US4621434A - Multiple-coordinate scanner with regulated scanning force - Google Patents

Multiple-coordinate scanner with regulated scanning force Download PDF

Info

Publication number
US4621434A
US4621434A US06/639,288 US63928884A US4621434A US 4621434 A US4621434 A US 4621434A US 63928884 A US63928884 A US 63928884A US 4621434 A US4621434 A US 4621434A
Authority
US
United States
Prior art keywords
scanner
measuring
coordinate
force
measuring force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/639,288
Inventor
Karl-Heinz Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klingelnberg GmbH
DR ING WILLY HOFLER
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to DR. ING. WILLY HOFLER, reassignment DR. ING. WILLY HOFLER, ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HIRSCHMANN, KARL-HEINZ
Application granted granted Critical
Publication of US4621434A publication Critical patent/US4621434A/en
Assigned to Zeiss Messgeratebau GmbH reassignment Zeiss Messgeratebau GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOFLER, WILLY
Assigned to KLINGELNBERG SOHNE KG reassignment KLINGELNBERG SOHNE KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Zeiss Messgeratebau GmbH
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/002Details
    • G01B3/008Arrangements for controlling the measuring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/168Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using counterbalancing forces

Definitions

  • the invention relates to a multiple-coordinate scanner with regulated scanning force for scanning objects. With this scanner, the precise location of the scanned point on the object can be ascertained.
  • the scanner is preferably used in multi-dimensional length-measuring apparatus.
  • the multiple-coordinate scanner can be used in combination with a measuring machine for scanning and measuring arbitrarily curved three-dimensional surfaces such as are used in gear manufacturing.
  • Multiple-coordinate scanners are known (German Pat. No. 22 42 355), the structure of which comprises a torsionally rigid succession of straight-line guides, each of which is associated with a travel measuring system.
  • the measuring force is generated via plunger coils, or dynamic coils, independently of the force actually occurring, and is therefore subject to certain fluctuations.
  • the accuracy of the measurement is affected by these fluctuations, as by the different flexions of the measuring system.
  • the degree of possible deflection of the measuring scanner is thus severely restricted. Because of its necessarily rigid embodiment the measuring machine has large masses that must be moved, the restricted deflectability also severely restricts the speed of deflection, which results in measuring times of considerable length.
  • the location of the scanning point of the scanning ball on the object is indirectly determined from the magnitude of the deflection of the individual straight-line guides.
  • a multiple-coordinate scanner is designed with straight-line guides, including not only a travel transducer but also a drive element, with which the guides can be deflected.
  • the amount of the deflection is regulated such that the resultant measuring force vector is constant in accordance with a predetermined variable.
  • the amount of the deflection of the straight-line guides thus has no influence on the measuring force.
  • the magnitude and direction of the measuring force is detected via a multiple-coordinate force measuring device disposed preceding the straight-line guides.
  • the scanning speed can then be increased as well, because of the small masses of the scanning head, since the multiple-coordinate scanning head is itself capable of rapidly following the surface of the object to be scanned, independently of the movements of the sluggish carriage of the measuring machine.
  • the guide variable is the measuring force
  • the guide variable for the movement of the measuring machine carriage is the deflection of the scanning head.
  • Connecting the straight-line guides in sequence can also be effected such that the spring parallelograms are nested inside one another. Because of the regulation, the necessarily different dimensions of the spring parallelograms have no effect on the measuring force. The travel transducers and the drive elements are then disposed outside the spring parallelograms.
  • the drive elements may be electric, hydraulic or pneumatic linear motors, which are triggered by electrical signals.
  • Corresponding rotator drives can also be used, however, if the rotational movement is converted into a linear movement and a speed reduction is simultaneously introduced.
  • Known gear mechanisms cannot be used, among other reasons because of their inertial masses and their play.
  • a suitable mechanism for this purpose is one comprising a narrow, thin belt or cable, which is twisted by the drive motor and by its helical deformation is shortened in length. One end of the belt is connected to the measuring scanner, and the other to the measuring scanner base. The advantages of this mechanism are its low mass, the play-free reversal of the drive direction and the simplicity of deflecting the belt in another direction.
  • the straight-line guides with the travel measuring devices can be dispensed with either wholly or in part.
  • the measuring force must then be kept constant via the coordinate axis drive mechanisms of the measuring machine.
  • a further travel measuring device can also be used, its deflection being converted into a corresponding measuring force.
  • the signal processing is initially done in an analog manner and then digitally in a subsequent computer.
  • the computer also takes on the task of extensively automating the course of measurement, together with the measuring machine.
  • FIG. 1 shows the basic structure of the multiple-coordinate scanner with regulated scanning force according to the invention
  • FIG. 1a-c illustrate respective side, plan, and sectional views of the scanner shown in FIG. 1;
  • FIG. 2 shows the basic structure of the multiple-coordinate force measuring device
  • FIG. 3 is a block circuit diagram of the electrical force regulation and shows its connection with the computer
  • FIG. 4 is a schematic illustration of the rotator drive mechanism with belt drives and a scanner pin.
  • FIG. 1 shows the fundamental structure of the multiple-coordinate scanning head having three spring parallelogram units 3, 4 and 5, which are disposed such that they can perform a measuring movement in the directions of the coordinate axes of a rectangular, cartesian coordinate system.
  • Each of the spring parallelogram units has an identical embodiment, but they are each in turn rotated by 90° relative to one another.
  • Element 3 provides the positioning operation for the X direction;
  • element 4 provides the positioning operation, rotated by 90° relative to that, for the Y direction;
  • element 5 furnishes the positioning operation, now rotated by 90° relative to the Y direction, for the Z direction.
  • these three positioning operations are carried out until such time as the scanning approach force of the scanner at the tooth flank corresponds to the value F set point.
  • the spring parallelogram unit 3 As shown for the spring parallelogram unit 3, they comprise the actual spring parallelogram 3a, the drive unit 7, the travel transducer 8 and an oscillation damper 9.
  • the object to be measured is touched by one of the balls 1, which is connected via the rod 2 with the multiple-coordinate force measuring device 6.
  • the measuring force generated by the touch is detected by the multiple-coordinate force measuring device 6 in the same direction as that of the motions permitted by the three spring parallelogram units 3, 4 and 5.
  • the measuring force components detected in the individual coordinate directions are added up to make the resultant total measuring force and then compared with the measuring force required. Deviations from the latter are compensated for in the X direction by the drive unit 7, in this case by way of example an electric linear motor.
  • the compensation in the Y and Z directions is effected by corresponding drive units in the spring parallelogram units 4 and 5.
  • the multiple-coordinate force measuring device 6 is connected via the base plate 11 with the spring parallelogram units 3, 4 and 5.
  • the deflection of the scanning tip 1 is thus transmitted to the travel transducer 8 for the X direction and detected.
  • Corresponding travel transducers for the Y and Z directions are contained in the spring parallelogram units 4 and 5.
  • the position of the center of the scanning ball is determined by means of addition using the correct algebraic sign (i.e., + or -).
  • the measuring force remains constant because of the regulation, regardless of the parallelogram deflection.
  • the base plate 11 is suspended via spring suspensions and adjusting screws 10.
  • the apparatus is suspended via springs and adjusting screws 10. This is applicable to an apparatus such as that shown in FIGS. 1a-c, below. If the apparatus is not suspended but is instead disposed horizontally, then natural the means for supporting its weight should be 20 given another direction accordingly.
  • FIGS. 1a-c there is a machine frame a, on which a carriage b is displaceable as indicated by the arrows in FIG. 1a.
  • This direction of displacement is the X direction.
  • a carriage c is displaceable on the carriage b, transversely thereto, as indicated by the arrows in FIG. 1b. This in the Y direction.
  • the carriage c supports a frame d.
  • a carriage e is vertically displaceable as indicated by the arrows in FIG. 1c.
  • a carriage f is displaceable in the carriage e as indicated by the arrows in FIG. 1a.
  • the carriage f carries the measuring head g, which is shown in its entirety in FIG. 1.
  • the measuring head g is moved into a usable position with respect to one flank of the gear wheel h. Then the carriage b is clamped together with the machine frame a. Further movements in the X, Y and Z directions are executed by the carriages c, e and f, so that only the smallest possible masses will have to be moved.
  • the scanner of the measuring head g is brought into contact with one flank of the gear wheel h, which is done by moving the flank toward the scanner by rotating the gear wheel h. Since the scanner is aligned relative to the center of rotation of the gear wheel, one point of the surface (gear flank) that is to be tested and that is known in the computer of the measuring machine is thus ascertained.
  • This surface of the tooth flank that is known in the computer is the set-point surface, which is now approached at several points for measurement or testing by the scanner, in order to ascertain whether the actual position of the scanner deviates from the set-point position, and if so, how great the deviation (error) is.
  • the invention described herein has the object of keeping the scanning approach [i.e., the force as the scanner approaches what is scanned] of the measuring scanner constant for the various measurement points, that is, keeping it independent of how large the deviation of the actual position of the scanner is from the set-point position stored in the computer.
  • FIG. 2 shows the fundamental structure of the multiple-coordinate force measuring device which in the present instance comprises three interleaved force measuring devices 61, 62 and 63.
  • the measuring force that is exerted is transmitted via the rods 2 to the housing 64, via the connecting plate 65 to the base plate 66 for the X force measuring device.
  • the X force measuring device measuring two bending beams 61, which are connected via the intermediate plate 67 to make a spring parallelogram.
  • Measured-value transducers which are sensitive to expansion or strain are disposed on the bending beams 61, and in combination with known intermediate electrical circuits these transducers furnish an electrical signal FX 61b which is proportional to the effective force component FX of the measuring force.
  • the force component 62b is measured via the spring parallelogram 62 and the measured-value transducer 62a.
  • the bending beams 62 are connected at 68 with the Z force measuring device 63, which here is represented by a crusher gauge, of which only struts rotated relative to one another by 90° are used, and on which the measured-value transducers 63a are disposed, which furnish the signal FZ 63b.
  • the Z force measuring device 63 is connected to the base plate 11. The measured-value transducers are connected such that undesired force components and moments cancel each other out.
  • FIG. 3 shows a block circuit diagram of the electrical force regulation and the transmission of data to the computer 28.
  • the multiple-coordinate force transducer upon scanning the object 26, furnishes the electrical signals FX 61b, FY 62b and FZ 63b.
  • the signals 61b, 62b and 63b are sent on the one hand via the analog/digital converters 61c, 62c, 63c to the computer 26 via the lines 12 and evaluated together with the signals of the algebraic-sign logic element 14, which is connected with the computer 26 via the lines 13.
  • the computer 26 furnishes the magnitude and direction of the measuring force vector F and thus the location of the scanning point of the measuring ball on the object 26 and the direction of the normals to the surface at the point being scanned.
  • the amount of the measuring force vector is ascertained and compared in the comparator 16 with the required measuring force.
  • the deviation is multiplicatively linked in the circuits 17, 18 and 19 with the measuring force components 61b, 62b and 63b and delivered to the output amplifiers 20, 21 and 22, which via the lines 23, 24 and 25 supply the drive units in the spring parallelogram units with energy.
  • the value F set point at the incremental travel transducers 8 already causes a certain deflection, which corresponds to a previously selected zero value. If this basic deflection were not present, then the scanner would rest on the flank without any force; that is, the value F set point would equal zero, which naturally is not usable in practical terms. A value F set point is therefore selected as a desired contacting force of the scanner on the flank. A predetermined deflection of the incremental travel transducer 8 corresponds to this desired value F set point. Deviations from this deflection, resulting at an individual measuring point because the value F actual is made to match the value F set point with the aid of the drive units 7, represent the measured value (error). If the subject of FIG.
  • FIG. 4 is a schematic illustration of the rotator drive having a belt drive 70, a scanner and a spring parallelogram 3 for one coordinate axis.
  • the drive motor 73 transmits its rotational movement to the thin belt 70, thereby twisting it and shortening its length.
  • the belt In the axial bearing 72 the belt is fixed in the longitudinal direction, so that the shortening can be transmitted via the base plate 11, the force measuring device 6 and the rod 2 to the ball 1. If it should be required, the thin belt can also be diverted over a roller 71, as shown.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A multiple-coordinate scanner having regulated scanning force for scanning objects, and preferably for length- and gear-measuring machines, is disclosed. The scanner detects the scanning force via a multiple-coodinate force measuring device and uses it to regulate the scanning force, in that corresponding straight-line guides in the multiple-coordinate scanner are deflected by drive units such that the resultant measuring force corresponds to a predetermined magnitude, regardless of the direction and magnitude of the multiple-coordinate scanner deflection.

Description

BACKGROUND OF THE INVENTION
The invention relates to a multiple-coordinate scanner with regulated scanning force for scanning objects. With this scanner, the precise location of the scanned point on the object can be ascertained. The scanner is preferably used in multi-dimensional length-measuring apparatus. The multiple-coordinate scanner can be used in combination with a measuring machine for scanning and measuring arbitrarily curved three-dimensional surfaces such as are used in gear manufacturing.
Multiple-coordinate scanners are known (German Pat. No. 22 42 355), the structure of which comprises a torsionally rigid succession of straight-line guides, each of which is associated with a travel measuring system. The measuring force is generated via plunger coils, or dynamic coils, independently of the force actually occurring, and is therefore subject to certain fluctuations. The accuracy of the measurement is affected by these fluctuations, as by the different flexions of the measuring system. The degree of possible deflection of the measuring scanner is thus severely restricted. Because of its necessarily rigid embodiment the measuring machine has large masses that must be moved, the restricted deflectability also severely restricts the speed of deflection, which results in measuring times of considerable length.
The location of the scanning point of the scanning ball on the object is indirectly determined from the magnitude of the deflection of the individual straight-line guides.
OBJECT AND SUMMARY OF THE INVENTION
It is accordingly an object of the invention to develop a multiple-coordinate scanner with regulated scanning force which is capable of detecting relatively large deflections at a constant measuring force, and with which the location of the scanning point of the scanning ball on the object can be ascertained directly from the direction of the measuring force vector.
The object is attained in accordance with the invention in that a multiple-coordinate scanner is designed with straight-line guides, including not only a travel transducer but also a drive element, with which the guides can be deflected. The amount of the deflection is regulated such that the resultant measuring force vector is constant in accordance with a predetermined variable. The amount of the deflection of the straight-line guides thus has no influence on the measuring force. The magnitude and direction of the measuring force is detected via a multiple-coordinate force measuring device disposed preceding the straight-line guides. From the magnitude of the force components in the individual coordinate axes, it is possible to ascertain directly the magnitude and direction of the force vector, and thus the location of the scanning point of the scanning ball on the object, because with friction-free contact of two faces, the vector of the contacting force is normal to the two faces, and all the surface normals of a ball pass through its center. In order to minimize the existing friction at engineering surfaces, or to minimize its influence, the same surface point can be scanned several times in such a way that one scanning operation is performed in the direction of the normal direction ascertained upon the previous scanning operation. This scanning can be effected by means of the drive elements incorporated into the straight-line guides. The process accordingly provides the surface normals that are important in gear manufacturing technology.
By means of the drive mechanisms, and in combination with regulating the measuring force, the scanning speed can then be increased as well, because of the small masses of the scanning head, since the multiple-coordinate scanning head is itself capable of rapidly following the surface of the object to be scanned, independently of the movements of the sluggish carriage of the measuring machine. For the movement of the multiple-coordinate scanner itself, the guide variable is the measuring force, while the guide variable for the movement of the measuring machine carriage is the deflection of the scanning head. Once the multiple-coordinate scanner has been placed against the surface of the object and the means of force regulation is in operation, then the measuring scanner follows along the surface as long as certain limit speeds are not exceeded by the measuring machine carriage, or as long as the surface itself does not have an excessive curvature. Furthermore, errors resulting from deformation of the scanner and measuring machine can be compensated for on the basis of the magnitude and direction of the measuring force, given a known (that is, measured, for instance) rigidity of the multiple-coordinate scanner and the measuring machine.
Connecting the straight-line guides in sequence can also be effected such that the spring parallelograms are nested inside one another. Because of the regulation, the necessarily different dimensions of the spring parallelograms have no effect on the measuring force. The travel transducers and the drive elements are then disposed outside the spring parallelograms.
The drive elements may be electric, hydraulic or pneumatic linear motors, which are triggered by electrical signals. Corresponding rotator drives can also be used, however, if the rotational movement is converted into a linear movement and a speed reduction is simultaneously introduced. Known gear mechanisms cannot be used, among other reasons because of their inertial masses and their play. A suitable mechanism for this purpose is one comprising a narrow, thin belt or cable, which is twisted by the drive motor and by its helical deformation is shortened in length. One end of the belt is connected to the measuring scanner, and the other to the measuring scanner base. The advantages of this mechanism are its low mass, the play-free reversal of the drive direction and the simplicity of deflecting the belt in another direction.
For applications where the demands for measuring speed and accuracy are less stringent, the straight-line guides with the travel measuring devices can be dispensed with either wholly or in part. The measuring force must then be kept constant via the coordinate axis drive mechanisms of the measuring machine.
Instead of the direct force measuring device, a further travel measuring device can also be used, its deflection being converted into a corresponding measuring force.
For travel and force absorbers, known processes can be used. The signal processing is initially done in an analog manner and then digitally in a subsequent computer. The computer also takes on the task of extensively automating the course of measurement, together with the measuring machine.
The invention will be better understood and further objects and advantages thereof will become more apparent from the ensuing detailed description of a preferred embodiment taken in conjunction with the drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 shows the basic structure of the multiple-coordinate scanner with regulated scanning force according to the invention;
FIG. 1a-c illustrate respective side, plan, and sectional views of the scanner shown in FIG. 1;
FIG. 2 shows the basic structure of the multiple-coordinate force measuring device;
FIG. 3 is a block circuit diagram of the electrical force regulation and shows its connection with the computer; and
FIG. 4 is a schematic illustration of the rotator drive mechanism with belt drives and a scanner pin.
DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 shows the fundamental structure of the multiple-coordinate scanning head having three spring parallelogram units 3, 4 and 5, which are disposed such that they can perform a measuring movement in the directions of the coordinate axes of a rectangular, cartesian coordinate system. Each of the spring parallelogram units has an identical embodiment, but they are each in turn rotated by 90° relative to one another. Element 3 provides the positioning operation for the X direction; element 4 provides the positioning operation, rotated by 90° relative to that, for the Y direction; and element 5 furnishes the positioning operation, now rotated by 90° relative to the Y direction, for the Z direction. As explained below, these three positioning operations are carried out until such time as the scanning approach force of the scanner at the tooth flank corresponds to the value Fset point. As shown for the spring parallelogram unit 3, they comprise the actual spring parallelogram 3a, the drive unit 7, the travel transducer 8 and an oscillation damper 9. The object to be measured is touched by one of the balls 1, which is connected via the rod 2 with the multiple-coordinate force measuring device 6. The measuring force generated by the touch is detected by the multiple-coordinate force measuring device 6 in the same direction as that of the motions permitted by the three spring parallelogram units 3, 4 and 5.
The measuring force components detected in the individual coordinate directions are added up to make the resultant total measuring force and then compared with the measuring force required. Deviations from the latter are compensated for in the X direction by the drive unit 7, in this case by way of example an electric linear motor.
The compensation in the Y and Z directions is effected by corresponding drive units in the spring parallelogram units 4 and 5.
The multiple-coordinate force measuring device 6 is connected via the base plate 11 with the spring parallelogram units 3, 4 and 5. The deflection of the scanning tip 1 is thus transmitted to the travel transducer 8 for the X direction and detected. Corresponding travel transducers for the Y and Z directions are contained in the spring parallelogram units 4 and 5. Thus in combination with the coordinate system of the measuring machine, the position of the center of the scanning ball is determined by means of addition using the correct algebraic sign (i.e., + or -). The measuring force remains constant because of the regulation, regardless of the parallelogram deflection.
For compensating for weight in the Z direction, the base plate 11 is suspended via spring suspensions and adjusting screws 10. According to FIG. 1, the apparatus is suspended via springs and adjusting screws 10. This is applicable to an apparatus such as that shown in FIGS. 1a-c, below. If the apparatus is not suspended but is instead disposed horizontally, then natural the means for supporting its weight should be 20 given another direction accordingly.
According to FIGS. 1a-c, there is a machine frame a, on which a carriage b is displaceable as indicated by the arrows in FIG. 1a. This direction of displacement is the X direction. A carriage c is displaceable on the carriage b, transversely thereto, as indicated by the arrows in FIG. 1b. This in the Y direction. The carriage c supports a frame d. In the frame d, a carriage e is vertically displaceable as indicated by the arrows in FIG. 1c. This is the Z direction. A carriage f is displaceable in the carriage e as indicated by the arrows in FIG. 1a. This is the X direction again. The carriage f carries the measuring head g, which is shown in its entirety in FIG. 1.
With the aid of the carriage b, the measuring head g is moved into a usable position with respect to one flank of the gear wheel h. Then the carriage b is clamped together with the machine frame a. Further movements in the X, Y and Z directions are executed by the carriages c, e and f, so that only the smallest possible masses will have to be moved.
Now the scanner of the measuring head g is brought into contact with one flank of the gear wheel h, which is done by moving the flank toward the scanner by rotating the gear wheel h. Since the scanner is aligned relative to the center of rotation of the gear wheel, one point of the surface (gear flank) that is to be tested and that is known in the computer of the measuring machine is thus ascertained. This surface of the tooth flank that is known in the computer is the set-point surface, which is now approached at several points for measurement or testing by the scanner, in order to ascertain whether the actual position of the scanner deviates from the set-point position, and if so, how great the deviation (error) is.
The invention described herein has the object of keeping the scanning approach [i.e., the force as the scanner approaches what is scanned] of the measuring scanner constant for the various measurement points, that is, keeping it independent of how large the deviation of the actual position of the scanner is from the set-point position stored in the computer.
FIG. 2 shows the fundamental structure of the multiple-coordinate force measuring device which in the present instance comprises three interleaved force measuring devices 61, 62 and 63.
The measuring force that is exerted is transmitted via the rods 2 to the housing 64, via the connecting plate 65 to the base plate 66 for the X force measuring device. The X force measuring device measuring two bending beams 61, which are connected via the intermediate plate 67 to make a spring parallelogram. Measured-value transducers which are sensitive to expansion or strain are disposed on the bending beams 61, and in combination with known intermediate electrical circuits these transducers furnish an electrical signal FX 61b which is proportional to the effective force component FX of the measuring force. Correspondingly, the force component 62b is measured via the spring parallelogram 62 and the measured-value transducer 62a. The bending beams 62 are connected at 68 with the Z force measuring device 63, which here is represented by a crusher gauge, of which only struts rotated relative to one another by 90° are used, and on which the measured-value transducers 63a are disposed, which furnish the signal FZ 63b. The Z force measuring device 63 is connected to the base plate 11. The measured-value transducers are connected such that undesired force components and moments cancel each other out.
FIG. 3 shows a block circuit diagram of the electrical force regulation and the transmission of data to the computer 28. The multiple-coordinate force transducer, upon scanning the object 26, furnishes the electrical signals FX 61b, FY 62b and FZ 63b. The signals 61b, 62b and 63b are sent on the one hand via the analog/ digital converters 61c, 62c, 63c to the computer 26 via the lines 12 and evaluated together with the signals of the algebraic-sign logic element 14, which is connected with the computer 26 via the lines 13. The computer 26 furnishes the magnitude and direction of the measuring force vector F and thus the location of the scanning point of the measuring ball on the object 26 and the direction of the normals to the surface at the point being scanned. On the other hand, via the computer circuit 15, the amount of the measuring force vector is ascertained and compared in the comparator 16 with the required measuring force. The deviation is multiplicatively linked in the circuits 17, 18 and 19 with the measuring force components 61b, 62b and 63b and delivered to the output amplifiers 20, 21 and 22, which via the lines 23, 24 and 25 supply the drive units in the spring parallelogram units with energy.
If a set-point position of the gear flank is approached by the scanner according to FIGS. 1 and 2 with the aid of the carriages c, e and f, then the scanner is transferred to an actual position which via the multiple-coordinate force measuring device according to FIG. 2 furnishes certain values 61b, 62b, and 63b. These values, according to FIG. 3, define a measuring force Factual, which is compared with the adjustable or preselectable measuring force Fset point. If there is a deviation, then for the three coordinate directions at the spring parallelogram units 3, 4 and 5 of FIG. 1, a followup adjustment is performed in the three coordinate directions with the aid of the various drive devices 7 until such time as the value Factual corresponds to Fset point. This followup adjustment by the drive units 7 causes incremental travel transducers 8, one of which is present at each of the spring parallelogram units 3, 4, 5, to execute deflections, which can be detected as measurement values and displayed by a display device 30.
It should be understood that the value Fset point at the incremental travel transducers 8 already causes a certain deflection, which corresponds to a previously selected zero value. If this basic deflection were not present, then the scanner would rest on the flank without any force; that is, the value Fset point would equal zero, which naturally is not usable in practical terms. A value Fset point is therefore selected as a desired contacting force of the scanner on the flank. A predetermined deflection of the incremental travel transducer 8 corresponds to this desired value Fset point. Deviations from this deflection, resulting at an individual measuring point because the value Factual is made to match the value Fset point with the aid of the drive units 7, represent the measured value (error). If the subject of FIG. 1, that is, reference numerals 3, 4 and 5, is omitted, then the controlling of the carriages c, e and f is undertaken directly based on the multiple-coordinate force measuring device 6. That is, in that case the carriages c, e and f would be used not only for approaching the various measurement points in sequence with the scanner, but additionally for executing the positioning movements, which in the case shown by illustration in FIG. 1 are performed by the spring parallelogram units 3, 4 and 5, so that the desired scanner force Fset point will be attained.
FIG. 4 is a schematic illustration of the rotator drive having a belt drive 70, a scanner and a spring parallelogram 3 for one coordinate axis. The drive motor 73 transmits its rotational movement to the thin belt 70, thereby twisting it and shortening its length. In the axial bearing 72 the belt is fixed in the longitudinal direction, so that the shortening can be transmitted via the base plate 11, the force measuring device 6 and the rod 2 to the ball 1. If it should be required, the thin belt can also be diverted over a roller 71, as shown.
The foregoing relates to a preferred exemplary embodiment of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.

Claims (7)

What is claimed and desired to be secured by Letters Patent of the United States is:
1. An electronic multi-coordinate scanner having a scanning head (g) having at least one scanner (1,2) for progressively scanning a multi-dimensional article (h) from one measuring position to another measuring position on coordinate measuring machines, wherein said scanning head includes a torsionally rigid sequential arrangement of straight-line X, Y and Z guide systems (3,4,5) free of play and friction which with one another form a definite, two- or three-dimensional coordinate system, and further includes signal transducers for each X-Y-Z guide system which indicate the scanner deflection, which likewise represent a torsionally rigid coordinate system, and is provided with means for electronically controlling generation of definite measuring forces of the scanner, which comprises a multi-coordinate measuring force device (6) including signal transducers disposed between scanners (1,2) and said straight-line X, Y, Z guide systems (3,4,5); each of said straight-line X,Y,Z guide system includes an electronically controlled adjusting member (7) for adjusting each said guide system within its range of movement of measuring force generation; and each straight-line X,Y,Z guide system is provided with a travel transducer (8) for indicating a deflected position of each said guide system; a computer for receiving signals from said signal transducers in accordance with the individual coordinates of said scanner and comparing said signals with a predetermined set-point value and deviation between these values are converted to output signals, adjusting members 7 associated with each of said X,Y,Z guide systems for adjusting said X,Y,Z guide system in accordance with said outputs signals received from said computer, and said travel transducers produce output signals which are directed to a display device for indicating the contour of said article.
2. A multi-coordinate scanner as defined by claim 1, characterized in that the adjusting members (7) are linear motors.
3. A multi-coordinate scanner as defined by claim 2, characterized in that the straight-line guide systems (3,4,5) are spring parallelograms.
4. A multi-coordinate scanner as defined by claim 1, characterized in that the straight-line guide systems (3,4,5) are spring parallelograms.
5. A method for measuring multi-dimensional articles by means of a multi-coordinate scanner having an adjustable measuring force, characterized in that upon each measurement step, the initially appearing resultant measuring force is ascertained as to magnitude and direction and is used to establish a predetermined, final measuring force by means of actuation of adjusting means for the scanner, such that a final resultant measuring force corresponds in magnitude and direction to a predetermined resultant measuring force; and that set movements of said means are emitted as scanner measured values.
6. A method as defined by claim 5, characterized in that from the measuring force components, the direction of a measuring force vector and hence the location of the point of contact of the scanner with the article that is to be measured is ascertained.
7. A method as defined by claim 5, characterized in that one measuring point is scanned a plurality of times, each in the direction of the resultant measuring force which direction was ascertained upon the previous scanning operation.
US06/639,288 1982-03-24 1984-08-10 Multiple-coordinate scanner with regulated scanning force Expired - Fee Related US4621434A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3210711A DE3210711C2 (en) 1982-03-24 1982-03-24 Multi-coordinate probe with adjustable measuring force for scanning multi-dimensional, stationary objects

Publications (1)

Publication Number Publication Date
US4621434A true US4621434A (en) 1986-11-11

Family

ID=6159106

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/639,288 Expired - Fee Related US4621434A (en) 1982-03-24 1984-08-10 Multiple-coordinate scanner with regulated scanning force

Country Status (2)

Country Link
US (1) US4621434A (en)
DE (1) DE3210711C2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716656A (en) * 1986-03-24 1988-01-05 Renishaw Plc Position - sensing probe
WO1988006269A1 (en) * 1987-02-18 1988-08-25 Merrill Engineering Laboratories, Inc. Single contact point distance measuring for plane determination
WO1988006710A1 (en) * 1987-02-26 1988-09-07 Klaus Ulbrich Probe, motion guiding device, position sensing apparatus, and position sensing method
US4807152A (en) * 1986-03-04 1989-02-21 Rank Taylor Hobson Limited Metrological apparatus
US4937948A (en) * 1987-07-30 1990-07-03 Carl-Zeiss-Stiftung, Heidenheim/Brenz Probe head for a coordinate-measuring instrument
US5005297A (en) * 1988-12-22 1991-04-09 Carl-Zeiss-Stiftung, Heidenheim/Brenz Probe head of the switching type
US5020229A (en) * 1982-05-13 1991-06-04 Mauser-Werke Obernourf Gmbh Apparatus and method for measuring screw threads
US5029398A (en) * 1989-02-25 1991-07-09 Fag Kugelfischer Georg Schafer (Kgaa) Multiple-coordinate measurement sensor
US5048194A (en) * 1987-12-05 1991-09-17 Renishaw Plc Position sensing probe
US5101572A (en) * 1990-02-16 1992-04-07 Kwong Kam H Displacement following arrangement and measuring device including such arrangement
US5119568A (en) * 1987-01-15 1992-06-09 Fidia S.P.A. Feeler device, particularly for copying machines
US5186041A (en) * 1990-11-28 1993-02-16 International Business Machines Corporation Microprobe-based CD measurement tool
US5390423A (en) * 1991-01-22 1995-02-21 Renishaw Plc Analogue probe
US5414940A (en) * 1993-05-19 1995-05-16 Hughes Aircraft Company Contact position sensor using constant contact force control system
US5471406A (en) * 1992-04-14 1995-11-28 Carl Zeiss-Stiftung Method of measuring elemental shapes of a workpiece on a coordinate measuring machine
US5507099A (en) * 1993-03-20 1996-04-16 Pietzsch Automatisierungstechnik Gmbh Device for measuring distortion in cylinders
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
US5867916A (en) * 1996-07-31 1999-02-09 Carl-Zeiss-Stiftung Coordinate measuring machine with collision protection
US20040093753A1 (en) * 2002-09-27 2004-05-20 Mcinroy John E. Precision positioning device
US20040128847A1 (en) * 2002-09-18 2004-07-08 Maurice Fracheboud Touch probing device
US6955297B2 (en) 2004-02-12 2005-10-18 Grant Isaac W Coordinate designation interface
US20070056177A1 (en) * 2004-03-05 2007-03-15 Eckhard Enderle Probe for a coordinate measuring machine
EP2017570A1 (en) * 2007-07-17 2009-01-21 Canon Kabushiki Kaisha Shape measuring device and method with regulated scanning force based on monitoring the position of a resiliently mounted probe with several interferometers.
WO2010037506A3 (en) * 2008-10-01 2011-02-24 Carl Zeiss Industrielle Messtechnik Gmbh Method for measuring a work piece, calibration method and coordinate measuring device that take into consideration the directional-dependent flexibility of the feeler

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170709A (en) * 1984-02-16 1985-09-04 Toshiba Corp Measuring insturment for shape
GB8409091D0 (en) * 1984-04-09 1984-05-16 Renishaw Plc Probe for measuring workpieces
EP0242710B1 (en) * 1986-04-17 1990-07-25 Renishaw plc Contact-sensing probe
GB8610087D0 (en) * 1986-04-24 1986-05-29 Renishaw Plc Probe
GB8610088D0 (en) * 1986-04-24 1986-05-29 Renishaw Plc Probe
DE3788360T2 (en) * 1986-09-03 1994-03-17 Renishaw Plc Signal processing for touch probe.
DE3725205A1 (en) * 1987-07-30 1989-02-09 Zeiss Carl Fa PROBE HEAD FOR COORDINATE MEASURING DEVICES
DE8909048U1 (en) * 1989-07-26 1989-10-05 Dornier Gmbh, 7990 Friedrichshafen Force sensor
EP0572800A1 (en) * 1992-05-06 1993-12-08 Baumer Electric Ag Sensing probe
DE4308823C2 (en) * 1993-03-19 2002-11-07 Zeiss Carl Measuring probe for coordinate measuring machines
DE4424225A1 (en) * 1994-07-09 1996-01-11 Zeiss Carl Fa Probe for coordinate measuring machines
DE19641720C2 (en) * 1996-10-10 2002-01-24 Mahr Gmbh Probe head with electronic guidance
DE102010016739A1 (en) * 2010-05-03 2011-11-03 Hexagon Metrology Gmbh Measuring head for a coordinate measuring machine
JP5843531B2 (en) 2010-09-27 2016-01-13 株式会社ミツトヨ Coordinate measuring head unit and coordinate measuring machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2232858A1 (en) * 1971-07-07 1973-01-18 Dea Digital Electronic PROBE
US3869799A (en) * 1972-08-29 1975-03-11 Zeiss Stiftung Universal multi-coordinate sensor
US3883956A (en) * 1972-12-26 1975-05-20 Cecil Equipment Co Proportional control for guidance system
US3945124A (en) * 1973-11-09 1976-03-23 Ernst Leitz Gmbh Contact sensor for workpiece calipering
US4078314A (en) * 1975-05-13 1978-03-14 Rolls-Royce Ltd. Measuring apparatus
US4130941A (en) * 1975-03-20 1978-12-26 Rolls-Royce Limited Displacement gauge
JPS5535252A (en) * 1978-09-04 1980-03-12 Shin Nippon Koki Kk Coordinate measuring instrument
US4228591A (en) * 1976-02-12 1980-10-21 Maag Gear Wheel & Machine Co. Ltd. Measurement sensing devices
GB2067762A (en) * 1979-10-11 1981-07-30 Maag Zahnraeder & Maschinen Ag Process and apparatus for fixing measuring range limits for tests on a tooth-flank tester

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2841548A1 (en) * 1978-09-23 1980-04-03 Leitz Ernst Gmbh Assembly measuring test-piece dimensions - uses flexible mechanical sensor with threshold force transducer and photoelectric position transducers
GB2045437B (en) * 1979-03-30 1984-02-08 Renishaw Electrical Ltd Coordinate measuring machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2232858A1 (en) * 1971-07-07 1973-01-18 Dea Digital Electronic PROBE
US3869799A (en) * 1972-08-29 1975-03-11 Zeiss Stiftung Universal multi-coordinate sensor
US3883956A (en) * 1972-12-26 1975-05-20 Cecil Equipment Co Proportional control for guidance system
US3945124A (en) * 1973-11-09 1976-03-23 Ernst Leitz Gmbh Contact sensor for workpiece calipering
US4130941A (en) * 1975-03-20 1978-12-26 Rolls-Royce Limited Displacement gauge
US4078314A (en) * 1975-05-13 1978-03-14 Rolls-Royce Ltd. Measuring apparatus
US4228591A (en) * 1976-02-12 1980-10-21 Maag Gear Wheel & Machine Co. Ltd. Measurement sensing devices
JPS5535252A (en) * 1978-09-04 1980-03-12 Shin Nippon Koki Kk Coordinate measuring instrument
GB2067762A (en) * 1979-10-11 1981-07-30 Maag Zahnraeder & Maschinen Ag Process and apparatus for fixing measuring range limits for tests on a tooth-flank tester

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020229A (en) * 1982-05-13 1991-06-04 Mauser-Werke Obernourf Gmbh Apparatus and method for measuring screw threads
US4807152A (en) * 1986-03-04 1989-02-21 Rank Taylor Hobson Limited Metrological apparatus
US4716656A (en) * 1986-03-24 1988-01-05 Renishaw Plc Position - sensing probe
US5119568A (en) * 1987-01-15 1992-06-09 Fidia S.P.A. Feeler device, particularly for copying machines
GB2223321B (en) * 1987-02-18 1991-05-15 Merrill Eng Lab Inc Single contact point distance measuring for plane determination
WO1988006269A1 (en) * 1987-02-18 1988-08-25 Merrill Engineering Laboratories, Inc. Single contact point distance measuring for plane determination
GB2223321A (en) * 1987-02-18 1990-04-04 Merrill Eng Lab Inc Single contact point distance measuring for plane determination
US5154002A (en) * 1987-02-26 1992-10-13 Klaus Ulbrich Probe, motion guiding device, position sensing apparatus, and position sensing method
WO1988006710A1 (en) * 1987-02-26 1988-09-07 Klaus Ulbrich Probe, motion guiding device, position sensing apparatus, and position sensing method
US4937948A (en) * 1987-07-30 1990-07-03 Carl-Zeiss-Stiftung, Heidenheim/Brenz Probe head for a coordinate-measuring instrument
US5048194A (en) * 1987-12-05 1991-09-17 Renishaw Plc Position sensing probe
US5005297A (en) * 1988-12-22 1991-04-09 Carl-Zeiss-Stiftung, Heidenheim/Brenz Probe head of the switching type
US5029398A (en) * 1989-02-25 1991-07-09 Fag Kugelfischer Georg Schafer (Kgaa) Multiple-coordinate measurement sensor
US5101572A (en) * 1990-02-16 1992-04-07 Kwong Kam H Displacement following arrangement and measuring device including such arrangement
US5186041A (en) * 1990-11-28 1993-02-16 International Business Machines Corporation Microprobe-based CD measurement tool
US5390423A (en) * 1991-01-22 1995-02-21 Renishaw Plc Analogue probe
US5471406A (en) * 1992-04-14 1995-11-28 Carl Zeiss-Stiftung Method of measuring elemental shapes of a workpiece on a coordinate measuring machine
US5507099A (en) * 1993-03-20 1996-04-16 Pietzsch Automatisierungstechnik Gmbh Device for measuring distortion in cylinders
US5414940A (en) * 1993-05-19 1995-05-16 Hughes Aircraft Company Contact position sensor using constant contact force control system
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
US5867916A (en) * 1996-07-31 1999-02-09 Carl-Zeiss-Stiftung Coordinate measuring machine with collision protection
US20040128847A1 (en) * 2002-09-18 2004-07-08 Maurice Fracheboud Touch probing device
US6886265B2 (en) * 2002-09-18 2005-05-03 Mercartex Sa Touch probing device
US20040093753A1 (en) * 2002-09-27 2004-05-20 Mcinroy John E. Precision positioning device
US6842994B2 (en) * 2002-09-27 2005-01-18 University Of Wyoming Precision positioning device
US6955297B2 (en) 2004-02-12 2005-10-18 Grant Isaac W Coordinate designation interface
US7228642B2 (en) 2004-03-05 2007-06-12 Carl Zeiss Industrielle Messtechnik Gmbh Probe for a coordinate measuring machine
US20070056177A1 (en) * 2004-03-05 2007-03-15 Eckhard Enderle Probe for a coordinate measuring machine
EP2017570A1 (en) * 2007-07-17 2009-01-21 Canon Kabushiki Kaisha Shape measuring device and method with regulated scanning force based on monitoring the position of a resiliently mounted probe with several interferometers.
US20090024355A1 (en) * 2007-07-17 2009-01-22 Canon Kabushiki Kaisha Shape measuring device and method
US7734445B2 (en) 2007-07-17 2010-06-08 Canon Kabushiki Kaisha Shape measuring device and method
WO2010037506A3 (en) * 2008-10-01 2011-02-24 Carl Zeiss Industrielle Messtechnik Gmbh Method for measuring a work piece, calibration method and coordinate measuring device that take into consideration the directional-dependent flexibility of the feeler
US20110191060A1 (en) * 2008-10-01 2011-08-04 Carl Zeiss Industrielle Messtechnik Gmbh Method for measuring a work piece, calibration method and coordinate measuring device
CN102227607B (en) * 2008-10-01 2014-10-15 卡尔蔡司工业测量技术有限公司 Method for measuring work piece, calibration method and coordinate measuring device taking flexibility related with direction, of feeler into account
US8983795B2 (en) 2008-10-01 2015-03-17 Carl Zeiss Industrielle Messtechnik Gmbh Method for measuring a work piece, calibration method and coordinate measuring device

Also Published As

Publication number Publication date
DE3210711A1 (en) 1984-02-02
DE3210711C2 (en) 1986-11-13

Similar Documents

Publication Publication Date Title
US4621434A (en) Multiple-coordinate scanner with regulated scanning force
KR910005508B1 (en) Measuring and analysing method of numerical controller
US4769763A (en) Control for coordinate measuring instruments
US3945124A (en) Contact sensor for workpiece calipering
US6971183B2 (en) Probe head for coordinate measuring machines
US5594668A (en) Method for correcting coordinate measurement on workpieces based on bending characteristics
US5471406A (en) Method of measuring elemental shapes of a workpiece on a coordinate measuring machine
US20020029119A1 (en) Correction method for a coordinate measuring apparatus
CN110108441B (en) Wind tunnel balance force test preparation device
DE68922990T2 (en) DEVICE AND METHOD FOR SCANING THE SURFACE OF A WORKPIECE.
US5610846A (en) Method for coordinate measurement on workpieces adjusted for bending of measuring apparatus structure
US3948093A (en) Six degree of freedom force transducer for a manipulator system
DE3011003A1 (en) METHOD AND DEVICE FOR DETERMINING COORDINATE MEASUREMENTS ON A WORKPIECE
US20030070311A1 (en) Six degrees of freedom precision measuring system
US5287629A (en) Machine stand, particularly for so-called coordinate measuring machines, and a method for constructing the stand
CN109269718B (en) Stepless regulation engine vector thrust calibration device
Hesselbach et al. Aspects on design of high precision parallel robots
CN209910944U (en) Wind tunnel balance force test preparation device
US4833789A (en) Coordinate-measuring machine
DE2938080A1 (en) COORDINATE PROBE TO KEEP MULTI-DIMENSIONAL WORKPIECES
JPH07334245A (en) Ultra-precision feeding device, xy table using the same and table transferring device
De Nijs et al. Modelling of a coordinate measuring machine for analysis of its dynamic behaviour
Ibaraki et al. Diagnosis and compensation of motion errors in NC machine tools by arbitrary shape contouring error measurement
CN111256987B (en) Torque calibration mechanism for harmonic reducer
CN113588163A (en) System and method for calibrating nano-Newton level weak force in real time based on gravity moment

Legal Events

Date Code Title Description
AS Assignment

Owner name: DR. ING. WILLY HOFLER, ERICH-HECKEL-STRASSE 22 D-7

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HIRSCHMANN, KARL-HEINZ;REEL/FRAME:004298/0309

Effective date: 19840622

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ZEISS MESSGERATEBAU GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOFLER, WILLY;REEL/FRAME:007272/0186

Effective date: 19940930

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: KLINGELNBERG SOHNE KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZEISS MESSGERATEBAU GMBH;REEL/FRAME:008013/0252

Effective date: 19960605

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19981111

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362