US4739916A - Sleeve repair of degraded nuclear steam generator tubes - Google Patents
Sleeve repair of degraded nuclear steam generator tubes Download PDFInfo
- Publication number
- US4739916A US4739916A US06/838,069 US83806986A US4739916A US 4739916 A US4739916 A US 4739916A US 83806986 A US83806986 A US 83806986A US 4739916 A US4739916 A US 4739916A
- Authority
- US
- United States
- Prior art keywords
- sleeve
- tube
- degraded
- brazing
- steam generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F11/00—Arrangements for sealing leaky tubes and conduits
- F28F11/02—Arrangements for sealing leaky tubes and conduits using obturating elements, e.g. washers, inserted and operated independently of each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/16—Devices for covering leaks in pipes or hoses, e.g. hose-menders
- F16L55/179—Devices for covering leaks in pipes or hoses, e.g. hose-menders specially adapted for bends, branch units, branching pipes or the like
Definitions
- This invention relates to sealable multimetallic tube sleeves and methods of installing these sleeves in degraded nuclear steam generator tubes, and the like.
- Nuclear steam generators generally fall into two classes: the once-through design with vertically extending straight tubes and upper and lower tube sheets, and the U-tube design with a lower tube sheet from which vertically extending tubes are secured after a 180 degree turn in the upper region of the steam generator. Due to the close spacing of the tubes and operating pressure, ligament efficiency is low requiring tube sheet thicknesses in the order of 24 inches.
- the tubes are expanded for about 3 inches at the lower ends and seal welded to the lower face of the lower tube sheet. A crevice of about 7 mils exists above the expanded portion of the tubes to the top face of the tube sheet.
- FIG. 1 is a sectional elevation view of a multimetallic sleeve embodying features of the invention.
- FIG. 2 is a part schematic view showing the position of a sleeve in one tube of a nuclear steam generator.
- FIG. 3 shows in detail the features of an installed sleeve in a steam generator tube.
- FIG. 4 is an enlarged view of a lower portion of FIG. 2 showing the sleeve in greater detail.
- the outer member 14 consists of a nickel alloy with a minimum content of 99% by weight of nickel or of pure nickel. Outer member 14 and inner member 12 are co-extruded at high temperature producing a diffusion-bonded sleeve 10.
- the lower end 17 of sleeve 10 is expanded over a length of about 3/4 of an inch to an outside diameter slightly less than the inside diameter of the tube 22 in which it is inserted for positioning of the sleeve 10 within tube 22.
- the upper end of sleeve 10 has two annular rings 16, 1/4 inch wide and spaced 1/4 inch apart which are prebrazed with a filler metal in a vacuum furnace. The upper edge of the upper ring 16 is one inch from the top of sleeve 10.
- the filler metal is a brazing material preferably of an alloy of 82% gold and 18% nickel by weight. This material was selected due to its corrosion resistance, material availability, good brazing characteristics and good strength and ductility.
- a typical tube sleeve 10 will have an outside diameter of 0.75 inch and a total wall thickness of 0.05 inch with the outer member 14 having a thickness of 0.005 inch and the inner member a thickness of 0.045 inch.
- the overall length of the sleeve 10 is 36 inches and when installed in a tube 22 in a tube sheet 20 will extend about 12 inches within the steam generator above the upper face of the tube sheet 20, spanning the defective area of the tube 22.
- the invention presents the best material option for duty as a sleeve repair device in a nuclear steam generator tube that has been (and will continue to be) degraded by caustic intergranular attack on the outside diameter of the tube 22.
- This is a direct consequence of the use on the outer portion of the sleeve 10 of an alloy with a minimum nickel content of 99% by weight, or of pure nickel, as a barrier to the caustic attack.
- These high nickel content materials are much less susceptible to caustic intergrandular attack than is Inconel-600. While the nickel material has these desired corrosion resistive properties, it does not have attractive mechanical properties.
- the wall thickness of such a sleeve would be significantly larger than that of the subject invention. This would force a reduction in the inside diameter of the sleeve which would result in a reduction in fluid flow through the repaired tube 22, equivalent to plugging many of the degraded tubes thus defeating the purpose of the sleeve repair.
- the sleeve installation process includes the following basic installation steps.
- Installation of the sleeve 10 requires the removal of loose oxides from the tube 22 in the vicinity of the explosive weld and cleaning the tube to bare metal in the vicinity of the braze. Cleaning is accomplished using a combination hone and swab. In the braze region the cleaning operation takes two minutes. Thirty seconds is sufficient at the explosive weld.
- sleeves are inserted into the tubes and explosively expanded in the braze region.
- a cartridge is inserted into the sleeve 10 outside the steam generator 18 and the assembly is inserted into a tube 22 and the cartridge is detonated expanding the sleeve 10 into the tube 22 over a two inch length in the braze region.
- the tube 22 is expanded to a range of between 3 to 12 mils forming a mechanical joint with the sleeve 10 which supports the sleeve 10 during subsequent operations.
- the spent explosive cartridge is then removed.
- a batch of sleeves 10 are brazed to the tubes 22 at the upper joint. Brazing is initiated by a water cooled induction heater which uses a fiber optic system to measure and control the temperature cycle.
- argon flow is established for 5 minutes from the opposite tube end from the end being sleeved. Flow of gas for the first 5 minutes is controlled to 50 cubic feet per hour. After this flow rate and time requirements have been met, the gas flow is reduced to 20 CFH and the induction heater is inserted and is accurately positioned relative to the sleeve expanded area and braze rings 16.
- an automatic controller holds the temperature for a minimum of two minutes. After the two minute braze hold, the temperature is reduced to between 1500° F. and 1550° F. and the temperature is held again for 5 minutes to thermally treat the Inconel-600 sleeve 10 and tube 22. Following the thermal treatment, power is shut off to the induction heater and which is then removed.
- Explosively welding the sleeve 10 to the tube 22 near the lower face of the tubesheet 20 is the final step in the sleeve installation process.
- An explosive weld cartridge is then inserted into sleeve 10 and detonated.
- the detonation shatters the weld cartridge and welds the sleeve 10 to the tubing 22. Following the detonation of a batch of the weld cartridges, the debris is removed from the steam generator 18 head. After detonation, the sleeve 10 is welded to the tube 22 over about a one-inch from about 11/2 to 21/2 inches from the lower end of tube 22. The explosive welding process also expands the sleeve 10 to the tube 22 for a length of 1/2 inch above and below the one-inch welded region.
- the tooling concept developed to accomplish the above involves the operation of automated tooling from outside the containment.
- a command center is used which is located outside the radiation area. From this command center all tooling operations can be controlled and monitored. Men, located near the steam generator and in constant communication with the command center, feed an automatic manipulator located in the steam generator head with the appropriate tools, sleeves and consumables to install the sleeves.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/838,069 US4739916A (en) | 1982-09-30 | 1986-03-10 | Sleeve repair of degraded nuclear steam generator tubes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/425,212 US4592577A (en) | 1982-09-30 | 1982-09-30 | Sleeve type repair of degraded nuclear steam generator tubes |
US06/838,069 US4739916A (en) | 1982-09-30 | 1986-03-10 | Sleeve repair of degraded nuclear steam generator tubes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/425,212 Division US4592577A (en) | 1982-09-30 | 1982-09-30 | Sleeve type repair of degraded nuclear steam generator tubes |
Publications (1)
Publication Number | Publication Date |
---|---|
US4739916A true US4739916A (en) | 1988-04-26 |
Family
ID=27026609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/838,069 Expired - Fee Related US4739916A (en) | 1982-09-30 | 1986-03-10 | Sleeve repair of degraded nuclear steam generator tubes |
Country Status (1)
Country | Link |
---|---|
US (1) | US4739916A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5787933A (en) * | 1994-02-25 | 1998-08-04 | Abb Reaktor Gmbh | Method of obtaining a leakproof connection between a tube and a sleeve |
US6129262A (en) * | 1997-02-24 | 2000-10-10 | Ford Global Technologies, Inc. | Fluxless brazing of unclad aluminum using selective area plating |
WO2001004535A1 (en) * | 1999-07-09 | 2001-01-18 | Enventure Global Technology | Two-step radial expansion |
US20010047866A1 (en) * | 1998-12-07 | 2001-12-06 | Cook Robert Lance | Wellbore casing |
US20020050360A1 (en) * | 1998-12-07 | 2002-05-02 | Cook Robert Lance | Forming a wellbore casing while simultaneously drilling a wellbore |
US20020060078A1 (en) * | 1998-12-07 | 2002-05-23 | Cook Robert Lance | Forming a wellbore casing while simultaneously drilling a wellbore |
US20020066576A1 (en) * | 1998-11-16 | 2002-06-06 | Cook Robert Lance | Isolation of subterranean zones |
US20020074134A1 (en) * | 1999-02-26 | 2002-06-20 | Shell Oil Co. | Apparatus for actuating an annular piston |
US6446857B1 (en) * | 2001-05-31 | 2002-09-10 | Delphi Technologies, Inc. | Method for brazing fittings to pipes |
US20020148612A1 (en) * | 1998-11-16 | 2002-10-17 | Shell Oil Co. | Isolation of subterranean zones |
US6557640B1 (en) | 1998-12-07 | 2003-05-06 | Shell Oil Company | Lubrication and self-cleaning system for expansion mandrel |
US6575240B1 (en) | 1998-12-07 | 2003-06-10 | Shell Oil Company | System and method for driving pipe |
US6575250B1 (en) | 1999-11-15 | 2003-06-10 | Shell Oil Company | Expanding a tubular element in a wellbore |
US6640903B1 (en) | 1998-12-07 | 2003-11-04 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6745845B2 (en) | 1998-11-16 | 2004-06-08 | Shell Oil Company | Isolation of subterranean zones |
US6823937B1 (en) | 1998-12-07 | 2004-11-30 | Shell Oil Company | Wellhead |
GB2395506B (en) * | 2001-07-06 | 2006-01-18 | Eventure Global Technology | Liner hanger |
US20080279325A1 (en) * | 2007-05-08 | 2008-11-13 | Jensen Grant C | Compression sleeves usable in nuclear reactors |
US7712522B2 (en) | 2003-09-05 | 2010-05-11 | Enventure Global Technology, Llc | Expansion cone and system |
US7739917B2 (en) | 2002-09-20 | 2010-06-22 | Enventure Global Technology, Llc | Pipe formability evaluation for expandable tubulars |
US7740076B2 (en) | 2002-04-12 | 2010-06-22 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
US7775290B2 (en) | 2003-04-17 | 2010-08-17 | Enventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7793721B2 (en) | 2003-03-11 | 2010-09-14 | Eventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7819185B2 (en) | 2004-08-13 | 2010-10-26 | Enventure Global Technology, Llc | Expandable tubular |
US7886831B2 (en) | 2003-01-22 | 2011-02-15 | Enventure Global Technology, L.L.C. | Apparatus for radially expanding and plastically deforming a tubular member |
US7918284B2 (en) | 2002-04-15 | 2011-04-05 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3912148A (en) * | 1974-04-30 | 1975-10-14 | Babcock & Wilcox Co | Combination welding and brazing device |
US4028189A (en) * | 1975-01-23 | 1977-06-07 | Kvaerner Brug A/S | Procedure and device for rapid composting of organic waste |
US4444353A (en) * | 1981-07-09 | 1984-04-24 | Avco Corporation | Brazing filler metal composition and process |
US4567632A (en) * | 1983-07-01 | 1986-02-04 | National Nuclear Corporation Limited | Heat exchange tube repairs |
US4592577A (en) * | 1982-09-30 | 1986-06-03 | The Babcock & Wilcox Company | Sleeve type repair of degraded nuclear steam generator tubes |
-
1986
- 1986-03-10 US US06/838,069 patent/US4739916A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3912148A (en) * | 1974-04-30 | 1975-10-14 | Babcock & Wilcox Co | Combination welding and brazing device |
US4028189A (en) * | 1975-01-23 | 1977-06-07 | Kvaerner Brug A/S | Procedure and device for rapid composting of organic waste |
US4444353A (en) * | 1981-07-09 | 1984-04-24 | Avco Corporation | Brazing filler metal composition and process |
US4592577A (en) * | 1982-09-30 | 1986-06-03 | The Babcock & Wilcox Company | Sleeve type repair of degraded nuclear steam generator tubes |
US4567632A (en) * | 1983-07-01 | 1986-02-04 | National Nuclear Corporation Limited | Heat exchange tube repairs |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5787933A (en) * | 1994-02-25 | 1998-08-04 | Abb Reaktor Gmbh | Method of obtaining a leakproof connection between a tube and a sleeve |
US6129262A (en) * | 1997-02-24 | 2000-10-10 | Ford Global Technologies, Inc. | Fluxless brazing of unclad aluminum using selective area plating |
US20020066576A1 (en) * | 1998-11-16 | 2002-06-06 | Cook Robert Lance | Isolation of subterranean zones |
US6634431B2 (en) | 1998-11-16 | 2003-10-21 | Robert Lance Cook | Isolation of subterranean zones |
US20020148612A1 (en) * | 1998-11-16 | 2002-10-17 | Shell Oil Co. | Isolation of subterranean zones |
US6712154B2 (en) | 1998-11-16 | 2004-03-30 | Enventure Global Technology | Isolation of subterranean zones |
US20030173090A1 (en) * | 1998-11-16 | 2003-09-18 | Shell Oil Co. | Lubrication and self-cleaning system for expansion mandrel |
US6745845B2 (en) | 1998-11-16 | 2004-06-08 | Shell Oil Company | Isolation of subterranean zones |
US6739392B2 (en) | 1998-12-07 | 2004-05-25 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US20010047866A1 (en) * | 1998-12-07 | 2001-12-06 | Cook Robert Lance | Wellbore casing |
US6758278B2 (en) | 1998-12-07 | 2004-07-06 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US20020060078A1 (en) * | 1998-12-07 | 2002-05-23 | Cook Robert Lance | Forming a wellbore casing while simultaneously drilling a wellbore |
US20020060068A1 (en) * | 1998-12-07 | 2002-05-23 | Cook Robert Lance | Forming a wellbore casing while simultaneously drilling a wellbore |
US6823937B1 (en) | 1998-12-07 | 2004-11-30 | Shell Oil Company | Wellhead |
US6725919B2 (en) | 1998-12-07 | 2004-04-27 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US20020050360A1 (en) * | 1998-12-07 | 2002-05-02 | Cook Robert Lance | Forming a wellbore casing while simultaneously drilling a wellbore |
US6640903B1 (en) | 1998-12-07 | 2003-11-04 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US20020060069A1 (en) * | 1998-12-07 | 2002-05-23 | Cook Robert Lance | Forming a wellbore casing while simultaneously drilling a wellbore |
US6470966B2 (en) | 1998-12-07 | 2002-10-29 | Robert Lance Cook | Apparatus for forming wellbore casing |
US6497289B1 (en) | 1998-12-07 | 2002-12-24 | Robert Lance Cook | Method of creating a casing in a borehole |
US6557640B1 (en) | 1998-12-07 | 2003-05-06 | Shell Oil Company | Lubrication and self-cleaning system for expansion mandrel |
US6561227B2 (en) | 1998-12-07 | 2003-05-13 | Shell Oil Company | Wellbore casing |
US7665532B2 (en) | 1998-12-07 | 2010-02-23 | Shell Oil Company | Pipeline |
US6575240B1 (en) | 1998-12-07 | 2003-06-10 | Shell Oil Company | System and method for driving pipe |
US6631760B2 (en) | 1998-12-07 | 2003-10-14 | Shell Oil Company | Tie back liner for a well system |
US20020092657A1 (en) * | 1999-02-26 | 2002-07-18 | Shell Oil Co. | Method of applying an axial force to an expansion cone |
US20020074130A1 (en) * | 1999-02-26 | 2002-06-20 | Shell Oil Co. | Apparatus for radially expanding a tubular member |
US6631769B2 (en) | 1999-02-26 | 2003-10-14 | Shell Oil Company | Method of operating an apparatus for radially expanding a tubular member |
US20020074134A1 (en) * | 1999-02-26 | 2002-06-20 | Shell Oil Co. | Apparatus for actuating an annular piston |
US6631759B2 (en) | 1999-02-26 | 2003-10-14 | Shell Oil Company | Apparatus for radially expanding a tubular member |
US6568471B1 (en) | 1999-02-26 | 2003-05-27 | Shell Oil Company | Liner hanger |
US20030121669A1 (en) * | 1999-02-26 | 2003-07-03 | Shell Oil Co. | Apparatus for releasably coupling two elements |
US6684947B2 (en) | 1999-02-26 | 2004-02-03 | Shell Oil Company | Apparatus for radially expanding a tubular member |
US20020084078A1 (en) * | 1999-02-26 | 2002-07-04 | Shell Oil Co. | Method of operating an apparatus for radially expanding a tubular member |
US6705395B2 (en) | 1999-02-26 | 2004-03-16 | Shell Oil Company | Wellbore casing |
US20020100594A1 (en) * | 1999-02-26 | 2002-08-01 | Shell Oil Co. | Wellbore casing |
US20020096338A1 (en) * | 1999-02-26 | 2002-07-25 | Shell Oil Co. | Method of coupling a tubular member to a preexisting structure |
GB2368865B (en) * | 1999-07-09 | 2004-02-11 | Enventure Global Technology | Two-step radial expansion |
GB2368865A (en) * | 1999-07-09 | 2002-05-15 | Enventure Global Technology | Two-step radial expansion |
WO2001004535A1 (en) * | 1999-07-09 | 2001-01-18 | Enventure Global Technology | Two-step radial expansion |
US6575250B1 (en) | 1999-11-15 | 2003-06-10 | Shell Oil Company | Expanding a tubular element in a wellbore |
US6446857B1 (en) * | 2001-05-31 | 2002-09-10 | Delphi Technologies, Inc. | Method for brazing fittings to pipes |
GB2395506B (en) * | 2001-07-06 | 2006-01-18 | Eventure Global Technology | Liner hanger |
US7740076B2 (en) | 2002-04-12 | 2010-06-22 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
US7918284B2 (en) | 2002-04-15 | 2011-04-05 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
US7739917B2 (en) | 2002-09-20 | 2010-06-22 | Enventure Global Technology, Llc | Pipe formability evaluation for expandable tubulars |
US7886831B2 (en) | 2003-01-22 | 2011-02-15 | Enventure Global Technology, L.L.C. | Apparatus for radially expanding and plastically deforming a tubular member |
US7793721B2 (en) | 2003-03-11 | 2010-09-14 | Eventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7775290B2 (en) | 2003-04-17 | 2010-08-17 | Enventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7712522B2 (en) | 2003-09-05 | 2010-05-11 | Enventure Global Technology, Llc | Expansion cone and system |
US7819185B2 (en) | 2004-08-13 | 2010-10-26 | Enventure Global Technology, Llc | Expandable tubular |
US20080279325A1 (en) * | 2007-05-08 | 2008-11-13 | Jensen Grant C | Compression sleeves usable in nuclear reactors |
US8724766B2 (en) * | 2007-05-08 | 2014-05-13 | General Electric Company | Compression sleeves usable in nuclear reactors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4592577A (en) | Sleeve type repair of degraded nuclear steam generator tubes | |
US4739916A (en) | Sleeve repair of degraded nuclear steam generator tubes | |
EP0047407B1 (en) | Sleeving method | |
KR100648741B1 (en) | Method of repairing a tube using a flow through tube plug, methods of repairing and forming a laminated tubesheet, and apparatus having a flow through tube plug | |
US6247231B1 (en) | Method for repairing heat exchanger tubing through partial tube replacement | |
EP0122610B1 (en) | Mechanical tube plug | |
US20050199591A1 (en) | Method of forming a weld pad | |
US5205038A (en) | Method of replacing a tube on a straight-tube heat exchanger | |
WO2006093899A2 (en) | Method for inspection and repair | |
US4694549A (en) | Method for remotely replacing tube ends in a heat exchanger | |
US4960650A (en) | Method of repairing or protecting an end of a metal tube in a heat exchanger and sleeve for implementing same | |
KR102021245B1 (en) | Method for repairing nozzle | |
EP0047410B1 (en) | Braze sleeving method | |
EP0626232A1 (en) | Device and method for sleeving an inside surface of a tube | |
US6596957B2 (en) | Method and apparatus and prefabricated replacement tube for localized waterwall repair | |
JPS6137366A (en) | Two-step brazing method of sleeve | |
US5167907A (en) | Process for plugging a tube of a straight-tube heat exchanger | |
US5135705A (en) | Plug and method for plugging a penetration in a pressure vessel wall | |
CN112719535A (en) | Pipe plate plug of pipe and welding method | |
US5983487A (en) | Apparatus for repairing a steam generator tube | |
JP3425233B2 (en) | Polishing device and tube expansion device for heat exchanger | |
KR19980084011A (en) | Equipment used to repair and repair defective heat pipes of large heat exchangers | |
EP0381880B1 (en) | Explosively welding sleeves to inner surfaces of tubes | |
JPH01237492A (en) | Method of repairing duplex tube part of reactor nozzle | |
JPH0198897A (en) | Method of plugging in double thermal transfer pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: B&W NUCLEAR, INC., A CORP. OF DE, VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BABCOCK & WILCOX COMPANY, THE, A CORP. OF DE;REEL/FRAME:005430/0086 Effective date: 19900904 |
|
AS | Assignment |
Owner name: FRAMATOME SERVICES CO., INC., A CORP. OF DELAWARE, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:B&W NUCLEAR, INC.;REEL/FRAME:005487/0996 Effective date: 19901025 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: B&W NUCLEAR SERVICE COMPANY A PARTNERSHIP OF DEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FRAMATOME SERVICES CO., INC., A CORP. OF DE;REEL/FRAME:005962/0185 Effective date: 19911202 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20000426 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |