Connect public, paid and private patent data with Google Patents Public Datasets

Quadroma cells and trioma cells and methods for the production of same

Download PDF

Info

Publication number
US4714681A
US4714681A US06621394 US62139484A US4714681A US 4714681 A US4714681 A US 4714681A US 06621394 US06621394 US 06621394 US 62139484 A US62139484 A US 62139484A US 4714681 A US4714681 A US 4714681A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
cell
cells
antibody
antigen
antigens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06621394
Inventor
Christopher L. Reading
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MD Anderson Cancer Center (University of Texas)
Original Assignee
MD Anderson Cancer Center (University of Texas)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/577Immunoassay; Biospecific binding assay involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/948Microorganisms using viruses or cell lines

Abstract

Antibodies having binding affinity for two desired antigens, hereinafter "recombinant monoclonal antibodies"; recombinant monoclonal antibodies produced by a quadroma cell or a trioma cell; and methods for producing recombinant monoclonal antibodies by means of a quadroma cell or a trioma cell, wherein a quadroma cell is the fusion product of a hybridoma cell which produces an antibody having specific binding affinity to one desired antigen and a hybridoma cell which produces an antibody having specific binding affinity for another desired antigen, and wherein a trioma cell is the fusion product of a hybridoma cell which produces an antibody having specific binding affinity to one desired antigen and a lymphocyte which produces an antibody having specific binding affinity to another desired antigen.

Description

BACKGROUND AND PRIOR ART

The present invention relates to the field of monoclonal antibodies. In particular, the invention relates to the creation of new biological entities termed triomas and quadromas, which produce new bifunctional antibodies termed recombinant monoclonal antibodies herein. Recombinant monoclonal antibodies (hereinafter designated RMA) have a wide range of diagnostic and therapeutic uses, to be described in detail herein.

Antibodies are normally synthesized by lymphoid cells derived from B lymphocytes of bone marrow. The great diversity of antibody specificities is accomplished by immunoglobulin molecules having many structural features in common. Individual antibody molecules of heterogeneous binding specificity differ in their detailed amino acid sequences and even antibodies of the same specificity are usually a mixture of immunoglobulins having different amino acid sequences, although such sequences may be substantially homologous. The terms "antibody" and "immunoglobulin" are used interchangeably herein.

Individual lymphocytes produce immunoglobulin of a single amino acid sequence. Lymphocytes cannot be directly cultured to produce their specific antibody. However, Kohler, et al, Nature 256, 495 (1975) demonstrated that a process of somatic cell fusion, specifically between a lymphocyte and a myeloma cell, could yield hybrid cells which grow in culture and produce a specific antibody. Myeloma cells are lymphocyte tumor cells which, depending upon the cell strain, frequently produce an antibody themselves, although some "non-producing" strains are known.

The hybrid resulting from somatic fusion of a lymphocyte and a myeloma cell is termed a "hybridoma" cell herein and in the art generally. In a typical fusion procedure, spleen lymphocytes from an animal immunized against a chosen antigen are fused with myeloma cells. The resulting hybridomas are then dispersed in a series of separate culture tubes or microtitre plate wells to screen for cultures producing a desired antibody. Positive cultures are further diluted to obtain colonies arising from a single cell (clones). The clones are again screened for production of the desired antibody. Antibody produced by a cloned hybridoma is termed "monoclonal" herein and in the art.

From genetic studies with lymphocytes and hybridomas, it is known that specific antibodies are coded by DNA segments that are selected from a variety of possible coding segments originally present in germ line cells. As differentiation proceeds, some of the coding segments are rearranged or deleted, so that fully differentiated lymphocytes are genetically restricted to production of a single antibody. See Science 212, 1015 (1981). Previous attempts to demonstrate synthesis of more than one antibody by a single cell or clone have been successful only to the extent that myeloma-myeloma fusion cells have been shown to produce mixed myeloma proteins (Cotton, R. G. H., et al, Nature 244, 42 (1973)).

Monoclonal antibodies are highly specific, being directed against a single antigen only. Furthermore, in contrast to conventional antibody preparations which typically include different antibodies directed against different sets of determinants on the same antigen, monoclonal antibodies are directed only against a single determinant on the antigen. Monoclonal antibodies are useful to improve the selectivity and specificity of diagnostic and analytical assay methods using antigen-antibody binding. A second advantage of monoclonal antibodies is provided by the fact that they are synthesized in pure form by the hybridoma culture, uncontaminated by other immunoglobulins. Monoclonal antibodies may be prepared from supernatants of cultured hybridoma cells or from ascites induced by intraperitoneal inoculation of hybridoma cells into mice.

The immunoglobulin protein structure is well known. Immunoglobulin G (IgG) consists of two heavy protein chains (molecular weight ˜64,000) and two light protein chains (molecular weight ˜22,500). The heavy chains are covalently joined together by disulfide bonds and each light chain is joined to a heavy chain by disulfide bonds. IgM is characterized by the same basic structure as IgG, in multimeric form. Myeloma cells frequently secrete light chain monomers or dimers, sometimes termed myeloma proteins or Bence-Jones proteins, some of which have capacity to bind an antigen. The light and heavy chains of normal antigens are synthesized by the general mechanisms of protein synthesis in cells. The heavy and light chains are separately synthesized and subsequently joined together.

Chemical reassortment of antibody chains has been attempted in the prior art. Early attempts by Stevenson, G. T., et al (Biochem.J. 108, 375 (1968)), yielded only a minor proportion of heterologous associations. More recently, Peabody, D. S., et al, Biochemistry 19, 2827 (1980) demonstrated specific heterologous association of light chains from different myeloma sources. The hybrid molecules showed binding affinity for a ligand which one, but not both, of the parent molecules could bind. Heterologous association of heavy with light chains, or of heavy-light pairs, was not reported. Raso, V., Cancer Res. 41, 2073 (1981) has reported construction in vitro of antibody fragments (F(ab')2 fragments) with binding affinity for two ligands. The reported procedure required partial degradation of the antibody molecules with a pepsin prior to reassortment of the fragments, such that the resulting dual-specificity binding proteins were fragments of antibody molecules.

The use of monoclonal antibodies for a variety of therapeutic purposes has been suggested. A particularly attractive application is for specifically targeted delivery of drugs to specific tissues or cell types, including tumors. For example, Gulliland, et al, Proc. Nat. Acad. Sci. USA, 77, 4539 (1980) have reported making chemical conjugates of a monoclonal tumor antibody with diphtheria toxin. The specific binding of the monoclonal antibody to the target cells makes it possible to deliver a specific drug, inhibitor or toxin to the desired cells while minimizing any interaction with other cells. Such techniques have depended upon chemical coupling reactions to conjugate the drug or toxin with the monoclonal antibody, with attendant disadvantages of loss of activity, reduced specificity and potential unwanted side reactions. Therefore it would be greatly advantageous to provide a targeted delivery system useful in conjunction with agents which need not be chemically coupled to an antibody molecule.

SUMMARY OF THE INVENTION

The present invention provides novel, recombinant monoclonal antibodies (hereinafter RMA) that are bifunctional in the sense of having binding affinities for two different antigens within a single antibody molecule. A RMA may bind its antigens simultaneously or sequentially. A RMA is characterized by any functional test which depends upon the binding of two different antigens by the same antibody, for example, by the ability to bind sequentially to each of two affinity chromatography columns, one bearing a first immobilized antigen and the other bearing a second immobilized antigen.

RMAs are produced by novel cell types constructed for the purpose. One such cell is termed a "quadroma" herein, and is formed by somatic cell fusion of two hybridomas, each parental hybridoma producing a monoclonal antibody specific for one of the two antigens. Another such novel cell type is termed "trioma" herein, and is formed by fusion of a hybridoma and a lymphocyte, each producing antibodies against one of the two antigens. The light and heavy chains of both parental types will be synthesized in quadroma and trioma cells. If light and heavy chains of both kinds are made in equivalent amounts and combined randomly, at least one-eighth of the antibodies produced by IgG-producing cells will be bifunctional RMAs. From IgM-producing cells, essentially all antibodies produced will be bifunctional in the sense of having at least one binding site for each of the two antigens.

The construction of triomas and quadromas depends on use of a selection system to distinguish the desired fusions from self-fused and non-fused parental cell types. Most of the selection systems disclosed herein depend upon the construction or isolation of mutant hybridomas which are, in themselves, believed to be novel. The selection system is designed to permit selective growth of hybrids of the two parental cell types, a high proportion of which will produce RMAs.

Quadromas and triomas are cloned by procedures essentially similar to those for cloning hybridomas, except that the cultures will be screened for ability to bind two antigens in a single clone. Further analysis of the bifunctional nature of the RMAs themselves will be carried out by two-stage affinity chromatography or by analytical techniques involving a solid-phase immobilized antigen to facilitate separation of monofunctional from bifunctional molecules.

The potential uses for quadromas, triomas and recombinant monoclonal antibodies are manifold. These include analytical and diagnostic techniques, targeted delivery of biological and pharmacologic agents to specific cells and the identification and localization of specific antigens, receptors and cell surface substances. The use of RMAs is advantageous since binding affinity and specificity are unaffected by prior chemical treatment used to covalently attach some sort of tag to a monofunctional antibody molecule. Further, the use of RMAs permits sequential administration of a dye, drug or tracer compound, thereby expanding the scope of utility of prior art techniques. For example, the RMA may be bound to the first antigen, such as a target cell, in one step, and the second antigen, such as a drug or tracer substance, bound to the complex in a subsequent step. The subsequent step could be carried out under different conditions than the first step.

RMAs may be converted to F(ab')2 fragments of dual specificity, for therapeutic use where rapid renal clearance of the antibody after administration is desired.

DETAILED DESCRIPTION OF THE INVENTION

An initial step in the production of recombinant monoclonal antibodies is immunization to provide a population of spleen cells producing the desired antibody. Immunization may be accomplished by conventional in vivo immunization of an experimental animal, such as a mouse, from which spleen cells are subsequently obtained. Alternatively, there are advantages to direct in vitro immunization of spleen cells in culture, such as the method described by Luben, R. A., et al, Proc.Second Int. Lymphokine Workshop, Academic Press, New York, N.Y. (1979). In vitro immunization has the advantages that a large proportion of immune spleen cells may be obtained in less time than required by conventional immunization, and that human cell lines may be immunized without subjecting a human to immunization with potentially harmful substances. A further advantage is that several antigens can be used at once to prepare hybridomas against several antigens simultaneously.

A variety of myeloma cell lines are available for hybridization with mouse or human cells. Many myeloma strains produce light chain monomers or dimers, and frequently, although not always, hybridomas derived from such cells continue to excrete these proteins. Non-producing myeloma strains are preferred for most hybridizations, to avoid production of myeloma proteins by the hybridoma. It is further preferred to use a hybridoma bearing a genetic selection marker to enable the investigator to selectively grow only the desired hybrids. A common selection system known in the prior art utilizes a mutant parent resistant to 8-azaguanine. Such mutants are unable to grow in medium containing hypoxanthine, aminopterin and thymidine (HAT medium). 8-azaguanine resistant mutants lack a functional hypoxanthine phosphoribosyl transferase (HPRT). Such cells are unable to grow in the presence of aminopterin. In conventional hybridoma technology, an 8-azaguanine resistant myeloma strain is commonly used. After fusion, hybrid cells receive a functional HPRT gene from the spleen cell parent and are therefore able to grow in HAT medium, while the parental myeloma cells and myeloma-myeloma fusions die. Parental spleen cells and spleen-spleen hybrids do not replicate in culture, so that no selection against them is required. Myeloma strains lacking functional thymidine kinase (TK-) are also known. Such strains also fail to survive in HAT medium.

Screening for antibody production is a critical step in hybridoma technology. Antibody functional attributes vary widely. Monoclonal antibodies may differ from one another in binding affinity, ability to precipitate antigen, ability to inactivate antigen, ability to fix complement and degree of crossreactivity. Preferably, the screening assay should be designed to depend upon, or approximate, the functional properties desired of the antibody to be produced. However, the assay must be sufficiently simple to permit the screening of large numbers of samples. Although the techniques in the prior art vary, the screening process is carried out in two cycles. In the first, the fusion culture is subdivided to permit growth of a large number of cultures, each arising from a relatively small number of hybridomas. For example, if cells at a concentration of 105 /ml are fused, yielding 10% total hybridomas (104 hybridomas/ml), 10 μl samples of such culture will contain on the average 100 hybridomas per sample. If the desired antibody occurs at a frequency of 1 in 103, approximately 10 of 100 cultures inoculated with 10 μl each will be positive for the desired antibody. Positive cultures are then subdivided again, this time at the level of 0.1 to 0.3 hybridoma cells per culture on the average, to ensure that each culture is a clone (all cells therein derived from a single parent cell, reproducing mitotically). Inasmuch as subculturing and screening procedures are labor-intensive, various techniques have been developed to simplify the procedures. For example, if an antigen can be labeled with a fluorescent marker, individual cells producing the desired antibody can be separated by commercially available cell sorting equipment, such as the fluorescence-activated cell sorter (FACS) manufactured by Becton Dickinson, Inc., Palo Alto, Calif. The instrument is capable of selectively separating cells bearing the fluorescent marker from a mixed population of cells. Another useful procedure is the soft agar cloning technique described by Sharon, J., et al, Proc.Nat.Acad.Sci.USA 76, 1420 (1979), which permits in situ testing for antibody production.

Procedures for obtaining triomas and quadromas are similar in principle, but more complex in practice since additional techniques for selection must be employed. For example, if the initial hybridoma is isolated by HAT selection, it will have functional HPRT and will therefore not be a suitable parent in a second round of fusion unless another selection marker is present or the hybridoma is again mutated and selected for 8-azaguanine resistance. In the case of the fusion of two hybridomas to form a quadroma, there must be means available to select against both parental cell lines. Three selection systems are described, as representative of the techniques and principles which are generally operative. Other selection techniques, based on other forms of genetic modification or biochemical inhibition may be employed, as will be readily apparent to those skilled in the art.

HAT selection may be employed using two separate genetic markers, both of which convey sensitivity to aminopterin. Where one parent hybridoma lacks functional HPRT (HPRT-) and the other lacks functional thymidine kinase (TK-), only quadromas produced by fusion of the two parent hybridomas will survive in HAT medium. HPRT- mutant hybridomas may be obtained by selection for growth in the presence of 8-azaguanine or 6-thioguanine, presented at progressively higher concentrations up to 100 μM. TK- mutants may be selected by growth in progressively increasing concentrations of 5-bromo-2'-deoxyuridine. The techniques for selection of HPRT- and TK- mutant hybridomas are essentially similar to those previously described for selection of such mutants in conventional cells (Littlefield, J. W., Proc.Nat.Acad.Sci.USA 50, 568 (1963).

Selection may also be based on the use of mutant hybridomas resistant to ouabain. Ouabain is an inhibitor of the Na+, K+ -dependent ATPase essential for active transport in normal cells. Ouabain-resistant cells are able to survive levels of ouabain which kill normal, ouabain-sensitive cells. Ouabain-resistance may be used as a selection marker by itself, or in combination with other markers. In a preferred embodiment, a single hybridoma is selected for both ouabain resistance and resistance to either 8-azaguanine (HPRT-) or 5-bromo-2'-deoxyuridine (TK-). The double mutant hybridoma is used as a universal fuser, to combine with any desired hybridoma to produce a quadroma which can be selectively grown in HAT-ouabain medium. In such medium the universal fuser parent hybridoma will die since, with either TK- or HPRT- mutations, it cannot grow in HAT medium. The other parent hybridoma is killed because it lacks resistance to ouabain. Any quadroma which has retained a functional TK or HPRT gene while remaining ouabain-resistant will grow selectively in HAT-ouabain medium. The universal fuser is especially advantageous because many of the contemplated uses of RMAs employ a single common binding specificity for one of the two binding affinities of the antibody molecule. For example, the use of a recombinant monoclonal antibody in an enzyme-linked immunosorbent assay (ELISA) for a variety of different antigens would require a common binding specificity for the indicator enzyme. Similarly, targeted drug delivery systems can employ a common specificity site for binding the therapeutic agent and a variable specificity for binding tissue-specific or cell-specific antigens.

While the foregoing selection techniques require the construction of mutant hybridoma strains and depend upon the retention of certain genes in the quadroma fusion product, a third technique, based upon irreversible biochemical inhibitors, requires no mutation. An irreversible biochemical inhibitor is one which binds chemically and which exerts a specific inhibitory action in a cell with which it has been treated. A fusion product combining parent cells treated with two separate inhibitors will be uninhibited due to complementation. For example, one parent hybridoma is treated with diethylpyrcocarbonate, the other with iodoacetamide. Both parent strains ultimately die, but fusions between the two survive (see Wright, W. E., Exptl. Cell Res. 112, 395 (1978)).

The techniques of selection and cloning for triomas and quadromas applicable to conventional hybridomas are also applicable for the quadromas and triomas of the present invention. Preferably, a fluorescence-tagged antigen is employed in the detection and cloning systems. Individual cells which bind a fluorescent antigen can be separated by a fluorescence-activated cell sorter. Such instruments are capable of depositing single cells in individual microtitre wells, thereby greatly reducing the labor associated with conventional selection and cloning.

The detection of trioma and quadroma clones producing antibodies with binding specificity for two different antigens is strong presumptive evidence of the production of RMAs. Further steps are necessary, in most instances, to isolate RMA free from other antibodies which may be produced by the same cell including, for example, antibody molecules having a single specificity, inactive antibody molecules and myeloma proteins. True RMA molecules are immunoglobulins having a dual binding specificity. RMAs are specifically purified by two stages of affinity chromatography in series. The first stage entails the specific binding to an affinity column bearing immobilized first antigen. Antibody molecules which fail to bind at the first stage pass through the column and are discarded. Antibodies binding to the first column are then eluted with a chaotropic ion buffer and applied, in the second stage, to a second affinity column bearing the second antigen. Only recombinant monoclonal antibodies which can bind to either column are bound to the second. After appropriate elution steps, the recombinant monoclonal antibody is obtained in essentially pure form.

The existence of RMAs may be detected and quantified by a solid-phase assay, without resorting to two-stage affinity chromatography. For example, the first antigen is immobilized by binding to a solid phase support material. A variety of such solid phase supports and binding techniques are well known in the art. The antibody preparation is then incubated with the solid-phase support to permit binding of any antibody having affinity for the immobilized antigen. The support is then washed to remove non-binding antibody and then incubated with the second antigen, which is tagged with an appropriate marker, such as a radioisotope, fluorescent ligand or conjugated enzyme. While both RMAs of dual specificity and conventional antibodies against the first antigen are capable of binding the immobilized first antigen, only the RMAs will be capable of binding the tagged second antigen. All antibodies capable of binding the second antigen but not the first are removed by the washing step, and therefore do not interfere with the assay. Therefore, both qualitative and quantitative measurement of a recombinant monoclonal antibody in the presence of antibodies of some other specificity is accomplished.

Some of the uses contemplated for RMAs are next described.

A hybridoma providing monoclonal antibody to a tumor-specific antigen is fused with a hybridoma making monoclonal antibody to the toxic subunit of the 60,000 m.w. toxin from Ricinus communis. The quadroma will produce RMA which can be armed with toxin and used to bind to tumor cells which would internalize the toxin, which would kill the tumor cells.

A hybridoma making monoclonal antibody to a tumor-specific antigen is fused with a hybridoma making monoclonal antibody to trinitrophenol (TNP). TNP can be covalently bound to amino groups on the exterior surface of liposomes. The liposomes can be used for drug delivery, specifically to the tumor cell, since liposomes can be made to encapsulate chemotherapeutic drugs. The liposomes would be coated with RMA which binds to TNP and the RMA would also bind to the tumor, resulting in fusion of the liposomes with tumor cells, and introduction of the drug into the tumor cells. Alternatively an RMA for a cell-specific antigen and a hapten, such as a drug or hormone may be employed for specific and direct delivery of the hapten to the desired cell.

A hybridoma making monoclonal antibody to a hormone e.g., B subunit of human chorionic gonadotropin, drug or tumor-specific antigen is fused to a hybridoma producing monoclonal antibody to a radioactive hapten labeled to high specific activity with a radioactive isotope. The quadroma will produce RAM which can be armed with radioactivity. Such RMA may be used for assay, tumor localization or therapy. Choice of isotope depends upon the nature of the intended end use. A γ-emitting isotope may be used for immunoassay of drugs, hormones and other haptens in body fluids, tissue samples, urine and the like. If the tumor-specific antigen, hormone or drug is bound to a solid phase, the RMA could be used in a one-step competition radioimmunoassay. Gamma-emitting isotopes are also useful for tumor localization. High-energy α-emitting isotopes are especially useful for therapeutic purposes because of the high energy and short path of α-radiation in tissue. Beta-emitting isotopes may be used for assay purposes as well, but require counting equipment not commonly found in a clinical laboratory.

The hybridoma producing monoclonal antibody to the antigen of diagnostic interest in the preceding paragraph is fused with a hybridoma producing monoclonal antibody to the enzyme horseradish peroxidase. The quadroma will produce RMA which can be used for a one-step enzyme-linked immunosorbant assay (ELISA).

A hybridoma producing monoclonal antibody to a tumor-specific antigen is fused with a hybridoma producing monoclonal antibody to a fluorescent probe. The quadroma will produce RMA which can be used for the fluorescent microscopic detection of tumor cells in tissue sections, or for enumeration of tumor cells in cellular suspensions using flow microfluorimetry (FMF).

The term "tumor-specific antigen" as used herein will be understood to connote an antigen characteristic of a particular tumor, or strongly correlated with such a tumor. However, the current understanding in the art with respect to tumor-specific antigens is that they are not necessarily unique to the tumor tissue, or that antibodies to them may cross-react with antigens of normal tissue. Even where tumor-specific antigens are not unique to tumor cells, it frequently occurs that, as a practical matter, antibodies binding to tumor-specific antigens are sufficiently specific to tumor cells to carry out the desired procedures without unwarranted risk or interference due to cross-reactions. Many factors contribute to this practical specificity. For example, the amount of antigen on the tumor cell may greatly exceed the amount found on normal cells, or the normal cells bearing cross-reactive antigen may be localized remote from the tumor. The antigen in the normal state may only be partially cross-reactive with the tumor-specific antigen. Sometimes, a product specific to the cell-type constituting the tumor may serve as a practical tumor-specific antigen. For example the antibody produced by the lymphocytic leukemia cells may itself be used as an antigen, against which an "anti-idiotype" antibody may be selected to bind specifically to such cells. Therefore the term "tumor-specific antobody" relates herein to a specificity of practical utility, and is not intended to denote absolute specificity or to imply an antigen unique to the tumor.

Further, it will be understood that cells other than tumor cells may have cell-specific antigens characteristic, or strongly correlated with a given type cell. Given tissues may have tissue-specific antigens which are characteristic, or predominantly associated with a given tissue. Cell-specific and tissue-specific antigens are also useful for producing RMAs capable of binding preferentially, if not exclusively, to desired cells and tissues.

The following examples illustrate the techniques applied to the production of a quadroma producing an RMA. The described techniques can be applied, essentially as described, to prepare quadromas and produce recombinant monoclonal antibodies capable of binding any desired pair of antigens.

While most RMAs will have binding affinities for two different antigens, it will be understood that RMAs binding two different epitopes on the same antigen could be prepared from appropriately selected quadroma or trioma clones. The significant variations in procedure for preparing other RMAs will lie in the nature of the antigen used to immunize, the screening test used to detect antibody production by the relevant hybridomas, triomas and quadromas and in the purification methods employed. The screening assay is especially significant, since it is at this stage that one selects for desired antibody properties in addition to binding affinity, e.g., whether the antibody precipitates the antigen, binds complement, cross-reacts with other antigens, and the like. Variations in technique of the type known in the art and understood by those of ordinary skill to be functional equivalents of those disclosed herein may be substituted as desired, for convenience or for optimization of yield, or to simplify or improve the cost-effectiveness of the overall procedure.

EXAMPLE 1

The following antigens are prepared in order to produce recombinant monoclonal antibody having dual binding affinity for two fluorescent haptens, fluorescein and rhodamine: fluorescein isothiocyanate-conjugated bovine serum albumin (F-BSA), fluorescein isothiocyanate labeled ovalbumin (F-OVA), rhodamine isothiocyanate-conjugated bovine serum albumin (R-BSA), and rhodamine isothiocyanate-conjugated ovalbumin (R-OVA). Fluorescein and rhodamine are chosen as haptens because they are readily assayed by fluorescence and they may be assayed in the presence of one another because their excitation and emission maxima are substantially different from one another. The use of the same hapten coupled to two different proteins makes it possible to distinguish between antibodies directed against the hapten and antibodies directed against the protein to which it is conjugated. For example, where F-BSA is used for immunization, screening is carried out with F-OVA. Only antibodies with binding affinity for the fluorescein moiety are detected in the screening assay. The isocyanate derivatives of fluorescein and rhodamine are commercially available, for example, from Sigma Chemical Co., St. Louis, Mo.

To carry out the coupling reaction, 50 mg protein in 10 ml of 0.1M NaHCO3, pH 9, are mixed with 5 mg of the desired isothiocyanate derivative and incubated for 30 minutes at room temperature with continuous gentle stirring. The product, after filtration through glass wool to remove precipitated protein and insoluble unreacted isothiocyanate, is chromatographed on Sephadex G-25 (trademrk, Pharmacia, Inc., Uppsala, Sweden) in phosphate buffered saline (10 mM Na-phosphate pH, 7.4, 0.15M NaCl) to separate the derivatized protein from the unreacted product and to change the buffer system. The peak of derivatized protein is identified visually, and elutes in the volume of buffer equivalent to the void volume of the column. The derivatized protein is used without further purification for immunization and testing.

EXAMPLE 2 Immunization

Immunization in vivo is carried out using a method based on that of Vaitukaitis, J., et al, J. Clin. Endocrin. 33, 988 (1971). Antigen, 100 ng, in an emulsion of complete Freund's adjuvant and physiological saline in equal volumes is injected intradermally in 20 sites. After one week a second injection of the same antigen preparation is introduced into the granulomas resulting from the first injection. Two weeks later, 100 ng of antigen is injected using incomplete Freund's adjuvant:saline (1:1) subcutaneously in four sites over the shoulders and hips. One week later, a sample of blood is obtained from the tail and assayed for antibodies. The animal is now boosted intravenously with 1 μg of antigen per injection for four days in a row. This treatment maximizes the number of lymphoblast cells present in the spleen, so that the frequency of antigen-specific hybridomas formed after the fusion step is increased.

The procedure for immunization in vitro is based upon a technique described by Luben, R. A., et al, Proc. Second Int. Lymphokine Workshop, Academic Press, New York, N.Y. (1979).

The spleen of a non-immunized adult BALB/c mouse is removed by sterile technique and a single-cell suspension of spleen cells is prepared. The cells are diluted to 20 ml with complete Dulbecco's modified Eagle's medium (hereinafter DMEM, commercially available from Grand Island Biological Company, Grand Island, N.Y.), containing 30 μg to 1,000 μg of antigen and 10 ml of thymoctye-conditioned medium is added.

Thymoctye-conditioned medium is prepared from the thymocytes of three 10-day-old mice or from a mixed thymocyte culture from adult mice. Thymocytes from BALB/c mice and those from a strain differing at the major histocompatibility locus (e.g., C57 Black) are co-cultivated at 2 to 4×106 thymocytes/ml in complete DMEM. After 48 hours incubation at 37° C., the cells and debris are centrifuged and the medium is aspirated and stored frozen in 10 ml aliquots at -70° C.

The mixture of non-immune spleen cells, antigen and thymocyte conditioned medium is placed in a 75 cm2 flask and left untouched in a tissue culture incubator for five days at 37° C. After five days, successful immunization yields numerous large lymphoblasts observable by phase contrast microscopy. The cells are then ready for fusion.

EXAMPLE 3 Lympocyte-myeloma fusion and isolation of hybridomas

A myeloma strain, designated SP2, described by Shulman, M., et al, Nature 276, 269 (1978) is chosen for fusion. The SP2 cell line is characterized as a non-producer of myeloma protein and is 8 -azaguanine resistant, due to defective HPRT activity. The SP2 cell line has been widely disseminated, and may be obtained, for example, from Professor Klinman at Scripps Clinic and Research Foundation, La Jolla, Calif.

The fusion medium contains polyethylene glycol, 1,540 M.W. at 47% (v/v) and dimethyl sulfoxide at 7.5% (v/v) in serum-free DMEM. Polyethylene glycol induces cell fusion, as described by Pontecorvo, G., Somatic Cell Genet., Vol. 1, 397 (1975) Dimethyl sulfoxide reportedly enhances fusion frequency, possibly by lowering the membrane phase transition temperature, as described by Norwood, T. H., et al, Somatic Cell Genet., Vol. 2, 263 (1976).

For spleen cells immunized in vivo, a single cell suspension is made from a hyperimmune spleen as described for the immunization in culture. SP2 myeloma cells in exponential growth phase (30 ml, 5-8×105 cells/ml) are transferred to a 50 ml conical polypropylene centrifuge tube and the spleen cell suspension (5 ml) is added. For spleen cells immunized in culture, the cells are harvested after dislodging adherent lymphoblast cells, centrifuged, and the medium removed. The SP2 cells (30 ml) are added as above. With either preparation, the cells are washed three times with 50 ml of serum-free DMEM by centrifugation. The pellet from the third wash is resuspended in 1 ml of fusion medium just removed from a 37° C. waterbath. The medium is added over one minute and the cells continuously stirred with the pipet tip. Stirring is continued for another minute. Two ml of serum-free DMEM at 37° C. are added over the next three minutes with continuous stirring. Seven ml of 37° C. DMEM containing 10% rabbit serum is added over the next three minutes with stirring. The cells are centrifuged and resuspended in 10 ml complete medium containing HAT selection chemicals and feeder cells and distributed into 96 wells of a microtitre plate.

Feeder cells are peritoneal exudate cells obtained after intraperitoneal injection of 0.5 ml pristane (2,6,10,14-tetramethyl-pentadecane). After four days, cells are collected by washing out the peritoneal cavity of the treated mice. The yield is consistently 2-4×107 cells per mouse.

Antibody producing cells are directly cloned using the fluorescence-activated cell sorter. Positive cells will bind the fluorescent probe of the instrument and be separated from negative cells. The probe is obtained from fluorescent hapten coupled to a different protein from that used in the immunization. For example, if F-BSA or R-BSA is used for immunization, F-OVA or R-OVA will be used as a probe, to avoid selection of hybridomas producing antibody against the protein.

An alternative screening procedure, suitable for non-fluorescent antigens, is based on enzyme-linked immunosorbant assay (Saunders, G. C., Immunoassays in the Clinical Laboratory, pp. 99-118 (1979)).

To detect antibodies to soluble antigen, 50 μl/well of 10-100 μg/ml antigen in water are added to polystyrene 96 well plates and they are allowed to dry in a 37° C. incubator. Immediately before use, the plates are washed three times with 10 mM Na2 HPO4 in 150 mM NaCl (PBS-9). To screen antibodies for reactivity with cell surface components the cells are bound using an immobilized lectin. Concanavalin A is covalently bound to the polystyrene wells using a water-soluble carbodimide (Reading, C. L., et al, J. Natl. Cancer Inst. 64, 1241 (1980)). The plates are washed six times with PBS-9 and cells are added to each well (1-2×105) in 100 μl complete DMEM. The plates are kept at 37° C. for one to two hours to allow the cells to attach; after that the plates are washed six times with PBS-9 and 50 μl of fresh 1% formaldehyde in PBS-9 is added to each well. The plates are kept for 15 minutes at room temperature and then washed six times with PBS-9 and used immediately.

From each hybridoma culture, 50 μl of medium is transferred to the antigen containing wells. The samples are incubated at room temperature for 30 minutes and the plates are washed 10 times with 0.05% Triton-X-100 (trademark, Rohm & Haas Company, Nutley, N.J.) in water. Enzyme-conjugated anti-mouse immunoglobulin (Cappel Laboratories, Cochranville, Pa.) is diluted into 10 mM Na2 HPO4, 0.05M NaCl, 0.5% (v/v) Triton-X-100 containing 50 μg/ml bovine serum albumin.

The conjugate (50 μl) is added to each well and incubated for 15 minutes at room temperature. The plates are washed 10 times with 0.5% (v/v) Triton-X-100, 100 μl of substrate is added. The chromogenic substrate 2,2'-azino-di-(3-ethyl)-benzthiazoline sulfonic acid (ABTS) is used as described by Saunders, supra. The colored enzyme product is quantitated by measuring the optical density at 414 mM.

Cells from cultures producing the desired antibody are counted and diluted to yield 30-50 viable hybridoma cells/ml of complete HT medium (DMEM containing 10-3 M hypoxanthine, and 3×10-4 m thymidine).

A portion of 0.1 ml of the suspension is pipetted into each well of a 96 well microtitre plate containing 1.2×105 peritoneal exudate feeder cells. Each well contains on the average 3-5 hybridoma cells per well.

The cultures are incubated in a tissue culture incubator at 37° C. for seven days, following which 0.1 ml complete HT medium is added to each well. After an additional 14-21 days' incubation, the clones are dense and ready for screening, either by the ELISA procedure or by measurement of fluorescent quenching due to antibody binding of added fluorescent hapten. For specificity controls, antibodies reactive with fluorescein should not bind rhodamine, and vice versa. The six strongest positive cultures are transferred to larger wells, and are re-assayed after incubation to allow the cultures to again become dense. A portion of the cells from the strongest two cultures are re-cloned by limiting dilution, ˜0.3 cells per well (using a feeder layer). The remainder of the cells in the two strongest positive cultures are incubated in additional medium to increase their numbers and stored frozen.

When the limiting dilution clones have reached adequate cell density, the wells with a single clone present are assayed. Six positive clones are transferred to larger wells, again incubated to increase their numbers, and stored frozen. The two strongest wells are examined for stability by another round of limiting dilution cloning. The FACS is useful in these selection and recloning steps, in the manner previously described. Since these processes are labor-intensive, the use of the cell sorter at any stage where applicable is advantageous. Clones which yield greater than 90% positive clones are considered stable. Clones which yield less than 90% positive clones are re-cloned until stability is achieved.

EXAMPLE 4 Quadroma Formation

The first step in quadroma formation is the selection of mutant hybridoma strains suitable for preferentially growing quadroma fusion products in the presence of the parent hybridomas. In this example, the hybridoma strain producing antibody against fluorescein is further modified to 8-azaguanine and ouabain resistance. The modified hybridoma is used as a universal fuser, as described, supra.

Selection for 8-azaguanine resistance involves a process of adaptive growth in gradually increasing concentrations of the inhibitor, beginning with inhibitor concentrations of about 1 μM. Cells grown for several generations are then transferred to 3 μM 8-azaguanine for an additional period of growth for several generations. The process is reiterated, with progressive increments of inhibitor, until a viable strain growing in the presence of 100 μM 8-azaguanine is obtained. The procedure selects mutants arising spontaneously or by 8-azaguanine induced mutation, which lack functional HPRT activity. The 8-azaguanine resistant hybridoma strain is then made resistant to ouabain inhibition by a similar process of adaptive growth, using essentially the method described by Baker, R. M., et al, Cell 1, 9 (1979).

Equal numbers of anti-fluorescein producing double mutant hybridomas, prepared as described, and antirhodamine producing hybridomas are fused, following essentially the procedure of Example 3. The yield of quadromas producing antibodies against both antigens is higher, per stable fusion, than for conventional fusions, since every parental cell is of the desired type. After the fusion step is complete and the cells dispensed in microtitre plate wells, they are incubated in the presence of HAT medium (DMEM containing 3×10-6 M thymidine, 4×10-7 M aminopterin, and 3×10-5 M hypoxanthine) containing 10-3 M ouabain. As previously described, both parental hybridoma strains are killed by growth in HAT-ouabain medium, while quadromas which have retained functional HPRT and the ouabain resistance mutation survive and grow.

After selection, quadromas which bind both antigens simultaneously are cloned in individual microtitre wells using the single-cell deposition attachment for the fluorescence-activated cell sorter. The single cells will develop into dense cultures within 10-14 days.

Alternatively, quadromas are detected and cloned by plating in soft agar medium. After 10-14 days' growth, the clones which appear are tested in situ by the solid phase assay described by Sharon et al, supra.

Replicate tests are required, first with one antigen, then with the other. Clones which react with both antigens contain the desired quadroma. Alternatively, screening may be carried out by allowing quadromas to bind to a surface coated with one antigen, the testing for ability to bind with the other antigen.

As previously described for hybridomas, the most active and stable clones are re-cloned to ensure stability. Clones which yield greater than 90% positive clones are considered stable, while those yielding less than 90% are recloned until stability is achieved. Quadroma clones producing presumptive RMAs are those which produce antibody binding both of the immunizing antigens, fluorescein and rhodamine.

EXAMPLE 5 Preparation and purification of recombinant monoclonal antibody

RMAs are isolated, either from the supernatant of quadroma cultures or from ascites from a mouse injected with quadroma cells interperitoneally. In the latter case, BALB/c mice are pretreated by interperitoneal injection of 0.5 ml pristane. An injection of 1-2×106 quadroma cells of a stable clone are injected intraperitoneally. Ascites tumors are evident by day 10 to 21, and the ascites fluid is collected when the periotoneal cavity becomes distended. Cells are removed by centrifugation and antibody is precipitated with 60% saturated ammonium sulfate. The antibody is then dialyzed and frozen. The yield is usually about 30-50 mg of antibody per mouse.

Recombinant monoclonal antibodies are further purified from the antibody preparation by two stages of affinity chromatography. In the first column, F-BSA is coupled to CNBr-activated Sepharose 4B (trademark, Pharmacia Fine Chemicals AB, Uppsala, Sweden) using standard coupling procedures as described by March, S. C., et al, Anal. Biochem. 60, 149 (1974). The second column is packed with R-BSA coupled to CNBr-activated Sepharose 4B. The columns are equilibrated with PBS-9 and the antigen preparation is applied to the first column and eluted with 2-3 column volumes of PBS-9. The first column is then eluted with PBS-9 containing 3M potassium isothiocyanate. Eluted protein is dialyzed against PBS-9 and applied to the second column, which is eluted in the same manner as the first. Protein recovered from the second column after potassium isothiocyanate elution is recombinant monoclonal antibody, which has two distinct combining sites per molecule, one for fluorescein and one for rhodamine. The RMA preparation is dialyzed, concentrated and stored frozen.

The foregoing specification describes the formation of novel cell types, quadromas and triomas, capable of producing recombinant monoclonal antibodies, a heretofore unknown molecular species of antibody having binding affinities for two different antigens and capable of binding both antigens simultaneously. The techniques for producing such new materials have been described in detail, particularly with reference to specific embodiments included by way of example. It will be understood that the products and techniques of the present invention are of far-reaching significance and include a wide range of RMA types combining any pair of antigenic specificities on a single antibody. It will be further understood that many variations and modifications of the techniques employed herein are available to those of ordinary skill in the relevant art, and that such variations and modifications are contemplated as being within the scope of the invention.

Claims (56)

What is claimed is:
1. A quadroma cell, wherein said quadroma cell is the fusion product of a first hybridoma cell which produces an antibody having specific binding affinity to a first desired antigen and a second hybridoma cell which produces an antibody having specific binding affinity for a second desired antigen, and wherein said quadroma cell produces a recombinant monoclonal antibody having specific binding affinity for both said first and said second desired antigens.
2. The quadroma cell of claim 1, wherein one of the two antigens is a tumor-associated antigen.
3. The quadroma cell to claim 1, wherein one of the two antigens is a cell-specific antigen.
4. The quadroma cell of claim 1, wherein one of the two antigens is a tissue-specific antigen.
5. The quadroma cell of claims 1, 2, 3 or 4, wherein one of the two antigens is an enzyme.
6. The quadroma cell of claims 1, 2, 3 or 4, wherein one of the two antigens is a hapten.
7. The quadroma cell of claims 1 or 2 wherein one of the two antigens is a Ricinus communis toxin.
8. The quadroma cell of claims 1 or 2, wherein one of the two antigens is specific for trinitrophenol.
9. The quadroma cell of claim 6, wherein the hapten is radioactively-labelled.
10. The quadroma cell of claim 1, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is a hapten.
11. The quadroma cell of claim 1, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is horseradish peroxidase.
12. The quadroma cell of claims 1 or 2, wherein one of the two antigens is fluorescein.
13. The quadroma cell of claim 1, wherein said antibody is an IgM molecule.
14. The quadroma cell of claim 1, wherein said antibody is an IgG molecule.
15. A trioma cell, wherein said trioma cell is the fusion product of a hybridoma cell which produces an antibody having specific binding affinity to a first desired antigen and a lymphocyte which produces an antibody having specific binding affinity to a second desired antigen, and wherein said trioma cell produces a recombinant monoclonal antibody having specific binding affinity for both said first and said second desired antigens.
16. The trioma cell of claim 15, wherein one of the two antigens is a tumor-associated antigen.
17. The trioma cell of claim 15, wherein one of two antibodies is a cell-specific antigen.
18. The trioma cell of claim 15, wherein one of the two antigens is a tissue-specific antigen.
19. The trioma cell of claims 15, 16, 17 or 18, wherein one of the two antigens is an enzyme.
20. The trioma cell of claims 15, 16, 17 or 18, wherein one of the two antigens is a hapten.
21. The trioma cell of claims 15 or 16, wherein one of the two antigens is Ricinus communis toxin.
22. The trioma cell of claims 15 or 16, wherein one of the two antigens is specific for trinitrophenol.
23. The trioma cell of claim 20, wherein the hapten is radioactively-labelled.
24. The trioma cell of claim 15, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is a hapten.
25. The trioma cell of claim 15, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is horseradish peroxidase.
26. The trioma cell of claim 15, wherein one of the two antigens is fluorescein.
27. The trioma cell of claim 15, wherein said antibody is an IgM molecule.
28. The trioma cell of claim 15, wherein said antibody is an IgG molecule.
29. A method of producing a quadroma cell comprising: (A) fusing a first hybridoma cell which produces an antibody having specific binding affinity to a first desired antigen, to a second hybridoma cell which produces an antibody having specific binding affinity to a second desired antigen, and (B) selecting a quadroma cell which produces a recombinant monoclonal antibody having specific binding affinity for both said first and said second desired antigens.
30. The method of claim 29, wherein one of the two antigens is a tumor-associated antigen.
31. The method of claim 29, wherein one of the two antigens is a cell-specific antigen.
32. The method of claim 29, wherein one of the two antigens is a tissue-specific antigen.
33. The method of claims 29, 30, 31 or 32, wherein one of the two antigens is an enzyme.
34. The method of claims 29, 30, 31 or 32, wherein one of the two antigens is a hapten.
35. The method of claims 29 or 30, wherein one of the two antigens is Ricinus communis toxin.
36. The method of claims 29 or 30, wherein one of the two antigens is specific for trinitrophenol.
37. The method of claim 34, wherein the hapten is radioactively-labelled.
38. The method of claim 29, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is a hapten.
39. The method of claim 29, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is horseradish peroxidase.
40. The method of claims 29 or 30, wherein one of the two antigens is fluorescein.
41. The method of claim 29, wherein said recombinant monoclonal antibody is an IgM molecule.
42. The method of claim 29, wherein said recombinant monoclonal antibody is an IgG molecule.
43. A method of producing a trioma cell comprising: (A) fusing a hybridoma cell which produces an antibody having specific binding affinity to a first desired antigen, to a lymphocyte which produces an antibody having specific binding affinity to a second desired antigen, and (B) selecting a trioma cell which produces a recombinant monoclonal antibody having specific binding affinity for both said first and second desired antigens.
44. The method of claim 43, wherein one of the two antigens is a tumor-associated antigen.
45. The method of claim 43, wherein one of the two antigens is a cell-specific antigen.
46. The method of claim 43, wherein one of the two antigens is a tissue-specific antigen.
47. The method of claims 43, 44, 45 or 46, wherein one of the two antigens is an enzyme.
48. The method of claims 43, 44, 45 or 46, wherein one of the two antigens is a hapten.
49. The method of claims 43 or 44, wherein one of the two antigens is Ricinus communis toxin.
50. The method of claims 43 or 44, wherein one of the two antigens is specific for trinitrophenol.
51. The method of claim 48, wherein the hapten is radioactively-labelled.
52. The method of claim 43, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is a hapten.
53. The method of claim 43, wherein one of the two antigens is human chorionic gonadotropin and the other antigen is horseradish peroxidase.
54. The method of claim 43, wherein one of the two antigens is fluorescein.
55. The method of claim 43, wherein said recombinant monoclonal antibody is an IgM molecule.
56. The method of claim 43, wherein said recombinant monoclonal antibody is an IgG molecule.
US06621394 1981-07-01 1984-06-18 Quadroma cells and trioma cells and methods for the production of same Expired - Fee Related US4714681A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US06279248 US4474893A (en) 1981-07-01 1981-07-01 Recombinant monoclonal antibodies
US06621394 US4714681A (en) 1981-07-01 1984-06-18 Quadroma cells and trioma cells and methods for the production of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06621394 US4714681A (en) 1981-07-01 1984-06-18 Quadroma cells and trioma cells and methods for the production of same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06279248 Continuation US4474893A (en) 1981-07-01 1981-07-01 Recombinant monoclonal antibodies

Publications (1)

Publication Number Publication Date
US4714681A true US4714681A (en) 1987-12-22

Family

ID=26959549

Family Applications (1)

Application Number Title Priority Date Filing Date
US06621394 Expired - Fee Related US4714681A (en) 1981-07-01 1984-06-18 Quadroma cells and trioma cells and methods for the production of same

Country Status (1)

Country Link
US (1) US4714681A (en)

Cited By (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892824A (en) * 1988-03-15 1990-01-09 Synbiotics Corporation Fast track method for producing monoclonal bi-specific immunoglobulins
US5084363A (en) * 1990-01-10 1992-01-28 International Fuel Cells Corp. Molten carbonate fuel cell power plant
US5141736A (en) * 1988-12-27 1992-08-25 Takeda Chemical Industries, Ltd. Bispecific monoclonal antibody, its production and use
US5256395A (en) * 1986-09-19 1993-10-26 Immunotech Partners Affinity enhancement immunological reagents for in vivo detection and killing of specific target cells
US5273743A (en) * 1990-03-09 1993-12-28 Hybritech Incorporated Trifunctional antibody-like compounds as a combined diagnostic and therapeutic agent
US5496549A (en) * 1990-04-02 1996-03-05 Takeda Chemical Industries, Ltd. Bispecific monoclonal antibodies, thrombolytic agent and method of cell lysis
US5506135A (en) * 1981-09-26 1996-04-09 Takeda Chemical Industries, Ltd. Hybrid monoclonal antibodies, their production and use
US5582996A (en) * 1990-12-04 1996-12-10 The Wistar Institute Of Anatomy & Biology Bifunctional antibodies and method of preparing same
US5591828A (en) * 1989-06-22 1997-01-07 Behringwerke Aktiengesellschaft Bispecific and oligospecific mono-and oligovalent receptors, the preparation and use thereof
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5877291A (en) * 1992-12-11 1999-03-02 The Dow Chemical Company Multivalent single chain antibodies
WO1999036437A1 (en) 1998-01-15 1999-07-22 Center For Molecular Medicine And Immunology Antibody/receptor targeting moiety for enhanced delivery of armed ligand
US5939524A (en) * 1991-12-09 1999-08-17 The Scripps Research Institute Platelet GPIII P1A1 and P1A2 epitopes, their preparation and use
WO1999047538A1 (en) 1998-03-19 1999-09-23 Human Genome Sciences, Inc. Cytokine receptor common gamma chain like
US6071515A (en) * 1992-08-21 2000-06-06 The Dow Chemical Company Dimer and multimer forms of single chain polypeptides
US6129914A (en) * 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
EP1064551A1 (en) * 1998-03-18 2001-01-03 The Trustees Of Columbia University In The City Of New York Development of human monoclonal antibodies and uses thereof
US6248516B1 (en) 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6291161B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
US6291160B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
WO2002002641A1 (en) 2000-06-16 2002-01-10 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to blys
WO2002064612A2 (en) 2001-02-09 2002-08-22 Human Genome Sciences, Inc. Human g-protein chemokine receptor (ccr5) hdgnr10
US20020150534A1 (en) * 1994-11-07 2002-10-17 Guo-Liang Yu Tumor necrosis factor-gamma
US20030007973A1 (en) * 2001-06-22 2003-01-09 Lynes Michael A. Methods and compositions for manipulation of the immune response using anti-metallothionein antibody
US20030068320A1 (en) * 2001-03-02 2003-04-10 Christine Dingivan Methods of administering/dosing CD2 antagonists for the prevention and treatment of autoimmune disorders or inflammatory disorders
US20030092620A1 (en) * 2001-07-26 2003-05-15 Genset, S.A. Use of adipsin/complement factor D in the treatment of metabolic related disorders
US20030162186A1 (en) * 2001-05-25 2003-08-28 Genset, S.A. Human cDNAs and proteins and uses thereof
US6635743B1 (en) 1996-03-22 2003-10-21 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
WO2003086458A1 (en) 2002-04-12 2003-10-23 Medimmune, Inc. Recombinant anti-interleukin-9 antibodies
US20030232374A1 (en) * 2002-05-23 2003-12-18 Kuchel George A. Compositions and methods relating to detrusor estrogen-regulated protein (DERP)
US20040001826A1 (en) * 1999-06-30 2004-01-01 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20040001835A1 (en) * 2002-03-04 2004-01-01 Medimmune, Inc. Prevention or treatment of cancer using integrin alphavbeta3 antagonists in combination with other agents
US20040009147A1 (en) * 1996-03-22 2004-01-15 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
US6680192B1 (en) 1989-05-16 2004-01-20 Scripps Research Institute Method for producing polymers having a preselected activity
US20040063907A1 (en) * 2002-06-10 2004-04-01 Maurice Zauderer Gene differentially expressed in breast and bladder cancer and encoded polypeptides
WO2004091510A2 (en) 2003-04-11 2004-10-28 Medimmune, Inc. Recombinant il-9 antibodies and uses thereof
US20040223959A1 (en) * 2003-01-21 2004-11-11 Feder John N. Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (MGAT3), and uses thereof
WO2005001038A2 (en) 2003-05-28 2005-01-06 Seattle Genetics, Inc. Recombinant anti-cd30 antibodies and uses thereof
US20050152896A1 (en) * 2003-12-12 2005-07-14 Amgen Inc. Anti-galanin antibodies and uses thereof
US20050158323A1 (en) * 2003-12-04 2005-07-21 Vaccinex, Inc. Methods of killing tumor cells by targeting internal antigens exposed on apoptotic tumor cells
WO2005077042A2 (en) 2004-02-09 2005-08-25 Human Genome Sciences, Inc. Albumin fusion proteins
US6969586B1 (en) 1989-05-16 2005-11-29 Scripps Research Institute Method for tapping the immunological repertoire
US20060015957A1 (en) * 1991-08-28 2006-01-19 Genpharm International, Inc. Transgenic non-human animals for producing chimeric antibodies
WO2006017673A2 (en) 2004-08-03 2006-02-16 Biogen Idec Ma Inc. Taj in neuronal function
US20060046249A1 (en) * 2002-01-18 2006-03-02 Fei Huang Identification of polynucleotides and polypetide for predicting activity of compounds that interact with protein tyrosine kinase and or protein tyrosine kinase pathways
US20060116338A1 (en) * 2001-05-09 2006-06-01 Hansen Marc F Mammalian early developmental regulator gene
US20060141455A1 (en) * 2002-01-08 2006-06-29 Rhonda Hansen Gene products differentially expressed in cancerous breast cells and their methods of use
EP1683865A2 (en) 2001-02-02 2006-07-26 Eli Lilly & Company Mammalian proteins and in particular CD200
US20060177454A1 (en) * 1994-12-02 2006-08-10 Ring David B Method of promoting an immune response with a bispecific antibody
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
US20060211090A1 (en) * 2001-05-25 2006-09-21 Serono Genetics Institute S.A. Human cDNAs and proteins and uses thereof
US20060216291A1 (en) * 1999-06-30 2006-09-28 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20060228367A1 (en) * 2005-04-08 2006-10-12 Medimmune, Inc. Antibodies against mammalian metapneumovirus
US20060292644A1 (en) * 2000-09-18 2006-12-28 The Trustees Of Columbia University In The City Of New York Novel tumor-associated marker
WO2007002543A2 (en) 2005-06-23 2007-01-04 Medimmune, Inc. Antibody formulations having optimized aggregation and fragmentation profiles
US20070009945A1 (en) * 2005-07-08 2007-01-11 Bristol-Myers Squibb Company Single nucleotide polymorphisms associated with dose-dependent edema and methods of use thereof
US20070014795A1 (en) * 2004-12-30 2007-01-18 Dhodapkar Madhav V Compositions and methods for enhanced dendritic cell maturation and function
WO2007014433A1 (en) 2005-08-03 2007-02-08 Grains Research & Development Corporation Polysaccharide synthases
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
US20070065887A1 (en) * 2003-07-21 2007-03-22 Kinch Michael S Diagnosis of pre-cancerous conditions using pcdgf agents
WO2007056352A2 (en) 2005-11-07 2007-05-18 The Scripps Research Institute Compositions and methods for controlling tissue factor signaling specificity
US20070202512A1 (en) * 2005-08-19 2007-08-30 Bristol-Myers Squibb Company Human single nucleotide polymorphisms associated with dose-dependent weight gain and methods of use thereof
US20070269438A1 (en) * 2005-10-05 2007-11-22 Brian Elenbaas Antibodies to the Human Prolactin Receptor
US20070280943A1 (en) * 2006-06-05 2007-12-06 Friedman Steven M Sheddase inhibitors combined with cd30-binding immunotherapeutics for the treatment of cd30 positive diseases
WO2007147090A2 (en) 2006-06-14 2007-12-21 Macrogenics, Inc. Methods for the treatment of autoimmune disorders using monoclonal antibodies with reduced toxicity
US20070298517A1 (en) * 2006-06-23 2007-12-27 Florida State University Research Foundation, Inc. Immunoglobulin Peptides Against Heated Bovine Blood
US20070297977A1 (en) * 1994-11-07 2007-12-27 Human Genome Sciences, Inc. Tumor Necrosis Factor-Gamma
US7381803B1 (en) 1992-03-27 2008-06-03 Pdl Biopharma, Inc. Humanized antibodies against CD3
US7429646B1 (en) 1995-06-05 2008-09-30 Human Genome Sciences, Inc. Antibodies to human tumor necrosis factor receptor-like 2
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
US20080267974A1 (en) * 2007-04-10 2008-10-30 Vaccinex, Inc. Selection of Human TNFAlpha Specific Antibodies
EP1997829A1 (en) 2001-12-21 2008-12-03 Human Genome Sciences, Inc. Albumin fusion proteins
US20080305111A1 (en) * 2006-06-22 2008-12-11 Vaccinex, Inc. Anti-C35 antibodies for treating cancer
US20090028857A1 (en) * 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
EP2027874A2 (en) 2000-11-28 2009-02-25 Medimmune, Inc. Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment
WO2009082485A1 (en) 2007-12-26 2009-07-02 Vaccinex, Inc. Anti-c35 antibody combination therapies and methods
EP2080766A1 (en) 2001-06-06 2009-07-22 Bristol-Myers Squibb Company B7-related nucleic acids and polypeptides useful for immunomodulation
EP2100619A1 (en) 2003-02-20 2009-09-16 Seattle Genetics, Inc. Anti-CD70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
WO2009118300A1 (en) 2008-03-25 2009-10-01 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by down-regulating frizzled-4 and/or frizzled-1
US20090260093A1 (en) * 2006-03-31 2009-10-15 Tanamachi Dawn M Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
WO2010052288A1 (en) 2008-11-07 2010-05-14 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Teneurin and cancer
WO2010056804A1 (en) 2008-11-12 2010-05-20 Medimmune, Llc Antibody formulation
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
WO2010078526A1 (en) 2008-12-31 2010-07-08 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
EP2206720A1 (en) 2000-04-12 2010-07-14 Human Genome Sciences, Inc. Albumin fusion proteins
WO2010093993A2 (en) 2009-02-12 2010-08-19 Human Genome Sciences, Inc. Use of b lymphocyte stimulator protein antagonists to promote transplantation tolerance
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
WO2010100247A1 (en) 2009-03-06 2010-09-10 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Novel therapy for anxiety
EP2228389A2 (en) 2001-04-13 2010-09-15 Human Genome Sciences, Inc. Antibodies against vascular endothelial growth factor 2
US20100233187A1 (en) * 2000-06-02 2010-09-16 Chan Vivien W Gene products differentially expressed in cancerous cells
EP2238986A2 (en) 2005-07-08 2010-10-13 Biogen Idec MA Inc. Sp35 antibodies and uses thereof
EP2241323A1 (en) 2009-04-14 2010-10-20 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Tenascin-W and brain cancers
US20100303827A1 (en) * 2007-11-28 2010-12-02 One Medimmune Way Protein Formulation
WO2011020079A1 (en) 2009-08-13 2011-02-17 Calmune Corporation Antibodies against human respiratory syncytial virus (rsv) and methods of use
EP2292266A1 (en) 2009-08-27 2011-03-09 Novartis Forschungsstiftung, Zweigniederlassung Treating cancer by modulating copine III
EP2298806A1 (en) 2002-10-16 2011-03-23 Purdue Pharma L.P. Antibodies that bind cell-associated CA 125/0722P and methods of use thereof
EP2301969A1 (en) 2005-05-06 2011-03-30 ZymoGenetics, L.L.C. IL-31 monoclonal antibodies and methods of use
WO2011036118A1 (en) 2009-09-22 2011-03-31 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mex-3
WO2011041721A1 (en) 2009-10-02 2011-04-07 Biogen Idec Ma Inc. Methods of preventing and removing trisulfide bonds
WO2011044368A1 (en) 2009-10-07 2011-04-14 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
WO2011045352A2 (en) 2009-10-15 2011-04-21 Novartis Forschungsstiftung Spleen tyrosine kinase and brain cancers
WO2011051392A1 (en) 2009-10-30 2011-05-05 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Phosphorylated twist1 and cancer
EP2332575A1 (en) 2003-12-23 2011-06-15 Genentech, Inc. Treatment of cancer with novel anti-IL 13 monoclonal antibodies
EP2341060A1 (en) 2000-12-12 2011-07-06 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
EP2354254A1 (en) 2006-09-06 2011-08-10 Ortho-McNeil Pharmaceutical, Inc. Biomarkers for assessing response to C-met treatment
EP2357192A1 (en) 1999-02-26 2011-08-17 Human Genome Sciences, Inc. Human endokine alpha and methods of use
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
WO2011107586A1 (en) 2010-03-05 2011-09-09 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research, Smoc1, tenascin-c and brain cancers
EP2368578A1 (en) 2003-01-09 2011-09-28 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
EP2371389A2 (en) 2002-08-14 2011-10-05 MacroGenics, Inc. FcgammaRIIB-specific antibodies and methods of use thereof
WO2011131611A1 (en) 2010-04-19 2011-10-27 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Modulating xrn1
WO2011154485A1 (en) 2010-06-10 2011-12-15 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mammalian sterile 20-like kinase 3
WO2012006596A2 (en) 2010-07-09 2012-01-12 Calmune Corporation Anti-human respiratory syncytial virus (rsv) antibodies and methods of use
EP2407548A1 (en) 2006-10-16 2012-01-18 MedImmune, LLC Molecules with reduced half-lives, compositions and uses thereof
WO2012007880A2 (en) 2010-07-16 2012-01-19 Ablynx Nv Modified single domain antigen binding molecules and uses thereof
WO2012009705A1 (en) 2010-07-15 2012-01-19 Zyngenia, Inc. Ang-2 binding complexes and uses thereof
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
EP2422811A2 (en) 2004-10-27 2012-02-29 MedImmune, LLC Modulation of antibody specificity by tailoring the affinity to cognate antigens
WO2012031099A2 (en) 2010-09-02 2012-03-08 Vaccinex, Inc. Anti-cxcl13 antibodies and methods of using the same
WO2012032143A1 (en) 2010-09-10 2012-03-15 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Phosphorylated twist1 and metastasis
EP2431054A2 (en) 2000-06-15 2012-03-21 Human Genome Sciences, Inc. Human tumor necrosis factor delta and epsilon
WO2012061778A2 (en) 2010-11-05 2012-05-10 Genalyte, Inc. Optical analyte detection systems and methods of use
WO2012065937A1 (en) 2010-11-15 2012-05-24 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Anti-fungal agents
EP2476706A2 (en) 2005-12-12 2012-07-18 Bayer HealthCare LLC Anti-MN antibodies and methods of using same
EP2500030A2 (en) 2005-11-04 2012-09-19 Genentech, Inc. Use of complement pathway inhibitors to treat ocular diseases
EP2505209A1 (en) 2006-06-26 2012-10-03 MacroGenics, Inc. Fcgamma-RIIB-specific antibodies and methods of the use thereof
WO2012131053A1 (en) 2011-03-30 2012-10-04 Ablynx Nv Methods of treating immune disorders with single domain antibodies against tnf-alpha
EP2511299A1 (en) 2005-04-19 2012-10-17 Seattle Genetics, Inc. Humanized anti-CD70 binding agents and uses thereof
WO2012143499A2 (en) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Novel binder-drug conjugates (adcs) and their use
WO2012162561A2 (en) 2011-05-24 2012-11-29 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
WO2012168259A1 (en) 2011-06-06 2012-12-13 Novartis Forschungsstiftung, Zweigniederlassung Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP2570432A1 (en) 2002-06-14 2013-03-20 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
WO2013067057A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
WO2013067060A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
WO2013067054A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Antibodies and methods of treating cancer
WO2013067055A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Methods of blocking cancer stem cell growth
WO2013068431A1 (en) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research New treatment for neurodegenerative diseases
WO2013068432A1 (en) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Early diagnostic of neurodegenerative diseases
EP2594586A1 (en) 2006-09-01 2013-05-22 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
EP2599793A1 (en) 2008-05-29 2013-06-05 Nuclea Biotechnologies, Inc. Anti-phospho-akt antibodies
WO2013087716A2 (en) 2011-12-14 2013-06-20 Bayer Pharma Aktiengesellschaft New antibody drug conjugates (adcs) and the use thereof
EP2610267A1 (en) 2006-12-18 2013-07-03 Genentech, Inc. Antagonist anti-Notch3 antibodies and their use in the prevention and treatment of Notch3-related diseases
EP2609932A2 (en) 2006-12-01 2013-07-03 Seattle Genetics, Inc. Variant target binding agents and uses thereof
WO2013102825A1 (en) 2012-01-02 2013-07-11 Novartis Ag Cdcp1 and breast cancer
WO2013130959A1 (en) 2012-03-02 2013-09-06 Vaccinex, Inc. Methods for the treatment of b cell-mediated inflammatory diseases
EP2639301A2 (en) 2006-06-30 2013-09-18 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
WO2013144240A1 (en) 2012-03-29 2013-10-03 Friedrich Miescher Institute For Biomedical Research Inhibition of interleukin- 8 and/or its receptor cxcrl in the treatment her2/her3 -overexpressing breast cancer
WO2013169693A1 (en) 2012-05-09 2013-11-14 Bristol-Myers Squibb Company Methods of treating cancer using an il-21 polypeptide and an anti-pd-1 antibody
WO2013166594A1 (en) 2012-05-10 2013-11-14 Zymeworks Inc. Heteromultimer constructs of immunoglobulin heavy chains with mutations in the fc domain
WO2014001482A1 (en) 2012-06-29 2014-01-03 Novartis Forschungsstiftung, Zweigniererlassung, Friedrich Miescher Institute For Biomedical Research Treating diseases by modulating a specific isoform of mkl1
WO2014006115A1 (en) 2012-07-06 2014-01-09 Novartis Ag Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the il-8/cxcr interaction
WO2014006114A1 (en) 2012-07-05 2014-01-09 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research New treatment for neurodegenerative diseases
EP2703011A2 (en) 2007-05-07 2014-03-05 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP2740744A2 (en) 2007-01-09 2014-06-11 Biogen Idec MA Inc. SP35 antibodies and uses thereof
WO2014122605A1 (en) 2013-02-08 2014-08-14 Friedrich Miescher Institute For Biomedical Research Novel methods for the targeted introduction of viruses into cells
WO2014137355A1 (en) 2013-03-08 2014-09-12 Vaccinex, Inc. Anti-cxcl13 antibodies and associated epitope sequences
US8852608B2 (en) 2009-02-02 2014-10-07 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
US8937169B2 (en) 1996-01-11 2015-01-20 Human Genome Sciences, Inc. Human G-protein chemokine receptor HSATU68
WO2015019286A1 (en) 2013-08-07 2015-02-12 Friedrich Miescher Institute For Biomedical Research New screening method for the treatment friedreich's ataxia
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
US9090659B2 (en) 2010-05-31 2015-07-28 London Health Sciences Centre Research Inc. RHAMM binding peptides
WO2015120270A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International, Inc. Insecticidal proteins and methods for their use
WO2015120276A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
EP2927244A1 (en) 2008-09-19 2015-10-07 MedImmune, LLC Antibodies directed to DLL4 and uses thereof
WO2015159254A1 (en) 2014-04-16 2015-10-22 Biocon Ltd. Stable protein formulations comprising a molar excess of sorbitol
WO2015189816A1 (en) 2014-06-13 2015-12-17 Friedrich Miescher Institute For Biomedical Research New treatment against influenza virus
WO2015198202A1 (en) 2014-06-23 2015-12-30 Friedrich Miescher Institute For Biomedical Research Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small rnas
WO2016001830A1 (en) 2014-07-01 2016-01-07 Friedrich Miescher Institute For Biomedical Research Combination of a brafv600e inhibitor and mertk inhibitor to treat melanoma
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
EP2982695A1 (en) 2008-07-09 2016-02-10 Biogen MA Inc. Compositions comprising antibodies to lingo or fragments thereof
US9273142B2 (en) 2012-04-04 2016-03-01 Siamab Therapeutics, Inc. Glycan-interacting compounds
US9290564B2 (en) 2012-05-24 2016-03-22 Mountgate Group Limited Compositions and methods related to the prevention and treatment of rabies infection
WO2016046768A1 (en) 2014-09-24 2016-03-31 Friedrich Miescher Institute For Biomedical Research Lats and breast cancer
WO2016061206A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3011953A1 (en) 2008-10-29 2016-04-27 Ablynx N.V. Stabilised formulations of single domain antigen binding molecules
EP3037544A1 (en) 2005-10-13 2016-06-29 Human Genome Sciences, Inc. Methods and compositions for use in treatment of systemic lupus erythematosus (sle) patients with autoantibody positive diseases
US9399676B2 (en) 2013-05-06 2016-07-26 Scholar Rock, Inc. Compositions and methods for growth factor modulation
EP3072525A1 (en) 2007-05-14 2016-09-28 MedImmune, LLC Methods of reducing basophil levels
EP3073267A1 (en) 2004-09-21 2016-09-28 Medimmune, Inc. Antibodies against and methods for producing vaccines for respiratory syncytial virus
WO2016186986A1 (en) 2015-05-19 2016-11-24 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2016207089A1 (en) 2015-06-22 2016-12-29 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (adcs) and antibody prodrug conjugates (apdcs) with enzymatically cleavable groups
WO2016207094A1 (en) 2015-06-23 2016-12-29 Bayer Pharma Aktiengesellschaft Antibody drug conjugates of kinesin spindel protein (ksp) inhibitors with anti-tweakr-antibodies
US9546214B2 (en) 2014-04-04 2017-01-17 Bionomics, Inc. Humanized antibodies that bind LGR5
US9561274B2 (en) 2011-06-07 2017-02-07 University Of Hawaii Treatment and prevention of cancer with HMGB1 antagonists
WO2017031353A1 (en) 2015-08-19 2017-02-23 Rutgers, The State University Of New Jersey Novel methods of generating antibodies
WO2017048902A1 (en) 2015-09-15 2017-03-23 Board Of Regents, The University Of Texas System T-cell receptor (tcr)-binding antibodies and uses thereof
WO2017060322A2 (en) 2015-10-10 2017-04-13 Bayer Pharma Aktiengesellschaft Ptefb-inhibitor-adc
US9631024B2 (en) 2014-06-23 2017-04-25 Bionomics, Inc. Antibodies that bind LGR4, their use in inhibiting neoplastic cells and in treating tumors
WO2017072669A1 (en) 2015-10-28 2017-05-04 Friedrich Miescher Institute For Biomedical Research Tenascin-w and biliary tract cancers
WO2017105987A1 (en) 2015-12-18 2017-06-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2017162663A1 (en) 2016-03-24 2017-09-28 Bayer Pharma Aktiengesellschaft Prodrugs of cytotoxic active agents having enzymatically cleavable groups
US9846126B2 (en) 2008-10-27 2017-12-19 Genalyte, Inc. Biosensors based on optical probing and sensing
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
US9890197B2 (en) 2015-07-23 2018-02-13 London Health Sciences Centre Research Inc. RHAMM binding peptides

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172124A (en) * 1978-04-28 1979-10-23 The Wistar Institute Method of producing tumor antibodies
US4196265A (en) * 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4350683A (en) * 1979-01-09 1982-09-21 National Research Development Corporation Antibody production from hybrid cell line
EP0068763A2 (en) * 1981-07-01 1983-01-05 Board Of Regents The University Of Texas System Recombinant monoclonal antibodies
WO1983000525A1 (en) * 1981-08-03 1983-02-17 Video Miners Inc Televised remote control of a continuous mining machine
US4444878A (en) * 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
US4529694A (en) * 1982-04-16 1985-07-16 The Children's Medical Center Corporation Cell fusion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196265A (en) * 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4172124A (en) * 1978-04-28 1979-10-23 The Wistar Institute Method of producing tumor antibodies
US4350683A (en) * 1979-01-09 1982-09-21 National Research Development Corporation Antibody production from hybrid cell line
EP0068763A2 (en) * 1981-07-01 1983-01-05 Board Of Regents The University Of Texas System Recombinant monoclonal antibodies
US4474893A (en) * 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
WO1983000525A1 (en) * 1981-08-03 1983-02-17 Video Miners Inc Televised remote control of a continuous mining machine
US4444878A (en) * 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
US4529694A (en) * 1982-04-16 1985-07-16 The Children's Medical Center Corporation Cell fusion

Non-Patent Citations (38)

* Cited by examiner, † Cited by third party
Title
Cotton, R. G. H. et al., Nature, vol. 244, pp. 42 43, (7 1973). *
Cotton, R. G. H. et al., Nature, vol. 244, pp. 42-43, (7-1973).
Gefter, M. L. et al., Somatic Cell Genetics, pp. 231 236, (1977). *
Gefter, M. L. et al., Somatic Cell Genetics, pp. 231-236, (1977).
Hammerling, V. et al., J. Experimental Medicine, vol. 128, pp. 1461 1469. *
Hammerling, V. et al., J. Experimental Medicine, vol. 128, pp. 1461-1469.
Howard, J. et al., Immunol. Reviews, vol. 47, pp. 140 174, (1979): see pp. 150 153. *
Howard, J. et al., Immunol. Reviews, vol. 47, pp. 140-174, (1979): see pp. 150-153.
Kohler, G. et al., European J. Immunology, vol. 6, pp. 511 519, (1976). *
Kohler, G. et al., European J. Immunology, vol. 6, pp. 511-519, (1976).
Kohler, G. et al., Nature, vol. 256, pp. 495 497 (1975). *
Kohler, G. et al., Nature, vol. 256, pp. 495-497 (1975).
Kranz, D. M. et al., Proc. Natl. Acad. Sci., USA, vol. 78, pp. 5807 5812 (1981). *
Kranz, D. M. et al., Proc. Natl. Acad. Sci., USA, vol. 78, pp. 5807-5812 (1981).
Laskov, R. et al., Proc. Natl. Acad. Sci., USA, vol. 76, (2), pp. 915 919 (1979). *
Laskov, R. et al., Proc. Natl. Acad. Sci., USA, vol. 76, (2), pp. 915-919 (1979).
Levy, R. et al., Proc. Natl. Acad. Sci., USA, vol. 75 (5), pp. 2411 2415, (5 1978). *
Levy, R. et al., Proc. Natl. Acad. Sci., USA, vol. 75 (5), pp. 2411-2415, -1978).
Margulies, D. H. et al., Cell, vol. 8, pp. 405 415, (1976). *
Margulies, D. H. et al., Cell, vol. 8, pp. 405-415, (1976).
Martinis, J. et al., Protides Biological Fluids Proc. Coll., vol. 30, pp. 311 316, Pergamon Press, Oxford (1983). *
Martinis, J. et al., Protides Biological Fluids Proc. Coll., vol. 30, pp. 311-316, Pergamon Press, Oxford (1983).
Milstein, C. et al., Nature, vol. 305, pp. 537 540, (10 1983). *
Milstein, C. et al., Nature, vol. 305, pp. 537-540, (10-1983).
Raschke, William C., Bioch. Biophys. Acta., vol. 605 (1), pp. 114 125, (3 1980). *
Raschke, William C., Bioch. Biophys. Acta., vol. 605 (1), pp. 114-125, (3-1980).
Reading, C. L., J. Immunological Methods, vol. 53/31, pp. 261 292, (1982). *
Reading, C. L., J. Immunological Methods, vol. 53/31, pp. 261-292, (1982).
Schwaker, J. et al., Proc. Natl. Acad. Sciences, vol. 71 (6), pp. 2203 2207, (6 1974). *
Schwaker, J. et al., Proc. Natl. Acad. Sciences, vol. 71 (6), pp. 2203-2207, (6-1974).
Schwaker, J., Somatic Cell Genetics, vol. 3 (3), pp. 295 302, (1977). *
Schwaker, J., Somatic Cell Genetics, vol. 3 (3), pp. 295-302, (1977).
Sikora, K. et al., Blood, vol. 54 (2), pp. 513 518, (8 1979). *
Sikora, K. et al., Blood, vol. 54 (2), pp. 513-518, (8-1979).
Yelton, D. E. et al., Plasmacytomas and Hybridomas, pp. 3 17, (1980). *
Yelton, D. E. et al., Plasmacytomas and Hybridomas, pp. 3-17, (1980).
Yelton, D. E. et al., Transplantation Proceedings, vol. 12, (3), pp. 439 442 (1980). *
Yelton, D. E. et al., Transplantation Proceedings, vol. 12, (3), pp. 439-442 (1980).

Cited By (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506135A (en) * 1981-09-26 1996-04-09 Takeda Chemical Industries, Ltd. Hybrid monoclonal antibodies, their production and use
US5256395A (en) * 1986-09-19 1993-10-26 Immunotech Partners Affinity enhancement immunological reagents for in vivo detection and killing of specific target cells
US4892824A (en) * 1988-03-15 1990-01-09 Synbiotics Corporation Fast track method for producing monoclonal bi-specific immunoglobulins
US7306907B2 (en) 1988-11-11 2007-12-11 Cambridge Antibody Technology Limited Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20030130496A1 (en) * 1988-11-11 2003-07-10 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US6248516B1 (en) 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6545142B1 (en) 1988-11-11 2003-04-08 Medical Research Council Of The United Kingdom Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20040110941A2 (en) * 1988-11-11 2004-06-10 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20080299618A1 (en) * 1988-11-11 2008-12-04 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors
US5141736A (en) * 1988-12-27 1992-08-25 Takeda Chemical Industries, Ltd. Bispecific monoclonal antibody, its production and use
US6291161B1 (en) 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
US6969586B1 (en) 1989-05-16 2005-11-29 Scripps Research Institute Method for tapping the immunological repertoire
US20070207475A1 (en) * 1989-05-16 2007-09-06 Scripps Research Institute Method for producing polymers having a preselected activity
US6680192B1 (en) 1989-05-16 2004-01-20 Scripps Research Institute Method for producing polymers having a preselected activity
US20060019260A1 (en) * 1989-05-16 2006-01-26 Lerner Richard A Method for tapping the immunological repertoire
US7858359B2 (en) 1989-05-16 2010-12-28 Stratagene Method for tapping the immunological repertoire
US8338107B2 (en) 1989-05-16 2012-12-25 Scripps Research Institute Method for producing polymers having a preselected activity
US20080004434A1 (en) * 1989-05-16 2008-01-03 Stratagene method for tapping the immunological repertoire
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US7189841B2 (en) 1989-05-16 2007-03-13 Scripps Research Institute Method for tapping the immunological repertoire
US6291160B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US5591828A (en) * 1989-06-22 1997-01-07 Behringwerke Aktiengesellschaft Bispecific and oligospecific mono-and oligovalent receptors, the preparation and use thereof
US5084363A (en) * 1990-01-10 1992-01-28 International Fuel Cells Corp. Molten carbonate fuel cell power plant
US5273743A (en) * 1990-03-09 1993-12-28 Hybritech Incorporated Trifunctional antibody-like compounds as a combined diagnostic and therapeutic agent
US5496549A (en) * 1990-04-02 1996-03-05 Takeda Chemical Industries, Ltd. Bispecific monoclonal antibodies, thrombolytic agent and method of cell lysis
US20060026703A1 (en) * 1990-08-29 2006-02-02 Genpharm International, Inc. Transgenic non-human animals for producing heterologous and chimeric antibodies
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US20060015949A1 (en) * 1990-08-29 2006-01-19 Genpharm International, Inc. Transgenic non-human animals for producing heterologous and chimeric antibodies
US5582996A (en) * 1990-12-04 1996-12-10 The Wistar Institute Of Anatomy & Biology Bifunctional antibodies and method of preparing same
US20060015957A1 (en) * 1991-08-28 2006-01-19 Genpharm International, Inc. Transgenic non-human animals for producing chimeric antibodies
US7501552B2 (en) 1991-08-28 2009-03-10 Medarex, Inc. Transgenic non-human animals for producing chimeric antibodies
US5939524A (en) * 1991-12-09 1999-08-17 The Scripps Research Institute Platelet GPIII P1A1 and P1A2 epitopes, their preparation and use
US6129914A (en) * 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US7381803B1 (en) 1992-03-27 2008-06-03 Pdl Biopharma, Inc. Humanized antibodies against CD3
US6071515A (en) * 1992-08-21 2000-06-06 The Dow Chemical Company Dimer and multimer forms of single chain polypeptides
US6329507B1 (en) 1992-08-21 2001-12-11 The Dow Chemical Company Dimer and multimer forms of single chain polypeptides
US5892020A (en) * 1992-12-11 1999-04-06 The Dow Chemical Company Multivalent single chain antibodies
US5877291A (en) * 1992-12-11 1999-03-02 The Dow Chemical Company Multivalent single chain antibodies
US8158419B2 (en) 1994-03-09 2012-04-17 Medarex, Inc. Transgenic non-human animals for producing chimeric antibodies
US8293480B2 (en) 1994-03-09 2012-10-23 Genpharm International Transgenic non-human animals for producing chimeric antibodies
US20090255002A1 (en) * 1994-03-09 2009-10-08 Nils Lonberg Transgenic Non-Human Animals For Producing Chimeric Antibodies
US8093363B2 (en) 1994-11-07 2012-01-10 Human Genome Sciences, Inc. Tumor necrosis factor-gamma
US20070297977A1 (en) * 1994-11-07 2007-12-27 Human Genome Sciences, Inc. Tumor Necrosis Factor-Gamma
US20110003399A1 (en) * 1994-11-07 2011-01-06 Human Genome Sciences, Inc. Tumor Necrosis Factor-Gamma
US20020150534A1 (en) * 1994-11-07 2002-10-17 Guo-Liang Yu Tumor necrosis factor-gamma
US7597886B2 (en) 1994-11-07 2009-10-06 Human Genome Sciences, Inc. Tumor necrosis factor-gamma
US7820798B2 (en) 1994-11-07 2010-10-26 Human Genome Sciences, Inc. Tumor necrosis factor-gamma
US20060177454A1 (en) * 1994-12-02 2006-08-10 Ring David B Method of promoting an immune response with a bispecific antibody
US7824675B2 (en) 1995-04-27 2010-11-02 Human Genome Sciences, Inc. Use of an antibody that binds human tumor necrosis factor receptor-like 2
US7429646B1 (en) 1995-06-05 2008-09-30 Human Genome Sciences, Inc. Antibodies to human tumor necrosis factor receptor-like 2
US8937169B2 (en) 1996-01-11 2015-01-20 Human Genome Sciences, Inc. Human G-protein chemokine receptor HSATU68
US20040009147A1 (en) * 1996-03-22 2004-01-15 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
US7964190B2 (en) 1996-03-22 2011-06-21 Human Genome Sciences, Inc. Methods and compositions for decreasing T-cell activity
US6635743B1 (en) 1996-03-22 2003-10-21 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
WO1999036437A1 (en) 1998-01-15 1999-07-22 Center For Molecular Medicine And Immunology Antibody/receptor targeting moiety for enhanced delivery of armed ligand
EP1064551A4 (en) * 1998-03-18 2005-01-05 Univ Columbia Development of human monoclonal antibodies and uses thereof
US7220559B2 (en) 1998-03-18 2007-05-22 The Trustees Of Columbia University In The City Of New York Development of human monoclonal antibodies and uses thereof
US6197582B1 (en) * 1998-03-18 2001-03-06 The Trustees Of Columbia University In The City Of New York Development of human monoclonal antibodies and uses thereof
EP1064551A1 (en) * 1998-03-18 2001-01-03 The Trustees Of Columbia University In The City Of New York Development of human monoclonal antibodies and uses thereof
US20070154995A1 (en) * 1998-03-18 2007-07-05 The Trustees Of Columbia University In The City Of New York Development of human monoclonal antibodies and uses thereof
WO1999047538A1 (en) 1998-03-19 1999-09-23 Human Genome Sciences, Inc. Cytokine receptor common gamma chain like
EP1982990A1 (en) 1998-03-19 2008-10-22 Human Genome Sciences, Inc. Cytokine receptor common gamma chain like
EP2357192A1 (en) 1999-02-26 2011-08-17 Human Genome Sciences, Inc. Human endokine alpha and methods of use
US8137923B2 (en) 1999-06-30 2012-03-20 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
EP2902414A1 (en) 1999-06-30 2015-08-05 Millennium Pharmaceuticals, Inc. Antibodies directed against glycoprotein VI and uses thereof
US20060216291A1 (en) * 1999-06-30 2006-09-28 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
EP2322558A1 (en) 1999-06-30 2011-05-18 Millennium Pharmaceuticals, Inc. Antibodies directed against glycoprotein VI and uses thereof
US7597888B2 (en) 1999-06-30 2009-10-06 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20040253236A1 (en) * 1999-06-30 2004-12-16 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20040001826A1 (en) * 1999-06-30 2004-01-01 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20080050380A1 (en) * 1999-06-30 2008-02-28 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US7101549B2 (en) 1999-06-30 2006-09-05 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20100261200A1 (en) * 1999-06-30 2010-10-14 Busfield Samantha J Glycoprotein VI and Uses Thereof
EP2206720A1 (en) 2000-04-12 2010-07-14 Human Genome Sciences, Inc. Albumin fusion proteins
US20100233187A1 (en) * 2000-06-02 2010-09-16 Chan Vivien W Gene products differentially expressed in cancerous cells
US8221983B2 (en) 2000-06-02 2012-07-17 Novartis Vaccines And Diagnostics, Inc. Gene products differentially expressed in cancerous cells
EP2431054A2 (en) 2000-06-15 2012-03-21 Human Genome Sciences, Inc. Human tumor necrosis factor delta and epsilon
EP2281842A1 (en) 2000-06-16 2011-02-09 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to BLyS
WO2002002641A1 (en) 2000-06-16 2002-01-10 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to blys
EP2275449A1 (en) 2000-06-16 2011-01-19 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to blys
EP2281843A1 (en) 2000-06-16 2011-02-09 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to blys
US7820400B2 (en) 2000-09-18 2010-10-26 The Trustees Of Columbia University In The City Of New York Tumor-associated marker
US20060292644A1 (en) * 2000-09-18 2006-12-28 The Trustees Of Columbia University In The City Of New York Novel tumor-associated marker
EP2412384A1 (en) 2000-11-28 2012-02-01 MedImmune, LLC Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
EP2027874A2 (en) 2000-11-28 2009-02-25 Medimmune, Inc. Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment
EP2338512A1 (en) 2000-11-28 2011-06-29 MedImmune, LLC Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
EP2341060A1 (en) 2000-12-12 2011-07-06 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
EP2357187A1 (en) 2000-12-12 2011-08-17 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
EP2354149A1 (en) 2000-12-12 2011-08-10 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
EP1683865A2 (en) 2001-02-02 2006-07-26 Eli Lilly & Company Mammalian proteins and in particular CD200
WO2002064612A2 (en) 2001-02-09 2002-08-22 Human Genome Sciences, Inc. Human g-protein chemokine receptor (ccr5) hdgnr10
US20030068320A1 (en) * 2001-03-02 2003-04-10 Christine Dingivan Methods of administering/dosing CD2 antagonists for the prevention and treatment of autoimmune disorders or inflammatory disorders
US20070025990A1 (en) * 2001-03-02 2007-02-01 Medimmune, Inc. Methods of administering/dosing CD2 antagonists for the prevention and treatment of autoimmune disorders or inflammatory disorders
EP2228389A2 (en) 2001-04-13 2010-09-15 Human Genome Sciences, Inc. Antibodies against vascular endothelial growth factor 2
US7309783B2 (en) 2001-05-09 2007-12-18 The University Of Connecticut Mammalian early developmental regulator gene
US20060116338A1 (en) * 2001-05-09 2006-06-01 Hansen Marc F Mammalian early developmental regulator gene
US20070015144A9 (en) * 2001-05-25 2007-01-18 Genset, S.A. Human cDNAs and proteins and uses thereof
US20060211090A1 (en) * 2001-05-25 2006-09-21 Serono Genetics Institute S.A. Human cDNAs and proteins and uses thereof
US20030162186A1 (en) * 2001-05-25 2003-08-28 Genset, S.A. Human cDNAs and proteins and uses thereof
EP2080766A1 (en) 2001-06-06 2009-07-22 Bristol-Myers Squibb Company B7-related nucleic acids and polypeptides useful for immunomodulation
US20030007973A1 (en) * 2001-06-22 2003-01-09 Lynes Michael A. Methods and compositions for manipulation of the immune response using anti-metallothionein antibody
US20030092620A1 (en) * 2001-07-26 2003-05-15 Genset, S.A. Use of adipsin/complement factor D in the treatment of metabolic related disorders
US6867189B2 (en) 2001-07-26 2005-03-15 Genset S.A. Use of adipsin/complement factor D in the treatment of metabolic related disorders
EP2277889A2 (en) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Fusion proteins of albumin and interferon beta
EP2277888A2 (en) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Fusion proteins of albumin and erythropoietin
EP1997829A1 (en) 2001-12-21 2008-12-03 Human Genome Sciences, Inc. Albumin fusion proteins
EP2277910A1 (en) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Albumin fusion proteins
EP2261250A1 (en) 2001-12-21 2010-12-15 Human Genome Sciences, Inc. Albumin fusion proteins
EP2990417A1 (en) 2001-12-21 2016-03-02 Human Genome Sciences, Inc. Albumin insulin fusion protein
US20060141455A1 (en) * 2002-01-08 2006-06-29 Rhonda Hansen Gene products differentially expressed in cancerous breast cells and their methods of use
EP2075346A2 (en) 2002-01-08 2009-07-01 Novartis Vaccines and Diagnostics, Inc. Gene products differentially expressed in cancerous breast cells and their methods of use
US20070166704A1 (en) * 2002-01-18 2007-07-19 Fei Huang Identification of polynucleotides and polypeptide for predicting activity of compounds that interact with protein tyrosine kinases and/or protein tyrosine kinase pathways
US20060046249A1 (en) * 2002-01-18 2006-03-02 Fei Huang Identification of polynucleotides and polypetide for predicting activity of compounds that interact with protein tyrosine kinase and or protein tyrosine kinase pathways
US20040001835A1 (en) * 2002-03-04 2004-01-01 Medimmune, Inc. Prevention or treatment of cancer using integrin alphavbeta3 antagonists in combination with other agents
US7371383B2 (en) 2002-04-12 2008-05-13 Medimmune, Inc. Recombinant anti-interleukin-9 antibodies
EP2270049A2 (en) 2002-04-12 2011-01-05 Medimmune, Inc. Recombinant anti-interleukin-9-antibody
US20080299134A1 (en) * 2002-04-12 2008-12-04 Medimmune, Inc. Recombinant Anti-Interleukin-9 Antibodies
WO2003086458A1 (en) 2002-04-12 2003-10-23 Medimmune, Inc. Recombinant anti-interleukin-9 antibodies
US20030232374A1 (en) * 2002-05-23 2003-12-18 Kuchel George A. Compositions and methods relating to detrusor estrogen-regulated protein (DERP)
US7750125B2 (en) 2002-06-10 2010-07-06 University Of Rochester Antibodies that bind to the C35 polypeptide
US7879990B2 (en) 2002-06-10 2011-02-01 University Of Rochester Polynucleotides encoding antibodies that bind to the C35 polypeptide
US7563882B2 (en) 2002-06-10 2009-07-21 University Of Rochester Polynucleotides encoding antibodies that bind to the C35 polypeptide
US20090297440A1 (en) * 2002-06-10 2009-12-03 University Of Rochester Gene Differentially Expressed in Breast and Bladder Cancer and Encoded Polypeptides
US20090305350A1 (en) * 2002-06-10 2009-12-10 University Of Rochester Gene Differentially Expressed in Breast and Bladder Cancer and Encoded Polypeptides
US7968688B2 (en) 2002-06-10 2011-06-28 University Of Rochester Antibodies that bind to the C35 polypeptide
US20080089886A1 (en) * 2002-06-10 2008-04-17 University Of Rochester Gene differentially expressed in breast and bladder cancer and encoded polypeptides
US20040063907A1 (en) * 2002-06-10 2004-04-01 Maurice Zauderer Gene differentially expressed in breast and bladder cancer and encoded polypeptides
EP2570432A1 (en) 2002-06-14 2013-03-20 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
EP2371389A2 (en) 2002-08-14 2011-10-05 MacroGenics, Inc. FcgammaRIIB-specific antibodies and methods of use thereof
EP2891666A1 (en) 2002-10-16 2015-07-08 Purdue Pharma L.P. Antibodies that bind cell-associated CA 125/O722P and methods of use thereof
EP2298806A1 (en) 2002-10-16 2011-03-23 Purdue Pharma L.P. Antibodies that bind cell-associated CA 125/0722P and methods of use thereof
EP2368578A1 (en) 2003-01-09 2011-09-28 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US7259002B2 (en) 2003-01-21 2007-08-21 Bristol-Myers Squibb Company Polynucleotide encoding a novel acyl coenzyme A, monoacylglycerol acyltransferase-3 (MGAT3), and uses thereof
US20040223959A1 (en) * 2003-01-21 2004-11-11 Feder John N. Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (MGAT3), and uses thereof
US20080019958A1 (en) * 2003-01-21 2008-01-24 Bristol-Myers Squibb Company Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (mgat3), and uses thereof
EP2289559A1 (en) 2003-02-20 2011-03-02 Seattle Genetics, Inc. Anit-CD70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
EP2100619A1 (en) 2003-02-20 2009-09-16 Seattle Genetics, Inc. Anti-CD70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
WO2004091510A2 (en) 2003-04-11 2004-10-28 Medimmune, Inc. Recombinant il-9 antibodies and uses thereof
EP2316487A1 (en) 2003-04-11 2011-05-04 MedImmune, LLC Recombinant IL-9 antibodies & uses thereof
WO2005001038A2 (en) 2003-05-28 2005-01-06 Seattle Genetics, Inc. Recombinant anti-cd30 antibodies and uses thereof
US20070065887A1 (en) * 2003-07-21 2007-03-22 Kinch Michael S Diagnosis of pre-cancerous conditions using pcdgf agents
US20090081210A1 (en) * 2003-12-04 2009-03-26 Vaccinex, Inc. Methods of Killing Tumor Cells by Targeting Internal Antigens Exposed on Apoptotic Tumor Cells
US20050158323A1 (en) * 2003-12-04 2005-07-21 Vaccinex, Inc. Methods of killing tumor cells by targeting internal antigens exposed on apoptotic tumor cells
US20050152896A1 (en) * 2003-12-12 2005-07-14 Amgen Inc. Anti-galanin antibodies and uses thereof
US7371381B2 (en) 2003-12-12 2008-05-13 Amgen Inc. Anti-galanin antibodies and uses thereof
EP2332575A1 (en) 2003-12-23 2011-06-15 Genentech, Inc. Treatment of cancer with novel anti-IL 13 monoclonal antibodies
EP2805728A1 (en) 2003-12-23 2014-11-26 Genentech, Inc. Novel anti-IL 13 antibodies and uses thereof
EP2351584A1 (en) 2003-12-23 2011-08-03 Genentech, Inc. Novel anti-IL 13 antibodies and uses thereof
WO2005077042A2 (en) 2004-02-09 2005-08-25 Human Genome Sciences, Inc. Albumin fusion proteins
WO2006017673A2 (en) 2004-08-03 2006-02-16 Biogen Idec Ma Inc. Taj in neuronal function
EP2329714A1 (en) 2004-08-03 2011-06-08 Biogen Idec MA Inc. Influence of TAJ in the neuronal functions
EP3073267A1 (en) 2004-09-21 2016-09-28 Medimmune, Inc. Antibodies against and methods for producing vaccines for respiratory syncytial virus
EP2422811A2 (en) 2004-10-27 2012-02-29 MedImmune, LLC Modulation of antibody specificity by tailoring the affinity to cognate antigens
US20070014795A1 (en) * 2004-12-30 2007-01-18 Dhodapkar Madhav V Compositions and methods for enhanced dendritic cell maturation and function
WO2006089133A2 (en) 2005-02-15 2006-08-24 Duke University Anti-cd19 antibodies and uses in oncology
EP2548575A1 (en) 2005-02-15 2013-01-23 Duke University Anti-CD19 antibodies that mediate ADCC for use in treating autoimmune diseases
US20060228367A1 (en) * 2005-04-08 2006-10-12 Medimmune, Inc. Antibodies against mammalian metapneumovirus
US20100239585A1 (en) * 2005-04-08 2010-09-23 Medimmune, Llc Antibodies Against Mammalian Metapneumovirus
EP2511299A1 (en) 2005-04-19 2012-10-17 Seattle Genetics, Inc. Humanized anti-CD70 binding agents and uses thereof
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
EP2301969A1 (en) 2005-05-06 2011-03-30 ZymoGenetics, L.L.C. IL-31 monoclonal antibodies and methods of use
WO2007002543A2 (en) 2005-06-23 2007-01-04 Medimmune, Inc. Antibody formulations having optimized aggregation and fragmentation profiles
US7482124B2 (en) 2005-07-08 2009-01-27 Bristol-Myers Squibb Company Method of identifying a PPARgamma-agonist compound having a decreased likelihood of inducing dose-dependent peripheral edema
EP2394661A1 (en) 2005-07-08 2011-12-14 Biogen Idec MA Inc. Sp35 antibodies and uses thereof
EP2478917A1 (en) 2005-07-08 2012-07-25 Biogen Idec MA Inc. SP35 antibodies and uses thereof
EP2238986A2 (en) 2005-07-08 2010-10-13 Biogen Idec MA Inc. Sp35 antibodies and uses thereof
US20070009945A1 (en) * 2005-07-08 2007-01-11 Bristol-Myers Squibb Company Single nucleotide polymorphisms associated with dose-dependent edema and methods of use thereof
WO2007014433A1 (en) 2005-08-03 2007-02-08 Grains Research & Development Corporation Polysaccharide synthases
WO2007021841A2 (en) 2005-08-10 2007-02-22 Macrogenics, Inc. Identification and engineering of antibodies with variant fc regions and methods of using same
EP2573114A1 (en) 2005-08-10 2013-03-27 MacroGenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
US20070202512A1 (en) * 2005-08-19 2007-08-30 Bristol-Myers Squibb Company Human single nucleotide polymorphisms associated with dose-dependent weight gain and methods of use thereof
US20070269438A1 (en) * 2005-10-05 2007-11-22 Brian Elenbaas Antibodies to the Human Prolactin Receptor
US7422899B2 (en) 2005-10-05 2008-09-09 Biogen Idec Ma Inc. Antibodies to the human prolactin receptor
EP3037544A1 (en) 2005-10-13 2016-06-29 Human Genome Sciences, Inc. Methods and compositions for use in treatment of systemic lupus erythematosus (sle) patients with autoantibody positive diseases
EP2998318A1 (en) 2005-11-04 2016-03-23 Genentech, Inc. Use of complement pathway inhibitors to treat ocular diseases
EP2500030A2 (en) 2005-11-04 2012-09-19 Genentech, Inc. Use of complement pathway inhibitors to treat ocular diseases
WO2007056352A2 (en) 2005-11-07 2007-05-18 The Scripps Research Institute Compositions and methods for controlling tissue factor signaling specificity
EP2476706A2 (en) 2005-12-12 2012-07-18 Bayer HealthCare LLC Anti-MN antibodies and methods of using same
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US20110138489A1 (en) * 2006-03-31 2011-06-09 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US20090260093A1 (en) * 2006-03-31 2009-10-15 Tanamachi Dawn M Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US7910798B2 (en) 2006-03-31 2011-03-22 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US8232449B2 (en) 2006-03-31 2012-07-31 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US9220244B2 (en) 2006-03-31 2015-12-29 E. R. Squibb & Sons, L.L.C. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US7910108B2 (en) 2006-06-05 2011-03-22 Incyte Corporation Sheddase inhibitors combined with CD30-binding immunotherapeutics for the treatment of CD30 positive diseases
US20070280943A1 (en) * 2006-06-05 2007-12-06 Friedman Steven M Sheddase inhibitors combined with cd30-binding immunotherapeutics for the treatment of cd30 positive diseases
EP2815764A1 (en) 2006-06-14 2014-12-24 Macrogenics, Inc. Methods for the treatment of autoimmune disorders using monoclonal antibodies with reduced toxicity
WO2007147090A2 (en) 2006-06-14 2007-12-21 Macrogenics, Inc. Methods for the treatment of autoimmune disorders using monoclonal antibodies with reduced toxicity
US20080305111A1 (en) * 2006-06-22 2008-12-11 Vaccinex, Inc. Anti-C35 antibodies for treating cancer
US7696329B2 (en) 2006-06-23 2010-04-13 Florida State University Research Foundation, Inc. Immunoglobulin peptides against heated bovine blood
US7915052B2 (en) 2006-06-23 2011-03-29 Florida State University Research Foundation, Inc. Immunoglobulin peptides against heated bovine blood
US20100216157A1 (en) * 2006-06-23 2010-08-26 Florida State University Research Foundation, Inc. Immunoglobulin peptides against heated bovine blood
US20070298517A1 (en) * 2006-06-23 2007-12-27 Florida State University Research Foundation, Inc. Immunoglobulin Peptides Against Heated Bovine Blood
EP2505209A1 (en) 2006-06-26 2012-10-03 MacroGenics, Inc. Fcgamma-RIIB-specific antibodies and methods of the use thereof
EP2671946A1 (en) 2006-06-30 2013-12-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
EP2639301A2 (en) 2006-06-30 2013-09-18 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
EP2759549A2 (en) 2006-09-01 2014-07-30 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
EP2594586A1 (en) 2006-09-01 2013-05-22 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
EP2354254A1 (en) 2006-09-06 2011-08-10 Ortho-McNeil Pharmaceutical, Inc. Biomarkers for assessing response to C-met treatment
EP2407548A1 (en) 2006-10-16 2012-01-18 MedImmune, LLC Molecules with reduced half-lives, compositions and uses thereof
EP2609932A2 (en) 2006-12-01 2013-07-03 Seattle Genetics, Inc. Variant target binding agents and uses thereof
EP2610267A1 (en) 2006-12-18 2013-07-03 Genentech, Inc. Antagonist anti-Notch3 antibodies and their use in the prevention and treatment of Notch3-related diseases
EP2740744A2 (en) 2007-01-09 2014-06-11 Biogen Idec MA Inc. SP35 antibodies and uses thereof
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
US20080267974A1 (en) * 2007-04-10 2008-10-30 Vaccinex, Inc. Selection of Human TNFAlpha Specific Antibodies
US7807168B2 (en) 2007-04-10 2010-10-05 Vaccinex, Inc. Selection of human TNFα specific antibodies
EP2703011A2 (en) 2007-05-07 2014-03-05 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP2737907A2 (en) 2007-05-07 2014-06-04 MedImmune, LLC Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP3072525A1 (en) 2007-05-14 2016-09-28 MedImmune, LLC Methods of reducing basophil levels
US8580247B2 (en) 2007-07-23 2013-11-12 Aduro Gvax Inc. PS-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US20090028857A1 (en) * 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US8287856B2 (en) 2007-07-23 2012-10-16 Biosante Pharmaceuticals, Inc. PD-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US20100285013A1 (en) * 2007-07-23 2010-11-11 Biosante Pharmaceuticals, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US20100303827A1 (en) * 2007-11-28 2010-12-02 One Medimmune Way Protein Formulation
US9308257B2 (en) 2007-11-28 2016-04-12 Medimmune, Llc Protein formulation
US8637026B2 (en) 2007-12-26 2014-01-28 Vaccinex, Inc. Anti-C35 antibody combination therapies and methods
WO2009082485A1 (en) 2007-12-26 2009-07-02 Vaccinex, Inc. Anti-c35 antibody combination therapies and methods
US20110008322A1 (en) * 2007-12-26 2011-01-13 Vaccinex, Inc. Anti-c35 antibody combination therapies and methods
WO2009118300A1 (en) 2008-03-25 2009-10-01 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by down-regulating frizzled-4 and/or frizzled-1
EP2599793A1 (en) 2008-05-29 2013-06-05 Nuclea Biotechnologies, Inc. Anti-phospho-akt antibodies
EP2982695A1 (en) 2008-07-09 2016-02-10 Biogen MA Inc. Compositions comprising antibodies to lingo or fragments thereof
EP2927244A1 (en) 2008-09-19 2015-10-07 MedImmune, LLC Antibodies directed to DLL4 and uses thereof
US9846126B2 (en) 2008-10-27 2017-12-19 Genalyte, Inc. Biosensors based on optical probing and sensing
EP3011953A1 (en) 2008-10-29 2016-04-27 Ablynx N.V. Stabilised formulations of single domain antigen binding molecules
US9393304B2 (en) 2008-10-29 2016-07-19 Ablynx N.V. Formulations of single domain antigen binding molecules
WO2010052288A1 (en) 2008-11-07 2010-05-14 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Teneurin and cancer
WO2010056804A1 (en) 2008-11-12 2010-05-20 Medimmune, Llc Antibody formulation
WO2010072740A2 (en) 2008-12-23 2010-07-01 Astrazeneca Ab TARGETED BINDING AGENTS DIRECTED TO α5β1 AND USES THEREOF
WO2010078526A1 (en) 2008-12-31 2010-07-08 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
US8852608B2 (en) 2009-02-02 2014-10-07 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
US9499590B2 (en) 2009-02-02 2016-11-22 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
WO2010093993A2 (en) 2009-02-12 2010-08-19 Human Genome Sciences, Inc. Use of b lymphocyte stimulator protein antagonists to promote transplantation tolerance
WO2010100247A1 (en) 2009-03-06 2010-09-10 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Novel therapy for anxiety
EP2241323A1 (en) 2009-04-14 2010-10-20 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Tenascin-W and brain cancers
WO2011020079A1 (en) 2009-08-13 2011-02-17 Calmune Corporation Antibodies against human respiratory syncytial virus (rsv) and methods of use
US8568719B2 (en) 2009-08-13 2013-10-29 Crucell Holland B.V. Antibodies against human respiratory syncytial virus (RSV) and methods of use
US9403900B2 (en) 2009-08-13 2016-08-02 Crucell Holland B.V. Anti-human respiratory syncytial virus (RSV) antibodies and methods of use
US9365638B2 (en) 2009-08-13 2016-06-14 Crucell Holland B. V. Antibodies against human respiratory syncytial virus (RSV) and methods of use
US20110076268A1 (en) * 2009-08-13 2011-03-31 Robert Anthony Williamson Antibodies against human respiratory syncytial virus (RSV) and methods of use
EP2292266A1 (en) 2009-08-27 2011-03-09 Novartis Forschungsstiftung, Zweigniederlassung Treating cancer by modulating copine III
WO2011036118A1 (en) 2009-09-22 2011-03-31 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mex-3
WO2011041721A1 (en) 2009-10-02 2011-04-07 Biogen Idec Ma Inc. Methods of preventing and removing trisulfide bonds
US9096877B2 (en) 2009-10-07 2015-08-04 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
WO2011044368A1 (en) 2009-10-07 2011-04-14 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
WO2011045352A2 (en) 2009-10-15 2011-04-21 Novartis Forschungsstiftung Spleen tyrosine kinase and brain cancers
WO2011051392A1 (en) 2009-10-30 2011-05-05 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Phosphorylated twist1 and cancer
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
WO2011107586A1 (en) 2010-03-05 2011-09-09 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research, Smoc1, tenascin-c and brain cancers
WO2011131611A1 (en) 2010-04-19 2011-10-27 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Modulating xrn1
US9090659B2 (en) 2010-05-31 2015-07-28 London Health Sciences Centre Research Inc. RHAMM binding peptides
WO2011154485A1 (en) 2010-06-10 2011-12-15 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Treating cancer by modulating mammalian sterile 20-like kinase 3
WO2012006596A2 (en) 2010-07-09 2012-01-12 Calmune Corporation Anti-human respiratory syncytial virus (rsv) antibodies and methods of use
US9139642B2 (en) 2010-07-09 2015-09-22 Crucell Holland B.V. Anti-human respiratory syncytial virus (RSV) antibodies and methods of use
WO2012009705A1 (en) 2010-07-15 2012-01-19 Zyngenia, Inc. Ang-2 binding complexes and uses thereof
WO2012007880A2 (en) 2010-07-16 2012-01-19 Ablynx Nv Modified single domain antigen binding molecules and uses thereof
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
WO2012031099A2 (en) 2010-09-02 2012-03-08 Vaccinex, Inc. Anti-cxcl13 antibodies and methods of using the same
WO2012032143A1 (en) 2010-09-10 2012-03-15 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Phosphorylated twist1 and metastasis
WO2012061778A2 (en) 2010-11-05 2012-05-10 Genalyte, Inc. Optical analyte detection systems and methods of use
WO2012065937A1 (en) 2010-11-15 2012-05-24 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Anti-fungal agents
WO2012131053A1 (en) 2011-03-30 2012-10-04 Ablynx Nv Methods of treating immune disorders with single domain antibodies against tnf-alpha
WO2012143499A2 (en) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Novel binder-drug conjugates (adcs) and their use
WO2012143495A2 (en) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Novel binder-drug conjugates (adcs) and their use
WO2012143496A2 (en) 2011-04-21 2012-10-26 Bayer Intellectual Property Gmbh Novel binder-drug conjugates (adcs) and their use
WO2012162561A2 (en) 2011-05-24 2012-11-29 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
WO2012168259A1 (en) 2011-06-06 2012-12-13 Novartis Forschungsstiftung, Zweigniederlassung Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer
US9181553B2 (en) 2011-06-06 2015-11-10 Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Method of treatment of breast cancers over-expressing the SHP2 signature genes
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
US9561274B2 (en) 2011-06-07 2017-02-07 University Of Hawaii Treatment and prevention of cancer with HMGB1 antagonists
WO2013067060A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
WO2013067054A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Antibodies and methods of treating cancer
WO2013067055A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Methods of blocking cancer stem cell growth
WO2013067057A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
US9221907B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Anti-GPR49 monoclonal antibodies
US9221906B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Methods of inhibiting solid tumor growth by administering GPR49 antibodies
US9220774B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Methods of treating cancer by administering anti-GPR49 antibodies
WO2013068431A1 (en) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research New treatment for neurodegenerative diseases
WO2013068432A1 (en) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Early diagnostic of neurodegenerative diseases
WO2013087716A2 (en) 2011-12-14 2013-06-20 Bayer Pharma Aktiengesellschaft New antibody drug conjugates (adcs) and the use thereof
WO2013102825A1 (en) 2012-01-02 2013-07-11 Novartis Ag Cdcp1 and breast cancer
WO2013130959A1 (en) 2012-03-02 2013-09-06 Vaccinex, Inc. Methods for the treatment of b cell-mediated inflammatory diseases
WO2013144240A1 (en) 2012-03-29 2013-10-03 Friedrich Miescher Institute For Biomedical Research Inhibition of interleukin- 8 and/or its receptor cxcrl in the treatment her2/her3 -overexpressing breast cancer
US9273142B2 (en) 2012-04-04 2016-03-01 Siamab Therapeutics, Inc. Glycan-interacting compounds
US9416194B2 (en) 2012-04-04 2016-08-16 Siamab Therapeutics, Inc. Glycan-interacting compounds
WO2013169693A1 (en) 2012-05-09 2013-11-14 Bristol-Myers Squibb Company Methods of treating cancer using an il-21 polypeptide and an anti-pd-1 antibody
WO2013166594A1 (en) 2012-05-10 2013-11-14 Zymeworks Inc. Heteromultimer constructs of immunoglobulin heavy chains with mutations in the fc domain
US9290564B2 (en) 2012-05-24 2016-03-22 Mountgate Group Limited Compositions and methods related to the prevention and treatment of rabies infection
WO2014001482A1 (en) 2012-06-29 2014-01-03 Novartis Forschungsstiftung, Zweigniererlassung, Friedrich Miescher Institute For Biomedical Research Treating diseases by modulating a specific isoform of mkl1
WO2014006114A1 (en) 2012-07-05 2014-01-09 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research New treatment for neurodegenerative diseases
WO2014006115A1 (en) 2012-07-06 2014-01-09 Novartis Ag Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the il-8/cxcr interaction
WO2014122605A1 (en) 2013-02-08 2014-08-14 Friedrich Miescher Institute For Biomedical Research Novel methods for the targeted introduction of viruses into cells
WO2014137355A1 (en) 2013-03-08 2014-09-12 Vaccinex, Inc. Anti-cxcl13 antibodies and associated epitope sequences
US9758576B2 (en) 2013-05-06 2017-09-12 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US9573995B2 (en) 2013-05-06 2017-02-21 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US9399676B2 (en) 2013-05-06 2016-07-26 Scholar Rock, Inc. Compositions and methods for growth factor modulation
WO2015019286A1 (en) 2013-08-07 2015-02-12 Friedrich Miescher Institute For Biomedical Research New screening method for the treatment friedreich's ataxia
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
WO2015120270A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International, Inc. Insecticidal proteins and methods for their use
WO2015120276A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
US9546214B2 (en) 2014-04-04 2017-01-17 Bionomics, Inc. Humanized antibodies that bind LGR5
WO2015159254A1 (en) 2014-04-16 2015-10-22 Biocon Ltd. Stable protein formulations comprising a molar excess of sorbitol
WO2015189816A1 (en) 2014-06-13 2015-12-17 Friedrich Miescher Institute For Biomedical Research New treatment against influenza virus
US9631024B2 (en) 2014-06-23 2017-04-25 Bionomics, Inc. Antibodies that bind LGR4, their use in inhibiting neoplastic cells and in treating tumors
WO2015198202A1 (en) 2014-06-23 2015-12-30 Friedrich Miescher Institute For Biomedical Research Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small rnas
WO2016001830A1 (en) 2014-07-01 2016-01-07 Friedrich Miescher Institute For Biomedical Research Combination of a brafv600e inhibitor and mertk inhibitor to treat melanoma
WO2016046768A1 (en) 2014-09-24 2016-03-31 Friedrich Miescher Institute For Biomedical Research Lats and breast cancer
WO2016061206A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
WO2016186986A1 (en) 2015-05-19 2016-11-24 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2016207089A1 (en) 2015-06-22 2016-12-29 Bayer Pharma Aktiengesellschaft Antibody drug conjugates (adcs) and antibody prodrug conjugates (apdcs) with enzymatically cleavable groups
WO2016207094A1 (en) 2015-06-23 2016-12-29 Bayer Pharma Aktiengesellschaft Antibody drug conjugates of kinesin spindel protein (ksp) inhibitors with anti-tweakr-antibodies
US9890197B2 (en) 2015-07-23 2018-02-13 London Health Sciences Centre Research Inc. RHAMM binding peptides
WO2017031353A1 (en) 2015-08-19 2017-02-23 Rutgers, The State University Of New Jersey Novel methods of generating antibodies
WO2017048902A1 (en) 2015-09-15 2017-03-23 Board Of Regents, The University Of Texas System T-cell receptor (tcr)-binding antibodies and uses thereof
WO2017060322A2 (en) 2015-10-10 2017-04-13 Bayer Pharma Aktiengesellschaft Ptefb-inhibitor-adc
WO2017072669A1 (en) 2015-10-28 2017-05-04 Friedrich Miescher Institute For Biomedical Research Tenascin-w and biliary tract cancers
WO2017105987A1 (en) 2015-12-18 2017-06-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2017162663A1 (en) 2016-03-24 2017-09-28 Bayer Pharma Aktiengesellschaft Prodrugs of cytotoxic active agents having enzymatically cleavable groups

Similar Documents

Publication Publication Date Title
Snow et al. Monoclonal antibodies identify a group of nuclear pore complex glycoproteins.
US4536479A (en) Use of anti-idiotype antibodies in immunoassays
US4634664A (en) Process for the production of human mono-clonal antibodies
US4914021A (en) Carcinoma orosomucoid-related antigen, a monoclonal antibody thereto, and their uses
US4642334A (en) Hybrid DNA prepared binding composition
Santella et al. Monoclonal antibodies to DNA modified by a benzo [a] pyrene diol epoxide
Brown et al. Protein antigens of normal and malignant human cells identified by immunoprecipitation with monoclonal antibodies.
Greene et al. Monoclonal antibodies to human estrogen receptor
US4623627A (en) Monoclonal antibody having specificity for the double-stranded conformation of native DNA and diagnostic methods using same
USRE33405E (en) Purified human prostate antigen
US4690890A (en) Process for simultaneously detecting multiple antigens using dual sandwich immunometric assay
EP0783104A1 (en) Method for assaying soluble amyloid precursor protein
US4628027A (en) Vitro diagnostic methods using monoclonal antibodies against connective tissue proteins
US5026827A (en) Amphetamine-protein complex as immunogen for obtaining antibodies specific to methamphetamine
Moncharmont et al. Monoclonal antibodies against estrogen receptor: interaction with different molecular forms and functions of the receptor
US4350683A (en) Antibody production from hybrid cell line
EP0319815B1 (en) Transfectant cell lines which express the major human rhinovirus receptor
US4699880A (en) Method of producing monoclonal anti-idiotype antibody
US4708930A (en) Monoclonal antibody to a human carcinoma tumor associated antigen
US4707438A (en) Immunoassay for breast cancer employing monoclonal antibodies
US5233025A (en) Amphetamine protein complex as immunogen for obtaining antibodies specific to methamphetamine
US4965198A (en) Monoclonal antibody and method of manufacturing hybridoma producing the same
US4918162A (en) Assays and antibodies for N-MYC proteins
US4784942A (en) Monoclonal antibodies against autoimmune RNA proteins
US4845198A (en) Hybridoma antibody which binds IL-2 receptor

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 19991222