US4574839A - Directional control valve with integral flow control valve - Google Patents
Directional control valve with integral flow control valve Download PDFInfo
- Publication number
- US4574839A US4574839A US06/601,780 US60178084A US4574839A US 4574839 A US4574839 A US 4574839A US 60178084 A US60178084 A US 60178084A US 4574839 A US4574839 A US 4574839A
- Authority
- US
- United States
- Prior art keywords
- piston
- sleeve
- chamber
- valve
- intersecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/0416—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
- F15B13/0417—Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7754—Line flow effect assisted
- Y10T137/7756—Reactor surface separated from flow by apertured partition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7781—With separate connected fluid reactor surface
- Y10T137/7835—Valve seating in direction of flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7922—Spring biased
- Y10T137/7925—Piston-type valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87917—Flow path with serial valves and/or closures
- Y10T137/88022—One valve head provides seat for other head
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87917—Flow path with serial valves and/or closures
- Y10T137/88054—Direct response normally closed valve limits direction of flow
Definitions
- the present invention pertains to a pressure compensated directional control valve.
- Directional control valves are used in controlling the flow to hydraulic implements.
- directional control valves are often referred to as auxiliary valves.
- directional control valves will have a pair of cylinder supply passages called cylinder ports, and a pair of cylinder exhaust passages called exhaust ports.
- cylinder ports Generally perpendicular to and intersecting with the cylinder supply and exhaust passages, is a longitudinal bore.
- a pressurized fluid supply bore for delivery of the hydraulic fluid.
- Within the longitudinal bore there is provided a valve spool which selectively directs flow from the supply bore to either of the cylinder supply passages.
- the valve spool also selectively fluidly connects the cylinder supply passages with the cylinder exhaust passages.
- Controlling the rate of raising or lowering is especially desirable when involved with farm implements. It is also desirable that the rate of raising or lowering be independent of the load acting upon the implement.
- the control of the rate of raising and lowering by a hydraulic cylinder requires controlling the flow rate of the hydraulic fluid supplied to the cylinder.
- One method of controlling the flow rate of the hydraulic fluid to the cylinder is to provide a directional control valve with a sleeve (sometimes referred to as a cartridge) and an inner sleeve insert.
- a sleeve sometimes referred to as a cartridge
- an inner sleeve insert An example of such a valve is illustrated in U.S. Pat. No. 4,406,442 Bettin et al.
- To regulate cylinder displacement Bettin et al. provides the functions of two separate valves by providing a direction control valve with the flow control valve integrally mounted within the same housing.
- Plate U.S. Pat. No. 3,401,521 is a directional control valve with a flow control valve (60).
- the flow control valve provides pressure compensated control.
- Plate requires the probe 7 to be axially moved. Plate is not easily adaptable for agricultural tractors since the movement of the probe can often require a large number of turns to set the flow rate.
- directional control valves are often mounted away from vehicle cab areas it is desirable that the flow rate be set with minimum displacement of the valve selector. Minimum displacement allows to flow rate to be selected by lever means from the cab in lieu of an operator being required to dismount from the vehicle.
- the present invention provides means for controlling the flow rate of the hydraulic fluid delivered to the cylinder regardless of a cylinder load or of the pressure of the hydraulic fluid supplied to the valve (referred to as pump supply pressure).
- the present invention provides a pressure compensator within the fluid supply bore of the directional control valve.
- the pressure compensator creates a variable orifice which enlarges or contracts to maintain the differential between the pump supply pressure and the demand pressure at a constant level.
- the addition of the pressure compensator does not significantly impact valve casing size or configuration.
- An embodiment of the present invention provides a large degree of selectability with minimum selector displacement, thereby allowing lever means within the vehicle cab to set the flow rate. The above described feature allows the vehicle operator to remain in the cab in lieu of getting out to set the flow rate.
- An embodiment of the present invention also provides a check valve which prevents excessive cylinder pressure from flowing in reverse towards the pump.
- the present invention provides a check valve wherein the cylinder pressure aids in sealing of the check valve.
- FIG. 1 is a partial view in section of the directional control valve of the present invention
- FIG. 2 is a detailed enlargement of a portion of the directional control valve of FIG. 1 illustrating operation of the pressure compensator when the variable orifice is enlarged to maintain constant flow;
- FIG. 3 is a detailed enlargement of a portion of the directional control valve of FIG. 1 illustrating operation of the pressure compensator when the variable orifice has contracted to maintain constant flow;
- FIG. 4 illustrates a detailed enlargement of a portion of an alternative embodiment of the present invention wherein the desired flow rate is achieved by axial movement of the sleeve valve insert.
- FIG. 5 illustrates a detailed enlargement of a portion of an alternative embodiment of the present invention with an extended sleeve valve insert.
- FIG. 1 illustrates a partial view of an embodiment of a directional control valve 2 of the present invention in section.
- the directional control valve 2 of the present invention is comprised of six major elements, housing 4, spool valve 18, sleeve 6 (sometimes referred to as a cartridge), sleeve valve insert 8 (sometimes referred to as a rotor), piston 10, and piston valve seat means 12.
- the housing is comprised of a plurality of bores, chambers and passages.
- Passages 40 and 14 are provided as the first and second cylinder supply passages respectively.
- Passages 20 and 30 are provided as the first and second cylinder exhaust passages respectively.
- Spool valve 18 is slideably mounted within the longitudinal bore 16 to provide selective fluid communication between the pump and the cylinders. Spool valve 18 also selectively connects the cylinder supply passages with the respective exhaust passage when required.
- Housing 4 also has a pressurized fluid supply bore 50. Intersecting with and in some instances coterminous with the pressurized fluid supply bore 50 are three annular chambers, first chamber 41, second chamber 52 and third chamber 53.
- the housing 4 also has a fluid supply passage (not shown) intersecting with the second chamber 52 for delivering pressurized hydraulic fluid to the longitudinal bore 16 via, second chamber 52, pressurized fluid supply bore 50 and third chamber 53.
- Sleeve 6 is mounted within the fluid pressurized fluid supply bore 50.
- the sleeve is substantially U-shaped having a generally axial bore 55.
- an annular landing 36 on the outside diameter of sleeve 6 forms first the chamber 41.
- the sleeve is locked into the housing 4 by a lock nut 34.
- the sleeve has at least one first radial orifice 25 which intersects with the first chamber 41.
- the embodiment illustrated in FIG. 1 has a plurality of geometrically spaced first radial orifices 25.
- the sleeve will also have at least one second radial orifice 17 intersecting with the second chamber 52.
- first and second radial orifices 25, 17 are generally spaced axially apart from one another.
- the embodiment illustrated in FIG. 1 also has geometrically spaced third radial orifices 54 which are generally axially spaced apart from the first and second radial orifices 25 and 17.
- the present invention is not limited to embodiments utilizing a third radial orifice.
- the first, second and third sleeve radial orifices 17, 25, 54 need not be drilled holes but may also be slots in the circumference of the sleeve valve insert.
- Sleeve valve insert 8 Rotatably mounted within the sleeve axial bore 55 is the sleeve valve insert 8.
- Sleeve valve insert 8 is generally U-shape with a handle portion (or selector) 9 which extends outside of the pressurized fluid supply bore 50.
- Clip ring 15 limits the sleeve valve insert's 8 axial movement within the sleeve 6.
- Sleeve valve insert 8 has a plurality of geometrically spaced first and second radial orifices 46 and 18 respectively. The first and second sleeve valve insert radial orifices (46,18) are generally spaced axially apart.
- the first and second sleeve valve insert radial orifices (46,18) are capable of being placed in selective alignment with the sleeve first and second radial orifices 25, 17 respectively by rotation of the sleeve valve insert handle 9. Only one first 46 and second 18 sleeve valve insert radial orifices are required, however, it is preferable to have a plurality of geometrically spaced orifices for the same reasons as mentioned previously for the sleeve. As previously mentioned for the sleeve, the radial orifices of the sleeve valve insert may be drilled holes or slots on the circumference. Sleeve valve insert 8 also is provided with an axial bore 56.
- Piston 10 Slideably mounted in the axial bore 56 of the sleeve valve insert axial bore 56 is the piston 10.
- Piston 10 is generally shaped like a U and has a head portion 117. Between the piston head 117 and the sleeve valve insert 8, there is defined a variable control volume fourth chamber 51.
- Fourth chamber 51 has fluid communication with the sleeve valve first radial orifice 46.
- Piston 10 has a plurality of geometrically spaced second radial orifices 21 which can align with the sleeve valve insert second radial orifices 18.
- the piston is provided with an axial bore 57 which intersects with the second radial orifices 21.
- the present invention only requires one second radial orifice 21 for the piston, however, it is often preferable to have a plurality of geometrically spaced second radial orifices 21.
- Piston metering surface 58 and piston valve seat means 12 form a variable orifice 80 between the piston axial bore 57 and the third chamber 53.
- the metering surface 58 is comprised of the piston cylindrical base 92 and the notch surfaces 91. Notch surfaces 91 are provided to retard rapid movement of the piston 10 towards or away from the valve seat means 12, thereby providing for more stable valve operation.
- a plurality of geometrically spaced notches are usually more advantageous than a single notch.
- Valve seat means 12 is located in the third chamber 53 and is generally axially aligned with the piston metering surface 58. When the piston 10 moves towards valve seat means 12, the variable orifice 80 between the piston axial bore 57 and the third chamber 53 is restricted.
- variable orifice 80 becomes less restricted. Captured between the piston 10 and the piston valve seat means 12 is a piston biasing means, coil spring 13. Coil spring 13 biases the piston towards the fourth chamber 51 and away from the piston valve seat 12.
- the piston valve seat means 12 is mounted within an extension 82 of the sleeve 6.
- Valve seat 12 functions as a check valve to prevent fluid communication from the cylinder via the longitudinal bore 16 and the third chamber 53 in a direction towards the piston axial bore 57.
- the piston valve seat means 12 is capable of axial movement towards the piston 10 and has a check valve biasing means to urge the piston valve seat means towards the piston.
- the check valve biasing means, coil spring 28 is located within the third chamber 53.
- Sleeve lip 60 limits the axial displacement of the valve seat means 12 away from the piston 10.
- the desired rate of lift of the hydraulic cylinder is effectuated by the rotation of handle 9 of the sleeve valve insert 8.
- Rotation of handle 9 causes the sleeve valve insert second radial orifice 18 to be brought into selective alignment with the sleeve second radial orifice 17.
- the alignment between the second radial orifices 17 and 18 of the sleeve valve and sleeve valve insert will define the setting of the fixed orifice.
- the amount of rotation required may be designed for less than one complete rotation to cover the full range of valve flow rate selection.
- first chamber 41 When fluid is not being supplied to the cylinder, the pressure in first chamber 41 will equal the pressure in second and third chambers 52 and 53.
- the pressure in third chamber 53 Upon movement of the spool valve 18 allowing fluid to flow into one of the cylinder supply passages 14 or 40, the pressure in third chamber 53 will take on the pressure caused by the load of the implement which is controlled by the hydraulic cylinder. Since there is essentially no flow through fourth chamber 51, the pressure in the first 41 and fourth 51 chambers will be equal to that of the pressure supplied by the hydraulic pump. The pressure inside piston axial bore 57 of the second chamber will become intermediate the pressures in the fourth chamber 51 and third chamber 53.
- the pressure differential over the fixed orifice will generate a downward force equal to the pressure differential multiplied by piston area.
- the downward force on the piston 10 is balanced by the preset force in spring 13. Therefore, due to the action of piston 10, the pressure differential will remain fairly constant regardless of fluctuations in pump pressure or demand pressure.
- FIG. 2 illustrates the effect of an increase in the demand pressure.
- the piston 10 moves axially in response to the increased demand pressure by being axially displaced towards the fourth chamber 51.
- Metering surface 58 moves away from the valve seal means 12, thereby increasing the variable orifice 80 and maintaining the preselected flow rate.
- FIG. 3 illustrates the opposite occurrence of a decrease in demand pressure.
- the piston 10 is forced downward causing the variable orifice 80 to contract thereby maintaining a constant flow rate.
- the piston valve seat means 12 also acts as a check valve. When the demand pressure exceeds the pump pressure the valve seat means is forced upward to prevent flow from third chamber 53 to the piston axial bore 57. To seal off piston axial bore 57, piston valve seat means sealing surface 84 is capable of making sealing contact with check valve seat means 86 provided by the surface of piston valve insert 8 most adjacent to variable orifice 80. With the check valve of the present invention, the fluid pressure of the cylinder tends to seat the valve. Seating force is not totally dependent upon coil spring 28. Coil spring 28 adds additional force in seating valve seat means 12 against check valve seat means 86.
- check valve seat means 12 It will be apparent to those skilled in the art of the various modifications in the design of the check valve seat means 12 that can be made to determine the sealing surface and also that various surfaces of the valve sleeve 6, sleeve valve insert 8 or piston 10 may be utilized as the check valve seat means.
- FIG. 4 illustrates an emobidment of the present invention 197 wherein the flow rate is set by axially moving the sleeve valve insert relative to the sleeve.
- the sleeve valve handle 99 is threadably inserted into the threaded bore 98 of the sleeve 97, wherein rotation of the handle will cause the sleeve valve insert 96 to axially displace with respect to the sleeve.
- the above threaded arrangement acts as a detent to maintain the fixed orifice between the second orifices at the desired flow setting.
- the sleeve valve insert may be designed to displace axially without rotation.
- standard mechanical or hydraulic detent mechanism may be utilized to maintain a selected axial displacement.
- the sleeve, sleeve valve insert and piston need not have a circular cross section since there is no requirement of rotation of the sleeve valve insert.
- FIG. 5 illustrates an alternative embodiment 120 of the present invention wherein the sleeve valve insert 106 has an extension which is provided with a plurality of third radial orifices 107.
- the valve seat means 112 is slideably mounted within the sleeve valve insert.
- the sleeve may be integrally connected to the housing, or the sleeve may be deleted, however, most applications will find it preferable from a manufacturing aspect to have a sleeve separate from the housing and insertable.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sliding Valves (AREA)
Abstract
Description
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/601,780 US4574839A (en) | 1984-04-19 | 1984-04-19 | Directional control valve with integral flow control valve |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/601,780 US4574839A (en) | 1984-04-19 | 1984-04-19 | Directional control valve with integral flow control valve |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4574839A true US4574839A (en) | 1986-03-11 |
Family
ID=24408731
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/601,780 Expired - Fee Related US4574839A (en) | 1984-04-19 | 1984-04-19 | Directional control valve with integral flow control valve |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4574839A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4889161A (en) * | 1987-10-02 | 1989-12-26 | Applied Power Inc. | Compensated individual segment flow regulator |
| FR2689575A1 (en) * | 1992-04-06 | 1993-10-08 | Rexroth Sigma | Hydraulic distributor with pressure compensation and a maximum pressure selection to control a pump and multiple hydraulic control including such distributors. |
| US20090165863A1 (en) * | 2005-07-25 | 2009-07-02 | Zvika Einav | Fluid pressure regulator with no-drain valve |
| US20120144926A1 (en) * | 2010-02-02 | 2012-06-14 | Bucher Hydraulics S.P.A. | Hydraulic section for load sensing applications and multiple hydraulic distributor |
| US20160201297A1 (en) * | 2013-08-13 | 2016-07-14 | Volvo Construction Equipment Ab | Flow control valve for construction equipment |
Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2776056A (en) * | 1949-03-16 | 1957-01-01 | Oilgear Co | Apparatus for filtering liquid |
| US2881794A (en) * | 1957-03-29 | 1959-04-14 | Conair | Flow limiter |
| US2915084A (en) * | 1958-06-02 | 1959-12-01 | Carl C Taylor | Flow controllers |
| US2973778A (en) * | 1958-11-03 | 1961-03-07 | Stephen C Baker | Hydraulic valve |
| US3016046A (en) * | 1960-05-05 | 1962-01-09 | Clark Equipment Co | Regulator valve |
| US3223115A (en) * | 1963-01-04 | 1965-12-14 | W A Kates Company | Flow regulating apparatus |
| US3285282A (en) * | 1964-10-22 | 1966-11-15 | Parker Hannifin Corp | Flow control valve for fluid motors and the like |
| US3333599A (en) * | 1965-06-08 | 1967-08-01 | Art Co Soc | Straight-through flow regulating valve |
| US3366138A (en) * | 1964-09-15 | 1968-01-30 | Clifford P. Graham | Valve means |
| US3401521A (en) * | 1967-03-06 | 1968-09-17 | Allis Chalmers Mfg Co | Hydraulic control valve |
| US3468341A (en) * | 1964-11-19 | 1969-09-23 | Broughton Corp | Precision vacuum controller |
| US3590861A (en) * | 1969-05-05 | 1971-07-06 | Keelavite Hydraulics Ltd | Liquid flow control valves |
| US3595271A (en) * | 1969-06-30 | 1971-07-27 | Int Harvester Co | Directional flow control valve with float and check valve structure |
| US3643685A (en) * | 1970-11-04 | 1972-02-22 | Schaub Engineering Co | Flow regulator |
| US3698434A (en) * | 1971-04-01 | 1972-10-17 | Int Harvester Co | Hydraulic directional control valve |
| US3724494A (en) * | 1969-11-03 | 1973-04-03 | H Alber | Flow regulating valve |
| US3770007A (en) * | 1972-04-21 | 1973-11-06 | Int Harvester Co | Dual direction flow control valve |
| DE2317042A1 (en) * | 1972-04-28 | 1973-12-13 | Sasnowski Hydraulik Nord | ADJUSTABLE FLOW CONTROL VALVE |
| SU798753A1 (en) * | 1978-12-15 | 1981-01-23 | Предприятие П/Я М-5727 | Pressure regulator |
| US4406442A (en) * | 1980-01-22 | 1983-09-27 | International Harvester Co. | Rotary valve |
| US4440191A (en) * | 1982-09-23 | 1984-04-03 | United Technologies Corporation | Flow control device |
-
1984
- 1984-04-19 US US06/601,780 patent/US4574839A/en not_active Expired - Fee Related
Patent Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2776056A (en) * | 1949-03-16 | 1957-01-01 | Oilgear Co | Apparatus for filtering liquid |
| US2881794A (en) * | 1957-03-29 | 1959-04-14 | Conair | Flow limiter |
| US2915084A (en) * | 1958-06-02 | 1959-12-01 | Carl C Taylor | Flow controllers |
| US2973778A (en) * | 1958-11-03 | 1961-03-07 | Stephen C Baker | Hydraulic valve |
| US3016046A (en) * | 1960-05-05 | 1962-01-09 | Clark Equipment Co | Regulator valve |
| US3223115A (en) * | 1963-01-04 | 1965-12-14 | W A Kates Company | Flow regulating apparatus |
| US3366138A (en) * | 1964-09-15 | 1968-01-30 | Clifford P. Graham | Valve means |
| US3285282A (en) * | 1964-10-22 | 1966-11-15 | Parker Hannifin Corp | Flow control valve for fluid motors and the like |
| US3468341A (en) * | 1964-11-19 | 1969-09-23 | Broughton Corp | Precision vacuum controller |
| US3333599A (en) * | 1965-06-08 | 1967-08-01 | Art Co Soc | Straight-through flow regulating valve |
| US3401521A (en) * | 1967-03-06 | 1968-09-17 | Allis Chalmers Mfg Co | Hydraulic control valve |
| US3590861A (en) * | 1969-05-05 | 1971-07-06 | Keelavite Hydraulics Ltd | Liquid flow control valves |
| US3595271A (en) * | 1969-06-30 | 1971-07-27 | Int Harvester Co | Directional flow control valve with float and check valve structure |
| US3724494A (en) * | 1969-11-03 | 1973-04-03 | H Alber | Flow regulating valve |
| US3643685A (en) * | 1970-11-04 | 1972-02-22 | Schaub Engineering Co | Flow regulator |
| US3698434A (en) * | 1971-04-01 | 1972-10-17 | Int Harvester Co | Hydraulic directional control valve |
| US3770007A (en) * | 1972-04-21 | 1973-11-06 | Int Harvester Co | Dual direction flow control valve |
| DE2317042A1 (en) * | 1972-04-28 | 1973-12-13 | Sasnowski Hydraulik Nord | ADJUSTABLE FLOW CONTROL VALVE |
| SU798753A1 (en) * | 1978-12-15 | 1981-01-23 | Предприятие П/Я М-5727 | Pressure regulator |
| US4406442A (en) * | 1980-01-22 | 1983-09-27 | International Harvester Co. | Rotary valve |
| US4440191A (en) * | 1982-09-23 | 1984-04-03 | United Technologies Corporation | Flow control device |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4889161A (en) * | 1987-10-02 | 1989-12-26 | Applied Power Inc. | Compensated individual segment flow regulator |
| FR2689575A1 (en) * | 1992-04-06 | 1993-10-08 | Rexroth Sigma | Hydraulic distributor with pressure compensation and a maximum pressure selection to control a pump and multiple hydraulic control including such distributors. |
| EP0566449A1 (en) * | 1992-04-06 | 1993-10-20 | Rexroth-Sigma | Hydraulic maximum load and pressure compensating valve |
| US5305789A (en) * | 1992-04-06 | 1994-04-26 | Rexroth-Sigma | Hydraulic directional control valve combining pressure compensation and maximum pressure selection for controlling a feed pump, and multiple hydraulic control apparatus including a plurality of such valves |
| US20090165863A1 (en) * | 2005-07-25 | 2009-07-02 | Zvika Einav | Fluid pressure regulator with no-drain valve |
| US8205638B2 (en) * | 2005-07-25 | 2012-06-26 | Plastro Irrigation Systems Ltd. | Fluid pressure regulator with no-drain valve |
| US20120144926A1 (en) * | 2010-02-02 | 2012-06-14 | Bucher Hydraulics S.P.A. | Hydraulic section for load sensing applications and multiple hydraulic distributor |
| US8646338B2 (en) * | 2010-02-02 | 2014-02-11 | Bucher Hydraulics S.P.A. | Hydraulic section for load sensing applications and multiple hydraulic distributor |
| US20160201297A1 (en) * | 2013-08-13 | 2016-07-14 | Volvo Construction Equipment Ab | Flow control valve for construction equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6619183B2 (en) | Electrohydraulic valve assembly | |
| US7921878B2 (en) | Control valve with load sense signal conditioning | |
| US5333449A (en) | Pressure compensating valve assembly | |
| US3910311A (en) | Pressure compensated control valve | |
| US3980095A (en) | Power transmission | |
| US10323762B2 (en) | Three-way pressure control and flow regulator valve | |
| US4351356A (en) | Pressure control valve | |
| DE2813618A1 (en) | ELECTROMAGNETIC PRESSURE REGULATING VALVE | |
| US4574839A (en) | Directional control valve with integral flow control valve | |
| US5685332A (en) | Valve assembly | |
| JP2001504196A (en) | Valve assembly and method of operating the valve assembly | |
| US3985153A (en) | Pressure compensating valve spool assembly for a hydraulic control valve | |
| US4463660A (en) | Multi-way valve | |
| US3896844A (en) | Fluid flow regulating apparatus | |
| US3587630A (en) | Pressure-compensated flow control valve | |
| EP0862698B1 (en) | Control valves | |
| GB2095794A (en) | Electro-hydraulic proportional control valve | |
| US3467126A (en) | Hydraulic load compensating directional control valve | |
| US4085920A (en) | Pilot control valve with servo means | |
| US5136930A (en) | Apparatus for supplying pressure oil to hydraulic cylinders employed in working machines | |
| US3861145A (en) | Multiple hydraulic control circuits with pressure compensated flow control and a single variable delivery pump | |
| US4705069A (en) | Directional control valve having a built-in flow control valve | |
| US4552168A (en) | Stabilizer for priority flow divider valve | |
| US11680589B1 (en) | Sequence valve with a reverse free flow configuration integrated therewith | |
| EP0400152A1 (en) | Flow rate control valve device and flow force reduction structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INTERMANTIONAL HARVESTER COMPANY 401 MI AVE CHICAG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:YEH, RUDOLPH E.;ZAGOTTA, JOSEPH L.;REEL/FRAME:004259/0473 Effective date: 19840416 |
|
| AS | Assignment |
Owner name: J.I. CASE COMPANY A DE CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL HARVESTER COMPANY A DE CORP;REEL/FRAME:004379/0536 Effective date: 19850131 Owner name: J.I. CASE COMPANY A DE CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INTERNATIONAL HARVESTER COMPANY A DE CORP;REEL/FRAME:004379/0536 Effective date: 19850131 |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19900311 |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |