136288A (en) 1987-02-17 1988-02-05 Magnetoresistive sensor
US07/152,783 US4851944A (en) 1987-02-17 1988-02-05 Ganged MR head sensor
JP63031997A JP2590178B2 (en) 1987-02-17 1988-02-16 Nonlinear magneto-resistive sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/152,783 Continuation-In-Part US4851944A (en) 1987-02-17 1988-02-05 Ganged MR head sensor

Publications (1)

Publication Number Publication Date
US4841398A true US4841398A (en) 1989-06-20

Family

ID=21770067

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/015,200 Expired - Lifetime US4841398A (en) 1987-02-17 1987-02-17 Non linear magnetoresistive sensor

Country Status (6)

Country Link
US (1) US4841398A (en)
EP (1) EP0279535B1 (en)
JP (1) JP2590178B2 (en)
AU (1) AU1136288A (en)
CA (1) CA1322597C (en)
DE (2) DE3882243D1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956736A (en) * 1988-12-16 1990-09-11 Eastman Kodak Company Thin film magnetic element having a rhombic shape
US5065094A (en) * 1990-08-07 1991-11-12 Seagate Technology, Inc. Two terminal magnetoresistive sensor having DC blocking capacitor
US5079662A (en) * 1988-09-30 1992-01-07 Hitachi, Ltd. Compound magnetic head having a recording head and a reproducing magnetoresitive head integrated therein
WO1993009532A1 (en) * 1991-10-29 1993-05-13 Mars Incorporated Unshielded magnetoresistive head with multiple pairs of sensing elements
WO1994027288A1 (en) * 1993-05-11 1994-11-24 Philips Electronics N.V. Magnetoresistive element having composite structure and thin film magnetic head incorporating same
US5452166A (en) * 1993-10-01 1995-09-19 Applied Magnetics Corporation Thin film magnetic recording head for minimizing undershoots and a method for manufacturing the same
US5475550A (en) * 1992-08-25 1995-12-12 Seagate Technology, Inc. Enhanced cross-talk suppression in magnetoresistive sensors
US5483402A (en) * 1994-06-15 1996-01-09 Quantum Corporation Magneto resistive head having symmetric off-track performance profile
US5485334A (en) 1992-11-12 1996-01-16 Quantum Peripherals Colorado, Inc. Magnetoresistive device and method having improved Barkhausen noise suppression
US5493466A (en) * 1991-07-02 1996-02-20 Sony Corporation Composite thin film recording/reproducing head with MR reproducing head having greater track width than recording head
US5532892A (en) * 1995-06-05 1996-07-02 Quantum Peripherals Colorado, Inc. Soft adjacent layer biased magnetoresistive device incorporating a natural flux closure design utilizing coplanar permanent magnet thin film stabilization
US5573809A (en) * 1995-06-05 1996-11-12 Quantum Peripherals Colorado, Inc. Process for forming a magnetoresistive device
US5604651A (en) * 1994-02-23 1997-02-18 Applied Magentics Corporation Read head with 4-point magnetoresistive sensing
US5654854A (en) * 1995-11-30 1997-08-05 Quantum Corporation Longitudinally biased magnetoresistive sensor having a concave shaped active region to reduce Barkhausen noise by achieving a substantially single magnetic domain state
US5680281A (en) * 1994-03-10 1997-10-21 International Business Machines Corporation Edge-biased magnetoresistive sensor
US5696656A (en) * 1996-09-06 1997-12-09 International Business Machines Corporation Highly sensitive orthogonal spin valve read head
US5751522A (en) * 1993-10-21 1998-05-12 Alps Electric Co., Ltd. Combined-type thin film magnetic head with inductive magnetic head having low-inductive core
US5894375A (en) * 1995-06-06 1999-04-13 Fujitsu Limited Magnetic disk apparatus and method that reverses sense current in magnetoresistive head
US5930084A (en) * 1996-06-17 1999-07-27 International Business Machines Corporation Stabilized MR sensor and flux guide joined by contiguous junction
US20060245113A1 (en) * 2005-04-28 2006-11-02 Headway Technologies, Inc. Method to reduce sensitivity of a perpendicular recording head to external fields
US20060245114A1 (en) * 2005-04-28 2006-11-02 Headway Technologies, Inc. Modified shield shape for a perpendicular recording head to reduce sensitivity to external fields
US8599520B1 (en) * 2011-12-20 2013-12-03 Western Digital (Fremont), Llc Method and system for providing a read transducer having an adaptive read sensor track width

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982931B2 (en) * 1993-05-17 1999-11-29 富士通株式会社 Magnetoresistive head and a manufacturing method thereof
US5530609A (en) * 1993-05-31 1996-06-25 Tdk Corporation Magnetic recording/reproducing method using a thin film magnetic
DE4403932C2 (en) * 1994-02-08 1998-11-19 Siemens Ag Magnetoresistive sensor device having a magnetically anisotropic portion of the sensor
DE19608730C2 (en) * 1996-03-06 1998-05-28 Siemens Ag Magnetic field-sensitive sensor with a thin-film structure and use of the sensor
DE10014779B4 (en) * 2000-03-27 2011-11-10 Nxp B.V. MR angle sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887944A (en) * 1973-06-29 1975-06-03 Ibm Method for eliminating part of magnetic crosstalk in magnetoresistive sensors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2244225B1 (en) * 1973-09-19 1979-04-13 Cii Honeywell Bull
US4103315A (en) * 1977-06-24 1978-07-25 International Business Machines Corporation Antiferromagnetic-ferromagnetic exchange bias films
JPH0132183Y2 (en) * 1979-07-19 1989-10-03
JPS5758222A (en) * 1980-09-25 1982-04-07 Fujitsu Ltd Magnetic head
JPH0157511B2 (en) * 1981-07-01 1989-12-06 Hitachi Ltd
JPS58100217A (en) * 1981-12-11 1983-06-14 Hitachi Ltd Magnetoresistance effect head
US4504880A (en) * 1982-08-09 1985-03-12 International Business Machines Corporation Integrated magnetic recording head assembly including an inductive write subassembly and a magnetoresistive read subassembly
JPH048848B2 (en) * 1983-09-09 1992-02-18
US4639806A (en) * 1983-09-09 1987-01-27 Sharp Kabushiki Kaisha Thin film magnetic head having a magnetized ferromagnetic film on the MR element
JPS61194620A (en) * 1985-02-22 1986-08-29 Hitachi Ltd Thin film magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887944A (en) * 1973-06-29 1975-06-03 Ibm Method for eliminating part of magnetic crosstalk in magnetoresistive sensors

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Glazer et al., "Stabilization of the Ferromagnetic Domain Structure in Thin Films with Exchange Anisotrophy," Institute of Metal Physics, Dec. 6, 1987, vol. 26, No. 2, pp. 103-110.
Glazer et al., Stabilization of the Ferromagnetic Domain Structure in Thin Films with Exchange Anisotrophy, Institute of Metal Physics, Dec. 6, 1987, vol. 26, No. 2, pp. 103 110. *
Meiklejohn et al., "New Magnetic Anisotrophy," Physical Review, Jun. 1, 1956, vol. 102, No. 5, pp. 1413-1414.
Meiklejohn et al., New Magnetic Anisotrophy, Physical Review, Jun. 1, 1956, vol. 102, No. 5, pp. 1413 1414. *
Tsang et al., "Study of Domain Formation in Small Permalloy Magnetoresistive Elements," Journal of Applied Physics, Mar. 1982, vol. 53, No. 3, pp. 2602-2604.
Tsang et al., "Temperature Dependance of Unidirectional Anisotrophy Effects in the Permalloy-FeMn Systems," Journal of Applied Physics, Mar. 1982, vol. 53, No. 3, pp. 2605-2607.
Tsang et al., Study of Domain Formation in Small Permalloy Magnetoresistive Elements, Journal of Applied Physics, Mar. 1982, vol. 53, No. 3, pp. 2602 2604. *
Tsang et al., Temperature Dependance of Unidirectional Anisotrophy Effects in the Permalloy FeMn Systems, Journal of Applied Physics, Mar. 1982, vol. 53, No. 3, pp. 2605 2607. *
Tsang, "Magnetics of Small MR Sensors", IBM Magnetic Recording Institute.
Tsang, Magnetics of Small MR Sensors , IBM Magnetic Recording Institute. *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079662A (en) * 1988-09-30 1992-01-07 Hitachi, Ltd. Compound magnetic head having a recording head and a reproducing magnetoresitive head integrated therein
US4956736A (en) * 1988-12-16 1990-09-11 Eastman Kodak Company Thin film magnetic element having a rhombic shape
US5065094A (en) * 1990-08-07 1991-11-12 Seagate Technology, Inc. Two terminal magnetoresistive sensor having DC blocking capacitor
US5493466A (en) * 1991-07-02 1996-02-20 Sony Corporation Composite thin film recording/reproducing head with MR reproducing head having greater track width than recording head
WO1993009532A1 (en) * 1991-10-29 1993-05-13 Mars Incorporated Unshielded magnetoresistive head with multiple pairs of sensing elements
EP0610383A1 (en) * 1991-10-29 1994-08-17 Mars Incorporated Unshielded magnetoresistive head with multiple pairs of sensing elements
EP0610383B1 (en) * 1991-10-29 1998-04-01 Mars Incorporated Unshielded magnetoresistive head with multiple pairs of sensing elements
US5475550A (en) * 1992-08-25 1995-12-12 Seagate Technology, Inc. Enhanced cross-talk suppression in magnetoresistive sensors
US5634260A (en) * 1992-11-12 1997-06-03 Quantum Peripherals Colorado, Inc. Method of making a magnetoresistive device having improved Barkhausen noise suppression
US5485334A (en) 1992-11-12 1996-01-16 Quantum Peripherals Colorado, Inc. Magnetoresistive device and method having improved Barkhausen noise suppression
WO1994027288A1 (en) * 1993-05-11 1994-11-24 Philips Electronics N.V. Magnetoresistive element having composite structure and thin film magnetic head incorporating same
US5715597A (en) * 1993-10-01 1998-02-10 Applied Magnetics Corporation Method for manufacturing thin film magnetic head
US5452166A (en) * 1993-10-01 1995-09-19 Applied Magnetics Corporation Thin film magnetic recording head for minimizing undershoots and a method for manufacturing the same
US5675461A (en) * 1993-10-01 1997-10-07 Applied Magnetics Corporation Thin film magnetic recording head for minimizing undershoots
US5751522A (en) * 1993-10-21 1998-05-12 Alps Electric Co., Ltd. Combined-type thin film magnetic head with inductive magnetic head having low-inductive core
US5604651A (en) * 1994-02-23 1997-02-18 Applied Magentics Corporation Read head with 4-point magnetoresistive sensing
US5680281A (en) * 1994-03-10 1997-10-21 International Business Machines Corporation Edge-biased magnetoresistive sensor
US5483402A (en) * 1994-06-15 1996-01-09 Quantum Corporation Magneto resistive head having symmetric off-track performance profile
US5573809A (en) * 1995-06-05 1996-11-12 Quantum Peripherals Colorado, Inc. Process for forming a magnetoresistive device
US5532892A (en) * 1995-06-05 1996-07-02 Quantum Peripherals Colorado, Inc. Soft adjacent layer biased magnetoresistive device incorporating a natural flux closure design utilizing coplanar permanent magnet thin film stabilization
US5894375A (en) * 1995-06-06 1999-04-13 Fujitsu Limited Magnetic disk apparatus and method that reverses sense current in magnetoresistive head
US5654854A (en) * 1995-11-30 1997-08-05 Quantum Corporation Longitudinally biased magnetoresistive sensor having a concave shaped active region to reduce Barkhausen noise by achieving a substantially single magnetic domain state
US6239955B1 (en) 1996-06-17 2001-05-29 International Business Machines Corporation Stabilized MR sensor and heat guide joined by contiguous junction
US5930084A (en) * 1996-06-17 1999-07-27 International Business Machines Corporation Stabilized MR sensor and flux guide joined by contiguous junction
US6181532B1 (en) 1996-06-17 2001-01-30 International Business Machines Corporation Stabilized MR sensor and flux/heat guide joined by contiguous junction
US5828530A (en) * 1996-09-06 1998-10-27 International Business Machines Corporation Orthogonal spin valve sensor with reduced net field
SG79217A1 (en) * 1996-09-06 2001-03-20 Ibm Highly sensitive orthogonal spin valve read head
US5696656A (en) * 1996-09-06 1997-12-09 International Business Machines Corporation Highly sensitive orthogonal spin valve read head
US20060245113A1 (en) * 2005-04-28 2006-11-02 Headway Technologies, Inc. Method to reduce sensitivity of a perpendicular recording head to external fields
US20060245114A1 (en) * 2005-04-28 2006-11-02 Headway Technologies, Inc. Modified shield shape for a perpendicular recording head to reduce sensitivity to external fields
US7599152B2 (en) * 2005-04-28 2009-10-06 Headway Technologies, Inc. Magnetic read-write head shield that prevents flux concentration at edges close to the ABS
US8599520B1 (en) * 2011-12-20 2013-12-03 Western Digital (Fremont), Llc Method and system for providing a read transducer having an adaptive read sensor track width

Also Published As

Publication number Publication date
DE3882243D1 (en) 1993-08-19
CA1322597C (en) 1993-09-28
EP0279535A3 (en) 1990-01-10
EP0279535A2 (en) 1988-08-24
AU1136288A (en) 1988-08-18
EP0279535B1 (en) 1993-07-14
JP2590178B2 (en) 1997-03-12
DE3882243T2 (en) 1993-10-28
JPS63204506A (en) 1988-08-24

Similar Documents

Publication Publication Date Title
Hunt A magnetoresistive readout transducer
US6005753A (en) Magnetic tunnel junction magnetoresistive read head with longitudinal and transverse bias
EP0911810B1 (en) Magnetic tunnel junction devices
US5627704A (en) Thin film giant magnetoresistive CPP transducer with flux guide yoke structure
CA2054580C (en) Magnetoresistive sensor based on the spin valve effect
US5452163A (en) Multilayer magnetoresistive sensor
US6466419B1 (en) Current perpendicular to plane spin valve head
US3864751A (en) Induced bias magnetoresistive read transducer
US5909340A (en) Hard disk drive having contact write and recessed magnetoresistive read head
US7035063B2 (en) Magnetic tunnel junction sensor with nickel-oxide longitudinal bias layer abutting opposite sides of active region
KR100259429B1 (en) Spin valve sensor with enhanced magnetoresistance
Tsang et al. Design, fabrication, and performance of spin-valve read heads for magnetic recording applications
JP3266550B2 (en) Orthogonal spin valve read head, combinatorial head and magnetic disk drive
US4713708A (en) Magnetoresistive read transducer
US5508868A (en) Dual element magnetoresistive sensing head having in-gap flux guide and flux closure piece with particular connection of magnetoresistive sensing elements to differential amplifier
US6724583B2 (en) Adjustable permanent magnet bias
US5992004A (en) Method for producing a thin film magnetic head
US6985338B2 (en) Insulative in-stack hard bias for GMR sensor stabilization
US5493467A (en) Yoke spin valve MR read head
US5739987A (en) Magnetoresistive read transducers with multiple longitudinal stabilization layers
US7599151B2 (en) Magnetic head with laminated side shields
US20020114111A1 (en) High density magnetoresistive read head
US5898547A (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as flux guide
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
US4881143A (en) Compensated magneto-resistive read head

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAGNETIC PERIPHERALS INC., C/O CONTROL DATA CORPOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MOWRY, GREG S.;REEL/FRAME:004703/0041

Effective date: 19870211

Owner name: MAGNETIC PERIPHERALS INC., C/O CONTROL DATA CORPOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOWRY, GREG S.;REEL/FRAME:004703/0041

Effective date: 19870211

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SECURITY PACIFIC NATIONAL BANK, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:MAGNETIC PERIPHERALS, INC.;REEL/FRAME:005184/0213

Effective date: 19890929

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SEAGATE TECHNOLOGY, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:MAGNETIC PHERIPHERALS INC.;REEL/FRAME:006486/0237

Effective date: 19900531

AS Assignment

Owner name: SEAGATE TECHNOLOGY, INC., CALIFORNIA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANKAMERICA;REEL/FRAME:006518/0887

Effective date: 19930128

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEAGATE TECHNOLOGY, INC.;REEL/FRAME:011077/0319

Effective date: 20000728

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT, NEW

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEAGATE TECHNOLOGY LLC;REEL/FRAME:011461/0001

Effective date: 20001122

AS Assignment

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEAGATE TECHNOLOGY LLC;REEL/FRAME:013177/0001

Effective date: 20020513

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEAGATE TECHNOLOGY LLC;REEL/FRAME:013177/0001

Effective date: 20020513

AS Assignment

Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA

Free format text: RELEASE OF SECURITY INTERESTS IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK AND JPMORGAN CHASE BANK), AS ADMINISTRATIVE AGENT;REEL/FRAME:016926/0821

Effective date: 20051130