US4657065A - Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles - Google Patents
Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles Download PDFInfo
- Publication number
- US4657065A US4657065A US06/884,123 US88412386A US4657065A US 4657065 A US4657065 A US 4657065A US 88412386 A US88412386 A US 88412386A US 4657065 A US4657065 A US 4657065A
- Authority
- US
- United States
- Prior art keywords
- magnesium
- bath
- accordance
- matrix
- silicon carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
Definitions
- the present invention is directed to the production of composite articles, having a matrix of magnesium or magnesium alloy and reinforced with discontinuous silicon carbide particles, which are made by a casting process.
- Magnesium and its alloys are useful industrial materials principally due to the light weight and high strength to weight ratios which characterize them. Nevertheless, these materials possess disadvantages which inhibit their use in many applications. Thus, the alloys are comparatively soft and are subject to galling and seizing when engaged in rubbing friction under load. The modulus of the alloys also is lower than that which would be desirable in certain applications. Property improvements have been achieved through the use of alloying additions but even further improvements would be of benefit.
- Methods commonly used to prepare metal-matrix composite materials may be classified into three categories; namely,
- non-oxide reinforcing materials from the group consisting of silicon carbide fibers and silicon carbide particles may be dispersed in a molten bath of magnesium alloy which contains about 0.2% to about 0.7%, by weight, of lithium; by mixing the solid discontinuous phase material with the magnesium alloy bath for a time sufficient to provide substantially complete dispersion of the solid material throughout the bath and then solidifying the bath while maintaining the dispersion.
- the magnesium alloy bath to form the matrix of the final composite material may contain in addition to the requisite 0.2% to about 0.7%, by weight, of lithium, up to about 2% copper, up to about 3% silicon, up to about 12% aluminum, up to about 15% zinc; up to about 2% zirconium, up to about 1% tin, up to about 1% iron, and the balance essentially magnesium.
- the lithium present in the molten magnesium alloy bath aids in wetting the reinforcing material.
- a lithium content up to about 0.7%, by weight is sufficient although lithium contents lower than about 0.2% by wt. of the bath are insufficient.
- the lithium content is kept below about 1%, since the vapor pressure of lithium at the temperatures of the molten magnesium alloy is high, resulting in rapid loss of lithium.
- excessive lithium contents in the bath produce difficulties in melting practice.
- Particulate silicon carbide materials used in accordance with the invention will generally have an average particle size less than about 200 microns; e.g. about 5 to about 100 microns.
- Fibers introduced as dispersions may have an average diameter of about 8 to about 20 microns and an average length of about 200 to about 1000 microns.
- the magnesium alloy matrix material may also contain elements such as copper and/or zirconium and/or silicon which contribute hardenability to the matrix. Titanium carbide fibers or particles can also be introduced in amounts up to 5% by volume, as titanium carbide surfaces are wetted by molten magnesium.
- the magnesium base matrix alloy is melted in a crucible which may, for example, be made of graphite.
- a appropriate amount of lithium either as metallic lithium or as a master alloy containing up to about 20% lithium, e.g. 10% lithium, balance magnesium, may be introduced into the molten matrix alloy.
- the desired reinforcing material is then added in an amount of about 5% up to about 25%, e.g., about 20% by volume is added and mixed mechanically as by stirring. No pretreatment of the reinforcing material is necessary.
- the mixture of the molten metal alloy and particulate or fibrous silicon carbide is solidified either by casting into a mold or by cooling in the melting crucible. Continuous casting of the mixture may also be undertaken. The process can be carried out in the atmosphere.
- the solidified ingot may be further processed by extrusion, press-forging at a temperature at which the matrix alloy is partially melted, or by other forming processes or combinations thereof.
- the composite aforementioned showed a hardness of 104 HV10 in the as-cast condition, whereas a matrix alloy without the reinforcing material showed 83 HV10 in the same condition.
- a 25% increase in hardness was obtained with the reinforcement by SiC.
- Other properties such as tensile strength and wear resistance are also expected to be improved by the addition of SiC.
- Composite materials produced in accordance with the invention such as magnesium alloy matrix material strengthened with about 5% to about 25%, by volume, of silicon carbide particles are useful in applications such as pulleys, sheaves, chain enclosures, bearing surfaces, and connecting rods for pistons.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/884,123 US4657065A (en) | 1986-07-10 | 1986-07-10 | Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/884,123 US4657065A (en) | 1986-07-10 | 1986-07-10 | Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles |
Publications (1)
Publication Number | Publication Date |
---|---|
US4657065A true US4657065A (en) | 1987-04-14 |
Family
ID=25384004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/884,123 Expired - Fee Related US4657065A (en) | 1986-07-10 | 1986-07-10 | Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles |
Country Status (1)
Country | Link |
---|---|
US (1) | US4657065A (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935055A (en) * | 1988-01-07 | 1990-06-19 | Lanxide Technology Company, Lp | Method of making metal matrix composite with the use of a barrier |
US4961461A (en) * | 1988-06-16 | 1990-10-09 | Massachusetts Institute Of Technology | Method and apparatus for continuous casting of composites |
US5000247A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby |
US5000246A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Flotation process for the formation of metal matrix composite bodies |
US5000245A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Inverse shape replication method for forming metal matrix composite bodies and products produced therefrom |
US5000248A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5000249A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Method of forming metal matrix composites by use of an immersion casting technique and product produced thereby |
US5004034A (en) * | 1988-11-10 | 1991-04-02 | Lanxide Technology Company, Lp | Method of surface bonding materials together by use of a metal matrix composite, and products produced thereby |
US5004036A (en) * | 1988-11-10 | 1991-04-02 | Lanxide Technology Company, Lp | Method for making metal matrix composites by the use of a negative alloy mold and products produced thereby |
US5004035A (en) * | 1988-11-10 | 1991-04-02 | Lanxide Technology Company, Lp | Method of thermo-forming a novel metal matrix composite body and products produced therefrom |
US5005631A (en) * | 1988-11-10 | 1991-04-09 | Lanxide Technology Company, Lp | Method for forming a metal matrix composite body by an outside-in spontaneous infiltration process, and products produced thereby |
US5007474A (en) * | 1988-11-10 | 1991-04-16 | Lanxide Technology Company, Lp | Method of providing a gating means, and products produced thereby |
US5007475A (en) * | 1988-11-10 | 1991-04-16 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies containing three-dimensionally interconnected co-matrices and products produced thereby |
US5007476A (en) * | 1988-11-10 | 1991-04-16 | Lanxide Technology Company, Lp | Method of forming metal matrix composite bodies by utilizing a crushed polycrystalline oxidation reaction product as a filler, and products produced thereby |
US5010945A (en) * | 1988-11-10 | 1991-04-30 | Lanxide Technology Company, Lp | Investment casting technique for the formation of metal matrix composite bodies and products produced thereby |
US5016703A (en) * | 1988-11-10 | 1991-05-21 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite body by a spontaneous infiltration technique |
US5020583A (en) * | 1988-11-10 | 1991-06-04 | Lanxide Technology Company, Lp | Directional solidification of metal matrix composites |
US5020584A (en) * | 1988-11-10 | 1991-06-04 | Lanxide Technology Company, Lp | Method for forming metal matrix composites having variable filler loadings and products produced thereby |
US5040588A (en) * | 1988-11-10 | 1991-08-20 | Lanxide Technology Company, Lp | Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby |
US5119864A (en) * | 1988-11-10 | 1992-06-09 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite through the use of a gating means |
US5141819A (en) * | 1988-01-07 | 1992-08-25 | Lanxide Technology Company, Lp | Metal matrix composite with a barrier |
US5150747A (en) * | 1988-11-10 | 1992-09-29 | Lanxide Technology Company, Lp | Method of forming metal matrix composites by use of an immersion casting technique and product produced thereby |
US5163499A (en) * | 1988-11-10 | 1992-11-17 | Lanxide Technology Company, Lp | Method of forming electronic packages |
US5165463A (en) * | 1988-11-10 | 1992-11-24 | Lanxide Technology Company, Lp | Directional solidification of metal matrix composites |
US5172747A (en) * | 1988-11-10 | 1992-12-22 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite body by a spontaneous infiltration technique |
US5197528A (en) * | 1988-11-10 | 1993-03-30 | Lanxide Technology Company, Lp | Investment casting technique for the formation of metal matrix composite bodies and products produced thereby |
US5207263A (en) * | 1989-12-26 | 1993-05-04 | Bp America Inc. | VLS silicon carbide whisker reinforced metal matrix composites |
US5222542A (en) * | 1988-11-10 | 1993-06-29 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies with a dispersion casting technique |
US5238045A (en) * | 1988-11-10 | 1993-08-24 | Lanxide Technology Company, Lp | Method of surface bonding materials together by use of a metal matrix composite, and products produced thereby |
US5240062A (en) * | 1988-11-10 | 1993-08-31 | Lanxide Technology Company, Lp | Method of providing a gating means, and products thereby |
US5249621A (en) * | 1988-11-10 | 1993-10-05 | Lanxide Technology Company, Lp | Method of forming metal matrix composite bodies by a spontaneous infiltration process, and products produced therefrom |
US5267601A (en) * | 1988-11-10 | 1993-12-07 | Lanxide Technology Company, Lp | Method for forming a metal matrix composite body by an outside-in spontaneous infiltration process, and products produced thereby |
US5277989A (en) * | 1988-01-07 | 1994-01-11 | Lanxide Technology Company, Lp | Metal matrix composite which utilizes a barrier |
US5280819A (en) * | 1990-05-09 | 1994-01-25 | Lanxide Technology Company, Lp | Methods for making thin metal matrix composite bodies and articles produced thereby |
US5287911A (en) * | 1988-11-10 | 1994-02-22 | Lanxide Technology Company, Lp | Method for forming metal matrix composites having variable filler loadings and products produced thereby |
US5298283A (en) * | 1990-05-09 | 1994-03-29 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies by spontaneously infiltrating a rigidized filler material |
US5298339A (en) * | 1988-03-15 | 1994-03-29 | Lanxide Technology Company, Lp | Aluminum metal matrix composites |
US5301738A (en) * | 1988-11-10 | 1994-04-12 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5303763A (en) * | 1988-11-10 | 1994-04-19 | Lanxide Technology Company, Lp | Directional solidification of metal matrix composites |
US5316069A (en) * | 1990-05-09 | 1994-05-31 | Lanxide Technology Company, Lp | Method of making metal matrix composite bodies with use of a reactive barrier |
US5329984A (en) * | 1990-05-09 | 1994-07-19 | Lanxide Technology Company, Lp | Method of forming a filler material for use in various metal matrix composite body formation processes |
US5361824A (en) * | 1990-05-10 | 1994-11-08 | Lanxide Technology Company, Lp | Method for making internal shapes in a metal matrix composite body |
US5395701A (en) * | 1987-05-13 | 1995-03-07 | Lanxide Technology Company, Lp | Metal matrix composites |
US5487420A (en) * | 1990-05-09 | 1996-01-30 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies by using a modified spontaneous infiltration process and products produced thereby |
US5501263A (en) * | 1990-05-09 | 1996-03-26 | Lanxide Technology Company, Lp | Macrocomposite bodies and production methods |
US5505248A (en) * | 1990-05-09 | 1996-04-09 | Lanxide Technology Company, Lp | Barrier materials for making metal matrix composites |
US5518061A (en) * | 1988-11-10 | 1996-05-21 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5526867A (en) * | 1988-11-10 | 1996-06-18 | Lanxide Technology Company, Lp | Methods of forming electronic packages |
US5544121A (en) * | 1991-04-18 | 1996-08-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US5848349A (en) * | 1993-06-25 | 1998-12-08 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5851686A (en) * | 1990-05-09 | 1998-12-22 | Lanxide Technology Company, L.P. | Gating mean for metal matrix composite manufacture |
US10343219B2 (en) * | 2014-03-04 | 2019-07-09 | University Of Florida Research Foundation, Inc. | Method for producing nanoparticles and the nanoparticles produced therefrom |
DE202022103231U1 (en) | 2022-06-08 | 2022-06-20 | Srikanth Bathula | A device for the production of aluminum hybrid composites |
US20240091851A1 (en) * | 2021-03-30 | 2024-03-21 | Seiko Epson Corporation | Thixomolding material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053011A (en) * | 1975-09-22 | 1977-10-11 | E. I. Du Pont De Nemours And Company | Process for reinforcing aluminum alloy |
-
1986
- 1986-07-10 US US06/884,123 patent/US4657065A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053011A (en) * | 1975-09-22 | 1977-10-11 | E. I. Du Pont De Nemours And Company | Process for reinforcing aluminum alloy |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856025A (en) * | 1987-05-13 | 1999-01-05 | Lanxide Technology Company, L.P. | Metal matrix composites |
US5395701A (en) * | 1987-05-13 | 1995-03-07 | Lanxide Technology Company, Lp | Metal matrix composites |
US5141819A (en) * | 1988-01-07 | 1992-08-25 | Lanxide Technology Company, Lp | Metal matrix composite with a barrier |
US4935055A (en) * | 1988-01-07 | 1990-06-19 | Lanxide Technology Company, Lp | Method of making metal matrix composite with the use of a barrier |
US5482778A (en) * | 1988-01-07 | 1996-01-09 | Lanxide Technology Company, Lp | Method of making metal matrix composite with the use of a barrier |
US5277989A (en) * | 1988-01-07 | 1994-01-11 | Lanxide Technology Company, Lp | Metal matrix composite which utilizes a barrier |
US5298339A (en) * | 1988-03-15 | 1994-03-29 | Lanxide Technology Company, Lp | Aluminum metal matrix composites |
US4961461A (en) * | 1988-06-16 | 1990-10-09 | Massachusetts Institute Of Technology | Method and apparatus for continuous casting of composites |
US5526867A (en) * | 1988-11-10 | 1996-06-18 | Lanxide Technology Company, Lp | Methods of forming electronic packages |
US5311919A (en) * | 1988-11-10 | 1994-05-17 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite body by a spontaneous infiltration technique |
US5005631A (en) * | 1988-11-10 | 1991-04-09 | Lanxide Technology Company, Lp | Method for forming a metal matrix composite body by an outside-in spontaneous infiltration process, and products produced thereby |
US5007474A (en) * | 1988-11-10 | 1991-04-16 | Lanxide Technology Company, Lp | Method of providing a gating means, and products produced thereby |
US5007475A (en) * | 1988-11-10 | 1991-04-16 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies containing three-dimensionally interconnected co-matrices and products produced thereby |
US5007476A (en) * | 1988-11-10 | 1991-04-16 | Lanxide Technology Company, Lp | Method of forming metal matrix composite bodies by utilizing a crushed polycrystalline oxidation reaction product as a filler, and products produced thereby |
US5010945A (en) * | 1988-11-10 | 1991-04-30 | Lanxide Technology Company, Lp | Investment casting technique for the formation of metal matrix composite bodies and products produced thereby |
US5016703A (en) * | 1988-11-10 | 1991-05-21 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite body by a spontaneous infiltration technique |
US5020583A (en) * | 1988-11-10 | 1991-06-04 | Lanxide Technology Company, Lp | Directional solidification of metal matrix composites |
US5020584A (en) * | 1988-11-10 | 1991-06-04 | Lanxide Technology Company, Lp | Method for forming metal matrix composites having variable filler loadings and products produced thereby |
US5040588A (en) * | 1988-11-10 | 1991-08-20 | Lanxide Technology Company, Lp | Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby |
US5119864A (en) * | 1988-11-10 | 1992-06-09 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite through the use of a gating means |
US5004036A (en) * | 1988-11-10 | 1991-04-02 | Lanxide Technology Company, Lp | Method for making metal matrix composites by the use of a negative alloy mold and products produced thereby |
US5150747A (en) * | 1988-11-10 | 1992-09-29 | Lanxide Technology Company, Lp | Method of forming metal matrix composites by use of an immersion casting technique and product produced thereby |
US5163499A (en) * | 1988-11-10 | 1992-11-17 | Lanxide Technology Company, Lp | Method of forming electronic packages |
US5165463A (en) * | 1988-11-10 | 1992-11-24 | Lanxide Technology Company, Lp | Directional solidification of metal matrix composites |
US5172747A (en) * | 1988-11-10 | 1992-12-22 | Lanxide Technology Company, Lp | Method of forming a metal matrix composite body by a spontaneous infiltration technique |
US5197528A (en) * | 1988-11-10 | 1993-03-30 | Lanxide Technology Company, Lp | Investment casting technique for the formation of metal matrix composite bodies and products produced thereby |
US5000247A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby |
US5222542A (en) * | 1988-11-10 | 1993-06-29 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies with a dispersion casting technique |
US5238045A (en) * | 1988-11-10 | 1993-08-24 | Lanxide Technology Company, Lp | Method of surface bonding materials together by use of a metal matrix composite, and products produced thereby |
US5240062A (en) * | 1988-11-10 | 1993-08-31 | Lanxide Technology Company, Lp | Method of providing a gating means, and products thereby |
US5249621A (en) * | 1988-11-10 | 1993-10-05 | Lanxide Technology Company, Lp | Method of forming metal matrix composite bodies by a spontaneous infiltration process, and products produced therefrom |
US5267601A (en) * | 1988-11-10 | 1993-12-07 | Lanxide Technology Company, Lp | Method for forming a metal matrix composite body by an outside-in spontaneous infiltration process, and products produced thereby |
US5004034A (en) * | 1988-11-10 | 1991-04-02 | Lanxide Technology Company, Lp | Method of surface bonding materials together by use of a metal matrix composite, and products produced thereby |
US5638886A (en) * | 1988-11-10 | 1997-06-17 | Lanxide Technology Company, Lp | Method for forming metal matrix composites having variable filler loadings |
US5287911A (en) * | 1988-11-10 | 1994-02-22 | Lanxide Technology Company, Lp | Method for forming metal matrix composites having variable filler loadings and products produced thereby |
US5620804A (en) * | 1988-11-10 | 1997-04-15 | Lanxide Technology Company, Lp | Metal matrix composite bodies containing three-dimensionally interconnected co-matrices |
US5000249A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Method of forming metal matrix composites by use of an immersion casting technique and product produced thereby |
US5301738A (en) * | 1988-11-10 | 1994-04-12 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5303763A (en) * | 1988-11-10 | 1994-04-19 | Lanxide Technology Company, Lp | Directional solidification of metal matrix composites |
US5004035A (en) * | 1988-11-10 | 1991-04-02 | Lanxide Technology Company, Lp | Method of thermo-forming a novel metal matrix composite body and products produced therefrom |
US5618635A (en) * | 1988-11-10 | 1997-04-08 | Lanxide Technology Company, Lp | Macrocomposite bodies |
US5541004A (en) * | 1988-11-10 | 1996-07-30 | Lanxide Technology Company, Lp | Metal matrix composite bodies utilizing a crushed polycrystalline oxidation reaction product as a filler |
US5531260A (en) * | 1988-11-10 | 1996-07-02 | Lanxide Technology Company | Method of forming metal matrix composites by use of an immersion casting technique and products produced thereby |
US5000246A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Flotation process for the formation of metal matrix composite bodies |
US5377741A (en) * | 1988-11-10 | 1995-01-03 | Lanxide Technology Company, Lp | Method of forming metal matrix composites by use of an immersion casting technique |
US5000248A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5000245A (en) * | 1988-11-10 | 1991-03-19 | Lanxide Technology Company, Lp | Inverse shape replication method for forming metal matrix composite bodies and products produced therefrom |
US5518061A (en) * | 1988-11-10 | 1996-05-21 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US5207263A (en) * | 1989-12-26 | 1993-05-04 | Bp America Inc. | VLS silicon carbide whisker reinforced metal matrix composites |
US5529108A (en) * | 1990-05-09 | 1996-06-25 | Lanxide Technology Company, Lp | Thin metal matrix composites and production methods |
US5851686A (en) * | 1990-05-09 | 1998-12-22 | Lanxide Technology Company, L.P. | Gating mean for metal matrix composite manufacture |
US5487420A (en) * | 1990-05-09 | 1996-01-30 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies by using a modified spontaneous infiltration process and products produced thereby |
US5585190A (en) * | 1990-05-09 | 1996-12-17 | Lanxide Technology Company, Lp | Methods for making thin metal matrix composite bodies and articles produced thereby |
US5500244A (en) * | 1990-05-09 | 1996-03-19 | Rocazella; Michael A. | Method for forming metal matrix composite bodies by spontaneously infiltrating a rigidized filler material and articles produced therefrom |
US5350004A (en) * | 1990-05-09 | 1994-09-27 | Lanxide Technology Company, Lp | Rigidized filler materials for metal matrix composites and precursors to supportive structural refractory molds |
US5329984A (en) * | 1990-05-09 | 1994-07-19 | Lanxide Technology Company, Lp | Method of forming a filler material for use in various metal matrix composite body formation processes |
US5298283A (en) * | 1990-05-09 | 1994-03-29 | Lanxide Technology Company, Lp | Method for forming metal matrix composite bodies by spontaneously infiltrating a rigidized filler material |
US5316069A (en) * | 1990-05-09 | 1994-05-31 | Lanxide Technology Company, Lp | Method of making metal matrix composite bodies with use of a reactive barrier |
US5501263A (en) * | 1990-05-09 | 1996-03-26 | Lanxide Technology Company, Lp | Macrocomposite bodies and production methods |
US5505248A (en) * | 1990-05-09 | 1996-04-09 | Lanxide Technology Company, Lp | Barrier materials for making metal matrix composites |
US5280819A (en) * | 1990-05-09 | 1994-01-25 | Lanxide Technology Company, Lp | Methods for making thin metal matrix composite bodies and articles produced thereby |
US5361824A (en) * | 1990-05-10 | 1994-11-08 | Lanxide Technology Company, Lp | Method for making internal shapes in a metal matrix composite body |
US5544121A (en) * | 1991-04-18 | 1996-08-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US5848349A (en) * | 1993-06-25 | 1998-12-08 | Lanxide Technology Company, Lp | Method of modifying the properties of a metal matrix composite body |
US11618077B2 (en) | 2014-03-04 | 2023-04-04 | University Of Florida Research Foundation, Inc. | Method for producing nanoparticles and the nanoparticles produced therefrom |
US10343219B2 (en) * | 2014-03-04 | 2019-07-09 | University Of Florida Research Foundation, Inc. | Method for producing nanoparticles and the nanoparticles produced therefrom |
US11781199B2 (en) | 2014-03-04 | 2023-10-10 | University Of Florida Research Foundation, Inc. | Method for producing nanoparticles and the nanoparticles produced therefrom |
US20240091851A1 (en) * | 2021-03-30 | 2024-03-21 | Seiko Epson Corporation | Thixomolding material |
DE202022103231U1 (en) | 2022-06-08 | 2022-06-20 | Srikanth Bathula | A device for the production of aluminum hybrid composites |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657065A (en) | Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles | |
US4662429A (en) | Composite material having matrix of aluminum or aluminum alloy with dispersed fibrous or particulate reinforcement | |
US4713111A (en) | Production of aluminum-SiC composite using sodium tetrasborate as an addition agent | |
US4753690A (en) | Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement | |
CA2094369C (en) | Aluminum-base metal matrix composite | |
US3936298A (en) | Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the metal compositions | |
US3951651A (en) | Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions | |
Laurent et al. | Processing-microstructure relationships in compocast magnesium/SiC | |
US5228494A (en) | Synthesis of metal matrix composites containing flyash, graphite, glass, ceramics or other metals | |
US5127969A (en) | Reinforced solder, brazing and welding compositions and methods for preparation thereof | |
US6723282B1 (en) | Metal product containing ceramic dispersoids form in-situ | |
US5143795A (en) | High strength, high stiffness rapidly solidified magnesium base metal alloy composites | |
US6036792A (en) | Liquid-state-in-situ-formed ceramic particles in metals and alloys | |
EP0074067A1 (en) | Method for the preparation of fiber-reinforced metal composite material | |
US5791397A (en) | Processes for producing Mg-based composite materials | |
CN110438379B (en) | Preparation method of lithium-containing magnesium/aluminum-based composite material | |
US5083602A (en) | Stepped alloying in the production of cast composite materials (aluminum matrix and silicon additions) | |
US6843865B2 (en) | Aluminum alloy product refinement and applications of aluminum alloy product refinement | |
US5149496A (en) | Method of making high strength, high stiffness, magnesium base metal alloy composites | |
WO1992009711A1 (en) | Method of preparing eutectic or hyper-eutectic alloys and composites based thereon | |
JP4121733B2 (en) | Method for producing graphite-containing aluminum alloy and sliding member | |
Gupta et al. | Aluminium alloy-silica sand composites: preparation and properties | |
JP2000303133A (en) | Aluminum alloy for pressure casting, excellent in fatigue strength | |
US6398882B1 (en) | Uniformly dispersed, finely sized ceramic particles in metals and alloys | |
US5256183A (en) | Process for production of reinforced composite materials and products thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMAX INC., AMAX CENTER, GREENWICH, CT 06830, A CO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:WADA, TSUGUYASU;ELDIS, GEORGE T.;ALBRIGHT, DARRYL L.;REEL/FRAME:004577/0661 Effective date: 19860701 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19950419 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |