US4816217A - High-strength alloy for industrial vessels - Google Patents
High-strength alloy for industrial vessels Download PDFInfo
- Publication number
- US4816217A US4816217A US06/854,340 US85434086A US4816217A US 4816217 A US4816217 A US 4816217A US 85434086 A US85434086 A US 85434086A US 4816217 A US4816217 A US 4816217A
- Authority
- US
- United States
- Prior art keywords
- alloy
- titanium
- aluminum
- nickel
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 122
- 239000000956 alloy Substances 0.000 title claims abstract description 122
- 239000010936 titanium Substances 0.000 claims abstract description 57
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 45
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 40
- 230000007797 corrosion Effects 0.000 claims abstract description 31
- 238000005260 corrosion Methods 0.000 claims abstract description 31
- 239000010949 copper Substances 0.000 claims abstract description 28
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 24
- 239000011651 chromium Substances 0.000 claims abstract description 24
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 22
- 239000002253 acid Substances 0.000 claims abstract description 20
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011733 molybdenum Substances 0.000 claims abstract description 14
- 238000005482 strain hardening Methods 0.000 claims abstract description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 5
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 4
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 3
- 239000000788 chromium alloy Substances 0.000 claims abstract description 3
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000005336 cracking Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000010955 niobium Substances 0.000 claims description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- RPAJSBKBKSSMLJ-DFWYDOINSA-N (2s)-2-aminopentanedioic acid;hydrochloride Chemical class Cl.OC(=O)[C@@H](N)CCC(O)=O RPAJSBKBKSSMLJ-DFWYDOINSA-N 0.000 claims description 2
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 2
- 229910052748 manganese Inorganic materials 0.000 claims 2
- 239000011572 manganese Substances 0.000 claims 2
- 239000000126 substance Substances 0.000 abstract description 9
- 238000012360 testing method Methods 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- 230000035882 stress Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 238000003483 aging Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 5
- OANFWJQPUHQWDL-UHFFFAOYSA-N copper iron manganese nickel Chemical compound [Mn].[Fe].[Ni].[Cu] OANFWJQPUHQWDL-UHFFFAOYSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910000967 As alloy Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000006518 acidic stress Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241000478345 Afer Species 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 101000668170 Homo sapiens RNA-binding motif, single-stranded-interacting protein 2 Proteins 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 102100039690 RNA-binding motif, single-stranded-interacting protein 2 Human genes 0.000 description 1
- VHHVGPDQBHJHFB-UHFFFAOYSA-N [Ti].[Cr].[Ni] Chemical compound [Ti].[Cr].[Ni] VHHVGPDQBHJHFB-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/087—Heat exchange elements made from metals or metal alloys from nickel or nickel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0059—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for petrochemical plants
Definitions
- the instant invention relates to nickel-iron-chromium alloys in general and more particularly to a high strength, age hardenable, austenitic alloy having a low work hardenability rate.
- the alloy reduces copper pickup in fluid streams.
- the alloy exhibits resistance to polythionic acid and chloride stress corrosion attack.
- austenitic alloys are supplied in the annealed condition at relatively low tensile strengths in order to resist stress corrosion cracking and to be capable of making small radii tube bends.
- the instant age hardenable alloy may be cold worked to greater levels of cold work and thereby eliminating expensive processing steps as will be shown later. Then by nature of the age-hardening capability the instant alloy may be heat treated to a higher level of tensile strength and still resist stress corrosion cracking and maintain adequate ductility to make tight U-bends. Tubing exhibited 25% tensile elongation is marginal and tubing with 18% elongation or less nearly always fails small radii bending.
- an austenitic alloy having a low work hardening rate especially suited for, but not limited to, heat exchanger tubing for high temperature, high pressure applications and petrochemical installations subject to polythionic acid cracking.
- the instant alloy combines improved corrosion resistance and the requisite high strength in a system that is of lower cost than the more expensive higher alloys.
- the alloy displays good stress corrosion cracking resistance, good high temperature corrosion resistance and polythionic acid cracking resistance.
- the instant age-hardenable alloy Due to its low work hardenability rate, (caused in part by the nickel-chromium combination) the instant age-hardenable alloy easily lends itself to tube fabrication and other cold working operations.
- the alloy broadly includes about 25-29.5% nickel, about 14.5-17.5% chromium, about 2-3.5% molybdenum, about 2-5.5% copper, up to about 2.5% titanium, up to about 2.5% aluminum, about 1-5% titanium plus aluminum, up to about 1.5% manganese, up to about 0.1% cerium, up to about 1% columbium, up to about 0.2% nitrogen, the balance iron, and other minor impurities and processing aids (such as calcium, boron [up to about 0.01%], silicon [up to about 0.75%], etc.).
- FIGURE plots yield stress vs. percent reduction.
- the addition of a measured quantity of titanium imparts an age hardening response of at least 60 ksi (413.7 MPa) yield strength and 120 ksi (827.4 MPa) tensile strength in the cold worked and annealed conditions.
- Copper, chromium and molybdenum improve the corrosion resistance of the alloy.
- Aluminum, cerium, boron and calcium assist in the deoxidation of the alloy.
- Aluminum is necessary to control the titanium during remelting operations. Otherwise, the titanium would oxidize and not contribute the desired characteristics to the alloy.
- static cast solid products may experience centerline cracking and porosity. It appears that a remelting step may be required to ensure the integrity of the form. Accordingly, the aluminum is added to accommodate the remelting step. Additionally, aluminum also imparts age hardening properties to the instant alloy.
- Nitrogen may be added to the low titanium level alloys as an austenite former. It also serves to boost the alloy's ability to withstand corrosive attack. The nitrogen raises the strength and increases the work hardening rate of the alloy in the annealed condition. Table I below sets forth a number of heats.
- heats 21, 22, 24, 30 and 31 were vacuum melted and cast to 4 inch (10.16 cm) diameter ingots. Forged 9/16 inch (1.43 cm) squares plus forged 3/4 ⁇ 2 ⁇ 12 inch (1.91 ⁇ 5.08 ⁇ 30.48 cm) flats were made with frequent reheats at 2150° F. (1177° C.). Afer overhauling the flats to a uniform thickness, they were hot rolled to 1/4 inch (0.64 cm) at 2150° F. Test material for heats 21, 22, 24 and 31 were taken from air melted large scale ingots and processed similarly. The processing is not known for commercial heats No. 30 or the type 304, 321 or 347 stainless steels (discussed hereinafter).
- the hot rolled 1/4 inch strip was annealed at 1950° F. (1066° C.)/one hour water quench and pickled prior to cold rolling. Hardness and tensile tests were taken at various levels of cold work to establish a work hardening response. A low work hardening rate is very desirable in the manufacture of relatively small diameter thin-walled tubing.
- alloy 800 After a cold reduction of 60 to 80%, the yield strength of heat 15 is also lower than alloy 800. Alloy 800 is shown in the FIGURE for comparative purposes only. A general purpose alloy, it has good workability characteristics and is easily processed. The instant invention was developed with these attributes in mind.
- Tests have been developed to measure and quantify the resistance of metals to fracture or tearing.
- One such test is the Kahn tear test which is a type of notched tear test.
- Studies reported by others have shown that high levels of strain at low temperature causes the formation of pores or microvoids. The number of these pores or volume fractions increase with strain. At still higher levels of cold deformation the pores begin to link up, forming microscopic cracks. Further deformation and crack propagation leads to complete separation.
- the maximum level of cold deformation is exceeded during the cold reducing process, fracture is in the longitudinal direction of tubing. Therefore one would expect lower fracture strength in the transverse rather than longitudinal direction for heavily cold reducted strip.
- Table V shows the strength and ductility characteristics of hot worked squares in the annealed and aged conditions.
- titanium and aluminum levels since they both also impart age-hardening characteristics to the instant alloy, a broad titanium plus aluminum range of about 1% to 5% (up to about 2.5% titanium plus up to about 2.5% aluminum) may be contemplated.
- titanium also imparts specific corrosion resistance to the alloy by combining with carbon and, accordingly, is preferred over aluminum which does not normally reduce aqueous corrosion, but will impart age-hardening. More particularly, up to about 2.5% titanium andd up to about 0.3% aluminum is preferable for most applications.
- alloys includng up to about 0.2% aluminum and about 1-2.5% titanium are satisfactory as well.
- the alloy becomes increasingly age-hardenable with the formation of ⁇ '; a face-centered cubic intermetallic phase of nickel, aluminum and titanium having the composition of Ni 3 Al, Ti. Accordingly, in order to economically fabricate shaped articles, it is preferable to maintain the titanium plus aluminum level from about 1-4% and more preferably from about 1.2-3%.
- VI and VII heats 21 and 22 are alloys 800 and 840 respectively.
- Heat 23 is a high nickel version of the instant alloy without titanium whereas heat 24 is an example of the instant invention.
- VII and VIII heat 25 is alloy SCR-3 made to the composition reported in the Kowaka et al article referenced previously. This heat was workable. Prior to receipt of the Kowaka et al article, the only information concerning the SCR-3 alloy was in U.S. Pat. No. 4,201,574. Employing those teachings, heat 27 was made. Since Kowaka et al gives little hot or cold working guidance for heats containing molybdenum, nickel was increased to 40% Ni and chromium to 32% Cr.
- the plan was to make alloys SCR-3 and 20Cb-3 age-hardenable by adding about the same amount of titanium and then comparing the tensile properties of 70% CW strip to the instant alloy. Vacuum melted ingots were cast and hot rolled to 3/4 ⁇ 23/8 flats as previously. The flats were reheated to 2150° F. and hot rolled to 1/4 ⁇ 23/8 strip. Oxide was removed by grinding. The alloy 20Cb-3 strip was cold rolled successively 72% to 0.075 gage. However, the SCR-3+Ti split after a few cold passes at about 20% CW.
- Table VII compares some of the characteristics of the other alloy systems.
- Tables VI and VII list the mechanical properties of 70% cold rolled strip. A study of these tables indicates the following:
- a preferred composition of about 4Cu, 2Mo, bal. Fe, 28Ni, 1.8Ti, 0.2Al, and 16Cr has acceptably low yield and tensile strengths.
- the age hardening constitute titanium increases the yield and tensile strength of as-cold rolled strip (Heat 24).
- Heat 24 still has considerably lower yield and tensile strength than any of the four non-age-hardenable alloys, 800, 840, SCR-3 or 20Cb-3.
- alloy SCR-3+Ti is not apparently capable of being cold rolled to high reductions, no tensile tests were run. Indeed, the addition of titanium to alloy SCR-3 apparently renders the alloy incapable of high cold reductions needed for tube production.
- Alloy 20Cb-3 at the 70% CW level has higher tensile properties and lower ductility than the age-hardenable instant alloy.
- the addition of titanium to 20Cb-3 to impart age-hardenability causes a very significant increase in the yield and tensile strength and lower ductility.
- Alloy 20Cb-3+Ti would be classed as a very difficult alloy to produce commercial quantities of small diameter, long length tubing. Compared to the instant alloy (Heat 24), the yield strength of 20Cb-3+Ti is 21,300 psi higher and the tensile strength 31,000 psi higher.
- a major characteristic of the instant alloy system is its resistance to polythionic acid stress corrosion cracking (SCC). This is a common cause of failure of stainless steels and nickel alloys in petrochemical service.
- alloys like SCR-3 and alloy 20Cb-3 depend upon a relatively high chromium level and/or titanium or columbium stabilization to avoid intergranular chromium depletion (sensitization) and resulting intergranaular attack. This is the reason for a high chromium level and titanium or columbium additions. When properly annealed, these alloys do not have chromium depleted grain boundaries, and as a result, resist intergranular attack in highly oxidizing acids such as nitric acid and intergranular SCC in aggressive environments like polythionic acid.
- the instant alloy has a relatively low chromium level, a moderate nickel alloy and measured titanium for workability and strength.
- the lower chromium level prevents the instant alloy from being stabilized, as are SCR-3 and alloy 20Cb-3, and as such is susceptible to integranular sensitization and resulting attack in nitric acid.
- alloys which suffer intergranular attack in nitric acid usually fail in polythionic acid
- the instant alloy is resistant to SCC in polythionic acid. The reason for this resistance is not lack of grain boundary chromium depletion as in properly annealed SCR-3 and alloy 20Cb-3, but precipitation of TiC and presumably Ni 3 Ti particles which block the advance of polythionic acid cracking.
- Table IX depicts the SCC test results in sodium chloride and sodium hydroxide solutions.
- Table X shows general corrosion test results.
- the design strength of the alloys destined for tubular applications is usually based on the tensile strength of the alloy comprising the apparatus. In the annealed and age-hardened conditions, the instant alloy system will meet the 120 ksi minimum tensile strength usually specified by design engineers. This value compares favorably with such high strength tubular alloys as alloy 625 and alloy 801.
- Tables XI and XII compare the minimum tube wall that would be allowed under the rules of the American Society of Mechanical Engineers Boiler and Pressure Vessels Code (ASME, B & PVC) assuming a constant volume of constant inside diameter. Since tubing is purchased by the length or foot this gives a direct comparison of the weight required for each alloy and therefore cost.
- the alloys selected for comparison are commercial alloys approved for Sec. VIII pressure vessel construction which are frequently used as tubulars in constructing heat exchangers and more specifically feedwater heaters. As can readily be seen the weight per foot of the instant alloy is considerably less than other engineering alloys. By virtuee of the thin wall the instant alloy has another important engineering advantage of high heat transfer; a very important property for heat exchanger tubing.
- the object or tube made by methods known to those skilled in the art, may be subjected to a stress relieving heat treatment of about 1100° to 1400° F. (599.3°-760° C.) for an appropriate period of time.
- the time period is, of course, a function of the temperature selected and the section size.
- the age-hardenable tubes may be drawn to final size, annealed at about 1700°-2000° F. for a suitable time, straightened, aged for about an hour at 1100°-1400° F., bent into the appropriate shape and stress relieved (which also ages the tube) at about 1100°-1400° F. for the appropriate time.
- the instant alloy fulfills the following parameters:
- a suitable composition for overall strength, corrosion resistance and economy for feedwater heaters is similar to heats 8 and 24. That is, a preferred composition is about 28Ni-16Cr-4Cu-up to 0.1Al-1.8Ti-2.5Mo-bal. Fe plus the other ingredient.
- This composition appears to have the mechanical and corrosion properties necessary for a high pressure material. It also has excellent general corrosion resistance in hydrochloric, sulfuric and phosphoric acids. The good resistance of this composition to polythionic acid attack also indicates potential petrochemical applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
TABLE I
__________________________________________________________________________
Chemical Analysis
% Weight
Heat
No.
C Mn Fe S Si Cu Ni Cr Al Ti Mg Co Mo Cb + Ta
Ce N V
__________________________________________________________________________
1 0.01
0.93
Bal.
0.003
0.36
3.57
28.32
16.24
0.08
1.75
-- 0.02
2.08
0.02 0.03
-- --
2 0.02
0.95
Bal.
0.003
0.42
3.42
28.75
15.94
0.08
2.02
-- 0.02
2.10
0.01 0.039
-- --
3 0.04
0.96
Bal.
0.003
0.42
3.57
28.59
15.59
0.08
2.30
-- 0.02
2.11
0.01 0.038
-- --
4 0.02
1.00
51.56
0.002
0.43
0.03
28.60
16.29
0.06
1.78
<0.001
<0.01
0.03
0.05 0.046
.005
--
5 0.03
0.96
50.72
0.002
0.34
<0.01
28.11
15.63
0.07
1.78
-- 0.01
1.96
0.02 0.043
.006
--
6 0.02
0.99
48.84
0.003
0.40
4.07
28.13
15.93
0.04
1.10
-- 0.01
0.04
<0.01
0.041
.004
--
7 0.02
0.98
47.40
0.003
0.40
3.86
27.98
15.92
0.05
0.83
-- <0.01
3.08
0.01 0.036
.004
--
8 0.02
1.00
46.52
0.001
0.45
3.98
28.05
15.68
0.02
1.79
<0.001
0.01
2.05
0.01 0.026
-- --
9 0.02
1.02
44.55
0.001
0.45
5.03
28.03
15.69
0.03
1.78
<0.001
0.01
3.02
0.01 0.022
-- --
10 0.03
0.91
45.72
0.004
0.45
5.03
27.95
15.80
0.02
0.74
<0.001
0.02
3.09
0.01 0.009
-- --
11 0.03
0.99
47.17
0.002
0.44
4.11
27.88
15.54
0.04
0.76
<0.001
0.01
2.07
0.49 0.030
-- --
12 0.02
1.00
Bal.
0.001
0.43
3.84
18.24
16.06
0.05
0.06
-- 0.01
2.03
<.01 0.029
.12 --
13 0.03
.95
Bal.
0.003
0.38
3.66
12.86
14.76
0.05
0.03
-- 0.02
1.92
.01 0.037
0.017
--
14 0.02
.98
Bal.
0.002
0.40
3.63
17.63
15.68
0.06
0.04
-- 0.02
2.03
<.01 0.028
0.004
--
15 0.03
.95
Bal.
0.003
0.42
3.38
27.03
16.52
0.06
0.03
-- 0.02
2.03
-- 0.041
-- --
16 0.03
0.95
Bal.
0.003
0.38
3.66
12.86
14.76
0.05
0.03
-- 0.02
1.92
.01 0.03
-- --
17 0.02
0.98
Bal.
0.002
0.40
3.63
17.63
15.68
0.06
0.04
-- 0.02
2.03
<.01 0.028
-- --
18 0.02
0.99
Bal.
0.003
0.40
3.88
17.98
19.41
0.06
0.03
-- 0.02
2.11
-- 0.26
-- --
19 0.02
1.01
Bal.
0.002
0.40
4.02
18.24
23.47
0.05
0.03
-- 0.02
2.04
-- 0.23
-- --
20 0.03
0.95
Bal.
0.003
0.42
3.38
27.03
16.52
0.06
0.03
-- 0.02
2.03
-- 0.41
-- --
21 0.04
0.87
Bal.
0.007
0.34
0.39
33.22
20.49
0.35
0.50
-- -- -- -- -- -- --
22 0.03
0.27
Bal.
0.007
0.60
0.25
20.64
19.67
0.37
0.43
-- -- -- -- -- -- --
23 0.02
1.05
Bal.
0.002
0.41
3.56
36.18
16.04
0.02
0.06
-- -- 2.04
-- 0.036
-- --
24 0.015
0.97
Bal.
0.002
0.42
3.54
27.49
15.92
0.11
1.64
-- 0.35
2.01
<.01 0.004
-- --
25 0.03
1.51
Bal.
0.005
1.89
<.01
26.54
23.00
0.01
0.28
-- 0.03
0.04
<.01 -- -- 1.20
26 0.04
1.09
Bal.
0.003
0.51
3.13
34.20
22.49
0.03
0.05
-- 0.03
2.90
0.79 <.01
-- 0.13
27 0.02
0.91
Bal.
0.004
1.97
0.19
39.65
31.89
<.01
<.01
-- 0.03
2.50
0.65 <.01
-- 2.30
28 0.06
1.01
Bal.
0.003
0.52
3.07
34.63
23.34
0.077
1.65
-- 0.03
2.73
0.78 -- -- 0.04
29 0.014
1.47
Bal.
0.004
1.98
0.16
26.77
25.54
0.024
1.58
-- 0.03
0.14
0.04 -- -- 1.29
30 0.03
.23
Bal.
0.003
0.36
3.29
33.10
19.77
-- -- -- -- 2.23
0.80 -- -- --
31 0.01
1.05
Bal.
0.001
0.45
3.89
28.45
15.70
0.05
1.81
-- 0.01
2.06
<0.01
-- -- --
__________________________________________________________________________
TABLE II
______________________________________
Tensile and Tear Strength of 75% CR Strip, .066 Gage
Hot Rolled @ 2050° F. + 1950° F./30 min.
Trans.
Notched Tear
Tear Strength
Str.
Trans-
Longi- to Yield
Heat YS TS El. TS/YS verse tudinal Str.
No. ksi ksi % Ratio ksi ksi Ratio
______________________________________
7 133.7 146.2 3.5 1.09 173.3 201.1; 198.7
1.30
10 129.2 146.0 4.0 1.13 193.8 198.7; 203.2
1.50
11 136.9 147.4 5.0 1.08 176.3 188.9; 201.1
1.29
4 135.8 150.9 5.0 1.11 163.0 195.4; 190.7
1.20
6 128.1 140.2 3.5 1.10 164.9 190.9; 191.4
1.29
5 140.8 156.0 3.5 1.11 172.2 207.2; 208.0
1.22
8 140.0 152.0 3.5 1.09 186.1 210.6; 206.9
1.33
9 142.4 154.9 4.5 1.09 192.1 211.2; 219.8
1.35
______________________________________
TABLE III
______________________________________
Effect of Cold Work on Tensile Properties
Annealed at 1950° F. (1066° C.)
15% 20% 65% 71%
Heat No. As Ann CW CW CW CW
______________________________________
1 YS, ksi 36. 82.1 100.1 134.7 138.9
(1.75% Ti)
TS, ksi 80. 100.1 113.6 147.1 155.
El, % 45. 28.5 13. 5. 3.5
Hard Rb 76.5 96. 99. -- --
Rc 17. 21. 32. 32.5
2 YS, ksi 34. 83.6 112.7 137.3 145.5
(2.02% Ti)
TS, ksi 79.5 105.1 124.2 148.8 159.2
El, % 46.5 25.5 8. 5. 4.
Hard Rb 74.5 96. 103. -- --
Rc 17. 26. 32. 33.4
3 YS, ksi 36.5 85.7 97. 139.8 139.
(2.30% Ti)
TS, ksi 80.5 107.7 116. 153.1 158.5
El, % 45. 25.5 18. 5. 3.5
Hard Rb 77. 97. 99. -- --
Rc 19. 21. 32. 33.
______________________________________
Ann = Annealed
CW = Cold Worked
TABLE IV ______________________________________ Tensile Properties of Cold RolledPlus Aging 15% 20% 65% 71% Heat No. As Ann* CW CW CW CW ______________________________________ 1 YS, ksi 110 110.9 136.6 157.5 164.8 TS, ksi 120 142.7 159.5 176.5 181.0 El, % 22.5 17.0 8.0 8.0 Hard, Rc 25 30 34 39 40 2 YS, ksi 110 126.2 151.6 168.7 171.4 TS, ksi 120 153.4 174.8 185.7 189.6 El, % 20 11.0 7.0 8.0 Hard, Rc 23.5 32.5 38.0 40. 40. 3 YS, ksi 124 126.7 147.6 176.1 176.9 TS, ksi 134 159.8 175.1 195.8 197.8 El, % 21.0 15. 9.0 7.0 Hard, Rc 27 35. 37. 42. 43.5 ______________________________________ *All samples aged 1350° F./1 hr, AC
TABLE V
______________________________________
Effect of Heat Treatment on Age-Hardenable Alloys
Forged 9/16 in. Squares
Heat Heat Treatment
YS TS El RA
No. °F./hr ksi ksi % %
______________________________________
1 1750/1/3 39.7 93.2 46 65.1
1750/1/3 + Age.sup.(1)
87.3 140.6 27 52.2
1750/1/3 + Age.sup.(2)
112.3 157.2 22 34.6
2 1750/1/3 40.1 95.4 43 65.7
1750/1/3 + Age.sup.(1)
84.7 151.3 29 47.2
1750/1/3 + Age.sup.(2)
124.2 169.9 21 38.6
3 1750/1/3 40.5 97.5 41 62.8
1750/1/3 + Age.sup.(1)
86.4 159.2 30 48.3
1750/1/3 + Age.sup.(2)
134.4 180.4 21 30.9
______________________________________
Age.sup.(1) 1350° F./1 hr
Age.sup.(2) 1350° F./8 hrs FC 100° F./hr to 1150°
F./8 hrs, AC
TABLE VI
______________________________________
Tensile Properties of 70% Cold Rolled Strip
Base Compositions Containing Approximately 4 Cu, 2 Mo
Heat Ni Cr Ti YS TS El. TS/YS
No. % % % ksi ksi % Ratio
______________________________________
16 12.86 14.76 .03 143.4 151.9
6.0 1.059
17 17.63 15.68 .04 132.4 145.0
5.5 1.095
18 17.98 19.41 .03 137.8 150.6
5.5 1.093
19 18.24 23.47 .03 136.3 162.0
6.5 1.189
20 27.03 16.52 .03 122.5 140.7
5.5 1.149
23.sup.(a)
36.18 16.04 .06 129.5 146.3
4.5 1.130
24.sup.(b)
27.49 15.92 1.64 134.0 148.1
5.0 1.105
______________________________________
.sup.(a) Average of two tensile tests.
.sup.(b) 74.5% cold reduction.
TABLE VII
__________________________________________________________________________
Tensile Properties of 70% Cold Rolled
Strip of Other Cold Workable Alloys
YS TS El
TS/YS
Alloy Name
Heat No.
% Ni
% Cr
% Mo
% Cu
% Si
% V
% Cb
% Ti
ksi
ksi
% Ratio
__________________________________________________________________________
alloy 800
21 33.22
20.49
-- .39 .34
-- -- .50
143
156
3.0
1.091
alloy 840
22 20.64
19.67
-- .25 .60
-- -- .43
143.5
157.5
3.0
1.098
SCR-3 25.sup.(a)
26.54
23.00
.04
.01 1.89
1.20
.01 .28
141.8
161.6
5.0
1.140
20Cb-3 26.sup.(a)
34.20
22.49
2.90
3.13
.51
.13
.79 .05
147.6
165.4
4.0
1.120
20Cb-3 + Ti
28.sup.(a)
34.63
23.34
2.73
3.07
.52
.04
.78 1.65
165.3
179.1
2.5
1.083
SCR-3 + Ti
.sup.(b)
__________________________________________________________________________
.sup.(a) Average of two tensile tests.
.sup.(b) SCR3 + Ti was not salvageable.
TABLE VIII
__________________________________________________________________________
Polythionic Acid Stress Corrosion Cracking Test Results
Intergranular Attack
Ploythionic Acid
ASTM A262, C
Heat No.
Alloy Condition Cracking Boiling 65%
__________________________________________________________________________
NHO.sub.3
24 Instant
CR + 2100° F./1/3 Hr, AC + 1400° F./1 Hr,
No 1000 mpy
25 SCR-3 " Yes 85 mpy
26 20Cb-3
" Yes 149 mpy
*30 20Cb-3
" Yes 727 mpy
24 Instant
Anneal + Autogenous Weld + 1250° F./1 Hr,
No --
** Type 321SS
" Yes --
** Type 347SS
" Yes --
24 Instant
Anneal + Autogenous Weld + 1250° F./1 Hr, AC
No --
1400° F./1 Hr, AC
*30 20Cb-3
Anneal + Autogenous Weld + 1250° F./1 Hr, AC
No --
1400° F./1 Hr, AC
31 Instant
Anneal + 1250° F./1 Hr, AC
No --
4 " " No 217
5 " " No 170
6 " " No 222
7 " " No 523
8 " " No 570
9 " " No 2266
10 " " No 1210
11 " " No 401
** Type 304SS
" Yes --
** Type 321SS
" No 137
** Type 347SS
" No 43
__________________________________________________________________________
*Commercial heat, composition 30 in Table I (One of two specimens
cracked).
**Commercial heat, exact chemical composition not available.
TABLE IX
______________________________________
Stress Corrosion Cracking Test Results - Maximum
Crack Depth (mils) of Duplicate Specimens,
One Month Test Period
3% NaCl,
pH4 50% NaOH
Alloy/Heat No.
% Cu* % Mo* 600° F.
Boiling
______________________________________
4 0 0 0 2
5 0 2.0 0 2
6 4.0 0 0 0
7 3.9 2.1 0 0
8 4.0 2.1 0 0
9 5.0 3.0 0 3
10 5.0 3.1 0 0
11 4.1 2.1 0 0
Ni--Cu alloy 400
32.56 -- 0 0
Stainless Steel 304
-- 0.24 15 10
______________________________________
NOTE: In 3% NaCl and 50% NaOH tests, heats 4, 5, 8 and 9 were annealed an
aged at 1350° F./1 hr, AC (12 aged at 1400° F./1 hr, AC),
all others were tested asannealed.
*Approximate Value
TABLE X
__________________________________________________________________________
General Corrosion Test Results - Average of Duplicates
in Annealed Condition (Corroson Rates in mpy)
25% HCl
80% H.sub.2 SO.sub.4
95% H.sub.2 SO.sub.4
85% H.sub.2 PO.sub.4
50% NaOH
Deaerated Water
Alloy/Heat No.
% Cu*
% Mo*
122° F.
140° F.
212° F.
Boiling
Boiling
600° F.
__________________________________________________________________________
4 0 0 1,970
52 401 15,000 0.2 --
5 0 2.0 156 30 221 6,426 0.4 --
6 4.0 0 1,489
10 99 6,477 0.1 --
7 3.9 2.1 148 2 160 61 0.2 --
8 4.0 2.0 107 2 159 64 0.1 --
9 5.0 3.0 112 2 142 54 0.1 --
10 5.0 3.1 110 6 127 51 0.1 --
11 4.1 2.1 146 2 192 60 0.1 --
15 3.4 2.0 -- -- -- -- -- 0.10
alloy 400
32.56
-- -- -- -- -- 0.1 0.48
Stainless Steel 304
-- 0.24
24,370
300 153 5,000 129 0.06
__________________________________________________________________________
*Approximate Value Tables IX and X also determine the resistance of the
instant alloy to environments other than that posed by feedwater heaters.
Molybdenum additions of 2-3% greatly improved resistance to hydrochloric
acid. Copper additions of 4% or more improved sulfuric acid resistance.
The combination of copper and molybdenum appears to improve resistance to
phosphoric acid. The instant alloy lends itself to chemical and
petrochemical applications. Also Table X shows the superior resistance of
the instant alloy compared to alloy 400 in deaerated water, the
environment present in feedwater heaters.
TABLE XI
______________________________________
Feedwater Heater Minimum Tube Wall For
Constant Volume with ID equal to .500 in
Service Conditions 700° F./5,000 psi.
Seamless
Tube Design OD Min
Alloy Spec Allowable, psi
in Wall, in.
lbs/ft
______________________________________
alloy 400
SB163 20,100 .646 .073 .503
Type 304SS
SA213 11,100 .809 .154 1.102
alloy 800
SB163 15,900 .694 .097 .644
Instant alloy
-- 27,800 .600 .050 .300
Sea Cure ®
SA268 (a) -- -- --
______________________________________
(a) Covered by Code Case 1922 which contains the warning that this alloy
will embrittle at temperatures over 600° F.
TABLE XII
______________________________________
Feedwater Heater Minimum Tube Wall for
Constant Volume with ID equal to .456 inches
Service Conditions 525° F./4,600 psi.
Seamless
Tube Design OD Min
Alloy Spec Allowable, psi
In Wall lbs/ft
______________________________________
C--1/2Mo SA199 15,000 .625 .085 .495
304 SA213 11,800 .690 .116 .728
316 SA213 9,800 .754 .149 .985
400 SB163 21,000 .570 .057 .352
Sea Cure (a)
SA268 15,500 .621 .082 .483
800 SB163 16,500 .608 .076 .437
600 SB163 20,000 .578 .061 .361
Instant alloy
-- 28,600 .538 .041 .223
______________________________________
(a) Welded
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/854,340 US4816217A (en) | 1984-03-16 | 1986-04-21 | High-strength alloy for industrial vessels |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US59039384A | 1984-03-16 | 1984-03-16 | |
| US06/854,340 US4816217A (en) | 1984-03-16 | 1986-04-21 | High-strength alloy for industrial vessels |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US59039384A Continuation-In-Part | 1984-03-16 | 1984-03-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4816217A true US4816217A (en) | 1989-03-28 |
Family
ID=27080833
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/854,340 Expired - Lifetime US4816217A (en) | 1984-03-16 | 1986-04-21 | High-strength alloy for industrial vessels |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4816217A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU696908B2 (en) * | 1996-06-17 | 1998-09-24 | Nippon Steel & Sumitomo Metal Corporation | Hydrogen sulfide corrosion resistant high-Cr and high-Ni alloys |
| US5945067A (en) * | 1998-10-23 | 1999-08-31 | Inco Alloys International, Inc. | High strength corrosion resistant alloy |
| US6171547B1 (en) * | 1997-08-13 | 2001-01-09 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel having excellent sulfuric acid corrosion resistance and excellent workability |
| US6344097B1 (en) * | 2000-05-26 | 2002-02-05 | Integran Technologies Inc. | Surface treatment of austenitic Ni-Fe-Cr-based alloys for improved resistance to intergranular-corrosion and-cracking |
| US20040230166A1 (en) * | 2003-02-26 | 2004-11-18 | Hill Jason P. | Kink resistant tube |
| WO2013048433A1 (en) * | 2011-09-30 | 2013-04-04 | Uop Llc | Process and apparatus for treating hydrocarbon streams |
| US20130327106A1 (en) * | 2011-02-18 | 2013-12-12 | Sistemi Sospensioni S.P.A. | Method for manufacturing high-strength steel sheet parts subject in use to fatigue stresses |
| US20200157667A1 (en) * | 2007-10-04 | 2020-05-21 | Nippon Steel Corporation | Austenitic stainless steel |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU420305A (en) * | 1905-09-21 | 1905-12-19 | Oliver Charles | Improvements in or relating to electric are lamps |
| FI18415A (en) * | 1935-11-18 | 1939-03-31 | Uddeholms Ab Hagfors Jernverk | The scope of the corrosion protection scheme |
| GB708820A (en) * | 1951-03-29 | 1954-05-12 | Carpenter Steel Co | Improvements in alloys |
| GB812582A (en) * | 1956-07-18 | 1959-04-29 | Universal Cyclops Steel Corp | Ferrous base alloys |
| US3168397A (en) * | 1962-01-03 | 1965-02-02 | Carpenter Steel Co | Steel alloy |
| US3492117A (en) * | 1966-10-21 | 1970-01-27 | Int Nickel Co | Corrosion resistant stainless type alloys |
| DE2528610A1 (en) * | 1974-07-02 | 1976-01-22 | Westinghouse Electric Corp | Iron-nickel-chromium alloy for fast breeder reactors - has high corrosion resistance to liq. sodium and low radiation-swelling |
| FR2330776A1 (en) * | 1974-07-02 | 1977-06-03 | Westinghouse Electric Corp | IMPROVEMENTS IN OR RELATING TO HIGH TEMPERATURE ALLOYS |
| US4201574A (en) * | 1977-03-02 | 1980-05-06 | Sumitomo Metal Industries, Ltd. | Low carbon Ni-Cr austenitic steel having an improved resistance to stress corrosion cracking |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU420305B (en) * | 1905-09-21 | 1905-12-19 | Oliver Charles | Improvements in or relating to electric are lamps |
-
1986
- 1986-04-21 US US06/854,340 patent/US4816217A/en not_active Expired - Lifetime
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU420305A (en) * | 1905-09-21 | 1905-12-19 | Oliver Charles | Improvements in or relating to electric are lamps |
| FI18415A (en) * | 1935-11-18 | 1939-03-31 | Uddeholms Ab Hagfors Jernverk | The scope of the corrosion protection scheme |
| GB708820A (en) * | 1951-03-29 | 1954-05-12 | Carpenter Steel Co | Improvements in alloys |
| GB812582A (en) * | 1956-07-18 | 1959-04-29 | Universal Cyclops Steel Corp | Ferrous base alloys |
| US3168397A (en) * | 1962-01-03 | 1965-02-02 | Carpenter Steel Co | Steel alloy |
| US3492117A (en) * | 1966-10-21 | 1970-01-27 | Int Nickel Co | Corrosion resistant stainless type alloys |
| DE2528610A1 (en) * | 1974-07-02 | 1976-01-22 | Westinghouse Electric Corp | Iron-nickel-chromium alloy for fast breeder reactors - has high corrosion resistance to liq. sodium and low radiation-swelling |
| FR2330776A1 (en) * | 1974-07-02 | 1977-06-03 | Westinghouse Electric Corp | IMPROVEMENTS IN OR RELATING TO HIGH TEMPERATURE ALLOYS |
| US4201574A (en) * | 1977-03-02 | 1980-05-06 | Sumitomo Metal Industries, Ltd. | Low carbon Ni-Cr austenitic steel having an improved resistance to stress corrosion cracking |
Non-Patent Citations (6)
| Title |
|---|
| "Carpenter 20CB-3® Stainless Steel". |
| "Development of New Alloy SCR-3 Resistant to Stress Corrosion Cracking in High Temperature High Pressure Water", by M. Kowaka, H. Fujikawa and T. Kobayashi. |
| Carpenter 20CB 3 Stainless Steel . * |
| Development of New Alloy SCR 3 Resistant to Stress Corrosion Cracking in High Temperature High Pressure Water , by M. Kowaka, H. Fujikawa and T. Kobayashi. * |
| Verlag Stahlsch ssel Wegst KG., Key to Steels , W. Germany, 10 edition, 1974. * |
| Verlag Stahlschussel Wegst KG., "Key to Steels", W. Germany, 10 edition, 1974. |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU696908B2 (en) * | 1996-06-17 | 1998-09-24 | Nippon Steel & Sumitomo Metal Corporation | Hydrogen sulfide corrosion resistant high-Cr and high-Ni alloys |
| US6171547B1 (en) * | 1997-08-13 | 2001-01-09 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel having excellent sulfuric acid corrosion resistance and excellent workability |
| US5945067A (en) * | 1998-10-23 | 1999-08-31 | Inco Alloys International, Inc. | High strength corrosion resistant alloy |
| US6344097B1 (en) * | 2000-05-26 | 2002-02-05 | Integran Technologies Inc. | Surface treatment of austenitic Ni-Fe-Cr-based alloys for improved resistance to intergranular-corrosion and-cracking |
| US6610154B2 (en) * | 2000-05-26 | 2003-08-26 | Integran Technologies Inc. | Surface treatment of austenitic Ni-Fe-Cr based alloys for improved resistance to intergranular corrosion and intergranular cracking |
| US20040230166A1 (en) * | 2003-02-26 | 2004-11-18 | Hill Jason P. | Kink resistant tube |
| US20200157667A1 (en) * | 2007-10-04 | 2020-05-21 | Nippon Steel Corporation | Austenitic stainless steel |
| US11866814B2 (en) * | 2007-10-04 | 2024-01-09 | Nippon Steel Corporation | Austenitic stainless steel |
| US20130327106A1 (en) * | 2011-02-18 | 2013-12-12 | Sistemi Sospensioni S.P.A. | Method for manufacturing high-strength steel sheet parts subject in use to fatigue stresses |
| WO2013048433A1 (en) * | 2011-09-30 | 2013-04-04 | Uop Llc | Process and apparatus for treating hydrocarbon streams |
| RU2566820C1 (en) * | 2011-09-30 | 2015-10-27 | Юоп Ллк | Method and apparatus for processing hydrocarbon streams |
| CN103890144B (en) * | 2011-09-30 | 2015-12-09 | 环球油品公司 | Method and apparatus for treating hydrocarbon streams |
| US9296958B2 (en) | 2011-09-30 | 2016-03-29 | Uop Llc | Process and apparatus for treating hydrocarbon streams |
| EP2760977A4 (en) * | 2011-09-30 | 2015-08-19 | Uop Llc | METHOD AND APPARATUS FOR PROCESSING HYDROCARBON STREAMS |
| CN103890144A (en) * | 2011-09-30 | 2014-06-25 | 环球油品公司 | Method and apparatus for treating hydrocarbon streams |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Eiselstein et al. | The invention and definition of alloy 625 | |
| US4788036A (en) | Corrosion resistant high-strength nickel-base alloy | |
| US4119765A (en) | Welded ferritic stainless steel articles | |
| US5879818A (en) | Nickel-based alloy excellent in corrosion resistance and workability | |
| US20150368775A1 (en) | Nickel-Chromium-Iron-Molybdenum Corrosion Resistant Alloy and Article of Manufacture and Method of Manufacturing Thereof | |
| EP0066361B2 (en) | Corrosion resistant high strength nickel-based alloy | |
| KR20050044557A (en) | Super-austenitic stainless steel | |
| US20030133823A1 (en) | Use of a duplex stainless steel alloy | |
| US5424029A (en) | Corrosion resistant nickel base alloy | |
| JPH07197181A (en) | Austenitic alloys and their use | |
| US4942922A (en) | Welded corrosion-resistant ferritic stainless steel tubing having high resistance to hydrogen embrittlement and a cathodically protected heat exchanger containing the same | |
| JPS58181842A (en) | Anticorrosive nickel-iron alloy | |
| US4816217A (en) | High-strength alloy for industrial vessels | |
| US3957544A (en) | Ferritic stainless steels | |
| US3342590A (en) | Precipitation hardenable stainless steel | |
| EP0155011B1 (en) | High-strength alloy for industrial vessels | |
| JPH10500177A (en) | Austenitic Ni-base alloy with high corrosion resistance, good workability and structural stability | |
| JP3864437B2 (en) | High Mo nickel base alloy and alloy tube | |
| CA1076396A (en) | Matrix-stiffened heat and corrosion resistant alloy | |
| US4915752A (en) | Corrosion resistant alloy | |
| US3573034A (en) | Stress-corrosion resistant stainless steel | |
| US4050928A (en) | Corrosion-resistant matrix-strengthened alloy | |
| US3023098A (en) | Low carbon ferritic stainless steel | |
| Bassford et al. | Nickel and its Alloys | |
| JPH05195126A (en) | High corrosion resistant alloy for boiler heat transfer tubes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INCO ALLOYS INTERNATIONAL, INC., HUNTINGTON, WEST Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BASSFORD, THOMAS H.;CRUM, JAMES R.;REEL/FRAME:004548/0483 Effective date: 19860417 Owner name: INCO ALLOYS INTERNATIONAL, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BASSFORD, THOMAS H.;CRUM, JAMES R.;REEL/FRAME:004548/0483 Effective date: 19860417 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: CONGRESS FINANCIAL CORPORATION, AS AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:HUNTINGTON ALLOYS CORPORATION;REEL/FRAME:015931/0726 Effective date: 20031126 Owner name: HUNTINGTON ALLOYS CORPORATION, WEST VIRGINIA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT LYONNAIS, NEW YORK BRANCH, AS AGENT;REEL/FRAME:014863/0704 Effective date: 20031126 |
|
| AS | Assignment |
Owner name: HUNTINGTON ALLOYS CORPORATION, WEST VIRGINIA Free format text: CHANGE OF NAME;ASSIGNOR:INCO ALLOYS INTERNATIONAL, INC.;REEL/FRAME:014913/0604 Effective date: 20020729 |
|
| AS | Assignment |
Owner name: CREDIT LYONNAIS NEW YORK BRANCH, IN ITS CAPACITY A Free format text: SECURITY INTEREST;ASSIGNOR:HUNTINGTON ALLOYS CORPORATION, (FORMERLY INCO ALLOYS INTERNATIONAL, INC.), A DELAWARE CORPORATION;REEL/FRAME:015139/0848 Effective date: 20031126 |
|
| AS | Assignment |
Owner name: CONGRESS FINANCIAL CORPORATION, AS AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:HUNTINGTON ALLOYS CORPORATION;REEL/FRAME:015027/0465 Effective date: 20031126 |
|
| AS | Assignment |
Owner name: HUNTINGTON ALLOYS CORPORATION, WEST VIRGINIA Free format text: RELEASE OF SECURITY INTEREST IN TERM LOAN AGREEMENT DATED NOVEMBER 26, 2003 AT REEL 2944, FRAME 0138;ASSIGNOR:CALYON NEW YORK BRANCH;REEL/FRAME:017759/0281 Effective date: 20060524 |
|
| AS | Assignment |
Owner name: SPECIAL METALS CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WACHOVIA BANK, NATIONAL ASSOCIATION (SUCCESSOR BY MERGER TO CONGRESS FINANCIAL CORPORATION);REEL/FRAME:017858/0243 Effective date: 20060525 Owner name: HUNTINGTON ALLOYS CORPORATION, WEST VIRGINIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WACHOVIA BANK, NATIONAL ASSOCIATION (SUCCESSOR BY MERGER TO CONGRESS FINANCIAL CORPORATION);REEL/FRAME:017858/0243 Effective date: 20060525 |