US4734425A - 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs - Google Patents
7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs Download PDFInfo
- Publication number
- US4734425A US4734425A US06/920,006 US92000686A US4734425A US 4734425 A US4734425 A US 4734425A US 92000686 A US92000686 A US 92000686A US 4734425 A US4734425 A US 4734425A
- Authority
- US
- United States
- Prior art keywords
- sub
- groups
- amino
- compound
- hydroxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002253 acid Substances 0.000 title abstract description 50
- DYWAPFDKPAHSED-UHFFFAOYSA-N 2-cycloheptyloxepane Chemical group C1CCCCCC1C1OCCCCC1 DYWAPFDKPAHSED-UHFFFAOYSA-N 0.000 title abstract description 3
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical class C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 title abstract description 3
- 150000003180 prostaglandins Chemical class 0.000 title abstract description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 105
- 150000001875 compounds Chemical class 0.000 claims abstract description 80
- -1 CO2 alkali metal Chemical class 0.000 claims abstract description 70
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 47
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 33
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 19
- 125000003118 aryl group Chemical group 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract description 8
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 4
- 125000000304 alkynyl group Chemical group 0.000 claims abstract description 4
- 125000001691 aryl alkyl amino group Chemical group 0.000 claims abstract description 4
- 125000004104 aryloxy group Chemical group 0.000 claims abstract description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 3
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims abstract description 3
- 125000000278 alkyl amino alkyl group Chemical group 0.000 claims abstract description 3
- 125000005127 aryl alkoxy alkyl group Chemical group 0.000 claims abstract description 3
- 125000002102 aryl alkyloxo group Chemical group 0.000 claims abstract description 3
- 125000005128 aryl amino alkyl group Chemical group 0.000 claims abstract description 3
- 125000005160 aryl oxy alkyl group Chemical group 0.000 claims abstract description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 57
- 239000000203 mixture Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 26
- 150000002148 esters Chemical class 0.000 claims description 22
- 125000003282 alkyl amino group Chemical group 0.000 claims description 10
- 125000004414 alkyl thio group Chemical group 0.000 claims description 8
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 7
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000005236 alkanoylamino group Chemical group 0.000 claims description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 5
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 claims description 4
- 125000004658 aryl carbonyl amino group Chemical group 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 206010006482 Bronchospasm Diseases 0.000 claims description 3
- 125000001769 aryl amino group Chemical group 0.000 claims description 3
- 230000007885 bronchoconstriction Effects 0.000 claims description 3
- 208000010110 spontaneous platelet aggregation Diseases 0.000 claims description 3
- 208000018262 Peripheral vascular disease Diseases 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 125000005164 aryl thioalkyl group Chemical group 0.000 claims description 2
- 125000001475 halogen functional group Chemical group 0.000 claims description 2
- 125000002950 monocyclic group Chemical group 0.000 claims description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 2
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 claims 2
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 claims 1
- 125000003277 amino group Chemical group 0.000 claims 1
- 239000003937 drug carrier Substances 0.000 claims 1
- 125000003106 haloaryl group Chemical group 0.000 claims 1
- 208000007536 Thrombosis Diseases 0.000 abstract description 3
- 229940125692 cardiovascular agent Drugs 0.000 abstract description 3
- 239000002327 cardiovascular agent Substances 0.000 abstract description 3
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 abstract description 3
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 84
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 64
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 58
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 50
- 239000000243 solution Substances 0.000 description 48
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 44
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 42
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 30
- 239000002904 solvent Substances 0.000 description 26
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 25
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000007787 solid Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000000741 silica gel Substances 0.000 description 22
- 229910002027 silica gel Inorganic materials 0.000 description 22
- 239000010410 layer Substances 0.000 description 21
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 21
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 19
- 101150065749 Churc1 gene Proteins 0.000 description 19
- 102100038239 Protein Churchill Human genes 0.000 description 19
- 235000019439 ethyl acetate Nutrition 0.000 description 19
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 16
- 239000003921 oil Substances 0.000 description 16
- 150000001412 amines Chemical class 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- 150000004702 methyl esters Chemical class 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 11
- 239000004471 Glycine Substances 0.000 description 11
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 11
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 11
- YWGHUJQYGPDNKT-UHFFFAOYSA-N hexanoyl chloride Chemical compound CCCCCC(Cl)=O YWGHUJQYGPDNKT-UHFFFAOYSA-N 0.000 description 11
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000012300 argon atmosphere Substances 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000003818 flash chromatography Methods 0.000 description 8
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 8
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 8
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 8
- 235000012141 vanillin Nutrition 0.000 description 8
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 7
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 239000012043 crude product Substances 0.000 description 6
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- BSCHIACBONPEOB-UHFFFAOYSA-N oxolane;hydrate Chemical compound O.C1CCOC1 BSCHIACBONPEOB-UHFFFAOYSA-N 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000002178 crystalline material Substances 0.000 description 4
- 125000004494 ethyl ester group Chemical group 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- LEHBURLTIWGHEM-UHFFFAOYSA-N pyridinium chlorochromate Chemical compound [O-][Cr](Cl)(=O)=O.C1=CC=[NH+]C=C1 LEHBURLTIWGHEM-UHFFFAOYSA-N 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- TXTWXQXDMWILOF-UHFFFAOYSA-N (2-ethoxy-2-oxoethyl)azanium;chloride Chemical compound [Cl-].CCOC(=O)C[NH3+] TXTWXQXDMWILOF-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000002026 chloroform extract Substances 0.000 description 3
- 239000012230 colorless oil Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- FYRHIOVKTDQVFC-UHFFFAOYSA-M potassium phthalimide Chemical compound [K+].C1=CC=C2C(=O)[N-]C(=O)C2=C1 FYRHIOVKTDQVFC-UHFFFAOYSA-M 0.000 description 3
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 3
- 150000003536 tetrazoles Chemical group 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- RJUIDDKTATZJFE-NSCUHMNNSA-N (e)-but-2-enoyl chloride Chemical group C\C=C\C(Cl)=O RJUIDDKTATZJFE-NSCUHMNNSA-N 0.000 description 2
- UHDCEFMRUNYDPO-UHFFFAOYSA-N 2-(5-phenylpentanoylamino)acetic acid Chemical compound OC(=O)CNC(=O)CCCCC1=CC=CC=C1 UHDCEFMRUNYDPO-UHFFFAOYSA-N 0.000 description 2
- IGPROYLOGZTOAM-UHFFFAOYSA-N 3-phenylsulfanylpropanoic acid Chemical compound OC(=O)CCSC1=CC=CC=C1 IGPROYLOGZTOAM-UHFFFAOYSA-N 0.000 description 2
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- XNCNNDVCAUWAIT-UHFFFAOYSA-N Methyl heptanoate Chemical compound CCCCCCC(=O)OC XNCNNDVCAUWAIT-UHFFFAOYSA-N 0.000 description 2
- 229910017917 NH4 Cl Inorganic materials 0.000 description 2
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- UCVODTZQZHMTPN-UHFFFAOYSA-N heptanoyl chloride Chemical compound CCCCCCC(Cl)=O UCVODTZQZHMTPN-UHFFFAOYSA-N 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- XQYZDYMELSJDRZ-UHFFFAOYSA-N papaverine Chemical compound C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 XQYZDYMELSJDRZ-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical group CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical group 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 1
- FGOJCPKOOGIRPA-UHFFFAOYSA-N 1-o-tert-butyl 4-o-ethyl 5-oxoazepane-1,4-dicarboxylate Chemical compound CCOC(=O)C1CCN(C(=O)OC(C)(C)C)CCC1=O FGOJCPKOOGIRPA-UHFFFAOYSA-N 0.000 description 1
- HUHXLHLWASNVDB-UHFFFAOYSA-N 2-(oxan-2-yloxy)oxane Chemical compound O1CCCCC1OC1OCCCC1 HUHXLHLWASNVDB-UHFFFAOYSA-N 0.000 description 1
- PCKPJGQIEDSYLB-UHFFFAOYSA-N 2-(oxan-2-yloxyamino)acetic acid Chemical compound OC(=O)CNOC1CCCCO1 PCKPJGQIEDSYLB-UHFFFAOYSA-N 0.000 description 1
- DLDTUYIGYMNERN-UHFFFAOYSA-N 2-[(2-chloroacetyl)amino]acetic acid Chemical compound OC(=O)CNC(=O)CCl DLDTUYIGYMNERN-UHFFFAOYSA-N 0.000 description 1
- MYTAKEVMLYCYIE-UHFFFAOYSA-N 2-[(2-phenoxyacetyl)amino]acetic acid Chemical compound OC(=O)CNC(=O)COC1=CC=CC=C1 MYTAKEVMLYCYIE-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- PKUPAJQAJXVUEK-UHFFFAOYSA-N 2-phenoxyacetyl chloride Chemical compound ClC(=O)COC1=CC=CC=C1 PKUPAJQAJXVUEK-UHFFFAOYSA-N 0.000 description 1
- MOTOSAGBNXXRRE-UHFFFAOYSA-N 2-phenylsulfanylacetic acid Chemical compound OC(=O)CSC1=CC=CC=C1 MOTOSAGBNXXRRE-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- MFEILWXBDBCWKF-UHFFFAOYSA-N 3-phenylpropanoyl chloride Chemical compound ClC(=O)CCC1=CC=CC=C1 MFEILWXBDBCWKF-UHFFFAOYSA-N 0.000 description 1
- BYHDDXPKOZIZRV-UHFFFAOYSA-N 5-phenylpentanoic acid Chemical compound OC(=O)CCCCC1=CC=CC=C1 BYHDDXPKOZIZRV-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229930008281 A03AD01 - Papaverine Natural products 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 101100177155 Arabidopsis thaliana HAC1 gene Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DRSHXJFUUPIBHX-UHFFFAOYSA-N COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 Chemical compound COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 DRSHXJFUUPIBHX-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 238000005642 Gabriel synthesis reaction Methods 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 201000001429 Intracranial Thrombosis Diseases 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- OKJIRPAQVSHGFK-UHFFFAOYSA-N N-acetylglycine Chemical compound CC(=O)NCC(O)=O OKJIRPAQVSHGFK-UHFFFAOYSA-N 0.000 description 1
- UPCKIPHSXMXJOX-UHFFFAOYSA-N N-hexanoylglycine Chemical compound CCCCCC(=O)NCC(O)=O UPCKIPHSXMXJOX-UHFFFAOYSA-N 0.000 description 1
- 239000012425 OXONE® Substances 0.000 description 1
- 101100434170 Oryza sativa subsp. japonica ACR2.1 gene Proteins 0.000 description 1
- 101100434171 Oryza sativa subsp. japonica ACR2.2 gene Proteins 0.000 description 1
- YEIQSAXUPKPPBN-UHFFFAOYSA-N Phenylpropionylglycine Chemical compound OC(=O)CNC(=O)CCC1=CC=CC=C1 YEIQSAXUPKPPBN-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical group CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical group ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000004659 aryl alkyl thio group Chemical group 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- UENWRTRMUIOCKN-UHFFFAOYSA-N benzyl thiol Chemical compound SCC1=CC=CC=C1 UENWRTRMUIOCKN-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- QXYIKFJAELRZRN-UHFFFAOYSA-N but-3-ynoyl chloride Chemical group ClC(=O)CC#C QXYIKFJAELRZRN-UHFFFAOYSA-N 0.000 description 1
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 1
- DVECBJCOGJRVPX-UHFFFAOYSA-N butyryl chloride Chemical group CCCC(Cl)=O DVECBJCOGJRVPX-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000001589 carboacyl group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 208000002528 coronary thrombosis Diseases 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- IABZFPLSDXDLRS-UHFFFAOYSA-N cyclohexylmethyl methanesulfonate Chemical compound CS(=O)(=O)OCC1CCCCC1 IABZFPLSDXDLRS-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- CZTSIIMDDJFVBL-UHFFFAOYSA-N ethyl 2-(4-phenylbutanoylamino)acetate Chemical compound CCOC(=O)CNC(=O)CCCC1=CC=CC=C1 CZTSIIMDDJFVBL-UHFFFAOYSA-N 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- RGZRSLKIOCHTSI-UHFFFAOYSA-N hydron;n-methylhydroxylamine;chloride Chemical compound Cl.CNO RGZRSLKIOCHTSI-UHFFFAOYSA-N 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- REEZZSHJLXOIHL-UHFFFAOYSA-N octanoyl chloride Chemical group CCCCCCCC(Cl)=O REEZZSHJLXOIHL-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229960001789 papaverine Drugs 0.000 description 1
- HJKYXKSLRZKNSI-UHFFFAOYSA-I pentapotassium;hydrogen sulfate;oxido sulfate;sulfuric acid Chemical compound [K+].[K+].[K+].[K+].[K+].OS([O-])(=O)=O.[O-]S([O-])(=O)=O.OS(=O)(=O)O[O-].OS(=O)(=O)O[O-] HJKYXKSLRZKNSI-UHFFFAOYSA-I 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000004894 pentylamino group Chemical group C(CCCC)N* 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229950009215 phenylbutanoic acid Drugs 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical group CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- JNTUYVAHFOCONT-UHFFFAOYSA-N tert-butyl 2-[heptanoyl(oxan-2-yloxy)amino]acetate Chemical compound CCCCCCC(=O)N(CC(=O)OC(C)(C)C)OC1CCCCO1 JNTUYVAHFOCONT-UHFFFAOYSA-N 0.000 description 1
- BNWCETAHAJSBFG-UHFFFAOYSA-N tert-butyl 2-bromoacetate Chemical compound CC(C)(C)OC(=O)CBr BNWCETAHAJSBFG-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 239000003634 thrombocyte concentrate Substances 0.000 description 1
- DSNBHJFQCNUKMA-SCKDECHMSA-N thromboxane A2 Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)O[C@@H]2O[C@H]1C2 DSNBHJFQCNUKMA-SCKDECHMSA-N 0.000 description 1
- GJVUAUBGMGCLEB-UHFFFAOYSA-M triphenyl-[4-(2h-tetrazol-5-yl)butyl]phosphanium;bromide Chemical compound [Br-].N=1N=NNC=1CCCC[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 GJVUAUBGMGCLEB-UHFFFAOYSA-M 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/08—Bridged systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
Definitions
- the present invention relates to 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs which are cardiovascular agents useful, for example, in the treatment of thrombotic disease.
- These compounds have the structural formula ##STR4## including all stereoisomers thereof, wherein A is --CH ⁇ CH-- or --CH 2 --CH 2 --; n is 1 to 5; R is CO 2 H, CO 2 alkyl, CO 2 alkali metal, CO 2 polyhydroxyamine salt, --CH 2 OH, ##STR5## wherein R 4 and R 5 are the same or different and are H, lower alkyl, hydroxy, lower alkoxy or aryl, at least one of R 4 and R 5 being other than hydroxy and lower alkoxy; R 1 is H or OH; R 2 is OH or H, provided that one of R 1 and R 2 is OH and the other is H, q is 1 to 12; and R 3 is H, lower alkyl, lower alkenyl, lower alkynyl, aryl
- lower alkyl or “alkyl” as employed herein alone or as part of another group includes both straight and branched chain carbons, containing 1 to 12 carbons in the normal chain, preferably 1 to 7 carbons, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including a halo-substituent, such as F, Br, Cl or I or CF 3 , an alkoxy substituent, an aryl substituent, an alkyl-aryl substituent, a haloaryl substituent, a cycloal
- cycloalkyl as employed herein alone or as part of another group includes saturated cyclic hydrocarbon groups containing 3 to 12 carbons, preferably 3 to 8 carbons, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, any of which groups may be substituted with 1 or 2 halogens, 1 or 2 lower alkyl groups, 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylcarbonylamino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups, and/or 1 or 2 alkylthio groups.
- aryl refers to monocyclic or bicyclic aromatic groups containing from 6 to 10 carbons in the ring portion, such as phenyl, naphthyl, substituted phenyl or substituted naphthyl wherein the substituent on either the phenyl or naphthyl may be 1 or 2 lower alkyl groups, halogens (Cl, Br or F), 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylcarbonylamino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups, and/or 1 or 2 alkylthio groups.
- aralkyl refers to lower alkyl groups as discussed above having an aryl substituent, such as benzyl.
- lower alkoxy as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aralkyl or aryl groups linked to an oxygen atom.
- lower alkylthio as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aralkyl or aryl groups linked to a sulfur atom.
- lower alkylamino as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aryl or arylalkyl groups linked to a nitrogen atom.
- alkanoyl as used herein as part of another group refers to lower alkyl linked to a carbonyl group.
- lower alkenyl refers to straight or branched chain radicals of 2 to 12 carbons, preferably 2 to 6 carbons in the normal chain, which include one double bond in the normal chain, such as 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl and the like.
- lower alkynyl refers to straight or branched chain radicals of 2 to 12 carbons, preferably 2 to 6 carbons in the normal chain, which include one triple bond in the normal chain, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like.
- (CH 2 ) n includes straight or branched chain radicals having from 1 to 5 carbons in the normal chain and may contain one or more lower alkyl and/or halogen substituents.
- Examples of (CH 2 ) n groups include ##STR7## and the like.
- (CH 2 ) q includes straight or branched chain radicals having from 1 to 12 carbons in the normal chain and includes any of the above examples of (CH 2 ) n groups as well as (CH 2 ) 6 , (CH 2 ) 7 , (CH 2 ) 8 , (CH 2 ) 9 , (CH 2 ) 10 , (CH 2 ) 11 , (CH 2 ) 12 , and may be unsubstituted or substituted by one or more halo, hydroxy, alkoxy, amine, alkylamine, arylamine, amide, thioamide, thiol, alkylthio, arylthio, cyano or nitro groups.
- amide refers to the group ##STR8## wherein R 6 and R 7 are independently hydrogen, lower alkyl or aryl.
- polyhydroxyamine salt refers to glucamine salt or tris(hydroxymethyl)aminomethane.
- halogen or "halo” as used herein refers to chlorine, bromine, fluorine, iodine and CF 3 , with chlorine or fluorine being preferred.
- A is a --CH ⁇ CH--, n is 1 or 4, R is CO 2 H or CH 2 OH; R 1 is H or OH and R 2 is OH or H; (CH 2 ) q is --CH 2 --; R 2 is H or CH 3 , and R 3 is lower alkyl, such as pentyl, hexyl, or heptyl or lower alkoxy, such as pentoxy, lower alkylamino such as pentylamino or arylthioalkyl, such as phenylthiomethyl.
- compounds of the invention where R is CO 2 alkyl, R 1 is H, and R 2 is OH, that is ##STR10## are prepared by tosylating the lower alkyl ester containing the hydroxymethyl group, that is, compound II or IIA, (prepared as described in U.S. Pat. No. 4,143,054) by reacting II or IIA with tosyl chloride in the presence of pyridine to form the corresponding tosylate IV which is subjected to a displacement reaction by dissolving IV in dimethylsulfoxide and heating to 90° to 100° C. in the presence of potassium phthalimide to form the phthalimide V.
- the phthalimide V is then made to undergo selective hydrolysis by dissolving V in methylene chloride and ethanol under an inert atmosphere such as argon and reacting with anhydrous hydrazine to form the amine VI ##STR11##
- the amine VI is then subjected to a DCC (dicyclohexyl carbodiimide) coupling reaction by reacting VI with acid VII ##STR12## in the presence of an inert organic solvent such as tetrahydrofuran and dicyclohexyl carbodiimide under an inert atmosphere, such as argon, employing a molar ratio of VI:VII of within the range of from about 1:1 to about 1:1.2, to form the amide ester compound of the invention IA.
- DCC diclohexyl carbodiimide
- reaction sequence "B” there is shown a series of reactions for preparing starting material VII.
- t-butylbromoalkanoate A is reacted with amine B in the presence of sodium carbonate to form the reaction product C which is dissolved in ethyl ether, sodium bicarbonate and water and treated with acid chloride D to form E.
- Compound E is then cooled and treated with trifluoroacetic acid to form VII.
- the starting acid XI may be prepared by reacting the amino acid B' ##STR14## or its acid chloride with acid chloride B" ##STR15## (or its acid if the acid chloride of B' is employed) in the presence of a strong base such as NaOH and water.
- amides of the invention of structure IE ##STR22## wherein R 4 and R 5 are independently H, alkyl or aryl are prepared by treating ester IA or IC with an amine of the structure
- Ester I or XII is hydrolyzed with aqueous base, for example, LiOH or NaOH in THF/alcohol mixtures to afford acid IM.
- Ester IL is prepared by protection of IA as a tetrahydropyranyl ether using dihydropyran and an acid catalyst such as p-TsOH.
- a solution of acid IM dissolved in an inert organic solvent such as benzene is treated with oxalyl chloride and a catalytic amount of dimethylformamide (DMF) and the mixture is stirred at room temperature under nitrogen.
- the resulting acid chloride is dissolved in an inert organic solvent such as tetrahydrofuran and the so-formed solution is added dropwise into a cold solution of amine hydrochloride J ##STR31## (wherein R 5' is H or alkyl, employing a molar ratio of acid chloride:J of within the range of from about 0.3:1 to about 1:1 and preferably from about 0.5:1) and triethylamine in aqueous tetrahydrofuran to form the hydroxamate IN. ##STR32##
- Hydroxamate IN is deprotected by treatment with a lower alcohol, such as, MeOH and an acid catalyst, such as, p-TsOH, to form compound IO ##STR33## wherein R 1 or R 2 is OH.
- the tris(hydroxymethyl)aminomethane salt of any of the acids of formula I of the present invention is formed by reacting a solution of such acid in an inert solvent such as methanol with tri(hydroxymethyl)aminomethane and thereafter the solvent is removed by evaporation to leave the desired salt.
- nucleus in each of the compounds of the invention is depicted as ##STR35## for matter of convenience; it will also be appreciated that the nucleus in the compounds of the invention may be depicted as ##STR36##
- the compounds of this invention are cardiovascular agents useful as platelet aggregation inhibitors, such as in inhibiting arachidonic acid-induced platelet aggregation, e.g., for treatment of thrombotic disease such as coronary or cerebral thromboses, and in inhibiting broncho-constriction. They are also selective thromboxane A 2 receptor antagonists and synthetase inhibitors, e.g., having a vasodilatory effect for treatment of myocardial ischemic disease, such as angina pectoris.
- the compounds of this invention may also be used in combination with a cyclic AMP phosphodiesterase (PDE) inhibitor such as theophylline or papaverine in the preparation and storage of platelet concentrates.
- PDE cyclic AMP phosphodiesterase
- the compounds of the invention can be administered orally or parenterally to various mammalian species known to be subject to such maladies, e.g., humans, cats, dogs, and the like in an effective amount within the dosage range of about 1 to 100 mg/kg, preferably about 1 to 50 mg/kg and especially about 2 to 25 mg/kg on a regimen in single or 2 to 4 divided daily doses.
- the active substance can be utilized in a composition such as tablet, capsule, solution or suspension containing about 5 to about 500 mg per unit of dosage of a compound or mixture of compounds of formula I. They may be compounded in conventional matter with a physiologically acceptable vehicle or carrier, excipient, binder, preservative, stabilizer, flavor, etc. as called for by accepted pharmaceutical practice. Also as indicated in the discussion above, certain members additionaly serve as intermediates for other members of the group.
- the compounds of the invention may also be administered topically to treat peripheral vascular diseases and as such may be formulated as a cream or ointment.
- Part A (2) ester (1.10 g, 3.2 mmol) was cooled in an ice bath and treated with precooled distilled trifluoroacetic acid (15 ml). The solution was stirred at 0°-5° C. for 5 hours. The trifluoroacetic acid was removed in vacuo. The residue was partially dissolved in Et 2 O (30 ml). The product was extracted into 2N NaOH solution (2 ⁇ 20 ml). The basic extracts were washed with Et 2 O (20 ml) and then acidified with concentrated HCl.
- the potassium phthalimide used was purified prior to use by boiling 5 g thereof with 9 ml acetone for 15 minutes, filtering while hot and washing with 5 ml acetone. The remaining solid was dried in vacuo for 6 hours at 100° C. prior to use.
- Part C chiral amine (411 mg, 1.54 mmol) and Part A acid (325 mg, 1.6 mmol) were largely dissolved in distilled tetrahydrofuran (20 ml) in an argon atmosphere.
- the mixture was cooled in an ice bath and dicyclohexylcarbodiimide (330 mg, 1.6 mmol) was added. After stirring cold for 2 hours, the reaction mixture was left stirring overnight at room temperature. The solvent was removed in vacuo. Ethyl acetate (8 ml) was added to the residue. After cooling in an ice bath, the solid was removed by filtration and washed with additional cold EtOAc (8 ml). The filtrate was taken to dryness leaving a yellow oil (730 mg).
- Example 1 methyl ester (452 mg, 1 mmol) was dissolved in distilled THF (40 ml) and water (8 ml) in an argon atmosphere 1N LiOH solution (9.5 ml) was added and the mixture was stirred at room temperature for 33/4 hours. After neutralization with 1N HCl (9.5 ml), solid KCl was added and the layers were separated. The aqueous layer was reextracted with CHCl 3 (3 ⁇ 50 ml). The combined organic layers (THF+CHCl 3 ) were washed with saturated NaCl solution (2 ⁇ 25 ml), dried (MgSO 4 ), and freed of solvent in vacuo leaving a viscous oil.
- Part B ester compound (548 mg, 1.5 mmol) was dissolved in methanol (10 ml) and NaCNBH 3 (234 mg, 3.72 mmol) was added. The solution was cooled in an ice bath and a mixture of acetic acid (7.7 ml) and methanol (7 ml) was added dropwise over a period of 1 hour. The mixture was left overnight at room temperature. Saturated NH 4 Cl solution (3.5 ml) was added and the mixture was stirred 1 hour at room temperature. Most of the methanol was removed in vacuo.
- Part A acid (468 mg, 2.5 mmol) was dissolved in distilled tetrahydrofuran (15 ml) and cooled in an ice bath in an argon atmosphere. Carbonyldiimidazole (405 mg, 2.5 mmol) was added and the mixture was stirred cold for 1 hour and stirred at room temperature for 1 hour. The mixture was again cooled in an ice bath and a solution of Part C ester (460 mg, 1.25 mmol) in distilled tetrahydrofuran (10 ml) was added. The mixture was stirred at room temperature and followed by TLC. After 44 hours the solvent was removed in vacuo.
- Part D compound (550 mg, 1.02 mmol) was dissolved in methanol (30 ml) in an argon atmosphere.
- p-Toluene sulfonic acid.H 2 O (10 mg) was added and the mixture was stirred at room temperature 22 hours.
- TLC indicated a small amount of Part D compound remained and additional p-toluene sulfonic acid (30 mg) was added and the mixture was stirred another 8 hours.
- Saturated NaHCO 3 solution (20 ml) was then added and most of the methanol was removed in vacuo.
- EtOAc 50 ml was added and the layers were separated.
- the aqueous layer is extracted with 250 ml of ethyl acetate.
- the combined organic solutions are evaporated in vacuo, diluted with 500 ml of a 5% NaHCO 3 solution, washed with 100 ml of ether, acidified with dilute HCl to pH 3, and extracted with three 500 ml portions of ethyl acetate.
- the combined organic solutions are dried over anhydrous MgSO 4 , and purified by silica chromatography using a 5% methanol in methylene chloride eluant to provide title A compound.
- Example 4 acid (0.82 mmole) in dry benzene (5.0 ml) is treated with oxalyl chloride (1 ml; 11.24 mmole or 13.7 eq.) and a drop of DMF, and stirred at room temperature under nitrogen for 2 hours The excess oxalyl chloride and solvent are blown off by a stream of nitrogen while heating the reaction flask in a warm water bath and the oil obtained dried in vacuo (oil pump) for 1 hour.
- the residual acid chloride is dissolved in dry tetrahydrofuran (1.5 ml) and added dropwise into a cold solution (0°, ice-water) of 98% methylhydroxylamine hydrochloride (139.8 mg; 1.64 mmole; 2 eq.) and triethylamine (0.34 ml; 2.46 mmole; 3 eq.) in tetrahydrofuran (2 ml) and water (2.0 ml). The mixture is stirred at 0° under nitrogen for 30 minutes and at room temperature for 5.5 hours, diluted with water (10 ml) and extracted twice with dichloromethane (50 ml).
- the Part A ester (3.07 g, 12.3 mmol) was hydrolyzed with NaOH (5 g, 125 mmol) in water (60 ml). After stirring at room temperature 6 hours, neutral material was removed by washing with Et 2 O (2 ⁇ 50 ml). The aqueous solution was then acidified with concentrated HCl solution. The product was extracted into CHCl 3 (3 ⁇ 60 ml), dried (MgSO 4 ) and freed of solvent in vacuo leaving a white solid. This was recrystallized from EtOAc (10 ml) to give title compound (2.18 g, 80%), m.p. 99°-101° C.
- the Part C methyl ester (0.71 mmol) is hydrolyzed with LiOH in a water-THF mixture as described in Example 2 to form title acid.
- the Part A ethyl ester was hydrolyzed with aqueous NaOH as described in Example 18 Part B to give the title acid (1.041 g, 92%) as a crystalline material.
- the Part B methyl ester (0.72 mmol) is hydrolyzed with LiOH in a water-THF mixture as described in Example 4 to form the title acid.
- the Part C methyl ester (0.749 mmol) is hydrolyzed with LiOH in a water-THF mixture as described in Example 2 to form title acid.
- Part B acid (0.740 g, 4.06 mmol) was reacted with carbonyldiimidazole (4.06 mmol) followed by glycine ethyl ester.HCl (4.06 mmol) as described in Example 56 Part A to give the title ester (1.00 g, 92%) as crystalline material.
- the Part E methyl ester (1.285 mmol) is dissolved in THF (25 ml) and H 2 O (2.5 ml) in an argon atmosphere and treated with 1N LiOH solution (2.6 ml). The mixture is stirred at room temperature for 5 hours and then worked up as described in Example 4 to form the title acid.
- Example 24 Part A acid compound (1.28 g, 8.4 mmol) was reacted with 1-butanethiol using the procedure described in Example 64. The crude product was crystallized with diisopropylether ( ⁇ 10 ml) to give title acid (0.55 g, 32%).
- the Part B methyl ester (1.18 mmol) is hydrolyzed with 1N LiOH solution (2.4 ml) in a tetrahydrofuran-water mixture using the procedure described in Example 1 to form the title acid.
- Example 64 Part A compound (6 mmol) and the Example 64 Part A acid (6 mmol) were reacted in the presence of NaOMe (17 mmol) as described in Example 64 Part B.
- the crude product was crystallized from diisopropyl ether to give title compound (516 mg, 35%).
- Example 19 acid compound (0.9 mmol) is dissolved in methanol (10 ml) and cooled in an ice bath. Oxone (810 mg ⁇ 2.7 mmol) dissolved in water (10 ml) is added. The mixture is stirred at room temperature 4 hours, then diluted with water (30 ml). The product is extracted into CHCl 3 (3 ⁇ 35 ml). The combined CHCl 3 extracts are washed with saturated NaCl solution (2 ⁇ 20 ml), dried (MgSO 4 ), and freed of solvent in vacuo leaving the title product.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
7-Oxabicycloheptane substituted hydroxamic acid prostaglandin analogs are provided having the structural formula ##STR1## wherein A is --CH═CH-- or --CH2 -CH2 --; n is 1 to 5; R is CO2 H, CO2 alkyl, CO2 alkali metal, CO2 polyhydroxyamine salt, --CH2 OH, ##STR2## wherein R4 and R5 are the same or different and are H, lower alkyl, hydroxy, lower alkoxy or aryl, at least one of R4 and R5 being other than hydroxy and lower alkoxy; q is 1 to 12, R1 is H or OH; R2 is OH or H, provided that one of R1 and R2 is OH and the other is H; and R3 is H, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower alkoxy, aryloxy, arylalkyloxy, amino, alkylamino arylamino, arylalkylamino, ##STR3## (wherein n' is 0, 1 or 2), alkylaminoalkyl, arylaminoalkyl, arylalkylaminoalkyl, alkoxyalkyl, aryloxyalkyl or arylalkoxyalkyl.
The compounds are cardiovascular agents useful, for example, in the treatment of thrombotic disease.
Description
The present invention relates to 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs which are cardiovascular agents useful, for example, in the treatment of thrombotic disease. These compounds have the structural formula ##STR4## including all stereoisomers thereof, wherein A is --CH═CH-- or --CH2 --CH2 --; n is 1 to 5; R is CO2 H, CO2 alkyl, CO2 alkali metal, CO2 polyhydroxyamine salt, --CH2 OH, ##STR5## wherein R4 and R5 are the same or different and are H, lower alkyl, hydroxy, lower alkoxy or aryl, at least one of R4 and R5 being other than hydroxy and lower alkoxy; R1 is H or OH; R2 is OH or H, provided that one of R1 and R2 is OH and the other is H, q is 1 to 12; and R3 is H, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower alkoxy, arylalkyloxy, aryloxy, alkylamino, arylalkylamino, arylamino, lower alkyl-S-, aryl-S-, arylalkyl-S-, ##STR6## (wherein n' is 0, 1 or 2), alkylaminoalkyl, arylaminoalkyl, arylalkylaminoalkyl, alkoxyalkyl, aryloxyalkyl or arylalkoxyalkyl.
The term "lower alkyl" or "alkyl" as employed herein alone or as part of another group includes both straight and branched chain carbons, containing 1 to 12 carbons in the normal chain, preferably 1 to 7 carbons, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including a halo-substituent, such as F, Br, Cl or I or CF3, an alkoxy substituent, an aryl substituent, an alkyl-aryl substituent, a haloaryl substituent, a cycloalkyl substituent, an alkylcycloalkyl substituent, hydroxy, and alkylamino substituent, an alkanoylamino substituent, an arylcarbonylamino substituent, a nitro substituent, a cyano substituent, a thiol substituent or an alkylthio substituent.
The term "cycloalkyl" as employed herein alone or as part of another group includes saturated cyclic hydrocarbon groups containing 3 to 12 carbons, preferably 3 to 8 carbons, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, any of which groups may be substituted with 1 or 2 halogens, 1 or 2 lower alkyl groups, 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylcarbonylamino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups, and/or 1 or 2 alkylthio groups.
The term "aryl" or "Ar" as employed herein refers to monocyclic or bicyclic aromatic groups containing from 6 to 10 carbons in the ring portion, such as phenyl, naphthyl, substituted phenyl or substituted naphthyl wherein the substituent on either the phenyl or naphthyl may be 1 or 2 lower alkyl groups, halogens (Cl, Br or F), 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylcarbonylamino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups, and/or 1 or 2 alkylthio groups.
The term "aralkyl", "aryl-alkyl" or "aryl-lower alkyl" as used herein alone or as part of another group refers to lower alkyl groups as discussed above having an aryl substituent, such as benzyl.
The term "lower alkoxy", "alkoxy", or "aryloxy" or "aralkoxy" as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aralkyl or aryl groups linked to an oxygen atom.
The term "lower alkylthio", "alkylthio", "arylthio" or "aralkylthio" as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aralkyl or aryl groups linked to a sulfur atom.
The term "lower alkylamino", "alkylamino", "arylamino", "arylalkylamino" as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aryl or arylalkyl groups linked to a nitrogen atom.
The term "alkanoyl" as used herein as part of another group refers to lower alkyl linked to a carbonyl group.
The term "lower alkenyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 12 carbons, preferably 2 to 6 carbons in the normal chain, which include one double bond in the normal chain, such as 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl and the like.
The term "lower alkynyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 12 carbons, preferably 2 to 6 carbons in the normal chain, which include one triple bond in the normal chain, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like.
The term (CH2)n includes straight or branched chain radicals having from 1 to 5 carbons in the normal chain and may contain one or more lower alkyl and/or halogen substituents. Examples of (CH2)n groups include ##STR7## and the like.
The term (CH2)q includes straight or branched chain radicals having from 1 to 12 carbons in the normal chain and includes any of the above examples of (CH2)n groups as well as (CH2)6, (CH2)7, (CH2)8, (CH2)9, (CH 2)10, (CH2)11, (CH2)12, and may be unsubstituted or substituted by one or more halo, hydroxy, alkoxy, amine, alkylamine, arylamine, amide, thioamide, thiol, alkylthio, arylthio, cyano or nitro groups.
The term "amide" refers to the group ##STR8## wherein R6 and R7 are independently hydrogen, lower alkyl or aryl.
The term "polyhydroxyamine salt" refers to glucamine salt or tris(hydroxymethyl)aminomethane.
The term "halogen" or "halo" as used herein refers to chlorine, bromine, fluorine, iodine and CF3, with chlorine or fluorine being preferred.
Preferred are those compounds of formula I wherein A is a --CH═CH--, n is 1 or 4, R is CO2 H or CH2 OH; R1 is H or OH and R2 is OH or H; (CH2)q is --CH2 --; R2 is H or CH3, and R3 is lower alkyl, such as pentyl, hexyl, or heptyl or lower alkoxy, such as pentoxy, lower alkylamino such as pentylamino or arylthioalkyl, such as phenylthiomethyl.
The compounds of formula I of the invention may be prepared as described below. ##STR9##
As seen in reaction sequence "A", compounds of the invention where R is CO2 alkyl, R1 is H, and R2 is OH, that is ##STR10## are prepared by tosylating the lower alkyl ester containing the hydroxymethyl group, that is, compound II or IIA, (prepared as described in U.S. Pat. No. 4,143,054) by reacting II or IIA with tosyl chloride in the presence of pyridine to form the corresponding tosylate IV which is subjected to a displacement reaction by dissolving IV in dimethylsulfoxide and heating to 90° to 100° C. in the presence of potassium phthalimide to form the phthalimide V. The phthalimide V is then made to undergo selective hydrolysis by dissolving V in methylene chloride and ethanol under an inert atmosphere such as argon and reacting with anhydrous hydrazine to form the amine VI ##STR11## The amine VI is then subjected to a DCC (dicyclohexyl carbodiimide) coupling reaction by reacting VI with acid VII ##STR12## in the presence of an inert organic solvent such as tetrahydrofuran and dicyclohexyl carbodiimide under an inert atmosphere, such as argon, employing a molar ratio of VI:VII of within the range of from about 1:1 to about 1:1.2, to form the amide ester compound of the invention IA.
Referring to reaction sequence "B", there is shown a series of reactions for preparing starting material VII. As seen in reaction sequence "B", t-butylbromoalkanoate A is reacted with amine B in the presence of sodium carbonate to form the reaction product C which is dissolved in ethyl ether, sodium bicarbonate and water and treated with acid chloride D to form E. Compound E is then cooled and treated with trifluoroacetic acid to form VII.
The starting acid XI ##STR13## may be prepared by reacting the amino acid B' ##STR14## or its acid chloride with acid chloride B" ##STR15## (or its acid if the acid chloride of B' is employed) in the presence of a strong base such as NaOH and water.
As seen in reaction sequence "C", compounds of the invention where R is CO2 alkyl, R1 is OH and R2 is H, that is ##STR16## are prepared by treating aldehyde VIII ##STR17## with amine F ##STR18## in the presence of solvent such as methanol to form ester IX ##STR19## which is reduced by treating IX with reducing agent such as sodium cyanoborohydride in the presence of acetic acid and methanol to form ester X ##STR20## Ester X is then subjected to a CDI (carbonyldiimidazole) coupling reaction by reacting X with acid XI ##STR21## in the presence of an inert organic solvent such as tetrahydrofuran and carbonyldiimidazole under an inert atmosphere, such as argon, employing a molar ratio of X:XI of within the range of from about 1:1 to about 1:1.2 to form the amide ester XII which is treated with p-toluene sulfonic acid in the presence of methanol (under argon) to form ester compound of the invention IC.
In reaction sequence "D", amides of the invention of structure IE ##STR22## wherein R4 and R5 are independently H, alkyl or aryl are prepared by treating ester IA or IC with an amine of the structure
HNR.sup.4 R.sup.5 G
Compounds of the invention wherein R is tetrazole ##STR23## and A is CH═CH are prepared as described in reaction sequence "E" wherein alcohol XIII ##STR24## (prepared as described in U.S. Pat. No. 4,143,054) is reacted with a Wittig reagent of the structue H ##STR25## in the presence of a base, such as potassium t-butoxide or sodium hydride-dimethyl sulfoxide employing a molar ratio of XIII:H of within the range of from about 1:1 to about 0.2:1 to form the hydroxymethyl compound XIV ##STR26## which may then be employed in reaction sequences "A" and "C" in place of compounds II or IIA to form compounds of the invention IF where A is --CH═CH-- or IG where A is (CH2)2 ##STR27## Alternatively, compound IG may be prepared by reducing compound IF by treating with H2 in the presence of palladium on charcoal.
Compounds of the invention wherein R is tetrazole and A is HC═CH, R1 is OH and R2 is H were prepared as described in scheme H wherein alcohol XIV is oxidized ##STR28## to the aldehyde XIVA using, for example, PCC (pyridinium chlorochromate) in an inert solvent, such as methylene chloride. Aldehyde XIVA is then carried on to IH using the sequence outlined in scheme C.
Compound of the invention wherein R is tetrazole and A is (CH2)2, R1 is OH and R2 is H, are prepared as described in scheme J wherein acid IG is reduced with hydrogen in the presence of a catalyst, i.e., palladium on carbon to afford IJ.
As seen in reaction sequence "K", compounds of the invention wherein R is CH2 OH may be prepared by reducing esters IA or IC by treatment with sodium borohydride or lithium borohydride to form compounds of the invention IK ##STR29##
In the reaction sequence identified as "L" Formula I compounds wherein R is ##STR30## wherein R5' is H or alkyl may be prepared as follows.
Ester I or XII is hydrolyzed with aqueous base, for example, LiOH or NaOH in THF/alcohol mixtures to afford acid IM. Ester IL is prepared by protection of IA as a tetrahydropyranyl ether using dihydropyran and an acid catalyst such as p-TsOH.
A solution of acid IM dissolved in an inert organic solvent such as benzene is treated with oxalyl chloride and a catalytic amount of dimethylformamide (DMF) and the mixture is stirred at room temperature under nitrogen. The resulting acid chloride is dissolved in an inert organic solvent such as tetrahydrofuran and the so-formed solution is added dropwise into a cold solution of amine hydrochloride J ##STR31## (wherein R5' is H or alkyl, employing a molar ratio of acid chloride:J of within the range of from about 0.3:1 to about 1:1 and preferably from about 0.5:1) and triethylamine in aqueous tetrahydrofuran to form the hydroxamate IN. ##STR32##
Hydroxamate IN is deprotected by treatment with a lower alcohol, such as, MeOH and an acid catalyst, such as, p-TsOH, to form compound IO ##STR33## wherein R1 or R2 is OH.
The tris(hydroxymethyl)aminomethane salt of any of the acids of formula I of the present invention is formed by reacting a solution of such acid in an inert solvent such as methanol with tri(hydroxymethyl)aminomethane and thereafter the solvent is removed by evaporation to leave the desired salt.
To form the sulfinyl and/or sulfonyl analogs of compounds of formula I wherein R3 is -S-alkyl, -S-aryl, -S-alkylaryl, -alkyl-S-aryl, alkyl-S-alkyl, or -alkyl-S-alkylaryl, such formula I compounds are subjected to oxidation, for example, by reacting same with sodium periodate or potassium monopersulfate (oxone) in the presence of methanol to form the sulfinyl derivative and/or sulfonyl derivative. Mixtures thereof may be separated by chromatography or other conventional separation procedures.
The compounds of this invention have four centers of asymmetry as indicated by the asterisks in formula I. However, it will be apparent that each of the formulae set out above which do not include asterisks still represent all of the possible stereoisomers thereof. All of the various stereoisomeric forms are within the scope of the invention.
The various stereoisomeric forms of the compounds of the invention, namely, cis-exo, cis-endo and all trans forms and stereoisomeric pairs may be prepared as shown in the working Examples which follow and by employing starting materials following the procedures as outlined in U.S. Pat. No. 4,143,054. Examples of such stereoisomers are set out below. ##STR34##
The nucleus in each of the compounds of the invention is depicted as ##STR35## for matter of convenience; it will also be appreciated that the nucleus in the compounds of the invention may be depicted as ##STR36##
The compounds of this invention are cardiovascular agents useful as platelet aggregation inhibitors, such as in inhibiting arachidonic acid-induced platelet aggregation, e.g., for treatment of thrombotic disease such as coronary or cerebral thromboses, and in inhibiting broncho-constriction. They are also selective thromboxane A2 receptor antagonists and synthetase inhibitors, e.g., having a vasodilatory effect for treatment of myocardial ischemic disease, such as angina pectoris.
The compounds of this invention may also be used in combination with a cyclic AMP phosphodiesterase (PDE) inhibitor such as theophylline or papaverine in the preparation and storage of platelet concentrates.
The compounds of the invention can be administered orally or parenterally to various mammalian species known to be subject to such maladies, e.g., humans, cats, dogs, and the like in an effective amount within the dosage range of about 1 to 100 mg/kg, preferably about 1 to 50 mg/kg and especially about 2 to 25 mg/kg on a regimen in single or 2 to 4 divided daily doses.
The active substance can be utilized in a composition such as tablet, capsule, solution or suspension containing about 5 to about 500 mg per unit of dosage of a compound or mixture of compounds of formula I. They may be compounded in conventional matter with a physiologically acceptable vehicle or carrier, excipient, binder, preservative, stabilizer, flavor, etc. as called for by accepted pharmaceutical practice. Also as indicated in the discussion above, certain members additionaly serve as intermediates for other members of the group.
The compounds of the invention may also be administered topically to treat peripheral vascular diseases and as such may be formulated as a cream or ointment.
The following Examples represent preferred embodiments of the present invention. Unless otherwise indicated, all temperatures are expressed in degrees Centigrade.
A. N-Heptanoyl-N-hydroxy glycine
(1) N-(2-Tetrahydropyranyloxy)glycine t-butyl ether
Hydroxylamine O-tetrahydropyran ether (1.17 g, 10 mmol) dissolved in distilled tetrahydrofuran (6 ml) was reacted with t-butylbromoacetate (1.95 g, 10 mmol) in the presence of Na2 CO3 (2.21 g, 20 mmol). After stirring at room temperature 5 days, the solids were removed by filtration and washed with EtOAc. The filtrate was taken to dryness in vacuo. The residue was chromatographed on silica gel (50 g, Baker for flash chromatography) eluting with EtOAc-hexane 1:2 to give title ester compound (1.716 g, 74%) as a colorless oil. TLC-silica gel, EtOAc-hexane 1:1 vanillin, Rf=0.58.
(2) t-Butyl-N-heptanoyl-N-(2-tetrahydropyranyloxy)glycinate
Part A (1) ester (1.44 g, 6.23 mmol) was dissolved in Et2 O (30 ml), NaHCO3 (2.12 g, 25 mmol) and H2 O (30 ml) were added. The mixture was cooled in an ice bath and a solution of heptanoyl chloride (1.05 ml, 6.85 mmol) in Et2 O (5 ml) was added dropwise. The cooling bath was removed and the mixture was stirred at room temperature 2 hours. The layers were separated. The ether layer was washed with NaCl solution (25 ml), dried (MgSO4), leaving title ester as an oil (2.15 g, quant.). TLC: silica gel, Et2 O-hexane 1:1, PMA, Rf=0.55.
(3) N-Heptanoyl-N-hydroxy glycine
Part A (2) ester (1.10 g, 3.2 mmol) was cooled in an ice bath and treated with precooled distilled trifluoroacetic acid (15 ml). The solution was stirred at 0°-5° C. for 5 hours. The trifluoroacetic acid was removed in vacuo. The residue was partially dissolved in Et2 O (30 ml). The product was extracted into 2N NaOH solution (2×20 ml). The basic extracts were washed with Et2 O (20 ml) and then acidified with concentrated HCl. The desired acid was extracted with EtOAc (3×30 ml), washed with saturated NaCl solution (15 ml), dried (MgSO4), filtered and freed of solvent in vacuo leaving a tan solid (647 mg). This was recrystallized from EtOAc (10 ml) to give title compound as a white solid (486 mg, 75%), m.p. 136°-138° dec.
B. [1S-[1α,2β(5Z),3β,4α]]-7-[3-(Tosyloxymethyl)-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Tosyl chloride (4.256 g, 22.4 mmol) dissolved in CH2 Cl2 (30 ml) was added dropwise to a magnetically stirred solution of [1S-[1α,2β(5Z),3β,4α]]-7-[3-(hydroxymethyl)-7-oxabicyclo[ 2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester (prepared as described in U.S. Pat. No. 4,143,054 (3 g, 11.2 mmol) in pyridine (30 ml) at 0° C. After completion of the addition, the reaction was warmed to room temperature and stirred overnight. The reaction was poured into ice/H2 O and stirred for 30 minutes. The products were extracted with EtOAc (80 ml×3). The combined EtOAc layers were washed with 3N-HCl (40 ml×3), saturated NaHCO3, brine and dried over MgSO4 . Filtration and evaporation of solvent gave a white solid, which was crystallized from isopropyl ether to give the corresponding title tosylate in the form of needle crystals (4.23 g, 89%), m.p. 68°-70° C.
C. [1S-[1α,2β(5Z),3β,4α]]-7-[(3-(Aminomethyl)-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
The title B tosylate was subjected to a Gabriel synthesis to form the corresponding amino compound as described below.
The potassium phthalimide used was purified prior to use by boiling 5 g thereof with 9 ml acetone for 15 minutes, filtering while hot and washing with 5 ml acetone. The remaining solid was dried in vacuo for 6 hours at 100° C. prior to use.
The title B tosylate (8.11 g, 19.2 mmol) and purified potassium phthalimide (6.4 g, 34.6 mmol, 1.8 equiv.) in dimethylsulfoxide (70 ml, Burdick & Jackson) were heated at 90°-100° C. for 21/2 hours (checked by TLC Et2 O-pet ether 2:1, no tosylate remaining). After cooling to room temperature, water (90 ml) was added. Material began precipitating. The mixture was poured into ice water (˜350 ml) and stirred 30 minutes. The straw colored solid was harvested by filtration and washed with more water. The solid was dissolved in warm ethyl acetate (150 ml), washed with water (3×50 ml), dried (MgSO4), filtered and freed of solvent in vacuo. The remaining solid (7.88 g) was recrystallized from isopropyl ether (˜150 ml) to give corresponding phthalimide (6.35 g, 83%) TLC. Et2 O-hexane 2:1, UV+vanillin Rf =0.38, trace 0.09.
The above phthalimide (5.05 g, 13.8 mmol) was dissolved in distilled CH2 Cl2 (24 ml) and distilled ethanol (104 ml) in an argon atmosphere. Anhydrous hydrazine (0.78 ml, 25.6 mmol) was added. The mixture was stirred at room temperature. After 8 hours an additional 0.2 ml of hydrazine was added and the mixture was stirred an additional 15 hours at room temperature. A white solid was removed by filtration and washed with more CH2 Cl2. The filtrate was taken to dryness in vacuo (on the pump at end). Cold 0.5N HCl solution (80 ml) was added. A small amount of white solid was removed by filtration and washed with additional 0.5N HCl solution (80 ml). The acidic solution was washed with ether (2×100 ml) and then basified with solid K2 CO3. The amine was extracted into CHCl3 (3×100 ml), dried (MgSO4) and freed of solvent in vacuo leaving a yellow oil. Ether (100 ml) was added to this oil. Some solid was insoluble. After cooling in an ice bath, the solid was removed by filtration. The solvent was removed from the filtrate in vacuo leaving title amine as a pale yellow oil (2.441 g, 71%). NMR spectra and TLC indicated some minor impurities. The material was used without further purification.
D. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[[[Hydroxy(1-Oxohexyl)amino]acetyl-amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part C chiral amine (411 mg, 1.54 mmol) and Part A acid (325 mg, 1.6 mmol) were largely dissolved in distilled tetrahydrofuran (20 ml) in an argon atmosphere. The mixture was cooled in an ice bath and dicyclohexylcarbodiimide (330 mg, 1.6 mmol) was added. After stirring cold for 2 hours, the reaction mixture was left stirring overnight at room temperature. The solvent was removed in vacuo. Ethyl acetate (8 ml) was added to the residue. After cooling in an ice bath, the solid was removed by filtration and washed with additional cold EtOAc (8 ml). The filtrate was taken to dryness leaving a yellow oil (730 mg). This was chromatographed on silica gel (20 g Baker for flash chromatography) eluting with ether and then 2% methanol in ether to give title methyl ester (455 mg, 65%) as an oil. TLC: silica gel, 5% MeOH in CH2 Cl2, vanillin, Rf=0.32.
The Example 1 methyl ester (452 mg, 1 mmol) was dissolved in distilled THF (40 ml) and water (8 ml) in an argon atmosphere 1N LiOH solution (9.5 ml) was added and the mixture was stirred at room temperature for 33/4 hours. After neutralization with 1N HCl (9.5 ml), solid KCl was added and the layers were separated. The aqueous layer was reextracted with CHCl3 (3×50 ml). The combined organic layers (THF+CHCl3) were washed with saturated NaCl solution (2×25 ml), dried (MgSO4), and freed of solvent in vacuo leaving a viscous oil. This was chromatographed on silica gel (Silicar CC4) (20 g) packed in CH2 Cl2. The product was eluted with 2-5% MeOH in CH2 Cl2 to give title compound as a viscous oil (326 mg, 74%). This was recrystallized from acetonitrile (˜10 ml) to give title acid, 248 mg, 61%, m.p. 119°-121° C.). TLC: silica gel, 10% MeOH in CH2 Cl2, vanillin, Rf =0.43. [α]D =-5.7° (C=1.4, MeOH).
Anal Calcd for C23 H38 O6 N2.2H2 O: C, 62,47; H, 8.75; N, 6.34. Found: C, 62.28; H, 8.74; N, 6.37.
A. N-Hexanoylglycine
Glycine (7.5 g, 100 mmol) was dissolved in NaOH solution (NaOH:8 g, H2 O:50 ml) and cooled to 0° C. Et2 O (50 ml) was added and n-hexanoyl chloride (13.4 g, 100 mmol) was then added dropwise over 60 minutes at 0° C. under vigorous stirring. The reaction was allowed to warm to room temperature and was stirred for 1 hour. 1N-NaOH (10 ml) was added and the layers were separated. The water layer was washed with Et2 O (20 ml×2). The combined Et2 O layers were extracted with 1N-NaOH (20 ml). The combined water layers were acidified with concentrated HCl to pH 2 and the products were extracted with Et2 O (100 ml×3). The combined Et2 O layers were washed with brine (50 ml) and dried over MgSO4. Filtration and evaporation of solvent gave a colorless solid (16.2 g), which was crystallized from EtOAc (60 ml) to give colorless needle crystals (10.9 g, 63 mmol, 63%), m.p. 93°-96°. TLC: silica gel, MeOH, CH2 Cl2, HCOOH; 10, 89.5, 0.5, PMA Rf =0.45.
B. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[N-[2-tetrathydropyranyloxy]imino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
[1S-[1α,2β(5Z),3β,4α]]-7-[[3-Formyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester (532 mg, 20 mmol) was reacted with hydroxyamine O-tetrahydropyran ether (390 mg, 2.2 mmol) in methanol (20 ml) overnight at room temperature. After removal of the solvent in vacuo, the product was chromatographed on silica gel (45 g, Baker for flash chromatography) eluting with ethyl acetate-hexane (1:3) to give pools containing the isomers of the title compound (528 mg, 72%). The structure was confirmed by NMR.
C. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[N-[2-tetrahydropyranyloxy]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part B ester compound (548 mg, 1.5 mmol) was dissolved in methanol (10 ml) and NaCNBH3 (234 mg, 3.72 mmol) was added. The solution was cooled in an ice bath and a mixture of acetic acid (7.7 ml) and methanol (7 ml) was added dropwise over a period of 1 hour. The mixture was left overnight at room temperature. Saturated NH4 Cl solution (3.5 ml) was added and the mixture was stirred 1 hour at room temperature. Most of the methanol was removed in vacuo. Ethyl acetate (50 ml) was added to the residue and this was washed with 1N NaOH (3×20 ml), saturated NH4 Cl solution (2×20 ml) and saturated NaCl solution (20 ml). After drying (MgSO4), the solvent was removed in vacuo leaving an oil (533 mg). This was chromatographed on silica gel (30 g, Baker for flash chromatography), eluting with EtOAc-hexane 1:2 to give title compound (426.7 mg, 77 %) as a colorless oil. TLC: silica gel, EtOAc-hexane 1:1, vanillin Rf=0.29.
D. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[N-2-Tetrahydropyranyloxy[(1-oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part A acid (468 mg, 2.5 mmol) was dissolved in distilled tetrahydrofuran (15 ml) and cooled in an ice bath in an argon atmosphere. Carbonyldiimidazole (405 mg, 2.5 mmol) was added and the mixture was stirred cold for 1 hour and stirred at room temperature for 1 hour. The mixture was again cooled in an ice bath and a solution of Part C ester (460 mg, 1.25 mmol) in distilled tetrahydrofuran (10 ml) was added. The mixture was stirred at room temperature and followed by TLC. After 44 hours the solvent was removed in vacuo. The residue was dissolved in CHCl3 (50 ml) and washed with 1N HCl solution (25 ml), 1N NaOH solution (25 ml) and saturated NaCl solution (25 ml). After drying (MgSO4), the solvent was removed in vacuo leaving an oil (695 mg). This was chromatographed on silica gel (50 g, Baker for flash chromatography) eluting with EtOAc-hexane (1:2 to 2:1 ) to give title ester (552.2 mg, 82%) as a colorless oil. TLC: silica gel, EtOAc-hexane 1:1, vanillin, Rf=0.18.
E. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[Hydroxy[[1-oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part D compound (550 mg, 1.02 mmol) was dissolved in methanol (30 ml) in an argon atmosphere. p-Toluene sulfonic acid.H2 O (10 mg) was added and the mixture was stirred at room temperature 22 hours. TLC indicated a small amount of Part D compound remained and additional p-toluene sulfonic acid (30 mg) was added and the mixture was stirred another 8 hours. Saturated NaHCO3 solution (20 ml) was then added and most of the methanol was removed in vacuo. EtOAc (50 ml) was added and the layers were separated. The organic layer was washed with saturated NaHCO3 solution (15 ml) and saturated NaCl solution (15 ml), dried (MgSO4) and freed of solvent in vacuo leaving an oil (471 mg). This was chromatographed on silica gel (20 g, Baker for flash chromatography) eluting with 1-2% MeOH in CH2 Cl2 to give title ester (367 mg, 79%) TLC: silica gel, 5% MeOH in CH2 Cl.sub. 2, vanillin Rf=0.49.
Example 3 methyl ester (367 mg, 0.81 mmol) was dissolved in distilled THF (20 ml) and water (4.8 ml) in an argon atmosphere. 1N LiOH solution (4.9 ml) was added and the mixture was stirred at room temperature 5 hours. The mixture was neutralized with 1N HCl solution (4.9 ml) and solid KCl was added. The layers were separated. The crude crystalline product (338 mg, 95%) was recrystallized from CH3 CN (10 ml) to give title acid as white crystalline material (247.3 mg, 70%), m.p. 104°-108° C. [α]D =-4.2° (c=0.74, MeOH). TLC: silica gel, 10% MeOH in CH2 Cl2, vanillin, Rf=0.52.
Anal Calcd for C23 H38 O6 N2 : C, 62.99; H, 8.73; N, 6.39. Found: C, 63.12; H, 8.63; N, 6.40.
A. [1S-(1α,2β,3β,4α)]-7-[3-(Hydroxymethyl)-7-oxabicyclo[2.2.1]hept-2-yl]heptanoic acid, methyl ester
To 800 mg (3.0 mmole) of the [1S-[1α,2β(Z),3β,4α]]-7-[3-(hydroxymethyl)-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester dissolved in 120 ml of ethyl acetate was added, under an argon atmosphere, 160 mg of 5% Pd on carbon. The argon atmosphere was exchanged for a slight positive pressure of hydrogen and the reaction was stirred for 8 hours at 25°, filtered through a celite plug and evaporated to provide 730 mg (90%) of the title A compound.
B. [1S-(1α,2β,3β,4α)]-7-[3-[[[[Hydroxy(1-oxohexyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]heptanoic acid, methyl ester
Following the procedure of Examples 1 and 2 except substituting the Part A alcohol-ester for the alcohol ester employing in Example 1 Part B, the title product is obtained.
Following the procedure of Examples 1 and 2 except substituting propanoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Examples 1 and 2 except substituting acetyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Examples 1 and 2 except substituting 2-butenoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Examples 1 and 2 except substituting 3-butynoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Examples 3 and 4 except substituting propanoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Examples 3 and 4 except substituting 2-butenoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Examples 1 and 2 except substituting octanoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Example 5 except substituting butanoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Example 5 except substituting propenoyl chloride for hexanoyl chloride, the title compound is obtained.
Following the procedure of Example 5 except substituting heptanoyl chloride for hexanoyl chloride, the title compound is obtained.
A. [1S-[1β,2α(Z),3α,4β]]-6-[3-Hydroxymethyl-7-oxabicyclo[2.2.1]hept-2-yl]-1-(1H-tetrazol-5-yl)-4-hexene
To 5.5 g (11.8 mmole) of triphenyl-4-(1H-tetrazol-5-yl)butyl phosphonium bromide in 100 ml of tetrahydrofuran (THF) at 0° is added 2.78 g (23.6 mmole) potassium t-butoxide. The reaction is stirred at 25° for 30 minutes and (exo)octahydro-5,8-epoxy-1H-benzopyran-3-ol, (2 g, 11.8 mmole, prepared as described in U.S. Pat. No. 4,143,054) is added in 30 ml of THF. The reaction is stirred for 2 hours and quenched with dilute aqueous HCl. The aqueous layer is extracted with 250 ml of ethyl acetate. The combined organic solutions are evaporated in vacuo, diluted with 500 ml of a 5% NaHCO3 solution, washed with 100 ml of ether, acidified with dilute HCl to pH 3, and extracted with three 500 ml portions of ethyl acetate. The combined organic solutions are dried over anhydrous MgSO4, and purified by silica chromatography using a 5% methanol in methylene chloride eluant to provide title A compound.
B. [1S-[1β,2α(5Z),3α,4β]]-6-[3-[[[[(1-Oxohexyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-1-(1H-tetrazol-5-yl)-4-hexene
Following the procedure of Examples 1 and 2 except substituting the Part A compound for the hydroxymethyl compound used in Example 1 Part B, the title compound is obtained.
A solution of Example 4 acid (0.82 mmole) in dry benzene (5.0 ml) is treated with oxalyl chloride (1 ml; 11.24 mmole or 13.7 eq.) and a drop of DMF, and stirred at room temperature under nitrogen for 2 hours The excess oxalyl chloride and solvent are blown off by a stream of nitrogen while heating the reaction flask in a warm water bath and the oil obtained dried in vacuo (oil pump) for 1 hour. The residual acid chloride is dissolved in dry tetrahydrofuran (1.5 ml) and added dropwise into a cold solution (0°, ice-water) of 98% methylhydroxylamine hydrochloride (139.8 mg; 1.64 mmole; 2 eq.) and triethylamine (0.34 ml; 2.46 mmole; 3 eq.) in tetrahydrofuran (2 ml) and water (2.0 ml). The mixture is stirred at 0° under nitrogen for 30 minutes and at room temperature for 5.5 hours, diluted with water (10 ml) and extracted twice with dichloromethane (50 ml). The organic extract is washed with 1N HCl (10 ml), 5% NaHCO3 (5 ml) and water (10 ml), dried (anhydrous MgSO4), filtered and evaporated to dryness giving the crude product, which is purified by silica gel column to afford the title compound.
A. 4-Phenylbutanoyl glycine ethyl ester
4-Phenylbutyric acid (2.46 g, 15 mmol) was dissolved in distilled THF (70 ml) in an argon atmosphere. After cooling in an ice bath, carbonyldiimidazole (CDI) (2.43 g, 1.5 mmol) was added and the mixture was stirred cold 1 hour and at room temperature 1 hour. The mixture was then cooled and glycine ethyl ester.HCl (2.09 g, 15 mmol) and distilled Et3 N (2.1 ml, 15 mmol) were added. The mixture was left stirring overnight at room temperature. After removal of the solvent in vacuo, Et2O (200 ml) was added. The solution was washed with 1N HCl (70 ml), 0.5 N NaOH (70 ml) and saturated NaCl solution (70 ml), dried (MgSO4) and freed of solvent in vacuo leaving title compound (3.13 g, 84%) as white crystalline material. TLC: silica gel, Et2 O, UV; Rf : 0.58.
B. 4-Phenylbutanoyl glycine
The Part A ester (3.07 g, 12.3 mmol) was hydrolyzed with NaOH (5 g, 125 mmol) in water (60 ml). After stirring at room temperature 6 hours, neutral material was removed by washing with Et2 O (2×50 ml). The aqueous solution was then acidified with concentrated HCl solution. The product was extracted into CHCl3 (3×60 ml), dried (MgSO4) and freed of solvent in vacuo leaving a white solid. This was recrystallized from EtOAc (10 ml) to give title compound (2.18 g, 80%), m.p. 99°-101° C.
C. [1S-[1β,2α(5Z),3α,4β]]-7-[3-[[[[Hydroxy-(1-Oxo-4-phenyl)butyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1hept]-2-yl]-5-heptenoic acid
Part B acid (1 mmol) was reacted with DCC (1 mmol) and then with Example 1 Part C chiral amine (1 mmol) as described in Example 1 to produce the title product.
D. [1S-[1β,2α(5Z),3α,4β]]-7-[3-[[[[(1-Oxo-4-phenyl)butyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part C methyl ester (0.71 mmol) is hydrolyzed with LiOH in a water-THF mixture as described in Example 2 to form title acid.
A. (Phenylthio)acetyl glycine ethyl ester
The title ethyl ester was prepared from thiophenoxy acetic acid (15 mmol) and the ethyl ester of glycine.HCl using carbonyldiimidazole (CDI) as described in Example 18, Part A giving 2.95 g (78%) of solid.
B. (Phenylthio)acetyl glycine
The Part A ethyl ester was hydrolyzed with aqueous NaOH as described in Example 18 Part B to give the title acid (1.041 g, 92%) as a crystalline material.
C. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[Hydroxy[[[(phenylthio)acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Following the procedure of Example 3, except substituting the above Part B acid for the Example 3 Part A acid, the title ester is obtained.
D. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[Hydroxy[[[(phenylthio)acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part C methyl ester (0.98 mmol) is hydrolyzed with 1N LiOH (2 equivalents) as described in Example 4 to form title acid product.
A. Phenoxyacetyl glycine
Glycine (20 mmol) was reacted with distilled phenoxyacetyl chloride (22 mmol) in the presence of NaOH (40 mmol) in a mixture of water and ether as described in Example 5 Part A. The crude product was recrystallized from EtOAc (15 ml) to give title acid (2.38 gm, 57%).
B. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[[[Hydroxy(phenoxyacetyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part A acid (1.5 mmol) was reacted with DCC (1.5 mmol), followed by Example 1 Part C chiral amine (1.5 mmol) as described in Example 1 to form title product.
C. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[[[Hydroxy(phenoxyacetyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part B methyl ester (1.01 mmol) is hydrolyzed with 1N LiOH (2 equivalents) in a THF-H2 O mixture as described in Example 2 to give the title acid.
A. 3-Phenylpropanoyl glycine
Glycine (1.5 g, 20 mmol) and hydrocinnamoyl chloride (3.37 g, 22 mmol) were reacted in the presence of NaOH (40 mmol) in a mixture of water and ether using the method described in Example 5 Part A. The crude product was extracted into chloroform, dried (MgSO4) and freed of solvent in vacuo leaving a near white solid (3.53 g, 85%). This was recrystallized from EtOAc (13 ml) to give title compound (2.66 g, 64%) m.p. 112°-114° C.
B. [1S-[1α,2β(5Z),3β,4α]]-7-[3[[Hydroxy-[[(1-oxo-3-phenylpropyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Following the procedure of Example 3 except substituting the above Part A acid for the Example 3 Part A acid, the title ester is obtained.
C. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[Hydroxy[[(1-oxo-3-phenylpropyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part B methyl ester (0.72 mmol) is hydrolyzed with LiOH in a water-THF mixture as described in Example 4 to form the title acid.
A. 5-Phenylpentanoyl glycine ethyl ester
5-Phenylvaleric acid (2.67 g, 15 mmol) in distilled THF was reacted with CDI (15 mmol) followed by glycine ethyl ester.HCl (15 mmol) and C2 H5)3 N (15 mmol) as described in Example 56 Part A. The crude material (3.25 g, 82%) was used without purification.
B. 5-Phenylpentanoyl glycine
The Part A ester (12.34 mmol) was hydrolyzed with NaOH in water as described in Example 56 Part B. The crude product was recrystallized from EtOAc (12 ml) to give title compound (2.39 g, 82%), m.p. 93°-96° C.
C. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[[[Hydroxy-(1-oxo-5-phenylpentyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part B compound (1 mmol) is reacted with DCC (1 mmol) and then with Example 1 Part C chiral amine (1 mmol) as described in Example 1 to form title ester.
D. [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[[[Hydroxy-(1-oxa-5-phenylpentyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part C methyl ester (0.749 mmol) is hydrolyzed with LiOH in a water-THF mixture as described in Example 2 to form title acid.
A. 3-(Phenylthio)propanoic acid, methyl ester
Thiophenol (440 mg, 4 mmol) and Et3 N (70 μl, 0.5 mmol) were dissolved in CH2 Cl2 (5 ml). Methyl acrylate (412 mg, 4.8 mmol) was added dropwise. The reaction was exothermic. After stirring at room temperature for 30 minutes, the excess methyl acrylate was removed in vacuo. TLC: silica gel, Et2 O-hexane 1:2, UV Rf =0.58. The crude title ester was used without further purification.
B. 3-(Phenylthio)propanoic acid
The crude Part A methyl ester (˜4 mmole) was treated with 10 ml 1N NaOH and THF (5 ml). After stirring at room temperature 3 hours, ether (30 ml) was added. The layers were separated and the ether layer was reextracted with 1N NaOH solution (10 ml). The combined aqueous layers were washed with Et2 O (20 ml) and then acidified with concentrated HCl. The product was extracted with CHCl3 (2×30 ml). The chloroform extracts were washed with saturated NaCl solution (2×20 ml), dried (MgSO4) and freed of solvent in vacuo leaving title acid as a white solid (quant.). This was used without further purification.
C. 3-(Phenylthio)propanoyl glycine ethyl ester
Part B acid (0.740 g, 4.06 mmol) was reacted with carbonyldiimidazole (4.06 mmol) followed by glycine ethyl ester.HCl (4.06 mmol) as described in Example 56 Part A to give the title ester (1.00 g, 92%) as crystalline material.
D. 3-(Phenylthio)propanoyl glycine
The Part C ethyl ester (0.96 g, 3.6 mmol) was hydrolyzed with NaOH solution as described in Example 56 Part B to give a white solid which was triturated with Et2 O to give title acid (0.75 g, 87%).
E. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[Hydroxy[[[1-oxo-3-(phenylthio)propyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Following the procedure of Example 3 except substituting the above Part D acid for the Example 3 Part A acid, the title ester is obtained.
F. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[Hydroxy[[[1-oxo-3-(phenylthio)propyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part E methyl ester (1.285 mmol) is dissolved in THF (25 ml) and H2 O (2.5 ml) in an argon atmosphere and treated with 1N LiOH solution (2.6 ml). The mixture is stirred at room temperature for 5 hours and then worked up as described in Example 4 to form the title acid.
A. Chloroacetyl glycine
Glycine (1.5 g, 20 mmol) was dissolved in 2N NaOH (25 ml, 50 mmol) and ether (20 ml) was added. Chloroacetyl chloride (2.26 g) dissolved in Et2 O (20 ml) was added dropwise at 0° C. The mixture was stirred at 0° for 30 minutes and at room temperature 1 hour. The layers were separated and the water layer was washed with Et2 O (2×20 ml). The water layer was then acidified to pH 2 with concentrated HCl and the product was extracted into EtOAc (3×50 ml). The combined EtOAc extracts were washed with brine, dried (MgSO4), and freed of solvent in vacuo to give title acid compound as a solid (2.56 g, 84%) which was used without further purification.
B. (Benzylthio)acetyl glycine
Part A acid (1.28 g, 8.4 mmol) was dissolved in methanol (10 ml) and cooled in an ice bath. Sodium methoxide (1.08 g, 20 mmol) was added followed by dropwise addition of benzyl mercaptan (1.25 g, 10.08 mmoles). After stirring overnight at room temperature, 1N NaOH solution (10 ml) was added. Ether washes (2×40 ml) removed neutral material. The aqueous layer was then acidified to pH 2 with concentrated HCl. The product was extracted with Et2 O (3×50 ml), washed with brine, dried (MgSO4) and freed of solvent in vacuo leaving a white solid. This was recrystallized from benzene to give title acid compound (1.28 g, 64%).
C. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[[[[[Hydroxy(phenylmethyl)thio]acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part B acid (359 mg, 1.5 mmol) is reacted with DCC (1.5 mmol) followed by Example 1 Part C chiral amine.HCl 3 (1.5 mmol) using the procedure described in Example 1 to form the title compound.
D. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[[[[[Hydroxy(phenylmethyl)thio]acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part C methyl ester (1.28 mmol) is hydrolyzed with 1N LiOH solution (2.6 ml) in a THF-water mixture as described in Example 2 to form the title acid.
A. (Butanethio)acetyl glycine
Example 24 Part A acid compound (1.28 g, 8.4 mmol) was reacted with 1-butanethiol using the procedure described in Example 64. The crude product was crystallized with diisopropylether (˜10 ml) to give title acid (0.55 g, 32%).
B. [1S-[1α,2β(Z),3β,4α]]-7-3-[[Hydroxy[[[(butylthio)acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part A acid (308 mg, 1.5 mmol) is reacted with carbonyldiimidazole (1.5 mmol) followed by Example 1 Part C chiral amine hydrochloride (1.5 mmol) using the procedure described in Example 1 to form the title ester.
C. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[Hydroxy[[[(butylthio)acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part B methyl ester (1.18 mmol) is hydrolyzed with 1N LiOH solution (2.4 ml) in a tetrahydrofuran-water mixture using the procedure described in Example 1 to form the title acid.
A. Cyclohexylmethylthiol acetate
Cyclohexylmethyl mesylate (1.92 g, 10 mol) and KSCOCH3 (1.25 g) were suspended in distilled tetrahydrofuran (THF). The reaction mixture was heated under reflux for 3 hours. Additional KSCOCH3 (1.25 g) and THF (9 ml) were added and the mixture was heated under reflux an additional 3 hours. Et2 O (100 ml) was added and the mixture was washed with brine (30 ml). The aqueous layer was reextracted with Et2 O (30 ml). The combined organic layers were washed with brine (15 ml), dried (MgSO4) and freed of solvent to give a straw colored oil (1.8 g). This was chromatographed on silica gel (50 g, Baker for flash chromatography) eluting with 2% Et2 O in hexane to give title compound (1.189 g, 69%) as an oil. TLC: silica gel, 10% Et2 O in hexane, UV and I2, Rf =0.48.
B. [(Cyclohexylmethyl)thio]acetyl glycine
Part A compound (6 mmol) and the Example 64 Part A acid (6 mmol) were reacted in the presence of NaOMe (17 mmol) as described in Example 64 Part B. The crude product was crystallized from diisopropyl ether to give title compound (516 mg, 35%).
C. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[[[[[Hydroxy(cyclohexylmethyl)thio]acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid, methyl ester
Part B compound (368 mg, 1.5 mmol) was coupled with Example 1 Part C chiral amine.HCl (456 mg, 1.5 mmol) in the presence of DCC (1.5 mmol) as described in Example 1 to form title ester.
D. [1S-[1α,2β(Z),3β,4α]]-7-[3-[[[[[[Hydroxy(cyclohexylmethyl)thio]acetyl]amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid
The Part C methyl ester (1.09 mmol) is hydrolyzed with 1N LiOH (4 ml) in a mixture of THF and water as described in Example 2 to form the title product.
Powdered NaIO4 (385 mg, 1.8 mmol) is dissolved in water (12 ml). A solution of Example 19 acid compound (0.6 mmol) in methanol (20 ml) is added. The mixture is stirred overnight at room temperature. Most of the methanol is removed in vacuo. Saturated NaCl solution (50 ml) is added. The product is extracted with CHCl3 (3×50 ml). The combined chloroform extracts are washed with NaCl solution (20 ml), dried (MgSO4), and freed of solvent in vacuo leaving an oil. This is chromatographed on silica gel (4 g, Baker for flash chromatography) eluting with 5% MeOH in CH2 Cl3 to give title compound.
Example 19 acid compound (0.9 mmol) is dissolved in methanol (10 ml) and cooled in an ice bath. Oxone (810 mg ˜2.7 mmol) dissolved in water (10 ml) is added. The mixture is stirred at room temperature 4 hours, then diluted with water (30 ml). The product is extracted into CHCl3 (3×35 ml). The combined CHCl3 extracts are washed with saturated NaCl solution (2×20 ml), dried (MgSO4), and freed of solvent in vacuo leaving the title product.
Following the procedures outlined in the specification and described in the above working Examples, the following compounds may be prepared.
__________________________________________________________________________
##STR37##
Ex.
No.
A (CH.sub.2).sub.n
R R.sup.1
(CH.sub.2).sub.q
R.sup.2
R.sup.3
__________________________________________________________________________
CHCH
##STR38##
##STR39##
H
##STR40## OH
##STR41##
30.
(CH.sub.2).sub.2
##STR42##
##STR43##
H
##STR44## OH C.sub.6 H.sub.5
(CH.sub.2).sub.2
(CH.sub.2).sub.4
##STR45##
OH CH.sub.2 H C.sub.6 H.sub.5
CHCH
##STR46## CO.sub.2 Li
OH
##STR47## H CH.sub.2 C.sub.6
H.sub.5
CHCH
##STR48## CO.sub.2 Na
OH
##STR49## H (CH.sub.2).sub.2
C.sub.6 H.sub.5
(CH.sub.2).sub.2
##STR50## CO.sub.2 glucamine salt
OH
##STR51## H C.sub.6 H.sub.4p-CH.sub.
3
CHCH
##STR52## CO.sub.2 tris salt
H (CH.sub.2).sub.3
OH C.sub.6 H.sub.4 p-OH
(CH.sub.2).sub.2
##STR53## CH.sub.2 OH
H
##STR54## OH OCH.sub.2 C.sub.6
C.sub.5
(CH.sub.2).sub.2
(CH.sub.2).sub.5
##STR55##
H
##STR56## OH SC.sub.2 H.sub.5
CHCH
##STR57##
##STR58##
OH
##STR59## H OC.sub.6 H.sub.5
(CH.sub.2).sub.2
##STR60##
##STR61##
OH (CH.sub.2).sub.2
H NH.sub.2
40.
CHCH CH.sub.2
##STR62##
OH CH.sub.2 H NHCH.sub.3
(CH.sub.2).sub.2
(CH.sub.2).sub.2
##STR63##
H
##STR64## OH NHC.sub.6 H.sub.5
CHCH (CH.sub.2).sub.3
CO.sub.2 H
H
##STR65## OH NCH.sub.3 (C.sub.2
H.sub.5)
(CH.sub.2).sub.2
(CH.sub.2).sub.4
CH.sub.2 OH
OH (CH.sub.2).sub.2
H N(CH.sub.3).sub.2
CHCH
##STR66##
##STR67##
H (CH.sub.2).sub.3
OH H
(CH.sub.2).sub.2
##STR68##
##STR69##
OH
##STR70## H NHCH.sub.2C.sub.6
H.sub.5
CHCH (CH.sub.2).sub.5
##STR71##
H
##STR72## OH (CH.sub.2).sub.2
CHCHCH.sub.3
(CH.sub.2).sub.2
##STR73## CH.sub.2 OH
OH (CH.sub.2).sub.2
H C.sub.6 H.sub.5
(CH.sub.2).sub.2
(CH.sub.2).sub.2
##STR74##
OH CH.sub.2 H CH.sub.2 C.sub.6
H.sub.5
CHCH (CH.sub.2).sub.3
CO.sub.2 CH.sub.3
H (CH.sub.2).sub.3
OH SC.sub.4 H.sub.9
50.
(CH.sub.2).sub.2
(CH.sub.2).sub.4
CO.sub.2 CH.sub.3
OH (CH.sub.2).sub.8
H SC.sub.6 H.sub.5
CHCH (CH.sub.2).sub.5
CO.sub.2 H
OH (CH.sub.2).sub.10
H NCH.sub.3 (C.sub.6
H.sub.5)
CHCH CH.sub.2 CO.sub.2 H
H (CH.sub.2).sub.2
OH H
(CH.sub.2).sub.2
(CH.sub.2).sub.2
CH.sub.2 OH
OH (CH.sub.2).sub.3
H CH.sub.3
CHCH (CH.sub.2).sub.3
##STR75##
H (CH.sub.2).sub.4
OH CHCHCH.sub.3
(CH.sub.2).sub.2
(CH.sub.2).sub.4
##STR76##
H (CH.sub.2).sub.5
OH CCCH.sub.3
CHCH (CH.sub.2).sub.5
##STR77##
OH (CH.sub.2).sub.6
H CH.sub.2CCCH.sub.3
CHCH (CH.sub.2).sub.3
CO.sub.2 H
H CH.sub.2 OH SC.sub.6 H.sub.5
CHCH CH.sub. 2 CO.sub.2 H
OH CH.sub.2 H
##STR78##
(CH.sub.2).sub.2
(CH.sub.2).sub.3
CH.sub.2 OH
H (CH.sub.2).sub.2
OH
##STR79##
60.
CHCH (CH.sub.2).sub.3
CO.sub.2 H
H (CH.sub.2).sub.3
OH CH.sub.2SC.sub.2
H.sub.5
(CH.sub.2).sub.2
(CH.sub.2).sub.3
##STR80##
OH CH.sub.2 H CH.sub.2SCH.sub.2C.sub.6
H.sub.5
CHCH (CH.sub.2).sub.3
CO.sub.2 H
H CH.sub.2 OH CH.sub.2OCH.sub.2C.sub.6
H.sub.5
CHCH CH.sub.2 CO.sub.2 H
OH CH.sub.2 H CH.sub.2 HNCH.sub.2
C.sub.6 H.sub.5
(CH.sub.2).sub.2
(CH.sub.2).sub.3
CO.sub.2 CH.sub.3
H (CH.sub.2).sub.2
OH CH.sub.2SC.sub.4
__________________________________________________________________________
H.sub.9
Claims (13)
1. A compound having the structure ##STR81## including all stereoisomers thereof, wherein A is --CH═CH-- or --CH2 --CH2 --; n is 1 to 5; R is CO2 H, CO2 alkyl, CO2 alkali metal, CO2 polyhydroxyamine salt, --CH2 OH, ##STR82## wherein R4 and R5 are the same or different and are H, lower alkyl, hydroxy, lower alkoxy or aryl at least one of R4 and R5 being other than hydroxy and lower alkoxy; q is 1 to 12; R1 is H or OH; R2 is OH or H provided that one of R1 and R2 is OH and the other is H; and R3 is H, lower alkyl, lower alkenyl, lower alkynyl, aryl, arylalkyl, lower alkoxy, arylalkoxy, aryloxy, alkylamino, arylamino, arylalkylamino, lower alkyl-S-, aryl-S-, arylalkyl-S-, ##STR83## (wherein n' is 0, 1 or 2), alkylaminoalkyl, arylaminoalkyl, arylalkylaminoalkyl, alkoxyalkyl, aryloxyalkyl or arylalkoxyalkyl, wherein lower alkyl or alkyl alone or as part of another group contains 1 to 12 carbons and is unsubstituted or is substituted with halo, CF3, alkoxy, aryl, alkyl-aryl, haloaryl, cycloalkyl, alkylcycloalkyl, hydroxy, alkylamino, alkanoylamino, arylcarbonylamino, nitro, cyano, thiol or alkylthio;
cycloalkyl alone or as part of another group is a saturated cyclic hydrocarbon group containing 3 to 12 carbons, which is unsubstituted or substituted with 1 or 2 halogens, 1 or 2 lower alkyl groups, 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylocarbonyl amino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups and/or 1 or 2 alkylthio groups; and
aryl alone or as part of another group is a monocyclic or bicyclic aromatic group containing from 6 to 10 carbons in the ring portion and which is unsubstituted or is substituted with 1 or 2 lower alkyl groups, 1 or 2 halogens, 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylcarbonylamino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups and/or 1 or 2 alkylthio groups.
2. The compound as defined in claim 1 wherein R1 is OH and R2 is H.
3. The compound as defined in claim 1 wherein R1 is H and R2 is OH.
4. The compound as defined in claim 1 wherein R3 is alkyl, alkoxy or arylthioalkyl.
5. The compound as defined in claim 1 wherein A is CH═CH.
6. The compound as defined in claim 1 wherein n is 1 to 4.
7. The compound as defined in claim 1 wherein R is CO2 alkyl or CO2 H.
8. The compound as defined in claim 1 having the name [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[[[hydroxy(1-oxohexyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid or esters thereof, including all stereoisomers thereof.
9. The compound as defined in claim 1 having the name [1S-[1α,2β(5Z),3β,4α]]-7-[3-[[hydroxy[[1-oxoheptyl)amino]acetyl]amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid or esters thereof, including all stereoisomers thereof.
10. A method of inhibiting platelet aggregation and/or bronchoconstriction, which comprises administering to the circulatory system of a mammalian host an effective amount of a compound as defined in claim 1 or a pharmaceutically acceptable salt thereof.
11. The method as defined in claim 10 wherein said compound is administered in an amount within the range of from about 1 to about 100 mg/kg.
12. A composition for inhibiting platelet aggregation and/or bronchoconstriction comprising an effective amount of a compound as defined in claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier therefor.
13. A method of treating peripheral vascular diseases, which comprises topically or systemically administering to a mammalian host an effective amount of a compound as defined in claim 1 or a pharmaceutically acceptable salt thereof.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/920,006 US4734425A (en) | 1986-10-17 | 1986-10-17 | 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs |
| GB8722764A GB2196338B (en) | 1986-10-17 | 1987-09-28 | 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs |
| FR878713867A FR2605319B1 (en) | 1986-10-17 | 1987-10-07 | HYDROXAMIC ACIDS 7-OXABICYCLOHEPTANE SUBSTITUTED ANALOGS OF PROSTAGLANDINS, WITH THERAPEUTIC ACTION. |
| IT22315/87A IT1223312B (en) | 1986-10-17 | 1987-10-16 | PROSTAGLANDINE ANALOGS CONSTITUTED BY HYDROXAMIC ACIDS REPLACED WITH 7 HEPTIC OXYBICYCLES |
| DE19873735128 DE3735128A1 (en) | 1986-10-17 | 1987-10-16 | 7-OXABICYCLOHEPTANE DERIVATIVES AND MEDICINAL PRODUCTS CONTAINING THESE COMPOUNDS |
| JP62262559A JPS63104981A (en) | 1986-10-17 | 1987-10-17 | 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogue |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/920,006 US4734425A (en) | 1986-10-17 | 1986-10-17 | 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4734425A true US4734425A (en) | 1988-03-29 |
Family
ID=25443009
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/920,006 Expired - Fee Related US4734425A (en) | 1986-10-17 | 1986-10-17 | 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US4734425A (en) |
| JP (1) | JPS63104981A (en) |
| DE (1) | DE3735128A1 (en) |
| FR (1) | FR2605319B1 (en) |
| GB (1) | GB2196338B (en) |
| IT (1) | IT1223312B (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0380956A3 (en) * | 1989-01-17 | 1991-12-04 | E.R. SQUIBB & SONS, INC. | Method of preventing or treating atherosclerosis using a thromboxane a2 receptor antagonist |
| US6395897B1 (en) | 1999-03-02 | 2002-05-28 | Boehringer Ingelheim Pharmaceuticals, Inc. | Nitrile compounds useful as reversible inhibitors of #9 cathepsin 5 |
| US20020099035A1 (en) * | 2001-01-24 | 2002-07-25 | Sandanayaka Vincent P. | Method for preparing alpha-sulfonyl hydroxamic acid derivatives |
| WO2003009815A2 (en) | 2001-07-25 | 2003-02-06 | Biomarin Pharmaceutical Inc. | Compositions and methods for modulating blood-brain barrier transport |
| US20030225270A1 (en) * | 1999-09-13 | 2003-12-04 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| WO2006116718A2 (en) | 2005-04-28 | 2006-11-02 | Proteus Biomedical, Inc. | Pharma-informatics system |
| WO2008036682A2 (en) | 2006-09-18 | 2008-03-27 | Raptor Pharmaceutical Inc. | Treatment of liver disorders by administration of receptor-associated protein (rap)-conjugates |
| WO2010095940A2 (en) | 2009-02-20 | 2010-08-26 | To-Bbb Holding B.V. | Glutathione-based drug delivery system |
| WO2012044761A1 (en) | 2010-09-29 | 2012-04-05 | University Of North Carolina At Wilmington | Ladder-frame polyether conjugates |
| EP4218718A2 (en) | 2009-05-06 | 2023-08-02 | Laboratory Skin Care, Inc. | Dermal delivery compositions comprising active agent-calcium phosphate particle complexes and methods of using the same |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180085333A1 (en) * | 2015-04-16 | 2018-03-29 | Peter Truog | 4-phenylbutyric acid derivatives |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4143054A (en) * | 1977-11-04 | 1979-03-06 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane- and 7-oxabicycloheptene compounds |
| US4187236A (en) * | 1977-11-04 | 1980-02-05 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane compounds |
| GB2039909A (en) * | 1979-01-05 | 1980-08-20 | Wilson N | Prostaglandins |
| US4220594A (en) * | 1977-11-04 | 1980-09-02 | E. R. Squibb & Sons, Inc. | Hexa- and octahydro-4,7-epoxyisobenzofuran-1-ol and hexa- and octahydro-5,8-epoxy-1H-2-benzopyran-3-ol |
| US4228180A (en) * | 1979-11-01 | 1980-10-14 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane and 7-oxabicycloheptene prostaglandin analogs |
| US4254044A (en) * | 1977-11-04 | 1981-03-03 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane- and 7-oxabicycloheptene compounds |
| EP0043292A2 (en) * | 1980-07-01 | 1982-01-06 | National Research Development Corporation | Prostaglandins |
| EP0082646A1 (en) * | 1981-12-23 | 1983-06-29 | National Research Development Corporation | Prostaglandins |
| US4416896A (en) * | 1982-05-17 | 1983-11-22 | E. R. Squibb & Sons, Inc. | 7-Oxabicyclopheptane substituted amino prostaglandin analogs useful in the treatment of thrombolytic disease |
| US4456617A (en) * | 1983-01-12 | 1984-06-26 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane substituted amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction |
| US4456615A (en) * | 1982-10-25 | 1984-06-26 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane substituted amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction |
| US4607048A (en) * | 1985-05-16 | 1986-08-19 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane substituted aryl amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction |
| US4638012A (en) * | 1985-11-05 | 1987-01-20 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane α-substituted ketone prostaglandin analogs useful in the treatment of thrombotic disease |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4661506A (en) * | 1984-11-30 | 1987-04-28 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane substituted ox prostaglandin analogs |
-
1986
- 1986-10-17 US US06/920,006 patent/US4734425A/en not_active Expired - Fee Related
-
1987
- 1987-09-28 GB GB8722764A patent/GB2196338B/en not_active Expired - Fee Related
- 1987-10-07 FR FR878713867A patent/FR2605319B1/en not_active Expired
- 1987-10-16 IT IT22315/87A patent/IT1223312B/en active
- 1987-10-16 DE DE19873735128 patent/DE3735128A1/en not_active Withdrawn
- 1987-10-17 JP JP62262559A patent/JPS63104981A/en active Pending
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4143054A (en) * | 1977-11-04 | 1979-03-06 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane- and 7-oxabicycloheptene compounds |
| US4187236A (en) * | 1977-11-04 | 1980-02-05 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane compounds |
| US4220594A (en) * | 1977-11-04 | 1980-09-02 | E. R. Squibb & Sons, Inc. | Hexa- and octahydro-4,7-epoxyisobenzofuran-1-ol and hexa- and octahydro-5,8-epoxy-1H-2-benzopyran-3-ol |
| US4254044A (en) * | 1977-11-04 | 1981-03-03 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane- and 7-oxabicycloheptene compounds |
| GB2039909A (en) * | 1979-01-05 | 1980-08-20 | Wilson N | Prostaglandins |
| US4228180A (en) * | 1979-11-01 | 1980-10-14 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane and 7-oxabicycloheptene prostaglandin analogs |
| EP0043292A2 (en) * | 1980-07-01 | 1982-01-06 | National Research Development Corporation | Prostaglandins |
| EP0082646A1 (en) * | 1981-12-23 | 1983-06-29 | National Research Development Corporation | Prostaglandins |
| US4416896A (en) * | 1982-05-17 | 1983-11-22 | E. R. Squibb & Sons, Inc. | 7-Oxabicyclopheptane substituted amino prostaglandin analogs useful in the treatment of thrombolytic disease |
| US4456615A (en) * | 1982-10-25 | 1984-06-26 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane substituted amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction |
| US4456617A (en) * | 1983-01-12 | 1984-06-26 | E. R. Squibb & Sons, Inc. | 7-Oxabicycloheptane substituted amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction |
| US4607048A (en) * | 1985-05-16 | 1986-08-19 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane substituted aryl amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction |
| US4638012A (en) * | 1985-11-05 | 1987-01-20 | E. R. Squibb & Sons, Inc. | 7-oxabicycloheptane α-substituted ketone prostaglandin analogs useful in the treatment of thrombotic disease |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0380956A3 (en) * | 1989-01-17 | 1991-12-04 | E.R. SQUIBB & SONS, INC. | Method of preventing or treating atherosclerosis using a thromboxane a2 receptor antagonist |
| US20030158406A1 (en) * | 1999-03-02 | 2003-08-21 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cathepsin S |
| US6395897B1 (en) | 1999-03-02 | 2002-05-28 | Boehringer Ingelheim Pharmaceuticals, Inc. | Nitrile compounds useful as reversible inhibitors of #9 cathepsin 5 |
| US6730671B2 (en) | 1999-03-02 | 2004-05-04 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cathespin S |
| US6608057B2 (en) | 1999-03-02 | 2003-08-19 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cathepsin S |
| US6982272B2 (en) | 1999-09-13 | 2006-01-03 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US7265132B2 (en) | 1999-09-13 | 2007-09-04 | Boehringer Ingelheim Pharmaceuticals Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US20030225270A1 (en) * | 1999-09-13 | 2003-12-04 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US6756372B2 (en) | 1999-09-13 | 2004-06-29 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US20050032772A1 (en) * | 1999-09-13 | 2005-02-10 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US7056915B2 (en) | 1999-09-13 | 2006-06-06 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US7279472B2 (en) | 1999-09-13 | 2007-10-09 | Boehringer Ingelheim Pharmaceuticals Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US20030232826A1 (en) * | 2000-09-08 | 2003-12-18 | Boehringer Ingelheim Pharmaciuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US6858623B2 (en) | 2000-09-08 | 2005-02-22 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compounds useful as reversible inhibitors of cysteine proteases |
| US20020099035A1 (en) * | 2001-01-24 | 2002-07-25 | Sandanayaka Vincent P. | Method for preparing alpha-sulfonyl hydroxamic acid derivatives |
| EP2147679A2 (en) | 2001-07-25 | 2010-01-27 | Raptor Pharmaceutical Inc. | Compositions and methods for modulating blood-brain barrier transport |
| WO2003009815A2 (en) | 2001-07-25 | 2003-02-06 | Biomarin Pharmaceutical Inc. | Compositions and methods for modulating blood-brain barrier transport |
| WO2006116718A2 (en) | 2005-04-28 | 2006-11-02 | Proteus Biomedical, Inc. | Pharma-informatics system |
| EP2392258A1 (en) | 2005-04-28 | 2011-12-07 | Proteus Biomedical, Inc. | Pharma-informatics system |
| EP3827747A1 (en) | 2005-04-28 | 2021-06-02 | Otsuka Pharmaceutical Co., Ltd. | Pharma-informatics system |
| WO2008036682A2 (en) | 2006-09-18 | 2008-03-27 | Raptor Pharmaceutical Inc. | Treatment of liver disorders by administration of receptor-associated protein (rap)-conjugates |
| WO2010095940A2 (en) | 2009-02-20 | 2010-08-26 | To-Bbb Holding B.V. | Glutathione-based drug delivery system |
| EP4218718A2 (en) | 2009-05-06 | 2023-08-02 | Laboratory Skin Care, Inc. | Dermal delivery compositions comprising active agent-calcium phosphate particle complexes and methods of using the same |
| WO2012044761A1 (en) | 2010-09-29 | 2012-04-05 | University Of North Carolina At Wilmington | Ladder-frame polyether conjugates |
Also Published As
| Publication number | Publication date |
|---|---|
| IT1223312B (en) | 1990-09-19 |
| GB2196338B (en) | 1990-08-08 |
| GB8722764D0 (en) | 1987-11-04 |
| FR2605319B1 (en) | 1989-12-22 |
| JPS63104981A (en) | 1988-05-10 |
| FR2605319A1 (en) | 1988-04-22 |
| DE3735128A1 (en) | 1988-04-21 |
| IT8722315A0 (en) | 1987-10-16 |
| GB2196338A (en) | 1988-04-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4663336A (en) | 7-oxabicycloheptane substituted diamide and its congener prostaglandin analogs useful in the treatment of thrombotic disease | |
| US4456617A (en) | 7-Oxabicycloheptane substituted amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction | |
| US4663337A (en) | 7-oxabicycloheptane substituted amides useful in the treatment of thrombotic disease | |
| US4654355A (en) | 7-oxabicycloheptane substituted amide-thioamide prostaglandin analogs | |
| EP0094792A1 (en) | 7-Oxabicycloheptane substituted amino prostaglandin analogs | |
| US4734425A (en) | 7-oxabicycloheptane substituted hydroxamic acid prostaglandin analogs | |
| US4654357A (en) | 7-oxabicycloheptane substituted sulfonamide prostaglandin analogs | |
| US4749715A (en) | 7-oxabicycloheptane substituted amino prostaglandin analogs | |
| US4734424A (en) | Bicycloheptane substituted diamide and its congener prostaglandin analogs | |
| US4638012A (en) | 7-oxabicycloheptane α-substituted ketone prostaglandin analogs useful in the treatment of thrombotic disease | |
| US4639461A (en) | 7-oxabicycloheptane substituted keto-amide prostaglandin analogs useful in the treatment of thrombotic disease | |
| US4654356A (en) | 7-oxabicycloheptane substituted diacid diamide prostaglandin analogs | |
| US4734426A (en) | 5,6-epoxy-7-oxabicycloheptane substituted diamide prostaglandin analogs | |
| US4738978A (en) | Bisthioamide-7-oxabicycloheptane prostaglandin analogs | |
| EP2414367B1 (en) | Prostaglandin e receptor antagonists | |
| US4652576A (en) | 7-oxabicycloheptane substituted amide-carbamate prostaglandin analogs | |
| US4647573A (en) | 7-oxabicycloheptane substituted thioamide-amide prostaglandin analogs | |
| US4607048A (en) | 7-oxabicycloheptane substituted aryl amino prostaglandin analogs and their use in inhibiting platelet aggregation and bronchoconstriction | |
| US4632931A (en) | 7-oxabicycloheptane substituted amide-sulfonamide prostaglandin analogs useful in the treatment of thrombotic disease | |
| US4652578A (en) | 7-oxabicycloheptane substituted amide prostaglandin analogs | |
| US4656185A (en) | 7-oxabicycloheptane substituted aminoalkyl amide prostaglandin analogs | |
| US4670453A (en) | 7-oxabicycloheptane substituted amido-carbamoyl prostaglandin analogs useful in the treatment of thrombotic disease | |
| CA1267906A (en) | 7-oxabicycloheptane substituted prostaglandin analogs | |
| US5238951A (en) | Heterocyclic amido prostaglandin analogs | |
| US5135939A (en) | Heterocyclic ketone prostaglandin analogs |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: E. Q. SQUIBB & SONS, INC., LAWRENCEVILLE-PRINCETON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:NAKANE, MASAMI;REID, JOYCE;REEL/FRAME:004809/0627 Effective date: 19870211 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20000329 |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |