US4573531A - Method of underground gasification of coal seam - Google Patents

Method of underground gasification of coal seam Download PDF

Info

Publication number
US4573531A
US4573531A US06/578,527 US57852784A US4573531A US 4573531 A US4573531 A US 4573531A US 57852784 A US57852784 A US 57852784A US 4573531 A US4573531 A US 4573531A
Authority
US
United States
Prior art keywords
layer
wells
gasified
coal seam
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/578,527
Inventor
Ivan S. Garkusha
Vadim N. Kazak
Valery K. Kapralov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VSESOJUZNOE NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE SOJUZPROMGAZ USSR MOSCOW
Vsesojuznoe Nauchno-Proizvod-Stvennoe Obiedinenie "sojuzpromgaz"
Original Assignee
Vsesojuznoe Nauchno-Proizvod-Stvennoe Obiedinenie "sojuzpromgaz"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vsesojuznoe Nauchno-Proizvod-Stvennoe Obiedinenie "sojuzpromgaz" filed Critical Vsesojuznoe Nauchno-Proizvod-Stvennoe Obiedinenie "sojuzpromgaz"
Assigned to VSESOJUZNOE NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE SOJUZPROMGAZ, USSR, MOSCOW reassignment VSESOJUZNOE NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE SOJUZPROMGAZ, USSR, MOSCOW ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GARKUSHA, IVAN S., KAPRALOV, VALERY K., KAZAK, VADIM N.
Application granted granted Critical
Publication of US4573531A publication Critical patent/US4573531A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well

Definitions

  • the present invention relates to underground gasification of brown and bituminous coals and may be used in gasification of coal seams under various bedding conditions (at different pitch angles and depths).
  • the invention may be used to best advantage with coal seams thicker than 5 m.
  • a known method of underground gasification of coals comprises the steps of opening a coal seam by drilling wells throughout its thickness, interconnecting the wells through a seam hydrofracture, establishing a gasification passage and gasifying the coal by introducing a gaseous medium into a blast passage and removing the produced gas.
  • a disadvantage of the aforesaid method is that, in gasification of thick coal seams deposited near the surface of the earth, there may occur downfalls or the blast and gas may break through cracks and fissures, thereby causing the gasification process to stop.
  • the object of the invention is to provide a method of underground gasification of a coal seam ensuring gasification of a thick seam without downfalls or break-through of a gaseous agent and gas to the surface of the earth owing to a proper choice of the thickness of a gasified layer and of the seam working sequence.
  • a method of underground gasification comprising the steps of determining the depth of occurrence and the thickness of a coal seam, opening it by drilling operating injection and production wells, interconnecting said wells within the coal seam, setting afire the coal, establishing gasification passages therein and gasifying the coal by supplying a gaseous medium into the first wells and removing the produced gas from the second wells, in which according to the invention, the seam is gasified successively layer by layer in the direction from the roof of the coal seam to its bottom, the drilling of the operating holes, their interconnection, the setting of the coal afire and formation of the gasification passages being effected within each layer, gasification of the underlying layer being started after the overlying layer is gasified and the rock overlying the gasified layer is no longer shifted, the shift thereof being caused by the gasification process, the thickness of each gasified layer being chosen so that the height of a zone containing cracks formed as a result of the shift of the overlying rock does not exceed the depth of occurrence of said
  • m is the thickness of said gasified layer, m
  • H is the thickness of rock overlying the coal seam
  • n is an experimental coefficient characterizing properties of the rock overlying the coal seam and accounting for possible propagation of cracks from the degasified space to the surface of the earth.
  • the method in compliance with the invention makes it possible to gasify thick coal layers successively layer by layer, each layer having a corresponding thickness, an advantage enabling protection of the surface of the earth against penetration of a gaseous medium and gas due to rock shifts. Also, minimum losses are ensured in utilizing coal reserves.
  • gasification passages in adjacent layers are displaced relative to one another in the seam plane, a feature increasing the degree of utilization of coal reserves and providing minimum losses.
  • the degasified space in the overlying layer of the coal seam should be filled with a suitable stowage material supplied through bore holes, a factor decreasing the effect of rock deformation upon the production process. Furthermore, downfalls will be fewer.
  • FIG. 1 is an elevation of a coal seam prepared for gasifying a first layer according to the invention
  • FIG. 2 shows arrangement of production wells in an underground gasification area according to the invention.
  • FIG. 3 is an elevation of the coal seam prepared for gasifying a second layer.
  • the method forming the subject of the present invention is accomplished as follows.
  • a coal seam 1 (FIG. 1) is opened by drilling inclined horizontal wells 2 including a horizontal portion 3 and vertical wells 4, 5 (FIG. 2).
  • the horizontal portion 3 of the well 2 is disposed within a first layer 6 (FIG. 1) of the coal seam, the thickness of said layer being chosen to satisfy the following relation:
  • m is the thickness of the gasified layer, m
  • H is the thickness of rock overlying the coal seam, m;
  • n is a coefficient characterizing properties of the overlying rock and accounting for possible propagation of cracks from the degasified space to the surface of the earth.
  • n The value of the coefficient n is known from experience gained in underground gasification of coals under different geological conditions. It generally depends on physical and mechanical properties of rock overlying a coal bed, the thickness of said coal bed (or a layer) and on gasification conditions.
  • FIGS. 1, 2 and 3 denotes only one of a multitude of operating wells since said wells are essentially similar.
  • An inclined portion 7 of the wells 2 is drilled beyond a zone wherein overlying rock 8 is shifted (the boundaries of the rock shift zone are defined by a line drawn at a rock shift angle ⁇ ), said inclined portion being encased by metal tubes up to a point at which the well enters the coal seam.
  • the number of vertical wells 4 depends on the work area.
  • the vertical wells 4 are interconnected in the coal seam with the horizontal portions 3 of the wells 2 through a hydrofracture or a pyrogenous connection.
  • a gaseous medium is supplied successively or simultaneously to the inclined horizontal wells 2, the gas being removed through the wells 4 in a fire row 9 farthest from the wells 2.
  • the vertical wells 4 are interconnected with the horizontal portions 3 of the wells 2 through a hydrofracture or a pyrogenous connection.
  • the gas is removed through the well 2 and a group of the gas-outlet wells 5 interconnected with the well 2.
  • An underground gas producer is fired as follows. In the central well in the row 9 the coal seam is set afire by any known method. Simultaneously the gas medium is supplied to the other wells. The gas is removed through the central well 4 in the row 9.
  • said gas medium is supplied simultaneously or successively to the inclined horizontal wells, the gas being removed through the wells in the fire row 9.
  • the coal is set afire and reaction (gasification) passages 3 are established up to the casing tubes in the inclined portion 7 of the wells 2. Also, a pyrogenous connection is provided between the vertical wells 5 (FIG. 2) and the passage in the adjacent inclined well 2.
  • the vertical wells 5 FIG. 2
  • the gaseous medium used is an air blast or an oxygen-enriched air under a varying pressure depending on the depth of occurrence of the coal seam 1 and its physical and chemical properties.
  • the coal seam 1 is gasified in sections of the reaction passage between the vertical wells from the wells in the row 9 to the inclined portion 7 of the wells 2.
  • the gaseous medium is supplied to the wells 4 and the gas is removed through the vertical wells 5 and the well 2 nearest thereto, the gas being initially cooled from 500°-600° to 200° C. by watering it on the face of the gas-outlet wells 5 and 2.
  • a hydraulic stowage material is supplied to the degasified space 10 in the upper layer 6 through the wells 4.
  • a hydraulic stowage material is supplied to the degasified space 10 in the upper layer 6 through the wells 4.
  • For stowage use may be made of forest loam found on the surface of a coal field or of dump rock. A mixing plant is erected in the vicinity of the gas producer. Loams or other rocks are washed using a monitor and a water jet under pressure.
  • a second layer 11 (FIG. 3) is prepared and gasified in accordance with the position of the wells in the upper layer 6, passages 12 in the upper layer 11 being displaced in plan in the seam plane relative to similar channels in the upper layer 6.
  • the coal in the layer 11 is gasified in a manner similar to that described above.
  • coal seam 1 is gasified layer by layer from the roof of the seam to its bottom.
  • the proposed method allows gasification of thick coal beds without any hazard of a blast and gas penetrating to the surface of the earth through cracks in overlying rock.

Abstract

A method of underground gasification of a coal seam comprises the steps of opening it by drilling injection and production wells, interconnecting said wells, setting the coal afire and gasifying the coal by supplying a gaseous medium into the first wells and removing the produced gas from the second wells. The seam is gasified successively layer by layer in the direction from the roof of the seam to its bottom. Each subsequent layer is gasified after gasification of the preceding layer is completed and rock overlying the gasified layer is no longer shifted. The thickness of said layer is chosen so that the height of a zone containing cracks formed as a result of rock shift does not exceed the depth of occurrence of the gasified layer.

Description

BACKGROUND OF THE INVENTION
The present invention relates to underground gasification of brown and bituminous coals and may be used in gasification of coal seams under various bedding conditions (at different pitch angles and depths).
The invention may be used to best advantage with coal seams thicker than 5 m.
It may also find applications in underground gasification of oil shales.
With prior art methods of underground gasification of coals, a coal bed is degasified simultaneously throughout its thickness.
However, when a coal bed is degasified simultaneously throughout its thickness in fields characterized by a small ratio of the thickness of the degasified bed, there are formed cracks extending to the surface of the earth due to rock deformation and shifts. Thus, a gaseous medium supplied to effect gasification and the gas formed therewith break through said cracks and fissures.
A known method of underground gasification of coals (cf. U.S. Pat. No. 4,018,481, Cl. 299-4 published in 1977) comprises the steps of opening a coal seam by drilling wells throughout its thickness, interconnecting the wells through a seam hydrofracture, establishing a gasification passage and gasifying the coal by introducing a gaseous medium into a blast passage and removing the produced gas. A disadvantage of the aforesaid method is that, in gasification of thick coal seams deposited near the surface of the earth, there may occur downfalls or the blast and gas may break through cracks and fissures, thereby causing the gasification process to stop.
There is also known a method of underground gasification of coal (cf. U.S. Pat. No. 4,069,867, Cl. 166-256 published in 1978) comprising the steps of opening a coal seam by drilling vertical and inclined holes, interconnecting the holes within the coal seam, establishing gasification passages therein, and gasifying the coal by injecting a gaseous medium into one of the interconnected holes and removing the gas from another hole. A disadvantage of the foregoing method is that, in gasification of thick coal seams deposited at a small depth from the surface of the earth, there may occur downfalls or the blast and gas may break through to the surface of the earth whereby the gasification process is disrupted or stopped.
SUMMARY OF THE INVENTION
The object of the invention is to provide a method of underground gasification of a coal seam ensuring gasification of a thick seam without downfalls or break-through of a gaseous agent and gas to the surface of the earth owing to a proper choice of the thickness of a gasified layer and of the seam working sequence.
There is provided a method of underground gasification comprising the steps of determining the depth of occurrence and the thickness of a coal seam, opening it by drilling operating injection and production wells, interconnecting said wells within the coal seam, setting afire the coal, establishing gasification passages therein and gasifying the coal by supplying a gaseous medium into the first wells and removing the produced gas from the second wells, in which according to the invention, the seam is gasified successively layer by layer in the direction from the roof of the coal seam to its bottom, the drilling of the operating holes, their interconnection, the setting of the coal afire and formation of the gasification passages being effected within each layer, gasification of the underlying layer being started after the overlying layer is gasified and the rock overlying the gasified layer is no longer shifted, the shift thereof being caused by the gasification process, the thickness of each gasified layer being chosen so that the height of a zone containing cracks formed as a result of the shift of the overlying rock does not exceed the depth of occurrence of said gasified layer.
It is of advantage that the thickness of said gasified layer should be chosen to satisfy the following relation:
m≦H/n,
where
m is the thickness of said gasified layer, m;
H is the thickness of rock overlying the coal seam; and
n is an experimental coefficient characterizing properties of the rock overlying the coal seam and accounting for possible propagation of cracks from the degasified space to the surface of the earth.
The method in compliance with the invention makes it possible to gasify thick coal layers successively layer by layer, each layer having a corresponding thickness, an advantage enabling protection of the surface of the earth against penetration of a gaseous medium and gas due to rock shifts. Also, minimum losses are ensured in utilizing coal reserves.
Advantageously, gasification passages in adjacent layers are displaced relative to one another in the seam plane, a feature increasing the degree of utilization of coal reserves and providing minimum losses.
It is also of advantage that the degasified space in the overlying layer of the coal seam should be filled with a suitable stowage material supplied through bore holes, a factor decreasing the effect of rock deformation upon the production process. Furthermore, downfalls will be fewer.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in more detail with reference to a specific embodiment thereof, taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is an elevation of a coal seam prepared for gasifying a first layer according to the invention;
FIG. 2 shows arrangement of production wells in an underground gasification area according to the invention; and
FIG. 3 is an elevation of the coal seam prepared for gasifying a second layer.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The method forming the subject of the present invention is accomplished as follows.
A coal seam 1 (FIG. 1) is opened by drilling inclined horizontal wells 2 including a horizontal portion 3 and vertical wells 4, 5 (FIG. 2). The horizontal portion 3 of the well 2 is disposed within a first layer 6 (FIG. 1) of the coal seam, the thickness of said layer being chosen to satisfy the following relation:
m≦H/n,
where
m is the thickness of the gasified layer, m;
H is the thickness of rock overlying the coal seam, m;
n is a coefficient characterizing properties of the overlying rock and accounting for possible propagation of cracks from the degasified space to the surface of the earth.
The height of a zone wherein cracks occur under different bedding conditions, as applicable to brown and bituminous coal seams, is known from experience gained in underground gasification of coals.
Defining successively the thickness of a gasified layer, we find the height of said zone wherein cracks occur by multiplying the coefficient n into the thickness of said layer and, subsequently, compare the obtained value with the depth of occurrence of said layer, H. With the height of said zone wherein cracks occur being smaller than the depth of occurrence of said layer, we determine the thickness of the gasified layer of interest.
The value of the coefficient n is known from experience gained in underground gasification of coals under different geological conditions. It generally depends on physical and mechanical properties of rock overlying a coal bed, the thickness of said coal bed (or a layer) and on gasification conditions.
To enable better understanding of the invention, a corresponding reference numeral in FIGS. 1, 2 and 3 denotes only one of a multitude of operating wells since said wells are essentially similar.
An inclined portion 7 of the wells 2 is drilled beyond a zone wherein overlying rock 8 is shifted (the boundaries of the rock shift zone are defined by a line drawn at a rock shift angle δ), said inclined portion being encased by metal tubes up to a point at which the well enters the coal seam.
The number of vertical wells 4 depends on the work area.
The vertical wells 4 are interconnected in the coal seam with the horizontal portions 3 of the wells 2 through a hydrofracture or a pyrogenous connection.
Thereafter initial reaction (gasification) passages are established. A gaseous medium is supplied successively or simultaneously to the inclined horizontal wells 2, the gas being removed through the wells 4 in a fire row 9 farthest from the wells 2.
Under said conditions the coal is set afire and reaction (gasification) passages are established up to that portion of the wells which is encased by tubes.
The vertical wells 4 are interconnected with the horizontal portions 3 of the wells 2 through a hydrofracture or a pyrogenous connection. The gas is removed through the well 2 and a group of the gas-outlet wells 5 interconnected with the well 2.
An underground gas producer is fired as follows. In the central well in the row 9 the coal seam is set afire by any known method. Simultaneously the gas medium is supplied to the other wells. The gas is removed through the central well 4 in the row 9.
As the fire reaches the wells adjoining the central well 4 in the row 9, the gas medium is no longer supplied to the wells adjoining the central well, said gas medium being supplied simultaneously to the extreme wells in the row 9, while the gas is removed through the other wells in the row 9. As the fire reaches the extreme wells in the row 9, a firing passage is established by fire over the entire length. Also, said passage and all the inclined horizontal wells 2 are hydraulically interconnected.
To establish initial reaction (gasification) passages, said gas medium is supplied simultaneously or successively to the inclined horizontal wells, the gas being removed through the wells in the fire row 9.
Under the specified conditions the coal is set afire and reaction (gasification) passages 3 are established up to the casing tubes in the inclined portion 7 of the wells 2. Also, a pyrogenous connection is provided between the vertical wells 5 (FIG. 2) and the passage in the adjacent inclined well 2. Thus, all the vertical and inclined horizontal wells of the underground gas producer are interconnected within the coal seam as a result of setting the coal afire and establishing by fire all the necessary passages within said coal seam. Thereafter the coal seam 1 is gasified. When the coal seam is set afire and the reaction passages are established by fire, the gaseous medium used is an air blast or an oxygen-enriched air under a varying pressure depending on the depth of occurrence of the coal seam 1 and its physical and chemical properties.
The coal seam 1 is gasified in sections of the reaction passage between the vertical wells from the wells in the row 9 to the inclined portion 7 of the wells 2. The gaseous medium is supplied to the wells 4 and the gas is removed through the vertical wells 5 and the well 2 nearest thereto, the gas being initially cooled from 500°-600° to 200° C. by watering it on the face of the gas-outlet wells 5 and 2.
When the gasification process is over, a hydraulic stowage material is supplied to the degasified space 10 in the upper layer 6 through the wells 4. For stowage, use may be made of forest loam found on the surface of a coal field or of dump rock. A mixing plant is erected in the vicinity of the gas producer. Loams or other rocks are washed using a monitor and a water jet under pressure.
After the degasified space in the upper layer 6 is filled, a second layer 11 (FIG. 3) is prepared and gasified in accordance with the position of the wells in the upper layer 6, passages 12 in the upper layer 11 being displaced in plan in the seam plane relative to similar channels in the upper layer 6. The coal in the layer 11 is gasified in a manner similar to that described above.
Thus, the entire coal seam 1 is gasified layer by layer from the roof of the seam to its bottom.
The proposed method allows gasification of thick coal beds without any hazard of a blast and gas penetrating to the surface of the earth through cracks in overlying rock.

Claims (4)

What is claimed is:
1. A method of underground gasification of a coal seam, comprising the steps of:
determining the depth of occurrence and the thickness of a coal seam;
opening said coal seam by drilling operating injection and production wells therein;
interconnecting said wells within said coal seam;
forming gasification passages within said coal seam; and
igniting said coal and gasifying the same by supplying a gaseous medium through said injection wells and removing the produced gas from said production wells,
said coal seam being gasified successively layer by layer from the roof of said coal seam to the bottom thereof,
the drilling of said operating wells, their interconnection, the igniting of the coal and formation of said gasification passages being effected successively within each layer from top to bottom with gasification of each under-layer being started after the overlying layer is gasified and no shifting occurs in the rock overlying the gasified layer, shifting thereof resulting from the gasification of the layer supporting the rock,
the thickness of each gasified layer being chosen so that the height of a zone containing cracks formed as a result of the shift of the overlying rock does not exceed the depth of said gasified layer.
2. A method as claimed in claim 1, wherein the thickness of the gasified layer is chosen to satisfy the following relation:
m≦H/n,
where
m is the thickness of the gasified layer, m;
H is the thickness of rock overlying the coal seam, m;
n is a coefficient characterizing the height of the zone in which cracks are formed over the degasified space.
3. A method as claimed in claim 2, wherein the gasification passages in adjacent layers are displaced relative to one another in the seam plane.
4. A method as claimed in claim 3, characterized in that the degasified space in the overlying layer of said coal seam is filled with a suitable stowage material supplied through the wells.
US06/578,527 1980-02-21 1984-02-09 Method of underground gasification of coal seam Expired - Fee Related US4573531A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SU802887369A SU925094A1 (en) 1980-02-21 1980-02-21 Method of underground gasification of coal
SU2887369 1980-02-21
AU24520/84A AU562380B2 (en) 1980-02-21 1984-02-13 Underground gassification
BR8400778A BR8400778A (en) 1980-02-21 1984-02-21 PROCESS FOR UNDERGROUND COAL SPINDLE GASIFICATION

Publications (1)

Publication Number Publication Date
US4573531A true US4573531A (en) 1986-03-04

Family

ID=36790813

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/578,527 Expired - Fee Related US4573531A (en) 1980-02-21 1984-02-09 Method of underground gasification of coal seam

Country Status (7)

Country Link
US (1) US4573531A (en)
AU (1) AU562380B2 (en)
BR (1) BR8400778A (en)
CA (1) CA1208541A (en)
DE (1) DE3404455C2 (en)
IN (1) IN162147B (en)
SU (1) SU925094A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705109A (en) * 1985-03-07 1987-11-10 Institution Pour Le Developpement De La Gazeification Souterraine Controlled retracting gasifying agent injection point process for UCG sites
US4858689A (en) * 1988-04-11 1989-08-22 Resource Enterprises, Inc. Coal gasification well drilling process
US5263795A (en) * 1991-06-07 1993-11-23 Corey John C In-situ remediation system for groundwater and soils
US5287926A (en) * 1990-02-22 1994-02-22 Grupping Arnold Method and system for underground gasification of coal or browncoal
US5456315A (en) * 1993-05-07 1995-10-10 Alberta Oil Sands Technology And Research Horizontal well gravity drainage combustion process for oil recovery
US20060266517A1 (en) * 2003-06-09 2006-11-30 Stayton Robert J Method for drilling with improved fluid collection pattern
US20090188667A1 (en) * 2008-01-30 2009-07-30 Alberta Research Council Inc. System and method for the recovery of hydrocarbons by in-situ combustion
CN101113670B (en) * 2007-09-04 2010-10-27 新奥科技发展有限公司 Coal underground gasifying technology
CN103424055A (en) * 2013-07-30 2013-12-04 西安科技大学 Method for observing caving steps of fully-enclosed non-pedestrian roadways
CN104727802A (en) * 2015-01-23 2015-06-24 新奥气化采煤有限公司 Underground coal seam holing through method
CN104747160A (en) * 2015-02-04 2015-07-01 新奥气化采煤有限公司 Underground gasification furnace and method of coal
CN107083948A (en) * 2017-06-16 2017-08-22 新疆国利衡清洁能源科技有限公司 A kind of coal underground gasifying furnace furnace body structure and construction method
CN107091078A (en) * 2017-06-15 2017-08-25 新疆国利衡清洁能源科技有限公司 Underground coal gasification passage and its method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333082A1 (en) * 1992-10-10 1994-04-14 Heinz Hinterholzinger Fuel gas prodn from esp domestic waste - by reaction with coal and water in abandoned coal mine.
EA017460B1 (en) * 2010-08-17 2012-12-28 Открытое Акционерное Общество "Газпром Промгаз" Method for borehole complex developing of metal and coal bed
CN114165210B (en) * 2021-12-16 2022-08-26 中国矿业大学(北京) Deep coal resource fluidization mining method and system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116792A (en) * 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3198249A (en) * 1961-09-01 1965-08-03 Exxon Production Research Co Method for sealing off porous subterranean formations and for improving conformance of in-situ combustion
US3208516A (en) * 1963-05-13 1965-09-28 Shell Oil Co Control method in underground combustion drives
US3563606A (en) * 1969-03-24 1971-02-16 St Joe Minerals Corp Method for in-situ utilization of fuels by combustion
US4096912A (en) * 1977-06-06 1978-06-27 The United States Of America As Represented By The United States Department Of Energy Methods for minimizing plastic flow of oil shale during in situ retorting
US4243101A (en) * 1977-09-16 1981-01-06 Grupping Arnold Coal gasification method
GB2086930A (en) * 1980-10-13 1982-05-19 Ledent Pierre Process for the Gasification of a Deposit of Coal or Lignite
US4437520A (en) * 1981-06-15 1984-03-20 In Situ Technology, Inc. Method for minimizing subsidence effects during production of coal in situ
US4441554A (en) * 1980-11-28 1984-04-10 Grupping Arnold Method for the underground gasification of coal or browncoal
US4502539A (en) * 1982-03-11 1985-03-05 Grupping Arnold W Method for the underground gasification of coal or browncoal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE557180C (en) * 1930-03-26 1932-08-19 Bela Forgacs Dipl Ing Process and route arrangement for degassing and gasifying coal on site
DE949519C (en) * 1951-04-09 1956-09-20 Mini Of Fuel And Power Process for underground gasification of coal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116792A (en) * 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3198249A (en) * 1961-09-01 1965-08-03 Exxon Production Research Co Method for sealing off porous subterranean formations and for improving conformance of in-situ combustion
US3208516A (en) * 1963-05-13 1965-09-28 Shell Oil Co Control method in underground combustion drives
US3563606A (en) * 1969-03-24 1971-02-16 St Joe Minerals Corp Method for in-situ utilization of fuels by combustion
US4096912A (en) * 1977-06-06 1978-06-27 The United States Of America As Represented By The United States Department Of Energy Methods for minimizing plastic flow of oil shale during in situ retorting
US4243101A (en) * 1977-09-16 1981-01-06 Grupping Arnold Coal gasification method
GB2086930A (en) * 1980-10-13 1982-05-19 Ledent Pierre Process for the Gasification of a Deposit of Coal or Lignite
US4441554A (en) * 1980-11-28 1984-04-10 Grupping Arnold Method for the underground gasification of coal or browncoal
US4437520A (en) * 1981-06-15 1984-03-20 In Situ Technology, Inc. Method for minimizing subsidence effects during production of coal in situ
US4502539A (en) * 1982-03-11 1985-03-05 Grupping Arnold W Method for the underground gasification of coal or browncoal

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705109A (en) * 1985-03-07 1987-11-10 Institution Pour Le Developpement De La Gazeification Souterraine Controlled retracting gasifying agent injection point process for UCG sites
US4858689A (en) * 1988-04-11 1989-08-22 Resource Enterprises, Inc. Coal gasification well drilling process
US5287926A (en) * 1990-02-22 1994-02-22 Grupping Arnold Method and system for underground gasification of coal or browncoal
US5263795A (en) * 1991-06-07 1993-11-23 Corey John C In-situ remediation system for groundwater and soils
US5456315A (en) * 1993-05-07 1995-10-10 Alberta Oil Sands Technology And Research Horizontal well gravity drainage combustion process for oil recovery
US20060266517A1 (en) * 2003-06-09 2006-11-30 Stayton Robert J Method for drilling with improved fluid collection pattern
US7513304B2 (en) 2003-06-09 2009-04-07 Precision Energy Services Ltd. Method for drilling with improved fluid collection pattern
CN101113670B (en) * 2007-09-04 2010-10-27 新奥科技发展有限公司 Coal underground gasifying technology
US7740062B2 (en) 2008-01-30 2010-06-22 Alberta Research Council Inc. System and method for the recovery of hydrocarbons by in-situ combustion
US20090188667A1 (en) * 2008-01-30 2009-07-30 Alberta Research Council Inc. System and method for the recovery of hydrocarbons by in-situ combustion
CN103424055A (en) * 2013-07-30 2013-12-04 西安科技大学 Method for observing caving steps of fully-enclosed non-pedestrian roadways
CN103424055B (en) * 2013-07-30 2015-10-21 西安科技大学 Totally-enclosed non-pedestrian tunnel caving angle observation procedure
CN104727802A (en) * 2015-01-23 2015-06-24 新奥气化采煤有限公司 Underground coal seam holing through method
CN104727802B (en) * 2015-01-23 2017-12-19 新奥科技发展有限公司 Subterranean coal penetrates method
CN104747160A (en) * 2015-02-04 2015-07-01 新奥气化采煤有限公司 Underground gasification furnace and method of coal
CN104747160B (en) * 2015-02-04 2018-07-06 新奥科技发展有限公司 A kind of coal underground gasifying furnace and its gasification process
CN107091078A (en) * 2017-06-15 2017-08-25 新疆国利衡清洁能源科技有限公司 Underground coal gasification passage and its method
CN107083948A (en) * 2017-06-16 2017-08-22 新疆国利衡清洁能源科技有限公司 A kind of coal underground gasifying furnace furnace body structure and construction method

Also Published As

Publication number Publication date
CA1208541A (en) 1986-07-29
SU925094A1 (en) 1988-08-15
DE3404455A1 (en) 1985-08-08
BR8400778A (en) 1985-10-01
AU2452084A (en) 1985-08-22
DE3404455C2 (en) 1986-10-16
IN162147B (en) 1988-04-09
AU562380B2 (en) 1987-06-11

Similar Documents

Publication Publication Date Title
US4573531A (en) Method of underground gasification of coal seam
US4356866A (en) Process of underground coal gasification
US5016709A (en) Process for assisted recovery of heavy hydrocarbons from an underground formation using drilled wells having an essentially horizontal section
US4386665A (en) Drilling technique for providing multiple-pass penetration of a mineral-bearing formation
US4099567A (en) Generating medium BTU gas from coal in situ
CA1093958A (en) Method for underground gasification of coal
US2780449A (en) Thermal process for in-situ decomposition of oil shale
US1900163A (en) Method and apparatus for drilling oil wells
CN103670338A (en) Method for extracting coalbed methane and coal together
US4043598A (en) Multiple zone preparation of oil shale retort
US5025859A (en) Overlapping horizontal fracture formation and flooding process
CN106050234A (en) Construction technique for protecting underground water in coal mining process
CN101382065A (en) No-shaft underground gasification process
US3734180A (en) In-situ gasification of coal utilizing nonhypersensitive explosives
US4246965A (en) Method for operating an in situ oil shale retort having channelling
US4092052A (en) Converting underground coal fires into commercial products
RU2474678C1 (en) Development method of oil deposit with horizontal wells
US4036298A (en) Method of connection of wells by in-situ combustion
US5101898A (en) Well placement for steamflooding steeply dipping reservoirs
RU2283947C1 (en) Method for oil pool development with horizontal wells
US4118070A (en) Subterranean in situ oil shale retort and method for making and operating same
US4610303A (en) Method of underground gasification of a series of gently dipping and inclined coal seams
US4109964A (en) Method for preconditioning oil shale preliminary to explosive expansion and in situ retorting thereof
US4648450A (en) Method of producing synthesis gas by underground gasification of coal using specific well configuration
US4239284A (en) Situ retort with high grade fragmented oil shale zone adjacent the lower boundary

Legal Events

Date Code Title Description
AS Assignment

Owner name: VSESOJUZNOE NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE S

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:GARKUSHA, IVAN S.;KAZAK, VADIM N.;KAPRALOV, VALERY K.;REEL/FRAME:004454/0752

Effective date: 19850902

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19940306

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362