US4732632A - Protecting elongated substrate with multiple-layer polymer covering - Google Patents

Protecting elongated substrate with multiple-layer polymer covering Download PDF

Info

Publication number
US4732632A
US4732632A US06/789,001 US78900185A US4732632A US 4732632 A US4732632 A US 4732632A US 78900185 A US78900185 A US 78900185A US 4732632 A US4732632 A US 4732632A
Authority
US
United States
Prior art keywords
composition
curable
polymeric
accordance
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/789,001
Inventor
George Pieslak
Tony G. Alvernaz
Robin John
James A. Rinde
Eric Van Zele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tyco International Ltd
TE Connectivity Corp
Tyco International PA Inc
Original Assignee
Raychem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raychem Corp filed Critical Raychem Corp
Priority to US06/789,001 priority Critical patent/US4732632A/en
Assigned to RAYCHEM CORPORATION reassignment RAYCHEM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALVERNAZ, TONY G., PIESLAK, GEORGE, RINDE, JAMES A., VAN ZELE, ERIC, JOHN, ROBIN
Application granted granted Critical
Publication of US4732632A publication Critical patent/US4732632A/en
Assigned to AMP INCORPORATED, TYCO INTERNATIONAL (PA), INC., TYCO INTERNATIONAL LTD. reassignment AMP INCORPORATED MERGER & REORGANIZATION Assignors: RAYCHEM CORPORATION
Assigned to TYCO ELECTRONICS CORPORATION reassignment TYCO ELECTRONICS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AMP INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/146Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies to metallic pipes or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/582No clear coat specified all layers being cured or baked together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/10Coatings characterised by the materials used by rubber or plastics
    • F16L58/1054Coatings characterised by the materials used by rubber or plastics the coating being placed outside the pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2254/00Tubes
    • B05D2254/02Applying the material on the exterior of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2301/00Inorganic additives or organic salts thereof
    • B05D2301/50Bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2505/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate

Definitions

  • the invention relates to a method for applying a protective coating to a substrate, in particular a metallic pipe and polymeric substrate.
  • a protective coating may be applied.
  • fusion bonded epoxy coatings are applied to the substrate in powdered form and are then heated to relatively high temperatures, about 200°-300° C., to cause the powder particles to fuse and flow together and cure to form a continuous coating bonded to the substrate.
  • the substrate is preheated to these high temperatures before the powdered resin is applied.
  • the fusion bonded coating may be further protected by application of one or more additional layers. Coating systems of this type are disclosed in U.S. Pat. Nos.
  • Suitable sealants include hot melt adhesives and mastics.
  • the substrate may act as a heat sink and prevent the interface between the adhesive and the pipe from attaining the minimum bond line temperature required to form a strong bond between the adhesive and the pipe.
  • One such situation is an oil-carrying pipeline in which the oil is between 25°-50° C. Under these conditions it is difficult to retrofit or repair a pipeline coating with a heat recoverable article such as described above.
  • the methods of this invention do not require the high temperature and complex equipment requirements of fusion bonded epoxies and can be used to retrofit or repair existing pipelines carrying oil at temperatures below the activation temperature of typical heat activatable sealants.
  • the method is versatile and can be used in a factory, at a field plant or "over the ditch” to apply protective coatings to various substrates in particular metallic pipelines.
  • the method can be used to protect a variety of substrates including cables, cable splices, conduits, and the like.
  • One aspect of this invention comprises a method of applying a protective covering to an elongate substrate which comprises:
  • a curable polymeric composition which is a liquid at about 20° C., is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C., and comprises
  • Another aspect of the invention comprises a method of applying a protective covering to an elongate substrate which comprises:
  • a curable polymeric composition which is a liquid at about 20° C., is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C., and comprises
  • Another aspect of the invention comprises a method of applying a protective covering to an elongate substrate which comprises:
  • Substrates which can be protected by the method of the invention are preferably elongate substrates.
  • the substrates are more preferably cylindrical and even more preferably hollow cylinders, such as pipes or tubing and especially pipes or tubing for carrying oil or gas.
  • the substrate may be of any desired composition but it is preferred that the substrate be metallic or polymeric.
  • Metallic substrates such as pipelines normally comprise iron, steel or steel alloys but may comprise any metal.
  • Polymeric substrates can be polymeric tubing or pipes or polymeric coatings on other substrates.
  • the method of the invention can be used to repair a polymeric coating on a steel pipe or an exposed joint area between two coated pipes. The method of the invention can be used to protect the polymeric coating as well as any exposed metallic substrate.
  • the substrate is first coated with a curable polymeric composition.
  • the curable polymeric composition is a liquid at about 20° C. and is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C.
  • curable to a substantial extent is meant that the composition has cured to at least about 50%, preferably at least about 65%, most preferably at least about 80%, of its fully cured state.
  • the time to substantially cure varies greatly dependent on the particular composition, actual conditions of application, temperature, etc. For many applications it is desirable to use a curable composition which substantially cures in less than about 12 hours, preferably less than about 6 hours. For coating metallic pipes, it is generally preferred to use a curable composition which substantially cures in about 2 to about 30 minutes at 80° C. or less.
  • the curable polymeric composition comprises a resin component, a curing agent and optionally a Bronsted base.
  • the resin component is preferably a liquid at 20° C.
  • the curing agent also is preferably a liquid at 20° C.
  • a solvent may be present in the curable composition but preferred curable compositions contain little or no solvent. In general, no more than about 20% by weight of the composition should comprise solvent, preferably no more than about 5% and most preferably the composition is solvent-free.
  • the resin component of the curable composition preferably comprises a thermosetting resin, for example a liquid epoxy resin, such as bisphenol A epoxies, novolak epoxies, 1,2-epoxies, or coal tar epoxies, prepolymer precursers of polyurethanes and/or coal tar urethanes, polyesters (unsaturated and alkyl), acrylates, polyimides, silicones, etc.
  • a thermosetting resin for example a liquid epoxy resin, such as bisphenol A epoxies, novolak epoxies, 1,2-epoxies, or coal tar epoxies, prepolymer precursers of polyurethanes and/or coal tar urethanes, polyesters (unsaturated and alkyl), acrylates, polyimides, silicones, etc.
  • the curable polymeric composition also comprises a curing agent for the resin component.
  • the curing agent is selected such that under the conditions of application the resin selected will be cured to a substantial extent within the desired time period.
  • the resin component comprises an epoxy resin and the curing agent may be a catalytic curing agent, a reactive curing agent or mixtures thereof.
  • catalytic curing agents are anionic catalysts such as metal alkoxides, isocyanurates or more preferably materials containing free amine groups.
  • Preferred catalytic curing agents are tertiary amines, for example, pyridine, 2,4,6-tris(dimethylaminomethyl) phenol, dimethylaminopropyl amine, benzyldimethyl amine, triethyl amine or 1-methyl imidazole; or secondary amines, for example, piperidine, diethanol amine or imidazole.
  • reactive curing agents examples include polyamides (for example, Versamid Polyamides from Henkel), polyamines, for example, ethylene diamine, ethylene triamine, diethylene triamine, or triethylene tetramine, and adducts of the above polyamides and polyamines or similar amines, for example the adduct of polyamide with a bisphenol A epoxy resins.
  • Other catalysts useful in combination with reactive curing agents include phenolic compositions such as phenol, bisphenol A, catechol, resorsinol and other compounds containing hydroxy groups.
  • the curing agent or combination of curing agents used comprise at least one substance which is a Bronsted base.
  • a Bronsted base is a molecular substance capable of accepting a proton (i.e. a hydrogen ion). It has been found that surprisingly strong bonds and resistance to cathodic disbonding are achieved when the curable polymeric composition results in a cured composition which is basic.
  • excess Bronsted base that is an amount in excess of that required to effect curing of the composition is preferably used.
  • the Bronsted base is added in an amount of at least 0.01 moles in excess of that necessary to effect cure of the composition.
  • the Bronsted base is added in an amount of 0.01 to about 2 moles in excess.
  • the Bronsted base is a reactive curing agent and is used in an amount greater than a 1:1 ratio of basic curing agent to reactive resin, and preferably between a ratio of about 1:1 to about 3:1.
  • the cured polymeric composition When providing excess base it is important that the cured polymeric composition have the appropriate hardness and resistance to cathodic disbonding, either or both of which can be adversely affected if too much Bronsted base is added. When excess base is added to the curable composition the Tg of the resulting cured polymeric composition is lowered. In general, it is preferred that the cured composition have a Tg of at least about 50° C., and preferably between about 50° to about 120° C. to provide the necessary properties.
  • the curable polymeric composition may contain an additive for improving the adhesion of the curable polymeric composition to the substrate such as coupling agents or adhesion promoters.
  • additives can be in the resin, the curing agent or added separately and include, for example, silanes, p-quinone oximes, dioximes and metal deactivators. These additives preferably are included in an amount of from about 0.1% to about 10% by weight, based on the weight of the curable polymeric composition.
  • Preferred curable compositions contain a silane as an adhesion promoting additive.
  • Silanes are compounds similar to hydrocarbons in which at least one tetravalent Si replaces a C atom.
  • a wide variety of silanes are known and many commercially produced silanes are available. See, for example, U.S. Pat. No. 3,490,934, incorporated herein by reference.
  • silanes include gamma-glycidoxy-propyl-trimethoxy silane, gamma-amino propyl trimethoxy silane, aminopropyltriethoxy silane, 3-(2-aminoethyl) (aminopropyl) trimethoxy-silane, glycidoxy propyl-trimethoxysilane, vinyltriacetoxy silane, vinyltris (methoxyethoxy)-silane,beta-(3,4-epoxy cyclohexyl)ethyl trimethoxy silane, and N-vinylbenzyl-N-2(trimethoxysilyl propylamino) ethyl ammonium choride.
  • the components of the curable polymeric composition i.e. resin, curing agent, excess Bronsted base, if present, and any additives
  • the curable polymeric composition is applied to the area of the substrate to be protected at a temperature (T 1 ) which is from about ambient temperature (i.e. about 20° C.) to not more than about 80° C., preferably not more than about 60° C. It is preferred to preheat the substrate to about T 1 before applying the curable composition.
  • the substrate may be preheated by any convenient technique. Where the substrate is a pipeline carrying oil or other fluid at temperatures of about T 1 , a separate preheated step is not necessary.
  • Preheating of the substrate may also be achieved during cleaning thereof, for example, shotblasting of metallic pipes heats the pipe up to about 50° C. Welding of metal pipes, for example when welding together pipe ends, may also heat the pipe to the desired temperature. Direct heating of the substrate, for example, with a torch or other flame may be desired if the substrate is not otherwise preheated.
  • the curable polymeric composition may be applied by any method for applying liquid coating compositions, for example, brushing, wiping, dipping or spraying.
  • the curable polymeric composition may be applied in one or more coats if desired. Subsequent coats may be applied directly to the previous coat or applied to the surface of the polymeric layer which is to come into intimate contact therewith.
  • the curable composition is preferably applied in an amount to provide a coating between about 2 to about 10 mils thick, preferably about 3 to about 7 mils.
  • the curable polymeric composition is covered by one or more polymeric layers before it is permitted to cure to a substantial extent, that is while it is substantially uncured.
  • the polymeric layer or layers may be applied by any convenient technique, for example, extrusion, spraying, wrapping, shrinking, pressing, painting, dipping, electrostatic depositing, etc.
  • the innermost polymeric layer that is the layer placed in direct contact with the curable composition, is capable of interacting with the curable composition. This layer is maintained in intimate contact with the curable composition while it is uncured.
  • the terms "interact” or "interacting" are used herein to mean that the innermost layer and the curable composition form an integral unit, i.e. cannot be readily separated, when the curable composition is cured in intimate contact with the innermost layer.
  • the interaction can be physical or chemical. Physical interaction can be, for example, penetration of the curable composition into the material of the innermost polymeric layer where it becomes entrapped on curing thereof.
  • Penetration of the curable composition by absorption or adsorption into the polymeric layer may be enhanced, if desired, by incorporating into the polymeric layer an appropriate filler.
  • Fillers that can be used include pigments, agents such as carbon black, alumina trihydrate, clay, mineral fiber, silica, calcium silicate, barium sulfate, zinc sulfate, titanium dioxide, zinc sulfide, lithopone, ferric oxide, coated or functionalized fillers such as functionalized aluminum silicates such as mecaptans, amine or vinyl, or silanes, organic titinates, etc.
  • Another example of physical interaction comprises the use of a polar curable composition, e.g. an epoxy-based curable composition, together with a polar innermost polymeric layer so that a polar interaction occurs at the intimate interface between the two materials.
  • a polar curable composition e.g. an epoxy-based curable composition
  • Chemical interaction comprises the formation of chemical bonds between the curable composition and the innermost polymeric layer.
  • the use of an innermost polymeric layer containing reactive amine groups either in the polymer structure or as an additive, over a curable epoxy resin layer will result in formation of bonds between the curable composition and the polymeric layer.
  • the layer be applied as a preformed shaped article, such as a tape, sheet, patch or tube. Since this is the only layer applied, it will be placed in intimate contact with the curable composition. Thus, it is in essence the innermost layer and should be capable of interacting with the curable composition, as discussed above.
  • the polymeric article can be dimensionally recoverable, and is preferably heat recoverable. The article is placed around the substrate, e.g. by wrapping, and heat is applied to cause the article to recover, that is, shrink, into contact with the curable composition on the substrate. The curable composition is then permitted to cure. It is desirable that the curing step be conducted at a temperature at which the polymeric article does not melt or flow.
  • the single polymeric layer preferably comprises a polyolefin such as polyethylene or polypropylene; acrylic rubber; EPDM; nitrile rubber; nylon; epichlorohydrin elastomer; polysulfide; acrylic elastomer; butyl rubber or the like. Particularly preferred is crosslinked polyethylene.
  • the innermost layer is selected so that it is capable of interaction with the curable composition.
  • the innermost layer comprises an uncured material and more preferably comprises a heat activatable sealant.
  • heat activatable sealants include the hot melt adhesives.
  • the hot melt adhesive can be any sealant typically used to bond corrosion protection coatings to metal and particularly those generally used to bond a coating to a pipeline which is cathodically protected (e.g. impressed current or sacraficial anode) to protect the pipeline from corrosion, abrasion or impact damage, etc.
  • Such hot melt adhesives include those based on thermoplastic polyamides, polyolefins, polyesters, polyurethanes, polysulfides and the like. Especially preferred are polyamide-or ethylene terpolymer-based hot melt adhesives. Particularly preferred are hot melt adhesives containing ethylene co- or terpolymers, for example co- or terpolymers of ethylene with one or more of vinyl acetate, maleic anhydride, acrylic acid, methacrylic acid or alkyl acrylate such as ethyl acrylate.
  • Various additives may be included in the hot melt adhesive as desired such as waxes, rubbers, stabilizers and the like. Other examples of additives are in U.S. Pat. Nos. 4,455,204 and 4,287,034 incorporated herein by reference.
  • the outermost polymeric layer is preferably a preformed shaped article.
  • a preferred method of applying more than one polymeric layer over the curable composition is to use a polymeric article coated on one surface thereof with the material to be placed in contact with the curable material, e.g. a heat activatable sealant.
  • a heat recoverable polymeric article coated on the surface thereof with a heat activatable adhesive, as described above, is used to apply a double layer polymeric covering over the curable polymeric material. Heat is applied, preferably from an external heat source, to cause the article to recover, i.e. shrink, so that the heat activatable adhesive comes into contact with the curable composition.
  • the curable composition is permitted to cure at a temperature at which the polymeric article, i.e. the outermost polymeric layer, does not melt or flow.
  • the outermost polymeric layer preferably comprises a polyolefin such as polyethylene or polypropylene; acrylic rubber; EPDM; nitrile rubber; epichlorohydrin elastomer; polysulfide; acrylic elastomer; butyl rubber or the like.
  • Each of the polymeric layers and the curable polymeric composition either independently or together may also contain appropriate other additives such as tackifiers, fillers, corrosion inhibitors, waxes, uncured epoxy resins, rubbers, stabilizers, adhesion promoters, e.g. for improving cathodic disbonding properties, and the like.
  • compositions are tested for resistance to cathodic disbondment by using the hot melt adhesive sealant and epoxy composition to bond a heat shrinkable sleeve of polyethylene to a steel pipe.
  • the polyethylene coated pipe is then tested by the method of ASTM G-42 method A to determine the resistance of the adhesive to cathodic disbondment and tested by the method of ASTM D-1000 for peel strength at ambient temperature and at 75° C.
  • a two component epoxy bisphenol A system which is amine rich was mixed and applied with a brush to clean, shotblasted steel pipe which is at a temperature of between ambient and about 175° C. as indicated in the Table I. has been preheated to 50°-60° C.
  • a heat shrinkable polyethylene outer layer is coated with a hot melt adhesive, either a copolymer of polyethylene and vinyl acetate (Adhesive #1), a copolymer of polyethylene and ethyl acrylate (Adhesive #2) or a blend of a polyamide and a polyethylene vinyl acetate, methacrylic acid terpolymer (Adhesive #3).
  • Adhesive #1 copolymer of polyethylene and vinyl acetate
  • Adhesive #2 copolymer of polyethylene and ethyl acrylate
  • Adhesive #3 a blend of a polyamide and a polyethylene vinyl acetate, methacrylic acid terpolymer
  • Example 4 only the heat shrinkable polyethylene outer layer is applied with no hot melt adhesive. Pipe and coating were allowed to rest for 24 hours before samples were tested. Controls using no epoxy at elevated temperature (125°-200° C.) and at 50°-60° C. also performed in similar manner. Samples prepared in such a manner were tested for peel strength at ambient temperature and at 75° C. (ASTM D-1000); and for cathodic disbonding resistance at 75° C. (ASTM G-42) and impact resistance (ASTM-G-14). The results are show in Table I and II.
  • compositions similar to Example 1-11 were tested, however some of the bisphenol A epoxy resins contained plasticizers or flexibilizers and the like which are known to allow moisture to intrude. Other combinations of resin and curing agent and layers were such that no interaction between layers occurred. In all cases samples showed complete disbondment of the primer or adhesive when tested for cathodic disbonding at 75° C. for 30 days.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a method for applying a protective coating to a substrate, such as metallic pipe, which comprises applying onto the substrate a liquid curable polymeric composition capable of curing to a substantial extent within about 24 hours at less than about 80° C., then applying one or more polymeric layers, the innermost of which is capable of interacting with said curable composition, and permitting the composition to cure. In certain embodiments the polymeric layer is applied as a polymeric article, in other embodiments a multiple layer polymeric covering is applied over the curable composition.

Description

This application is a continuation-in-part of application Ser. No. 670,245 filed Nov. 9, 1984, now abandoned, and application Ser. No. 702,116 filed Feb. 15, 1985, now abandoned, the disclosures of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
The invention relates to a method for applying a protective coating to a substrate, in particular a metallic pipe and polymeric substrate.
To protect substrates such as metallic pipes and pipelines from, for example, corrosion or mechanical abuse, a protective coating may be applied.
Various coatings for such substrates are known and many are commercially available. One class of coatings that has been found to be effective include the so-called fusion bonded epoxy coatings. These coatings are applied to the substrate in powdered form and are then heated to relatively high temperatures, about 200°-300° C., to cause the powder particles to fuse and flow together and cure to form a continuous coating bonded to the substrate. Typically, the substrate is preheated to these high temperatures before the powdered resin is applied. For good adhesion between the epoxy coating and the pipe, it is generally required that the surface of the pipe be adequately cleaned and abraded. The fusion bonded coating may be further protected by application of one or more additional layers. Coating systems of this type are disclosed in U.S. Pat. Nos. 4,213,486 to Samour and 4,510,007 to Stucke. A modification of this coating approach is disclosed in U.S. Pat. No. RE30,006 to Sakayori et al in which a modified polyolefin is applied to an uncured epoxy resin coated on a metal surface and then the system is heated to melt bond the uncured epoxy resin and the polyolefin and to cure the epoxy resin. The temperature utilized must be above the melting point of the polyolefin, generally between 80° and 350° C.
Another coating technique is disclosed in U.S. Pat. No. 3,231,443 to McNulty in which a cured resin layer (e.g. epoxy) carried on a film backing is applied over an uncured resin layer (e.g. epoxy) coated on the substrate to be protected. The cured and uncured resins interact to form a protective coating. It is said that the coating can be applied in the field. Cured epoxy resins are generally brittle and thus precuring the resin as suggested in McNulty is likely to be difficult under actual pipe installation conditions, particularly if the pipe is of relatively small diameter.
Yet another approach to coating metal substrates is described in U.S. Pat. No. 3,502,492 to Spiller. In this approach a thin layer of powdered epoxy resin is coated on the metal surface and then a thick layer of plasticized polyvinyl chloride particles are applied. The coating is heated causing both the epoxy powder and the polyvinyl chloride powder to adhere to each other and to the underlying substrate. A continuous epoxy-polyvinyl chloride interface is not formed.
In general the above techniques because of the high temperatures and complex equipment required are limited to factory application of the coating or are otherwise impractical under actual field conditions. Application of pipeline coatings in the field, or protection of other substrates such as cable splices, require techniques that employ more moderate temperatures and portable equipment. One successful technique for coating pipelines in the field is the use of a heat-recoverable (i.e. heat shrinkable) polymeric article, such as a tube, sheet or tape, in combination with a heat activatable sealant. In installing such coatings, a torch or other heat source is generally used to heat the article to cause it to recover. This heat also raises the temperature of the heat activatable sealant to above its activation temperature so that a strong bond is formed between the polymeric article and the substrate. Suitable sealants include hot melt adhesives and mastics. There are certain applications in which the substrate may act as a heat sink and prevent the interface between the adhesive and the pipe from attaining the minimum bond line temperature required to form a strong bond between the adhesive and the pipe. One such situation is an oil-carrying pipeline in which the oil is between 25°-50° C. Under these conditions it is difficult to retrofit or repair a pipeline coating with a heat recoverable article such as described above.
We have now discovered a coating method which overcomes the deficiencies of these prior techniques. The methods of this invention do not require the high temperature and complex equipment requirements of fusion bonded epoxies and can be used to retrofit or repair existing pipelines carrying oil at temperatures below the activation temperature of typical heat activatable sealants. The method is versatile and can be used in a factory, at a field plant or "over the ditch" to apply protective coatings to various substrates in particular metallic pipelines. The method can be used to protect a variety of substrates including cables, cable splices, conduits, and the like.
SUMMARY OF THE INVENTION
It has further surprisingly been found that not only is the unique method versatile and suitable for field or factory use, but the resulting coating on the pipe is superior to similar coatings applied by different techniques.
One aspect of this invention comprises a method of applying a protective covering to an elongate substrate which comprises:
(a) applying to the substrate at a temperature of not more than about 80° C., a curable polymeric composition which is a liquid at about 20° C., is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C., and comprises
(i) a resin component;
(ii) a curing agent;
(b) applying a single layer, polymeric article comprising a material capable of interacting with said curable composition, over the curable polymeric composition in a manner such that a surface of the article is in intimate contact with the composition; and
(c) allowing the curable composition to cure while maintaining intimate contact between the polymeric article and said composition at a temperature at which the material of the article does not melt or flow.
Another aspect of the invention comprises a method of applying a protective covering to an elongate substrate which comprises:
(a) applying to the substrate at a temperature of not more than about 80° C., a curable polymeric composition which is a liquid at about 20° C., is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C., and comprises
(i) a resin component;
(ii) a curing agent;
(b) applying a multiple-layer polymeric covering, having an innermost layer and an outermost layer, the innermost layer comprising uncured polymeric material capable of interacting with said curable composition, over the curable polymeric composition in a manner such that said innermost layer is in intimate contact with said composition; and
(c) allowing the curable composition to cure while maintaining intimate contact between said innermost layer and said composition at a temperature at which the outermost layer of the covering does not melt or flow.
Another aspect of the invention comprises a method of applying a protective covering to an elongate substrate which comprises:
(a) applying to the substrate a curable polymeric composition comprising:
(i) a resin component;
(ii) a curing agent; and
(iii) a Bronsted base in an amount sufficient to provide an excess of Bronsted base in the composition when cured;
(b) applying a polymeric layer over the curable polymeric composition such that a surface of the polymeric layer is in intimate contact therewith, said polymeric layer being capable of interacting with said curable composition; and
(c) allowing the curable composition to cure while maintaining intimate contact between the polymeric layer and said composition.
DETAILED DESCRIPTION OF THE INVENTION
Substrates which can be protected by the method of the invention are preferably elongate substrates. The substrates are more preferably cylindrical and even more preferably hollow cylinders, such as pipes or tubing and especially pipes or tubing for carrying oil or gas. The substrate may be of any desired composition but it is preferred that the substrate be metallic or polymeric. Metallic substrates such as pipelines normally comprise iron, steel or steel alloys but may comprise any metal. Polymeric substrates can be polymeric tubing or pipes or polymeric coatings on other substrates. For example, the method of the invention can be used to repair a polymeric coating on a steel pipe or an exposed joint area between two coated pipes. The method of the invention can be used to protect the polymeric coating as well as any exposed metallic substrate.
In accordance with this invention, the substrate is first coated with a curable polymeric composition. The curable polymeric composition is a liquid at about 20° C. and is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C. By "curable to a substantial extent" is meant that the composition has cured to at least about 50%, preferably at least about 65%, most preferably at least about 80%, of its fully cured state. The time to substantially cure varies greatly dependent on the particular composition, actual conditions of application, temperature, etc. For many applications it is desirable to use a curable composition which substantially cures in less than about 12 hours, preferably less than about 6 hours. For coating metallic pipes, it is generally preferred to use a curable composition which substantially cures in about 2 to about 30 minutes at 80° C. or less.
The curable polymeric composition comprises a resin component, a curing agent and optionally a Bronsted base. The resin component is preferably a liquid at 20° C. The curing agent also is preferably a liquid at 20° C. A solvent may be present in the curable composition but preferred curable compositions contain little or no solvent. In general, no more than about 20% by weight of the composition should comprise solvent, preferably no more than about 5% and most preferably the composition is solvent-free.
The resin component of the curable composition preferably comprises a thermosetting resin, for example a liquid epoxy resin, such as bisphenol A epoxies, novolak epoxies, 1,2-epoxies, or coal tar epoxies, prepolymer precursers of polyurethanes and/or coal tar urethanes, polyesters (unsaturated and alkyl), acrylates, polyimides, silicones, etc.
The curable polymeric composition also comprises a curing agent for the resin component. The curing agent is selected such that under the conditions of application the resin selected will be cured to a substantial extent within the desired time period. In preferred embodiments, the resin component comprises an epoxy resin and the curing agent may be a catalytic curing agent, a reactive curing agent or mixtures thereof. Examples of catalytic curing agents are anionic catalysts such as metal alkoxides, isocyanurates or more preferably materials containing free amine groups. Preferred catalytic curing agents are tertiary amines, for example, pyridine, 2,4,6-tris(dimethylaminomethyl) phenol, dimethylaminopropyl amine, benzyldimethyl amine, triethyl amine or 1-methyl imidazole; or secondary amines, for example, piperidine, diethanol amine or imidazole. Examples of reactive curing agents include polyamides (for example, Versamid Polyamides from Henkel), polyamines, for example, ethylene diamine, ethylene triamine, diethylene triamine, or triethylene tetramine, and adducts of the above polyamides and polyamines or similar amines, for example the adduct of polyamide with a bisphenol A epoxy resins. Other catalysts useful in combination with reactive curing agents include phenolic compositions such as phenol, bisphenol A, catechol, resorsinol and other compounds containing hydroxy groups.
The curing agent or combination of curing agents used comprise at least one substance which is a Bronsted base. A Bronsted base is a molecular substance capable of accepting a proton (i.e. a hydrogen ion). It has been found that surprisingly strong bonds and resistance to cathodic disbonding are achieved when the curable polymeric composition results in a cured composition which is basic. To ensure basicity of the cured composition, excess Bronsted base, that is an amount in excess of that required to effect curing of the composition is preferably used. Generally, the Bronsted base is added in an amount of at least 0.01 moles in excess of that necessary to effect cure of the composition. Preferably, the Bronsted base is added in an amount of 0.01 to about 2 moles in excess. In a preferred embodiment the Bronsted base is a reactive curing agent and is used in an amount greater than a 1:1 ratio of basic curing agent to reactive resin, and preferably between a ratio of about 1:1 to about 3:1.
When providing excess base it is important that the cured polymeric composition have the appropriate hardness and resistance to cathodic disbonding, either or both of which can be adversely affected if too much Bronsted base is added. When excess base is added to the curable composition the Tg of the resulting cured polymeric composition is lowered. In general, it is preferred that the cured composition have a Tg of at least about 50° C., and preferably between about 50° to about 120° C. to provide the necessary properties.
The curable polymeric composition may contain an additive for improving the adhesion of the curable polymeric composition to the substrate such as coupling agents or adhesion promoters. Such additives can be in the resin, the curing agent or added separately and include, for example, silanes, p-quinone oximes, dioximes and metal deactivators. These additives preferably are included in an amount of from about 0.1% to about 10% by weight, based on the weight of the curable polymeric composition.
Preferred curable compositions contain a silane as an adhesion promoting additive. Silanes are compounds similar to hydrocarbons in which at least one tetravalent Si replaces a C atom. A wide variety of silanes are known and many commercially produced silanes are available. See, for example, U.S. Pat. No. 3,490,934, incorporated herein by reference. Other representative examples of silanes include gamma-glycidoxy-propyl-trimethoxy silane, gamma-amino propyl trimethoxy silane, aminopropyltriethoxy silane, 3-(2-aminoethyl) (aminopropyl) trimethoxy-silane, glycidoxy propyl-trimethoxysilane, vinyltriacetoxy silane, vinyltris (methoxyethoxy)-silane,beta-(3,4-epoxy cyclohexyl)ethyl trimethoxy silane, and N-vinylbenzyl-N-2(trimethoxysilyl propylamino) ethyl ammonium choride.
Examples of p-quinone oximes and dioximes and metal diactivaters are disclosed in U.S. Pat. Nos. 4,455,204, 4,287,034, 3,658,755 and 3,799,908, incorporated herein by reference.
The components of the curable polymeric composition (i.e. resin, curing agent, excess Bronsted base, if present, and any additives) are mixed prior to application. The curable polymeric composition is applied to the area of the substrate to be protected at a temperature (T1) which is from about ambient temperature (i.e. about 20° C.) to not more than about 80° C., preferably not more than about 60° C. It is preferred to preheat the substrate to about T1 before applying the curable composition. The substrate may be preheated by any convenient technique. Where the substrate is a pipeline carrying oil or other fluid at temperatures of about T1, a separate preheated step is not necessary. Preheating of the substrate may also be achieved during cleaning thereof, for example, shotblasting of metallic pipes heats the pipe up to about 50° C. Welding of metal pipes, for example when welding together pipe ends, may also heat the pipe to the desired temperature. Direct heating of the substrate, for example, with a torch or other flame may be desired if the substrate is not otherwise preheated.
The curable polymeric composition may be applied by any method for applying liquid coating compositions, for example, brushing, wiping, dipping or spraying. The curable polymeric composition may be applied in one or more coats if desired. Subsequent coats may be applied directly to the previous coat or applied to the surface of the polymeric layer which is to come into intimate contact therewith.
The curable composition is preferably applied in an amount to provide a coating between about 2 to about 10 mils thick, preferably about 3 to about 7 mils.
The curable polymeric composition is covered by one or more polymeric layers before it is permitted to cure to a substantial extent, that is while it is substantially uncured. The polymeric layer or layers may be applied by any convenient technique, for example, extrusion, spraying, wrapping, shrinking, pressing, painting, dipping, electrostatic depositing, etc.
The innermost polymeric layer, that is the layer placed in direct contact with the curable composition, is capable of interacting with the curable composition. This layer is maintained in intimate contact with the curable composition while it is uncured. The terms "interact" or "interacting" are used herein to mean that the innermost layer and the curable composition form an integral unit, i.e. cannot be readily separated, when the curable composition is cured in intimate contact with the innermost layer. The interaction can be physical or chemical. Physical interaction can be, for example, penetration of the curable composition into the material of the innermost polymeric layer where it becomes entrapped on curing thereof. Penetration of the curable composition by absorption or adsorption into the polymeric layer may be enhanced, if desired, by incorporating into the polymeric layer an appropriate filler. Fillers that can be used include pigments, agents such as carbon black, alumina trihydrate, clay, mineral fiber, silica, calcium silicate, barium sulfate, zinc sulfate, titanium dioxide, zinc sulfide, lithopone, ferric oxide, coated or functionalized fillers such as functionalized aluminum silicates such as mecaptans, amine or vinyl, or silanes, organic titinates, etc.
Another example of physical interaction comprises the use of a polar curable composition, e.g. an epoxy-based curable composition, together with a polar innermost polymeric layer so that a polar interaction occurs at the intimate interface between the two materials.
Chemical interaction comprises the formation of chemical bonds between the curable composition and the innermost polymeric layer. For example, the use of an innermost polymeric layer containing reactive amine groups either in the polymer structure or as an additive, over a curable epoxy resin layer will result in formation of bonds between the curable composition and the polymeric layer.
Where the curable polymeric composition is covered by only one polymeric layer, i.e. a single polymeric layer, it is preferred that the layer be applied as a preformed shaped article, such as a tape, sheet, patch or tube. Since this is the only layer applied, it will be placed in intimate contact with the curable composition. Thus, it is in essence the innermost layer and should be capable of interacting with the curable composition, as discussed above. The polymeric article can be dimensionally recoverable, and is preferably heat recoverable. The article is placed around the substrate, e.g. by wrapping, and heat is applied to cause the article to recover, that is, shrink, into contact with the curable composition on the substrate. The curable composition is then permitted to cure. It is desirable that the curing step be conducted at a temperature at which the polymeric article does not melt or flow.
The single polymeric layer preferably comprises a polyolefin such as polyethylene or polypropylene; acrylic rubber; EPDM; nitrile rubber; nylon; epichlorohydrin elastomer; polysulfide; acrylic elastomer; butyl rubber or the like. Particularly preferred is crosslinked polyethylene.
In embodiments in which more than one layer is applied over the curable composition, the innermost layer is selected so that it is capable of interaction with the curable composition. Preferably the innermost layer comprises an uncured material and more preferably comprises a heat activatable sealant. Examples of heat activatable sealants include the hot melt adhesives. The hot melt adhesive can be any sealant typically used to bond corrosion protection coatings to metal and particularly those generally used to bond a coating to a pipeline which is cathodically protected (e.g. impressed current or sacraficial anode) to protect the pipeline from corrosion, abrasion or impact damage, etc. Such hot melt adhesives include those based on thermoplastic polyamides, polyolefins, polyesters, polyurethanes, polysulfides and the like. Especially preferred are polyamide-or ethylene terpolymer-based hot melt adhesives. Particularly preferred are hot melt adhesives containing ethylene co- or terpolymers, for example co- or terpolymers of ethylene with one or more of vinyl acetate, maleic anhydride, acrylic acid, methacrylic acid or alkyl acrylate such as ethyl acrylate. Various additives may be included in the hot melt adhesive as desired such as waxes, rubbers, stabilizers and the like. Other examples of additives are in U.S. Pat. Nos. 4,455,204 and 4,287,034 incorporated herein by reference.
The outermost polymeric layer is preferably a preformed shaped article. A preferred method of applying more than one polymeric layer over the curable composition is to use a polymeric article coated on one surface thereof with the material to be placed in contact with the curable material, e.g. a heat activatable sealant. In a particularly preferred embodiment, a heat recoverable polymeric article coated on the surface thereof with a heat activatable adhesive, as described above, is used to apply a double layer polymeric covering over the curable polymeric material. Heat is applied, preferably from an external heat source, to cause the article to recover, i.e. shrink, so that the heat activatable adhesive comes into contact with the curable composition. The curable composition is permitted to cure at a temperature at which the polymeric article, i.e. the outermost polymeric layer, does not melt or flow. The outermost polymeric layer preferably comprises a polyolefin such as polyethylene or polypropylene; acrylic rubber; EPDM; nitrile rubber; epichlorohydrin elastomer; polysulfide; acrylic elastomer; butyl rubber or the like.
Each of the polymeric layers and the curable polymeric composition either independently or together may also contain appropriate other additives such as tackifiers, fillers, corrosion inhibitors, waxes, uncured epoxy resins, rubbers, stabilizers, adhesion promoters, e.g. for improving cathodic disbonding properties, and the like.
The following examples illustrate the invention. The compositions are tested for resistance to cathodic disbondment by using the hot melt adhesive sealant and epoxy composition to bond a heat shrinkable sleeve of polyethylene to a steel pipe. The polyethylene coated pipe is then tested by the method of ASTM G-42 method A to determine the resistance of the adhesive to cathodic disbondment and tested by the method of ASTM D-1000 for peel strength at ambient temperature and at 75° C.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples 1 through 11
A two component epoxy bisphenol A system which is amine rich was mixed and applied with a brush to clean, shotblasted steel pipe which is at a temperature of between ambient and about 175° C. as indicated in the Table I. has been preheated to 50°-60° C. A heat shrinkable polyethylene outer layer is coated with a hot melt adhesive, either a copolymer of polyethylene and vinyl acetate (Adhesive #1), a copolymer of polyethylene and ethyl acrylate (Adhesive #2) or a blend of a polyamide and a polyethylene vinyl acetate, methacrylic acid terpolymer (Adhesive #3). The coated tube was applied to the coated pipe and recovered by torching. In Examples 4 and 5 only the heat shrinkable polyethylene outer layer is applied with no hot melt adhesive. Pipe and coating were allowed to rest for 24 hours before samples were tested. Controls using no epoxy at elevated temperature (125°-200° C.) and at 50°-60° C. also performed in similar manner. Samples prepared in such a manner were tested for peel strength at ambient temperature and at 75° C. (ASTM D-1000); and for cathodic disbonding resistance at 75° C. (ASTM G-42) and impact resistance (ASTM-G-14). The results are show in Table I and II.
                                  TABLE I                                 
__________________________________________________________________________
                                  PEEL STRENGTH                           
                        PIPE      (PLI) AT:  IMPACT                       
EXAMPLE                                                                   
       ADHESIVE                                                           
              EPOXY COATED                                                
                        TEMPERATURE                                       
                                  23° C.                           
                                        75° C.                     
                                             RESISTANCE                   
__________________________________________________________________________
1      Adhesive #1                                                        
              No        125° C.                                    
                                  14.0  1.0  33 in-lb                     
2      "      No        50° C.                                     
                                  <1.0  --                                
3      "      Yes       50° C.                                     
                                  11.4  1.2  70 in-lb                     
4      "      Yes       Ambient (25° C.)                           
                                  --    --                                
5      "      Yes       Ambient (25° C.)                           
                                  --    --                                
6      Adhesive #2                                                        
              No        175° C.                                    
                                   8.5  0.5                               
7      "      No        50° C.                                     
                                  <1.0  --                                
8      "      Yes       50° C.                                     
                                   7.2  0.4                               
9      Adhesive #3                                                        
              No        50° C.                                     
                                  --    <1.0                              
10     "      Yes       50° C.                                     
                                  >90.0 3.0                               
11     "      No        >175° C.                                   
                                  >90.0 3.0                               
__________________________________________________________________________
                                  TABLE II                                
__________________________________________________________________________
                           CATHODIC DISBONDING                            
                 PIPE      RADIUS AT 75° C. (MM)                   
ADHESIVE                                                                  
       EPOXY COATED                                                       
                 TEMPERATURE                                              
                           1 WK.   2 WKS.  4 WKS.                         
__________________________________________________________________________
Adhesive #1                                                               
       No        125° C.                                           
                           5       Complete.sup.1                         
                                           --                             
"      Yes       50° C.                                            
                           4       6       15                             
"      Yes       Ambient (25° C.)                                  
                           2       3        3                             
"      Yes       Ambient (25° C.)                                  
                           3       7       10                             
Adhesive #2                                                               
       No        175° C.                                           
                           20      35      50                             
"      Yes       80° C.                                            
                           7       9       11-13                          
Adhesive #3                                                               
       No        50° C.                                            
                           Complete.sup.1                                 
                                   --      --                             
"      Yes       50° C.                                            
                           --      --      10                             
"      No        >175° C.                                          
                           Complete.sup.1                                 
                                   --      --                             
__________________________________________________________________________
 .sup.1 Complete disbondment of coating from the substrate.               
 .sup.2 Epoxy painted on substrate.                                       
 .sup.3 Epoxy sprayed on substrate.                                       
EXAMPLE 12
In a manner similar to Examples 1-6 the epoxy bisphenol A materials were applied to substrates. A single layer of a crosslinked blend of HDPE, EMA, EPDM and about 20% carbon black were applied as a sheet to the epoxy and the epoxy allowed to cure. The cathodic disbonding radius in 30 days at 95° C. was between 10-12 mm for all samples tested.
EXAMPLE 13
In another experiment compositions similar to Example 1-11 were tested, however some of the bisphenol A epoxy resins contained plasticizers or flexibilizers and the like which are known to allow moisture to intrude. Other combinations of resin and curing agent and layers were such that no interaction between layers occurred. In all cases samples showed complete disbondment of the primer or adhesive when tested for cathodic disbonding at 75° C. for 30 days.
EXAMPLE 14
In the following Examples a bisphenol A epoxy was cured with varying amounts of an amine curing agent and a backing coating with adhesive #1 as used in Examples 1-9. 100% represents equal reactive amounts of each component in the curable polymeric composition.
______________________________________                                    
                          Cathodic                                        
                          Disbonding                                      
Mix Ratio                 @ 60° C. -                               
Epoxy/Amine                                                               
           Reactive Amounts                                               
                          30 days .sup.1 mm                               
                                     Tg °C.                        
______________________________________                                    
100/10     58%     Epoxy Rich .sup. 26.sup.2                              
                                       69                                 
100/17     100%               19       72                                 
100/30     170     Amine Rich 16       73                                 
100/40     230%    Amine Rich 16       68                                 
100/50     290%    Amine Rich 24       49                                 
100/60     345%    Amine Rich 23       25                                 
100/80     460%    Amine Rich 25       <25                                
 100/100   575%    Amine Rich 23       <25                                
______________________________________                                    
 .sup.1 avg. of at least 3 samples.                                       
 .sup.2 loss of adhesion between hot melt and primer as well as blister in
 primer.                                                                  

Claims (11)

What is claimed is:
1. A method of applying a protective covering to an elongated substrate which comprises:
(a) applying to the substrate at a temperature of not more than about 80° C., a curable polymeric composition which is a liquid at about 20° C., is curable to a substantial extent within about 24 hours at a temperature of not more than about 80° C., and comprises
(i) a resin component;
(ii) a curing agent;
(b) applying a multiple-layer polymeric covering, having an innermost layer and an outermost layer, the innermost layer comprising uncured polymeric heat activatable sealant capable of interacting with said curable composition, over the curable polymeric composition in a manner such that said innermost layer is in intimate contact with said composition; and
(c) allowing the curable composition to cure while maintaining intimate contact between said innermost layer and said composition at a temperature at which the outermost layer of the covering does not melt or flow.
2. A method in accordance with claim 1, wherein said curing agent comprises a Bronsted base.
3. A method in accordance with claim 2, wherein said Bronsted base is present in an amount of 0.01 to about 2 moles in excess of that required to cure the composition.
4. A method in accordance with claim 3, wherein said Bronsted base is an amine.
5. A method in accordance with claim 1, wherein said curable polymeric composition comprises a Bisphenol A epoxy resin, a polyamide and a tertiary amine.
6. A method in accordance with claim 1, wherein said curable polymeric composition further comprises about 0.1 to about 10% by weight, based on the weight of the composition, of a silane.
7. A method in accordance with claim 1, wherein the curable composition contains less than about 5% by weight, based on the weight of the composition, of a solvent.
8. A method in accordance with claim 1, which further comprises the step of heating the substrate to a temperature of not more than about 80° C. prior to applying said curable composition.
9. A method in accordance with claim 1, wherein said curable composition is cured at a temperature of not more than about 80° C.
10. A method in accordance with claim 1, wherein step (b) comprises positioning a heat recoverable polymeric article around the substrate and applying heat to cause the article to recover into intimate contact with said curable composition, said heat recoverable article being coated on one surface thereof with a heat activatable sealant and said article being positioned around the substrate such that the heat activatable sealant is the innermost layer which comes into intimate contact with said curable composition.
11. A method in accordance with claim 10, wherein the heat activatable sealant comprises a polyamide or ethylene terpolymer based hot melt adhesive.
US06/789,001 1984-11-09 1985-10-18 Protecting elongated substrate with multiple-layer polymer covering Expired - Lifetime US4732632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/789,001 US4732632A (en) 1984-11-09 1985-10-18 Protecting elongated substrate with multiple-layer polymer covering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67024584A 1984-11-09 1984-11-09
US06/789,001 US4732632A (en) 1984-11-09 1985-10-18 Protecting elongated substrate with multiple-layer polymer covering

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US67024584A Continuation-In-Part 1984-11-09 1984-11-09
US70211685A Continuation-In-Part 1984-11-09 1985-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07128293 Continuation 1987-12-03

Publications (1)

Publication Number Publication Date
US4732632A true US4732632A (en) 1988-03-22

Family

ID=24689600

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/789,001 Expired - Lifetime US4732632A (en) 1984-11-09 1985-10-18 Protecting elongated substrate with multiple-layer polymer covering

Country Status (2)

Country Link
US (1) US4732632A (en)
IN (1) IN166502B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946528A (en) * 1987-11-18 1990-08-07 Kawasaki Steel Corporation Method and equipment for producing protective-coated steel pipe
US5482087A (en) * 1991-06-24 1996-01-09 N.V. Raychem S.A. Method of environmentally protecting a pipeline
EP0718347A1 (en) 1994-12-24 1996-06-26 Advanced Elastomer Systems, L.P. Method to adhere thermoplastic elastomer blends to polyester substrates
US5638871A (en) * 1994-05-02 1997-06-17 Itt Corporation Extruded multiple plastic layer coating bonded to a metal tube and process for making the same
US5662974A (en) * 1994-06-17 1997-09-02 Shaw Industries Ltd. Superimposed coverings having increased stability
US5700530A (en) * 1993-10-27 1997-12-23 Nv Raychem Sa Article and method for protecting substrates
US5803161A (en) * 1996-09-04 1998-09-08 The Babcock & Wilcox Company Heat pipe heat exchanger for cooling or heating high temperature/high-pressure sub-sea well streams
US6224710B1 (en) 1994-03-11 2001-05-01 James Rinde Method of applying protective covering to a substrate
US6235361B1 (en) 1995-10-26 2001-05-22 Atofina Polymer-coated metal surfaces
US6240970B1 (en) 1999-04-01 2001-06-05 Itt Manufacturing Enterprises, Inc. Tubing for handling hydrocarbon materials and having an outer jacket layer adhered thereto
US6276400B1 (en) 1999-06-08 2001-08-21 Itt Manufacturing Enterprises, Inc. Corrosion resistant powder coated metal tube and process for making the same
WO2001087584A1 (en) 2000-05-18 2001-11-22 Shawcor Ltd. Sleeve for protecting polypropylene-covered pipe comprising bonding agent
US6673193B1 (en) 1998-12-17 2004-01-06 Linabond Inc. System and method for welding a seam between thermoplastic liner sheets
US20040018309A1 (en) * 2002-07-25 2004-01-29 Carrier Corporation Furnace parts protected by thermally and chemically resistant coatings
US20040035774A1 (en) * 2002-08-23 2004-02-26 Horsman Jeffrey A. Composite chromatography column
US6841212B2 (en) 2002-04-17 2005-01-11 Tyco Electronics Corp. Heat-recoverable composition and article
US20050031798A1 (en) * 2000-12-15 2005-02-10 Shawcor Ltd. Method for inductively heating a coated substrate
US6967045B1 (en) 1998-06-12 2005-11-22 Bertram Richard L Integrated composite structural conduit formed in place
US20090065971A1 (en) * 2003-08-29 2009-03-12 Advanced Elastomer Systems, L.P. Manufacturing of Shaped Coolant Hoses
JP2010511536A (en) * 2006-12-08 2010-04-15 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト Method of manufacturing metal conduit with plastic covering fixed
US20100108173A1 (en) * 2008-10-31 2010-05-06 E. I. Du Pont De Nemours And Company Highly abrasion-resistant polyolefin pipe
US20100138733A1 (en) * 2008-12-02 2010-06-03 Oskari Koskimies Method, apparatus, mobile terminal and computer program product for employing a form engine as a script engine
US20110079311A1 (en) * 2009-10-06 2011-04-07 Neptune Research, Inc. Protective seal for pipeline assembly
US8728600B1 (en) 2008-10-31 2014-05-20 E I Du Pont De Nemours And Company Highly abrasion-resistant grafted polyolefin pipe
US8844464B2 (en) 2010-12-20 2014-09-30 Neptune Research, Inc. Systems, methods, and devices for applying fluid composites to a carrier sheet
US9096020B2 (en) 2010-09-24 2015-08-04 Neptune Research, Inc. Systems, methods and devices for strengthening fluid system components using radiation-curable composites
US20160072265A1 (en) * 2013-03-27 2016-03-10 Uacj Corporation Resin-coated wire harness pipe
US10082236B2 (en) 2015-05-22 2018-09-25 Solvay Specialty Polymers Italy S.P.A. Multilayer assembly
US11339262B2 (en) 2017-11-20 2022-05-24 Uniseal, Inc. Epoxy based reinforcing patches having improved damping loss factor

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30006A (en) * 1860-09-11 Safety-gtjakd fob
US3231443A (en) * 1963-01-18 1966-01-25 Nee & Mcnulty Inc Method of applying protective wrapping to metallic conduits
US3402742A (en) * 1964-08-27 1968-09-24 Royston Lab Pipe coating methods and coated pipe
US3420277A (en) * 1964-11-04 1969-01-07 Routiere Et D Entreprise Gener Heat-insulated conduit of utility in the transport of fuels over long distances
US3502492A (en) * 1965-12-13 1970-03-24 Ransburg Electro Coating Corp Metal substrate coated with epoxy powder primer and plasticized polyvinyl chloride topcoat and method of making same
US3525656A (en) * 1967-05-09 1970-08-25 Trenton Corp The Method of simultaneously applying a flexible plastic film and a flexible carrier board to a pipe
US3616006A (en) * 1968-07-05 1971-10-26 Mannesmann Ag Method of enveloping a steel pipe
US3625259A (en) * 1969-10-15 1971-12-07 Trenton Corp The Precoated underground piping
US3700520A (en) * 1970-04-16 1972-10-24 Kendall & Co Method of applying corrosion and mechanical protective coatings in form of tapes to a metal pipe
US3759751A (en) * 1970-10-30 1973-09-18 Finch Paint & Chemical Co Corrosion resisting wash primer composition and corrosion protected metal surface
US3787452A (en) * 1971-06-29 1974-01-22 Ciba Geigy Corp Epoxysilanes
US3802908A (en) * 1972-02-28 1974-04-09 D Emmons Process for forming external multi-layer resinous coating on cylindrical surface at ambient temperature
US3823045A (en) * 1971-04-01 1974-07-09 Hielema Emmons Pipe Coating Lt Pipe coating method
US3867322A (en) * 1971-06-29 1975-02-18 Ciba Geigy Corp Epoxysilane additives for epoxide resin adhesives
US4079168A (en) * 1976-11-01 1978-03-14 Lord Corporation Rubber-metal composite structures having improved resistance to corrosion
US4142555A (en) * 1976-01-19 1979-03-06 Sumitomo Kinzoku Kogyo Kabushiki Kaisha Corrosion preventive, coated metal pipe
GB1542333A (en) * 1977-11-18 1979-03-14 British Steel Corp Coating of pipes
USRE30006E (en) 1973-11-22 1979-05-22 Mitsui Petrochemical Industries Ltd. Process for the formation of a polyolefin coating layer onto a metal surface
US4192697A (en) * 1977-03-25 1980-03-11 Winn & Coales (Denso) Limited Hot applied coatings
US4211595A (en) * 1978-10-10 1980-07-08 The Kendall Company Method of coating pipe
US4213486A (en) * 1978-11-06 1980-07-22 The Kendall Company Coated pipe and process for making same
JPS55123626A (en) * 1979-03-19 1980-09-24 Fujitsu Ltd Production of copper-plated laminate
US4243718A (en) * 1978-11-24 1981-01-06 Toshiba Silicone Co. Ltd. Primer compositions for Si-H-olefin platinum catalyzed silicone compositions
US4287034A (en) * 1979-11-09 1981-09-01 Raychem Corporation Protecting metal substrates from corrosion
GB2076693A (en) * 1980-04-30 1981-12-09 Kansai Paint Co Ltd Process for forming a coated film of an olefinic resin
US4331715A (en) * 1981-01-02 1982-05-25 Hooker Chemicals & Plastics Corp. Process for improving the corrosion resistance of conversion coated parts
EP0065838A1 (en) * 1981-05-08 1982-12-01 Mitsubishi Kasei Corporation Adhesion of polyurethane elastomer to metal
US4421569A (en) * 1982-05-07 1983-12-20 Sharon Tube Corp. Corrosion protection of steel pipes
US4427725A (en) * 1982-02-11 1984-01-24 Raychem Limited Dimensionally-recoverable article
JPS5952783A (en) * 1982-09-21 1984-03-27 Seiko Epson Corp Outside case for timepiece
US4455204A (en) * 1981-07-13 1984-06-19 Raychem Corporation Protecting metal substrates from corrosion
US4477517A (en) * 1982-09-29 1984-10-16 E. I. Du Pont De Nemours And Company Multilayer silicone coating
US4481239A (en) * 1982-08-07 1984-11-06 Hoechst Aktiengesellschaft Process for coating metallic substrates, and use of the products prepared in this process
US4507340A (en) * 1980-07-31 1985-03-26 Raychem Corporation Adhesives and devices coated therewith
US4510181A (en) * 1982-12-29 1985-04-09 Nitto Electric Industrial Co., Ltd. Method for coating metal surface
US4510007A (en) * 1982-07-06 1985-04-09 Mannesmann Ag Method of jacketing steel pipes
US4521470A (en) * 1982-07-26 1985-06-04 N.V. Raychem S. A. Dimensionally heat recoverable article
US4574023A (en) * 1984-01-26 1986-03-04 Raychem Corporation Apparatus and method for applying sleeves to pipe

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30006A (en) * 1860-09-11 Safety-gtjakd fob
US3231443A (en) * 1963-01-18 1966-01-25 Nee & Mcnulty Inc Method of applying protective wrapping to metallic conduits
US3402742A (en) * 1964-08-27 1968-09-24 Royston Lab Pipe coating methods and coated pipe
US3420277A (en) * 1964-11-04 1969-01-07 Routiere Et D Entreprise Gener Heat-insulated conduit of utility in the transport of fuels over long distances
US3502492A (en) * 1965-12-13 1970-03-24 Ransburg Electro Coating Corp Metal substrate coated with epoxy powder primer and plasticized polyvinyl chloride topcoat and method of making same
US3525656A (en) * 1967-05-09 1970-08-25 Trenton Corp The Method of simultaneously applying a flexible plastic film and a flexible carrier board to a pipe
US3616006A (en) * 1968-07-05 1971-10-26 Mannesmann Ag Method of enveloping a steel pipe
US3625259A (en) * 1969-10-15 1971-12-07 Trenton Corp The Precoated underground piping
US3700520A (en) * 1970-04-16 1972-10-24 Kendall & Co Method of applying corrosion and mechanical protective coatings in form of tapes to a metal pipe
US3759751A (en) * 1970-10-30 1973-09-18 Finch Paint & Chemical Co Corrosion resisting wash primer composition and corrosion protected metal surface
US3823045A (en) * 1971-04-01 1974-07-09 Hielema Emmons Pipe Coating Lt Pipe coating method
US3787452A (en) * 1971-06-29 1974-01-22 Ciba Geigy Corp Epoxysilanes
US3867322A (en) * 1971-06-29 1975-02-18 Ciba Geigy Corp Epoxysilane additives for epoxide resin adhesives
US3802908A (en) * 1972-02-28 1974-04-09 D Emmons Process for forming external multi-layer resinous coating on cylindrical surface at ambient temperature
USRE30006E (en) 1973-11-22 1979-05-22 Mitsui Petrochemical Industries Ltd. Process for the formation of a polyolefin coating layer onto a metal surface
US4142555A (en) * 1976-01-19 1979-03-06 Sumitomo Kinzoku Kogyo Kabushiki Kaisha Corrosion preventive, coated metal pipe
US4079168A (en) * 1976-11-01 1978-03-14 Lord Corporation Rubber-metal composite structures having improved resistance to corrosion
US4192697A (en) * 1977-03-25 1980-03-11 Winn & Coales (Denso) Limited Hot applied coatings
GB1542333A (en) * 1977-11-18 1979-03-14 British Steel Corp Coating of pipes
US4211595A (en) * 1978-10-10 1980-07-08 The Kendall Company Method of coating pipe
US4213486A (en) * 1978-11-06 1980-07-22 The Kendall Company Coated pipe and process for making same
US4243718A (en) * 1978-11-24 1981-01-06 Toshiba Silicone Co. Ltd. Primer compositions for Si-H-olefin platinum catalyzed silicone compositions
JPS55123626A (en) * 1979-03-19 1980-09-24 Fujitsu Ltd Production of copper-plated laminate
US4287034A (en) * 1979-11-09 1981-09-01 Raychem Corporation Protecting metal substrates from corrosion
GB2076693A (en) * 1980-04-30 1981-12-09 Kansai Paint Co Ltd Process for forming a coated film of an olefinic resin
US4345004A (en) * 1980-04-30 1982-08-17 Hercules Incorporated Process for forming a coated film of an olefinic resin
US4507340A (en) * 1980-07-31 1985-03-26 Raychem Corporation Adhesives and devices coated therewith
US4331715A (en) * 1981-01-02 1982-05-25 Hooker Chemicals & Plastics Corp. Process for improving the corrosion resistance of conversion coated parts
EP0065838A1 (en) * 1981-05-08 1982-12-01 Mitsubishi Kasei Corporation Adhesion of polyurethane elastomer to metal
US4455204A (en) * 1981-07-13 1984-06-19 Raychem Corporation Protecting metal substrates from corrosion
US4427725A (en) * 1982-02-11 1984-01-24 Raychem Limited Dimensionally-recoverable article
US4421569A (en) * 1982-05-07 1983-12-20 Sharon Tube Corp. Corrosion protection of steel pipes
US4510007A (en) * 1982-07-06 1985-04-09 Mannesmann Ag Method of jacketing steel pipes
US4521470A (en) * 1982-07-26 1985-06-04 N.V. Raychem S. A. Dimensionally heat recoverable article
US4481239A (en) * 1982-08-07 1984-11-06 Hoechst Aktiengesellschaft Process for coating metallic substrates, and use of the products prepared in this process
JPS5952783A (en) * 1982-09-21 1984-03-27 Seiko Epson Corp Outside case for timepiece
US4477517A (en) * 1982-09-29 1984-10-16 E. I. Du Pont De Nemours And Company Multilayer silicone coating
US4510181A (en) * 1982-12-29 1985-04-09 Nitto Electric Industrial Co., Ltd. Method for coating metal surface
US4574023A (en) * 1984-01-26 1986-03-04 Raychem Corporation Apparatus and method for applying sleeves to pipe

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946528A (en) * 1987-11-18 1990-08-07 Kawasaki Steel Corporation Method and equipment for producing protective-coated steel pipe
US5482087A (en) * 1991-06-24 1996-01-09 N.V. Raychem S.A. Method of environmentally protecting a pipeline
US6059908A (en) * 1993-10-27 2000-05-09 Nv Raychem Sa Method for protecting substrates
US5700530A (en) * 1993-10-27 1997-12-23 Nv Raychem Sa Article and method for protecting substrates
US6294597B1 (en) * 1994-03-11 2001-09-25 James Rinde Curable polymeric composition and use in protecting a substrate
US6224710B1 (en) 1994-03-11 2001-05-01 James Rinde Method of applying protective covering to a substrate
US5638871A (en) * 1994-05-02 1997-06-17 Itt Corporation Extruded multiple plastic layer coating bonded to a metal tube and process for making the same
US5771940A (en) * 1994-05-02 1998-06-30 Itt Corporation Extruded multiple plastic layer coating bonded to a metal tube and process for making the same
US5662974A (en) * 1994-06-17 1997-09-02 Shaw Industries Ltd. Superimposed coverings having increased stability
EP0718347A1 (en) 1994-12-24 1996-06-26 Advanced Elastomer Systems, L.P. Method to adhere thermoplastic elastomer blends to polyester substrates
US5609962A (en) * 1994-12-24 1997-03-11 Advanced Elastomer Systems, L.P. Method to adhere thermoplastic elastomer blends to polyester substrates
US6235361B1 (en) 1995-10-26 2001-05-22 Atofina Polymer-coated metal surfaces
US5803161A (en) * 1996-09-04 1998-09-08 The Babcock & Wilcox Company Heat pipe heat exchanger for cooling or heating high temperature/high-pressure sub-sea well streams
US6967045B1 (en) 1998-06-12 2005-11-22 Bertram Richard L Integrated composite structural conduit formed in place
US6673193B1 (en) 1998-12-17 2004-01-06 Linabond Inc. System and method for welding a seam between thermoplastic liner sheets
US6240970B1 (en) 1999-04-01 2001-06-05 Itt Manufacturing Enterprises, Inc. Tubing for handling hydrocarbon materials and having an outer jacket layer adhered thereto
US6276400B1 (en) 1999-06-08 2001-08-21 Itt Manufacturing Enterprises, Inc. Corrosion resistant powder coated metal tube and process for making the same
US6528125B1 (en) 1999-06-08 2003-03-04 Itt Manufacturing Enterprises, Inc. Corrosion resistant powder coated metal tube and process for making the same
WO2001087584A1 (en) 2000-05-18 2001-11-22 Shawcor Ltd. Sleeve for protecting polypropylene-covered pipe comprising bonding agent
US7012227B2 (en) 2000-12-15 2006-03-14 Shawcor, Ltd. Method for applying or repairing a coating on a substrate by inductive heating
US20050031798A1 (en) * 2000-12-15 2005-02-10 Shawcor Ltd. Method for inductively heating a coated substrate
US6841212B2 (en) 2002-04-17 2005-01-11 Tyco Electronics Corp. Heat-recoverable composition and article
US20040018309A1 (en) * 2002-07-25 2004-01-29 Carrier Corporation Furnace parts protected by thermally and chemically resistant coatings
US20050006292A1 (en) * 2002-08-23 2005-01-13 Biotage, Inc., A Delaware Corporation Composite chromatography column
US20040035774A1 (en) * 2002-08-23 2004-02-26 Horsman Jeffrey A. Composite chromatography column
US6783673B2 (en) 2002-08-23 2004-08-31 Biotage, Inc. Composite chromatography column
US20090065971A1 (en) * 2003-08-29 2009-03-12 Advanced Elastomer Systems, L.P. Manufacturing of Shaped Coolant Hoses
US8017053B2 (en) 2003-08-29 2011-09-13 Exxonmobil Chemical Patents Inc. Manufacturing of shaped coolant hoses
JP2010511536A (en) * 2006-12-08 2010-04-15 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト Method of manufacturing metal conduit with plastic covering fixed
US20100218893A1 (en) * 2006-12-08 2010-09-02 Till Merkel Method for the production of a metallic line pipe with a firmly adhering plastic sheathing
US8728600B1 (en) 2008-10-31 2014-05-20 E I Du Pont De Nemours And Company Highly abrasion-resistant grafted polyolefin pipe
US20100108173A1 (en) * 2008-10-31 2010-05-06 E. I. Du Pont De Nemours And Company Highly abrasion-resistant polyolefin pipe
US9488310B2 (en) 2008-10-31 2016-11-08 E I Du Pont De Nemours And Company Highly abrasion-resistant polyolefin pipe
US20100138733A1 (en) * 2008-12-02 2010-06-03 Oskari Koskimies Method, apparatus, mobile terminal and computer program product for employing a form engine as a script engine
US8522827B2 (en) 2009-10-06 2013-09-03 Neptune Research, Inc. Protective seal for pipeline assembly
US20110079311A1 (en) * 2009-10-06 2011-04-07 Neptune Research, Inc. Protective seal for pipeline assembly
US9096020B2 (en) 2010-09-24 2015-08-04 Neptune Research, Inc. Systems, methods and devices for strengthening fluid system components using radiation-curable composites
US8844464B2 (en) 2010-12-20 2014-09-30 Neptune Research, Inc. Systems, methods, and devices for applying fluid composites to a carrier sheet
US20160072265A1 (en) * 2013-03-27 2016-03-10 Uacj Corporation Resin-coated wire harness pipe
US9853427B2 (en) * 2013-03-27 2017-12-26 Uacj Corporation Resin-coated wire harness pipe
US10082236B2 (en) 2015-05-22 2018-09-25 Solvay Specialty Polymers Italy S.P.A. Multilayer assembly
US11339262B2 (en) 2017-11-20 2022-05-24 Uniseal, Inc. Epoxy based reinforcing patches having improved damping loss factor
US11591447B2 (en) 2017-11-20 2023-02-28 Uniseal, Inc. Epoxy based reinforcing patches having improved damping loss factor
US11905384B2 (en) 2017-11-20 2024-02-20 Uniseal, Inc. Epoxy based reinforcing patches having improved damping loss factor

Also Published As

Publication number Publication date
IN166502B (en) 1990-05-19

Similar Documents

Publication Publication Date Title
US4732632A (en) Protecting elongated substrate with multiple-layer polymer covering
AU691587B2 (en) Curable polymeric composition and use in protecting a substrate
CA1126176A (en) Coated pipe and process for making same
EP0701869B1 (en) Protecting substrates
US6660386B2 (en) Flame activated primer for polyolefinic coatings
EP2477758B1 (en) Method of coating pipes or pipe sections
US6059908A (en) Method for protecting substrates
US4997685A (en) Elongated substrate with polymer layer covering
CN1075615C (en) Coal tar enamel-coated steel pipe and process for same
JPS6282022A (en) Corrosion prevention method for steel

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAYCHEM CORPORATION, 300 CONSTITUTION DRIVE, MENLO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:PIESLAK, GEORGE;ALVERNAZ, TONY G.;JOHN, ROBIN;AND OTHERS;REEL/FRAME:004521/0065;SIGNING DATES FROM 19851128 TO 19860124

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: TYCO ELECTRONICS CORPORATION, PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:AMP INCORPORATED;REEL/FRAME:011682/0568

Effective date: 19990913

Owner name: TYCO INTERNATIONAL (PA), INC., NEW HAMPSHIRE

Free format text: MERGER & REORGANIZATION;ASSIGNOR:RAYCHEM CORPORATION;REEL/FRAME:011682/0608

Effective date: 19990812

Owner name: TYCO INTERNATIONAL LTD., BERMUDA

Free format text: MERGER & REORGANIZATION;ASSIGNOR:RAYCHEM CORPORATION;REEL/FRAME:011682/0608

Effective date: 19990812

Owner name: AMP INCORPORATED, PENNSYLVANIA

Free format text: MERGER & REORGANIZATION;ASSIGNOR:RAYCHEM CORPORATION;REEL/FRAME:011682/0608

Effective date: 19990812