US4568943A - Antenna feed with mode conversion and polarization conversion means - Google Patents
Antenna feed with mode conversion and polarization conversion means Download PDFInfo
- Publication number
- US4568943A US4568943A US06/499,396 US49939683A US4568943A US 4568943 A US4568943 A US 4568943A US 49939683 A US49939683 A US 49939683A US 4568943 A US4568943 A US 4568943A
- Authority
- US
- United States
- Prior art keywords
- feed
- mode
- converter
- dielectric
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 title description 5
- 239000004020 conductor Substances 0.000 claims abstract description 24
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000003989 dielectric material Substances 0.000 claims abstract description 9
- 230000008878 coupling Effects 0.000 claims description 33
- 238000010168 coupling process Methods 0.000 claims description 33
- 238000005859 coupling reaction Methods 0.000 claims description 33
- 230000001902 propagating effect Effects 0.000 claims description 21
- 239000011800 void material Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 6
- 230000013011 mating Effects 0.000 claims description 4
- 239000003607 modifier Substances 0.000 claims 3
- 230000007704 transition Effects 0.000 claims 1
- 238000000465 moulding Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
- H01Q15/242—Polarisation converters
- H01Q15/244—Polarisation converters converting a linear polarised wave into a circular polarised wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/165—Auxiliary devices for rotating the plane of polarisation
- H01P1/17—Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
- H01P1/172—Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a dielectric element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/08—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
Definitions
- This invention relates to the field of antennas and more particularly to feeds for antennas.
- Direct broadcast satellites are expected to become a significant source of video programs for home viewing.
- reliable, high quality, mass produceable, inexpensive receiving antennas are needed. These antennas are expected to be of the reflective dish type.
- Such an antenna comprises essentially three parts--a reflector, a feed for receiving the signal from the reflector and a mounting mechanism which supports the feed in proper relation to the reflector.
- Typical prior art waveguide feeds for these antennas have complicated waveguide structures which require assembly to close tolerances for optimum performance. This requires substantial labor in assembly and test. All of this combines to render such a feed expensive and difficult to assemble and align.
- an antenna which is inexpensive to make and suitable for installation by purchasers without special mechanical or electronic skills.
- the antennas need to operate properly without complicated electrical adjustment following installation.
- a waveguide feed is needed which is relatively simple and inexpensive to fabricate, which requires minimal field adjustment and which provides high quality reception.
- such a feed comprises a shaped body of solid dielectric material having a layer of conductive material disposed thereon in a configuration determined by the exterior surface of the dielectric body.
- This conductive layer comprises the waveguide of the feed.
- the feed has a radiating end, a coupling end, a coupler, a mode converter and if needed, a polarization converter.
- the coupler is in the vicinity of the coupling end of the feed and provides coupling between waves propagating in the dielectric body and signals propagating in a lead-in structure.
- the mode converter is located intermediate the ends of the dielectric body and is preferably for converting, to a beam shaping mode, a part of the energy in a fundamental mode wave propagating in the dielectric body.
- the polarization converter if present, is in the vicinity of the radiating end of the feed and is for converting between linear and circular polarizations.
- FIG. 1 is a perspective view of a feed in accordance with the invention
- FIG. 2 is a cross-sectional view of a coupling portion of the FIG. 1 structure
- FIGS. 3A and 3B are cross-sectional views of the structure of FIG. 2;
- FIGS. 4 through 7 illustrate different means of providing a mode converter in the feed of FIG. 1;
- FIG. 8 is an alternate embodiment of a feed in accordance with the invention which is capable of handling two different polarizations
- FIG. 9 illustrates a portion of a coupling structure of FIG. 8.
- FIG. 9A is a cross-sectional view of the structure of FIG. 9;
- FIGS. 10A, 10B, 11A and 11B illustrate alternative means of providing the mode converter in the feed of FIG. 8.
- a waveguide feed 10 in accordance with the invention is illustrated in perspective in FIG. 1.
- This feed is suitable for use with a reflector (not shown). It may also be used separately as a radiating element without a reflector.
- the feed 10 has a radiating end 14 toward the right in FIG. 2 and a coupling end 16 toward the left in FIG. 1.
- An associated co-ordinate system 100 has three mutually perpendicular axes 102, 104 and 106.
- the axis 102 is collinear with the longitudinal axis of feed 10.
- the feed 10 comprises a body 20 of solid dielectric material which fills a waveguide 12.
- the body 20 is preferably a unitary structure having a plurality of shaped sections 21, 22, 24, 26 and 28 and has an exterior lateral surface 30 extending from a radiating end to a coupling end.
- Lateral surface 30 of body 20 has a compound contour which follows the shapes of the sections of body 20.
- Beginning at end 16 body 20 has a shaped coupling section 21 which has an exterior surface 31.
- the shape of section 21 is determined in accordance with coupling requirements.
- Section 21 merges into a section 22 of uniform rectangular cross-section which has an exterior surface 32.
- Surface 32 has two major planar portions disposed parallel to axis 104 and two other major planar portions disposed parallel to axis 106.
- Section 22 merges into a flared section 24 having an exterior surface 34 which flares outward in the directions of axes 104 and 106.
- Section 24 merges into a second uniform rectangular cross-section section (26) which has a larger cross-section than section 22 and an exterior surface 36 having major portions parallel to the major portions of surface 32.
- Section 26 merges into another flared rectangular section 28 which has an exterior surface 38.
- Section 28 terminates at the radiating end 14 of feed 10.
- the surfaces 31, 32, 34, 36 and 38 together comprise the exterior lateral surface 30.
- a layer 40 of conductive material is disposed on the lateral surface 30 on all sides of the body 20, but not on the radiating end face 14 and not on selected portions at the coupling end 16. Layer 40 may be applied by electrolessly plating the surface 30 with an appropriate conductive material.
- the conductive layer 40 is formed in a tubular configuration having an interior surface which conforms to the contours of the exterior lateral surface 30 of the dielectric body 20. This tubular conductive layer 40 is effective as a waveguide wall of waveguide 12 and constrains the propagation of electromagnetic waves within the dielectric body 20.
- the waveguide 12 has sections 41, 42, 44, 46 and 48 whose shapes are determined by sections 31, 32, 34, 36 and 38, respectively, of the exterior lateral surface 30 of body 20.
- a polarization converter 60 is located in the vicinity of the radiating end 14 of the body 20 within the large flared section 48 of the waveguide.
- the polarization converter 60 comprises interleaved strata 62 and 64 of slab-like regions.
- the regions 62 may preferably be formed from the same dielectric material as the rest of body 20 and thus will preferably have the same dielectric constant as the rest of body 20.
- the intervening regions 64 have a dielectric constant which is different from that of the regions 62.
- the slab-like regions 62 and intervening regions 64 are preferably between 0.7 and 1.4 wavelengths thick at a frequency in the designed operating frequency range of the feed.
- Each of the slabs 62 and intervening regions 64 have opposed major surfaces disposed parallel to the axis of propagation 102 within the waveguide of the feed 10. These major surfaces of the slab-like members are oriented at substantially a 45° angle to the major faces of the rectangular section 26 of body 20.
- a structure of this type is effective for converting linearly polarized waves within the dielectric body 20 which have their E-field disposed parallel to one of the major faces of section 26 into circularly polarized waves propagating in the external medium 300 in which the feed is situated.
- waves within the dielectric body having their E-field parallel to the axis 104 will be converted to right hand circularly polarized waves where right hand circularly polarized means clockwise rotation of the field vector as viewed looking in the positive 102 axis direction for a wave propagating in that direction.
- the polarization converter will generate left hand circularly polarized waves.
- a mode converter 70 is disposed within the body 20 intermediate its ends 14 and 16. In this embodiment the mode converter is within uniform cross-section section 26 of body 20. But the uniformity of this section is not essential to proper operation of the invention.
- This mode converter is for the purpose of converting part of the energy of a wave propagating in a first mode (which may be the fundamental TE 10 mode) within waveguide 40 from the coupling end 16 toward the radiating end 14 into a desired second mode (which may be a beam shaping mode such as the higher order LSE 12 mode).
- a wave within the waveguide 40 which is a combination of the fundamental TE 10 mode and an appropriate amount of the higher order LSE 12 mode in proper relative phase provides the feed with substantially lower sidelobe transmission or reception characteristics than does a TE 10 mode alone. This provides more effective concentration of useful illumination on the reflector.
- the mode converter 70 preferably comprises a region 72 having a different effective dielectric constant than the rest of body 20.
- the region 72 extends cross-wise to the axis of propagation 102 of the waveguide and has a thickness parallel to the axis of propagation 102 which varies with position across the waveguide.
- the axial thickness of the dielectric at each point across the waveguide is proportional to the ratio of the maximum amplitude of the desired added mode (LSE 12 ) to the maximum amplitude of the initial mode (TE 10 ) both at that point.
- the region 72 of mode converter 70 comprises a pair of through holes 74 which extend through the body 20 parallel to axis 106.
- These holes 74 have a width in direction 102 which varies across the waveguide in the direction 104 as a cosine wave which has a single period within the waveguide 12. The width of these holes in direction 102 does not vary across the waveguide in the direction 106.
- the conductive layer 40 does not extend across the ends of the holes 74. The holes 74 are large enough that this absence of the conductive layer 40 would interfere with the waveguide wall effect of that layer at at least some frequencies within the operating frequency range of the feed 10.
- a conductive (metal) bracket 50 fits over the body 20 and the conductive layer 40 in the vicinity of the mode converter 70. Bracket 50 forms a tightly fitting collar which makes electrical contact to the layer 40, thereby serving as a waveguide wall across the ends of the holes 74. In this way, the waveguide effect is not lost at the holes 74.
- the bracket 50 includes a flange 52 extending away from the body 20. This flange 52 includes mounting holes 54 for securing the bracket to a feed support mechanism (not shown).
- the flange 52 may be positioned along the center of a side of the body 20 as illustrated in FIG. 1 or at other positions such as at corners. The particular position chosen depends on the desired orientation of the feed 10 relative to the feed support structure (not shown) to which flange 52 is attached.
- Bracket 50 also serves to provide increased structural strength to body portion 26 which can be weakened by the large through holes 74 which comprise region 72. Further support is provided by alignment projections 27 on body portion 26 and mating alignment holes 57 in bracket 50. These holes and projections interlock to align bracket 50 and body 20 in a desired fixed relative position. With a properly designed mount, this ensures that an unskilled individual can install an antenna system with the assurance that it will be properly aligned.
- the region 72 may be a single hole or void in body 20 which extends completely through body 20 and separates it into a coupling-end portion and a radiating-end portion. These two portions are then held in fixed relation by the mating alignment structures on body 20 and bracket 50.
- Waves propagating in the body 20 with their polarization parallel to the axis 104 are coupled to a coaxial lead-in 97 by a coupler 80 in the vicinity of the coupling end 16 of the body 20.
- Coupler 80 preferably comprises a body 81 of solid dielectric material having the same dielectric constant as the material of body 20.
- the body 81 has a conductive layer 82 covering all of the exterior surface thereof except for a portion 83.
- the non-coated portion 83 of the surface of body 81 includes portions facing portion 21 of body 20 and a coaxial coupler or connector 85.
- the configuration of the non-metallized region 83 is best seen in the view of FIG. 3A.
- a mating non-metallized region 84 of the surface of body 20 faces body 81. Region 84 is illustrated in FIG. 3B.
- the combined structure of body 81 and the coupling portion 21 of body 20 has the coaxial connector 85 affixed thereto.
- Connector 85 has an outer conductor 86 which is connected to the conductive layers 41 and 82.
- An inner conductor 87 extends from within the coaxial structure between and across the non-metallized regions 83 and 84 to contact the conductive regions 82 and 41 which are preferably in direct electrical contact with each other.
- the coaxial connector has a dielectric 88 spacing apart the inner and outer conductors.
- Body 81 functions as a stub waveguide electrically connected to the end of coupling portion 21 of body 20. In the illustrated configuration, this stub waveguide is folded back against the body 21 for compactness and structural strength.
- the inner conductor 87 of the coaxial connector which extends across the non-metallized regions 83 and 84 functions as an E-plane probe for coupling between vertically polarized (parallel to axis 104) waves propagating in the waveguide 40 and waves propagating in a coaxial lead-in 97 attached to coax connector 85.
- coupler 80 has been illustrated and described as though the body 81 were separate from the coupling portion 21 of body 20.
- the coupler 80 may be fabricated in that manner.
- the portions of conductive layers 41 and 82 which face and contact each other along the section line 3A--3A may instead be formed of a conductive member which is mounted in a mold for the body 20 prior to molding the body 20.
- Body portion 81 is then formed in the same molding step as the rest of body 20. This provides a feed 10 in which the body portion 81 is an integral part of body 20.
- region 72 of the mode converter 70 is illustrated.
- region 72 is filled with a solid dielectric 200 having a different dielectric constant than the rest of body 20.
- the conductive layer 40 may extend across those holes as a continuous layer. This obviates the need for bracket 50 from waveguide continuity considerations. However, such a bracket may still be the most effective way of mounting the feed 10.
- the large through holes 74 are replaced by many smaller through holes 210 which extend all the way through the dielectric body 20 parallel to axis 106.
- These holes 210 may be left "empty” (i.e. filled with air) or may be filled with a solid dielectric which has a different dielectric constant than the rest of body 20.
- the net effect of these holes 210 in the dielectric of body 20 is to create a region having an effective dielectric constant which is intermediate that of the dielectric of body 20 and that within the holes 210.
- the region 72 comprises a number of blind holes 220 which extend into the dielectric body 20 parallel to axis 104.
- the number and length of the holes 220 is selected to produce a region 72 of different effective dielectric constant which has the thickness profile required for generation of the desired higher order mode.
- the holes 220 may be tapered in diameter (getting narrower the further into body 26 they penetrate). This facilitates the removal of the mold for body 20 where the holes 220 are molded into the dielectric body.
- the holes 210 of FIG. 5 and 220 of FIG. 6 are small enough that the absence of conductive layer 40 where they penetrate surface 30 does not interfere with the waveguide wall effect of layer 40. Consequently, if such a mode conversion region is used in feed 10, the bracket 50 is not required by waveguide continuity considerations.
- each of these mode converters generates the LSE 12 mode with a phase lead of 270° relative to the TE 10 mode.
- the LSE 12 mode must accumulate another 90° of lead as a result of its higher propagation velocity in the waveguide.
- the region 72 comprises a single through hole 230 having its greatest axial extent along the centerline of the waveguide.
- This mode converter generates the LSE 12 mode with a lead of 90° relative to the TE 10 mode. Consequently a longer waveguide is needed between it and aperture 14 to place the LSE 12 and the TE 10 modes in-phase at the aperture (total additional lead or drift needed being 270° ).
- the feed 10 of FIG. 1 is effective for handling right hand circularly polarized waves impinging on the radiating end 14 of the feed 10.
- the polarization converter 60 converts these waves to linearly polarized waves having their E-field parallel to the axis 104. These waves propagate through the feed waveguide 12, enter the coupler 80, and are coupled into the lead-in 97.
- This feed 10 would instead handle left hand circularly polarized incident waves if the polarization converter 30 were rotated 90° about the propagation axis 102. However, this feed can not handle both polarizations simultaneously.
- Feed 110 may be identical to the feed 10 of FIG. 1 with the exception of its mode converter and its couplers. Because both polarizations will be utilized, the profile of the mode converter 160 of feed 110 must vary across the waveguide in directions parallel to both axis 104 and axis 106. As illustrated in FIG. 8, this may preferably be accomplished through the use of blind holes 222 similar to the blind holes 220 of the mode converter of FIG. 6. Holes 222, like holes 220, are small enough that a covering bracket is not essential for proper waveguide operation.
- Couplers 180 and 189 at the coupling end 16 of the feed 110 are configured to selectively couple those waves having their E-fields parallel to the axes 104 and 106, respectively, to separate lead-ins 197 and 198, respectively.
- the structure of the coupler 180 may be substantially identical to the structure of the coupler 80 of feed 10.
- the structure of the coupler 189 is shown in greater detail in FIGS. 9 and 9A.
- the coupler 189 is of the E-plane probe type and is oriented perpendicular to the coupler 180.
- This coupler comprises a coaxial connector 190 having an outer conductor 191, an inner conductor 192 and a separating dielectric 193.
- the outer conductor 191 extends into the portion 121 of body 120 in alignment with a second outer conductor 194 which extends into the body portion 121 from the opposite side of the body. Outer conductors 191 and 194 are spaced from each other by a gap 195.
- the inner conductor 192 extends across the gap 195 between the outer conductors 191 and 194 and into a separating dielectric 196 within the outer conductor 194.
- the portion of the inner conductor 192 which is located in the gap 195 comprises the E-plane probe of the coupler 189. This probe couples between waves propagating in the waveguide 141 with a horizontal linear polarization (parallel to axis 106) and waves propagating in a coaxial lead-in 198.
- Separate receivers may be provided for each of the lead-ins 197 and 198, if desired. Alternatively, a single receiver may be switched between these two lead-ins. The use of two separate receivers provides greater versatility in programming reception while the use of a single switched receiver provides a less expensive system. In a direct broadcast satellite application, it may be desirable to place the receiver or down-converter circuitry in close proximity to the feed to reduce propagation losses.
- FIGS. 10A and 11A alternative configurations for the mode converter region 172 of the mode converter 170 of feed 110 are illustrated. Cross sections through these respective mode converter regions are illustrated in FIGS. 10B and 11B.
- the mode converter region 172 comprises a body 260 of solid dielectric material which has a thickness in direction 102 which varies across the waveguide parallel to both the axis 104 and the axis 106 as a full cycle of a cosine function.
- the faces 262 and 264 (FIG. 10B) of body 260 are surfaces of revolution and thus may be easily formed by machining or molding.
- the body 260 has a different dielectric constant than that of the dielectric of body 120.
- the body 260 may be mounted in a mold for the body 120 prior to the molding of the body 120. In this manner, the body 260 is incorporated into the molded body 120 of the feed 110. Such a procedure requires good adhesion between the material of the body 260 and the material of the remainder of the body 120.
- a mode conversion region 270 which is a variation on the mode conversion region 260 is illustrated in FIGURE 11A.
- Body 270 is similar to body 260 and may be formed of the same material. It differs from body 260 in that there is an axial through hole 276 on the axis of the waveguide and there are cutouts 278 at the corners of the block 270.
- the hole 276 and the cutouts 278 provide increased structural connection of the portions of the body 120 to the right of and to the left of the mode converter 170 in the FIG. 8.
- the exterior dimensions C and D of bodies 260 and 270 are preferably less than the corresponding dimensions of body 120. During molding of body 120 this results in body 260 or body 270 being completely surrounded by the same material which forms the rest of body 120.
- This provides a single continuous lateral exterior surface 130 on body 120. This provides uniform adhesion characteristics for the conductive layer 140 over the entire body 120 and minimizes the problem of separation of the body 260 or 270 from the remainder of the body 120. The chances for such separation are further reduced by forming the body 260 or 270 of a material which has the same coefficient of thermal expansion as the material selected for the remainder of the body 120. In this manner, thermal cycling will not induce stresses which would be likely to cause separation between the body 120 and the body 260 or 270.
- the flared or tapered structure of waveguide 140 provides better feed performance than would be provided by a waveguide which has a uniform cross-section throughout its length.
- fabrication of a waveguide having the configuration of waveguide 140 from self-supporting tubular metal members is a demanding and expensive process. In that process the flares must be individually formed and then joined to the uniform cross-section portions.
- Feed 110 is fabricated by first forming the dielectric body 120 (preferably by molding). The formed body 120 is coated with the conductive layer 140 which need not be self-supporting since it adheres to body 120 which determines the configuration of its interior surface. All of the features of body 120 including the polarization converter, the mode converter and the portions of the couplers within body 120 may be formed in a single molding step which also forms the exterior lateral surface 130. This makes the feed 110 inexpensive to fabricate and eliminates the fabrication and assembly costs of using a formed metal waveguide. If solid dielectric inserts such as 260 or 270 are used, they may be separately formed and inserted in the mold for body 120 prior to the molding of body 120. Feed 10 is preferably fabricated in a similar manner. The unitary structure of the feeds 10 and 110 eliminates any need for post-fabrication adjustment of the feed as occurs with complicated waveguide feeds.
- either feed 10 or the feed 110 may be fabricated without its polarization converter (60 or 160).
- the coupling section 121 and the couplers 180 and 189 may be replaced by a waveguide hybrid junction which couples the two polarizations into separate waveguide lead-ins.
- the invention may be used with round or other non-rectangular cross-section waveguides and constant cross-section waveguides.
Landscapes
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Waveguide Aerials (AREA)
Abstract
The configuration of a waveguide antenna feed is determined by a shaped body of solid dielectric material which is coated with a conductive material. The conductive material functions as a waveguide wall for constraining electromagnetic wave propagation within the dielectric body. The body includes a mode converter and a coupler to a lead-in structure. A polarization converter, if desired, can be integral with the dielectric body.
Description
This invention relates to the field of antennas and more particularly to feeds for antennas.
My related patent application entitled "SELECTIVE WAVEGUIDE MODE CONVERTER", Ser. No. 499,395 co-filed with this application and is incorporated herein by reference.
Direct broadcast satellites are expected to become a significant source of video programs for home viewing. In order to make the signals from these satellites available to as many homes as possible, reliable, high quality, mass produceable, inexpensive receiving antennas are needed. These antennas are expected to be of the reflective dish type.
Such an antenna comprises essentially three parts--a reflector, a feed for receiving the signal from the reflector and a mounting mechanism which supports the feed in proper relation to the reflector. Typical prior art waveguide feeds for these antennas have complicated waveguide structures which require assembly to close tolerances for optimum performance. This requires substantial labor in assembly and test. All of this combines to render such a feed expensive and difficult to assemble and align.
To minimize antenna installation expenses, an antenna is needed which is inexpensive to make and suitable for installation by purchasers without special mechanical or electronic skills. In particular, the antennas need to operate properly without complicated electrical adjustment following installation. A waveguide feed is needed which is relatively simple and inexpensive to fabricate, which requires minimal field adjustment and which provides high quality reception.
In accordance with one embodiment of the present invention such a feed comprises a shaped body of solid dielectric material having a layer of conductive material disposed thereon in a configuration determined by the exterior surface of the dielectric body. This conductive layer comprises the waveguide of the feed. The feed has a radiating end, a coupling end, a coupler, a mode converter and if needed, a polarization converter. The coupler is in the vicinity of the coupling end of the feed and provides coupling between waves propagating in the dielectric body and signals propagating in a lead-in structure. The mode converter is located intermediate the ends of the dielectric body and is preferably for converting, to a beam shaping mode, a part of the energy in a fundamental mode wave propagating in the dielectric body. The polarization converter, if present, is in the vicinity of the radiating end of the feed and is for converting between linear and circular polarizations.
FIG. 1 is a perspective view of a feed in accordance with the invention;
FIG. 2 is a cross-sectional view of a coupling portion of the FIG. 1 structure;
FIGS. 3A and 3B are cross-sectional views of the structure of FIG. 2;
FIGS. 4 through 7 illustrate different means of providing a mode converter in the feed of FIG. 1;
FIG. 8 is an alternate embodiment of a feed in accordance with the invention which is capable of handling two different polarizations;
FIG. 9 illustrates a portion of a coupling structure of FIG. 8;
FIG. 9A is a cross-sectional view of the structure of FIG. 9;
FIGS. 10A, 10B, 11A and 11B, illustrate alternative means of providing the mode converter in the feed of FIG. 8.
A waveguide feed 10 in accordance with the invention is illustrated in perspective in FIG. 1. This feed is suitable for use with a reflector (not shown). It may also be used separately as a radiating element without a reflector. The feed 10 has a radiating end 14 toward the right in FIG. 2 and a coupling end 16 toward the left in FIG. 1. An associated co-ordinate system 100 has three mutually perpendicular axes 102, 104 and 106. The axis 102 is collinear with the longitudinal axis of feed 10.
The feed 10 comprises a body 20 of solid dielectric material which fills a waveguide 12. The body 20 is preferably a unitary structure having a plurality of shaped sections 21, 22, 24, 26 and 28 and has an exterior lateral surface 30 extending from a radiating end to a coupling end. Lateral surface 30 of body 20 has a compound contour which follows the shapes of the sections of body 20. Beginning at end 16 body 20 has a shaped coupling section 21 which has an exterior surface 31. The shape of section 21 is determined in accordance with coupling requirements. Section 21 merges into a section 22 of uniform rectangular cross-section which has an exterior surface 32. Surface 32 has two major planar portions disposed parallel to axis 104 and two other major planar portions disposed parallel to axis 106. Section 22 merges into a flared section 24 having an exterior surface 34 which flares outward in the directions of axes 104 and 106. Section 24 merges into a second uniform rectangular cross-section section (26) which has a larger cross-section than section 22 and an exterior surface 36 having major portions parallel to the major portions of surface 32. Section 26 merges into another flared rectangular section 28 which has an exterior surface 38. Section 28 terminates at the radiating end 14 of feed 10. The surfaces 31, 32, 34, 36 and 38 together comprise the exterior lateral surface 30.
A layer 40 of conductive material is disposed on the lateral surface 30 on all sides of the body 20, but not on the radiating end face 14 and not on selected portions at the coupling end 16. Layer 40 may be applied by electrolessly plating the surface 30 with an appropriate conductive material. The conductive layer 40 is formed in a tubular configuration having an interior surface which conforms to the contours of the exterior lateral surface 30 of the dielectric body 20. This tubular conductive layer 40 is effective as a waveguide wall of waveguide 12 and constrains the propagation of electromagnetic waves within the dielectric body 20. The waveguide 12 has sections 41, 42, 44, 46 and 48 whose shapes are determined by sections 31, 32, 34, 36 and 38, respectively, of the exterior lateral surface 30 of body 20.
A polarization converter 60 is located in the vicinity of the radiating end 14 of the body 20 within the large flared section 48 of the waveguide. The polarization converter 60 comprises interleaved strata 62 and 64 of slab-like regions. The regions 62 may preferably be formed from the same dielectric material as the rest of body 20 and thus will preferably have the same dielectric constant as the rest of body 20. The intervening regions 64 have a dielectric constant which is different from that of the regions 62. The slab-like regions 62 and intervening regions 64 are preferably between 0.7 and 1.4 wavelengths thick at a frequency in the designed operating frequency range of the feed. Each of the slabs 62 and intervening regions 64 (except the corner ones) have opposed major surfaces disposed parallel to the axis of propagation 102 within the waveguide of the feed 10. These major surfaces of the slab-like members are oriented at substantially a 45° angle to the major faces of the rectangular section 26 of body 20. As is known, from literature such as Antenna Engineering Handbook by Henry Jasik, 1961 Edition, McGraw Hill, Chapter 17 pages 21 and 22, a structure of this type is effective for converting linearly polarized waves within the dielectric body 20 which have their E-field disposed parallel to one of the major faces of section 26 into circularly polarized waves propagating in the external medium 300 in which the feed is situated. In FIG. 1, waves within the dielectric body having their E-field parallel to the axis 104 will be converted to right hand circularly polarized waves where right hand circularly polarized means clockwise rotation of the field vector as viewed looking in the positive 102 axis direction for a wave propagating in that direction. For linearly polarized waves having an E-field orientation parallel to the axis 106, the polarization converter will generate left hand circularly polarized waves.
A mode converter 70 is disposed within the body 20 intermediate its ends 14 and 16. In this embodiment the mode converter is within uniform cross-section section 26 of body 20. But the uniformity of this section is not essential to proper operation of the invention. This mode converter is for the purpose of converting part of the energy of a wave propagating in a first mode (which may be the fundamental TE10 mode) within waveguide 40 from the coupling end 16 toward the radiating end 14 into a desired second mode (which may be a beam shaping mode such as the higher order LSE12 mode). A wave within the waveguide 40 which is a combination of the fundamental TE10 mode and an appropriate amount of the higher order LSE12 mode in proper relative phase provides the feed with substantially lower sidelobe transmission or reception characteristics than does a TE10 mode alone. This provides more effective concentration of useful illumination on the reflector.
The mode converter 70 preferably comprises a region 72 having a different effective dielectric constant than the rest of body 20. The region 72 extends cross-wise to the axis of propagation 102 of the waveguide and has a thickness parallel to the axis of propagation 102 which varies with position across the waveguide. The axial thickness of the dielectric at each point across the waveguide is proportional to the ratio of the maximum amplitude of the desired added mode (LSE12) to the maximum amplitude of the initial mode (TE10) both at that point. In FIG. 1 the region 72 of mode converter 70 comprises a pair of through holes 74 which extend through the body 20 parallel to axis 106. These holes 74 have a width in direction 102 which varies across the waveguide in the direction 104 as a cosine wave which has a single period within the waveguide 12. The width of these holes in direction 102 does not vary across the waveguide in the direction 106. The conductive layer 40 does not extend across the ends of the holes 74. The holes 74 are large enough that this absence of the conductive layer 40 would interfere with the waveguide wall effect of that layer at at least some frequencies within the operating frequency range of the feed 10.
A conductive (metal) bracket 50 fits over the body 20 and the conductive layer 40 in the vicinity of the mode converter 70. Bracket 50 forms a tightly fitting collar which makes electrical contact to the layer 40, thereby serving as a waveguide wall across the ends of the holes 74. In this way, the waveguide effect is not lost at the holes 74. The bracket 50 includes a flange 52 extending away from the body 20. This flange 52 includes mounting holes 54 for securing the bracket to a feed support mechanism (not shown). The flange 52 may be positioned along the center of a side of the body 20 as illustrated in FIG. 1 or at other positions such as at corners. The particular position chosen depends on the desired orientation of the feed 10 relative to the feed support structure (not shown) to which flange 52 is attached.
Waves propagating in the body 20 with their polarization parallel to the axis 104 are coupled to a coaxial lead-in 97 by a coupler 80 in the vicinity of the coupling end 16 of the body 20.
The structure of the coupler 80 is illustrated in greater detail in FIGS. 2, 3A and 3B. Coupler 80 preferably comprises a body 81 of solid dielectric material having the same dielectric constant as the material of body 20. The body 81 has a conductive layer 82 covering all of the exterior surface thereof except for a portion 83. The non-coated portion 83 of the surface of body 81 includes portions facing portion 21 of body 20 and a coaxial coupler or connector 85. The configuration of the non-metallized region 83 is best seen in the view of FIG. 3A. A mating non-metallized region 84 of the surface of body 20 faces body 81. Region 84 is illustrated in FIG. 3B. The combined structure of body 81 and the coupling portion 21 of body 20 has the coaxial connector 85 affixed thereto. Connector 85 has an outer conductor 86 which is connected to the conductive layers 41 and 82. An inner conductor 87 extends from within the coaxial structure between and across the non-metallized regions 83 and 84 to contact the conductive regions 82 and 41 which are preferably in direct electrical contact with each other. The coaxial connector has a dielectric 88 spacing apart the inner and outer conductors. Body 81 functions as a stub waveguide electrically connected to the end of coupling portion 21 of body 20. In the illustrated configuration, this stub waveguide is folded back against the body 21 for compactness and structural strength. The inner conductor 87 of the coaxial connector which extends across the non-metallized regions 83 and 84 functions as an E-plane probe for coupling between vertically polarized (parallel to axis 104) waves propagating in the waveguide 40 and waves propagating in a coaxial lead-in 97 attached to coax connector 85.
The structure of coupler 80 has been illustrated and described as though the body 81 were separate from the coupling portion 21 of body 20. The coupler 80 may be fabricated in that manner. Alternatively, the portions of conductive layers 41 and 82 which face and contact each other along the section line 3A--3A, may instead be formed of a conductive member which is mounted in a mold for the body 20 prior to molding the body 20. Body portion 81 is then formed in the same molding step as the rest of body 20. This provides a feed 10 in which the body portion 81 is an integral part of body 20.
In FIGS. 4-7 alternative configurations of the region 72 of the mode converter 70 are illustrated. In FIG. 4, region 72 is filled with a solid dielectric 200 having a different dielectric constant than the rest of body 20. With the holes 74 filled with a solid dielectric, the conductive layer 40 may extend across those holes as a continuous layer. This obviates the need for bracket 50 from waveguide continuity considerations. However, such a bracket may still be the most effective way of mounting the feed 10.
In FIG. 5 the large through holes 74 are replaced by many smaller through holes 210 which extend all the way through the dielectric body 20 parallel to axis 106. These holes 210, like holes 74, may be left "empty" (i.e. filled with air) or may be filled with a solid dielectric which has a different dielectric constant than the rest of body 20. The net effect of these holes 210 in the dielectric of body 20 is to create a region having an effective dielectric constant which is intermediate that of the dielectric of body 20 and that within the holes 210.
In FIG. 6 the region 72 comprises a number of blind holes 220 which extend into the dielectric body 20 parallel to axis 104. The number and length of the holes 220 is selected to produce a region 72 of different effective dielectric constant which has the thickness profile required for generation of the desired higher order mode. If desired, the holes 220 may be tapered in diameter (getting narrower the further into body 26 they penetrate). This facilitates the removal of the mold for body 20 where the holes 220 are molded into the dielectric body.
The holes 210 of FIG. 5 and 220 of FIG. 6 are small enough that the absence of conductive layer 40 where they penetrate surface 30 does not interfere with the waveguide wall effect of layer 40. Consequently, if such a mode conversion region is used in feed 10, the bracket 50 is not required by waveguide continuity considerations.
If the dielectric constant within the regions 200, 210, and 220 in the mode converters of FIGS. 4, 5 and 6, respectively are less than that of the body 26, then each of these mode converters generates the LSE12 mode with a phase lead of 270° relative to the TE10 mode. Thus, for the LSE12 and TE10 modes to be in-phase at radiating end 14 as is desirable, the LSE12 mode must accumulate another 90° of lead as a result of its higher propagation velocity in the waveguide.
In FIG. 7, the region 72 comprises a single through hole 230 having its greatest axial extent along the centerline of the waveguide. This mode converter generates the LSE12 mode with a lead of 90° relative to the TE10 mode. Consequently a longer waveguide is needed between it and aperture 14 to place the LSE12 and the TE10 modes in-phase at the aperture (total additional lead or drift needed being 270° ).
Additional details on the operation of mode converters of this type is contained in my application entitled, "SELECTIVE WAVEGUIDE MODE CONVERTER" mentioned above.
The feed 10 of FIG. 1 is effective for handling right hand circularly polarized waves impinging on the radiating end 14 of the feed 10. The polarization converter 60 converts these waves to linearly polarized waves having their E-field parallel to the axis 104. These waves propagate through the feed waveguide 12, enter the coupler 80, and are coupled into the lead-in 97. This feed 10 would instead handle left hand circularly polarized incident waves if the polarization converter 30 were rotated 90° about the propagation axis 102. However, this feed can not handle both polarizations simultaneously.
Where it is desirable to handle both right and left circularly polarized incident waves, the feed 110 of FIG. 8 is preferred. Feed 110 may be identical to the feed 10 of FIG. 1 with the exception of its mode converter and its couplers. Because both polarizations will be utilized, the profile of the mode converter 160 of feed 110 must vary across the waveguide in directions parallel to both axis 104 and axis 106. As illustrated in FIG. 8, this may preferably be accomplished through the use of blind holes 222 similar to the blind holes 220 of the mode converter of FIG. 6. Holes 222, like holes 220, are small enough that a covering bracket is not essential for proper waveguide operation.
Separate receivers may be provided for each of the lead- ins 197 and 198, if desired. Alternatively, a single receiver may be switched between these two lead-ins. The use of two separate receivers provides greater versatility in programming reception while the use of a single switched receiver provides a less expensive system. In a direct broadcast satellite application, it may be desirable to place the receiver or down-converter circuitry in close proximity to the feed to reduce propagation losses.
In FIGS. 10A and 11A, alternative configurations for the mode converter region 172 of the mode converter 170 of feed 110 are illustrated. Cross sections through these respective mode converter regions are illustrated in FIGS. 10B and 11B. In FIG. 10A the mode converter region 172 comprises a body 260 of solid dielectric material which has a thickness in direction 102 which varies across the waveguide parallel to both the axis 104 and the axis 106 as a full cycle of a cosine function. The faces 262 and 264 (FIG. 10B) of body 260 are surfaces of revolution and thus may be easily formed by machining or molding. The body 260 has a different dielectric constant than that of the dielectric of body 120. The body 260 may be mounted in a mold for the body 120 prior to the molding of the body 120. In this manner, the body 260 is incorporated into the molded body 120 of the feed 110. Such a procedure requires good adhesion between the material of the body 260 and the material of the remainder of the body 120.
A mode conversion region 270 which is a variation on the mode conversion region 260 is illustrated in FIGURE 11A. Body 270 is similar to body 260 and may be formed of the same material. It differs from body 260 in that there is an axial through hole 276 on the axis of the waveguide and there are cutouts 278 at the corners of the block 270. The hole 276 and the cutouts 278 provide increased structural connection of the portions of the body 120 to the right of and to the left of the mode converter 170 in the FIG. 8. The exterior dimensions C and D of bodies 260 and 270 are preferably less than the corresponding dimensions of body 120. During molding of body 120 this results in body 260 or body 270 being completely surrounded by the same material which forms the rest of body 120. This provides a single continuous lateral exterior surface 130 on body 120. This provides uniform adhesion characteristics for the conductive layer 140 over the entire body 120 and minimizes the problem of separation of the body 260 or 270 from the remainder of the body 120. The chances for such separation are further reduced by forming the body 260 or 270 of a material which has the same coefficient of thermal expansion as the material selected for the remainder of the body 120. In this manner, thermal cycling will not induce stresses which would be likely to cause separation between the body 120 and the body 260 or 270.
The flared or tapered structure of waveguide 140 (or 40) provides better feed performance than would be provided by a waveguide which has a uniform cross-section throughout its length. However, fabrication of a waveguide having the configuration of waveguide 140 from self-supporting tubular metal members is a demanding and expensive process. In that process the flares must be individually formed and then joined to the uniform cross-section portions.
The structure of feed 110 (or 10) eliminates these fabrication problems. Feed 110 is fabricated by first forming the dielectric body 120 (preferably by molding). The formed body 120 is coated with the conductive layer 140 which need not be self-supporting since it adheres to body 120 which determines the configuration of its interior surface. All of the features of body 120 including the polarization converter, the mode converter and the portions of the couplers within body 120 may be formed in a single molding step which also forms the exterior lateral surface 130. This makes the feed 110 inexpensive to fabricate and eliminates the fabrication and assembly costs of using a formed metal waveguide. If solid dielectric inserts such as 260 or 270 are used, they may be separately formed and inserted in the mold for body 120 prior to the molding of body 120. Feed 10 is preferably fabricated in a similar manner. The unitary structure of the feeds 10 and 110 eliminates any need for post-fabrication adjustment of the feed as occurs with complicated waveguide feeds.
If it is desired to utilize a feed in accordance with this invention for the reception or transmission of signals which are linearly polarized rather than circularly polarized, then either feed 10 or the feed 110 may be fabricated without its polarization converter (60 or 160). If waveguide lead-ins are desired instead of coaxial lead-ins, then the coupling section 121 and the couplers 180 and 189 may be replaced by a waveguide hybrid junction which couples the two polarizations into separate waveguide lead-ins. With appropriate modifications from the illustrated and described compound contour, rectangular cross-section waveguide embodiment, the invention may be used with round or other non-rectangular cross-section waveguides and constant cross-section waveguides.
Claims (17)
1. An antenna feed of the waveguide type for operation over an operating range of frequencies comprising:
a body comprising a solid dielectric material having a given dielectric constant, said body having a radiating end, a coupling end and an exterior lateral surface therebetween;
a layer of conductive material formed on said exterior lateral surface of said body in a tubular configuration having an interior surface which conforms to said exterior lateral surface of said dielectric body, said tubular layer of conductive material being effective as waveguide wall for constraining the propagation of electromagnetic waves within said dielectric body;
a mode converter located within said body between said coupling end and said radiating end for selectively converting to a second mode a part of the energy in a wave propagating in a first mode from said coupling end toward said radiating end, said mode converter having a converter dielectric constant having a different value than said given dielectric constant, said mode converter having a thickness in the direction of wave propagation in said body and a thickness profile across said body which is proportional to the amplitude profile across said body of said second mode; and
means for coupling between a linearly polarized first mode wave propagating in said dielectric body of said feed and a signal propagating in a lead-in structure, said means for coupling being disposed in the vicinity of said coupling end.
2. The feed recited in claim 1 further comprising a polarization converter in the vicinity of said radiating end for converting between linearly polarized waves propagating in said body and circularly polarized waves propagating in an external medium.
3. The feed recited in claim 2 wherein:
said dielectric body is a unitary structure;
said polarization converter is integral with said body; and
said mode converter is integral with said body.
4. The feed recited in claim 1 wherein:
said converter comprises a host region of said body having said given dielectric constant and a plurality of modifier regions having a third dielectric constant different than said given and said converter dielectric contants, said modifier regions dispersed in said host region, the combination of said modifier regions and said host region providing an effective constant of said converter value.
5. An antenna feed of the waveguide type for operation over an operating range of frequencies comprising:
a body comprising a solid dielectric material having a given dielectric constant, said body having a radiating end, a coupling end and an exterior lateral surface therebetween;
a layer of conductive material formed on said exterior lateral surface of said body in a tubular configuration having an interior surface which conforms to said exterior lateral surface of said dielectric body, said tubular layer of conductive material being effective as a waveguide wall for constraining the propagation of electromagnetic waves within said dielectric body;
a mode converter located within said body between said coupling end and said radiating end for selectively converting to a second mode a part of the energy in a wave propagating in a first mode from said coupling end toward said radiating end;
said mode converter including a converter region within said body having a converter dielectric constant, said converter dielectric constant having a value which is lower than the value of said given dielectric constant;
said lower value of said converter dielectric constant resulting from at least one void in the dielectric material of said body;
said at least one void extending to an external surface of said body; and
means for coupling between a linearly polarized first mode wave propagating in said dielectric body of said feed and a signal propagating in a lead-in structure, said means for coupling being disposed in the vincinity of said coupling end.
6. The feed recited in claim 5 wherein:
said layer of conductive material is supported by said exterior lateral surface and is absent where said at least one void extends to said external surface;
said at least one void is large enough to interfere with the waveguide effect of said conductive material at a frequency within said operating range of frequencies; and
said feed further comprises a conductive member extending across said at least one void adjacent said external lateral surface, said conductive member being disposed in electrical contact with said conductive layer whereby said member is effective for maintaining the waveguide effect of said conductive layer across said at least one void.
7. The feed recited in claim 6 wherein:
said conductive member includes means for mounting said member to an external support.
8. The feed recited in claim 7 wherein:
said body and conductive member include mating alignment structures for fixing the relative position of said body and said member.
9. The feed recited in claim 7 wherein:
said member extends substantially completely around said exterior lateral surface.
10. The feed recited in claim 5 further comprising:
a self-supporting conductive member extending across said void and electrically contacting said conductive layer;
said self-supporting conductive member including means for mounting said member to a feed support.
11. The feed recited in claim 1 further comprising:
a support member fixed to said body;
said support member including means for mounting said member to a feed support.
12. The feed recited in claim 1 wherein:
said means for coupling comprises a first E-plane probe for coupling between a first lead-in structure and waves propagating in said body in a first linear polarization and a second E-plane probe for coupling between a second lead-in structure and waves propagating in said body in a second linear polarization substantially perpendicular to said first linear polarization.
13. The feed recited in claim 12 wherein:
the configuration of said converter is substantially the same in the plane of said first linear polarization as it is in the plane of said second linear polarization whereby the proportion of the energy in a first mode wave having said first polarization which is converted to said second mode is substantially the same as the proportion of the energy in a first mode wave having said second polarization which is converted to said second mode.
14. The feed recited in claim 13 wherein:
said waveguide has a rectangular cross-section;
each of said first modes is a TE10 mode; and
each of said second modes is an LSE12 mode.
15. The feed recited in claim 2 wherein said polarization converter comprises:
interleaved first and second regions, said first regions having a first dielectric constant and said second regions having a second, lower, dielectric constant, the transitions between said first and second regions comprising a set of parallel planes whereby each of said first regions which is bounded by two adjacent second regions has a substantially constant thickness in a first direction perpendicular to the direction of propagation and each of said second regions which is bounded by two adjacent first regions has a substantially constant thickness in said first direction, each of said first and said second regions having a length in the direction of propagation of substantially 0.7 to 1.4 wavelengths at a frequency in said operating range, and said set of parallel planes being oriented at substantially 45° to the plane of the E-field of the linearly polarized wave.
16. The feed recited in claim 1 wherein:
said body has a smaller cross-section at said mode converter than at said radiating end; and
a portion of said body between said mode converter and said radiating end flares from said smaller cross-section to said larger cross-section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/499,396 US4568943A (en) | 1983-05-31 | 1983-05-31 | Antenna feed with mode conversion and polarization conversion means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/499,396 US4568943A (en) | 1983-05-31 | 1983-05-31 | Antenna feed with mode conversion and polarization conversion means |
Publications (1)
Publication Number | Publication Date |
---|---|
US4568943A true US4568943A (en) | 1986-02-04 |
Family
ID=23985110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/499,396 Expired - Fee Related US4568943A (en) | 1983-05-31 | 1983-05-31 | Antenna feed with mode conversion and polarization conversion means |
Country Status (1)
Country | Link |
---|---|
US (1) | US4568943A (en) |
Cited By (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5086301A (en) * | 1990-01-10 | 1992-02-04 | Intelsat | Polarization converter application for accessing linearly polarized satellites with single- or dual-circularly polarized earth station antennas |
US5305001A (en) * | 1992-06-29 | 1994-04-19 | Hughes Aircraft Company | Horn radiator assembly with stepped septum polarizer |
US5337058A (en) * | 1993-04-16 | 1994-08-09 | United Technologies Corporation | Fast switching polarization diverse radar antenna system |
EP1022800A2 (en) * | 1999-01-15 | 2000-07-26 | Alenia Marconi Systems Limited | Quarter wave plate |
US6445356B1 (en) * | 1999-09-06 | 2002-09-03 | Alps Electric Co., Ltd. | Primary radiator having reduced side lobe |
US6801789B1 (en) * | 1999-02-01 | 2004-10-05 | Sharp Kabushiki Kaisha | Multiple-beam antenna |
US20080180335A1 (en) * | 2007-01-25 | 2008-07-31 | Cushcraft Corporation | System and Method for Focusing Antenna Signal Transmission |
US20120242553A1 (en) * | 2011-03-25 | 2012-09-27 | Kwok Wa Leung | Elliptically or circularly polarized dielectric block antenna |
US20130335282A1 (en) * | 2012-06-13 | 2013-12-19 | City University Of Hong Kong | Omnidirectional circularly polarized dielectric antenna |
CN103762416A (en) * | 2014-02-25 | 2014-04-30 | 中国工程物理研究院电子工程研究所 | Terahertz wave chip-mounted-waveguide-loudspeaker conversion antenna |
US9674711B2 (en) | 2013-11-06 | 2017-06-06 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9705610B2 (en) | 2014-10-21 | 2017-07-11 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9742521B2 (en) | 2014-11-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9787412B2 (en) | 2015-06-25 | 2017-10-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9871558B2 (en) | 2014-10-21 | 2018-01-16 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9912033B2 (en) | 2014-10-21 | 2018-03-06 | At&T Intellectual Property I, Lp | Guided wave coupler, coupling module and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US9929755B2 (en) | 2015-07-14 | 2018-03-27 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9954286B2 (en) | 2014-10-21 | 2018-04-24 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
WO2018073456A1 (en) * | 2016-10-21 | 2018-04-26 | Leonardo Mw Limited | Antenna and method of manufacture thereof |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9973416B2 (en) | 2014-10-02 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US20180191048A1 (en) * | 2016-12-30 | 2018-07-05 | Hughes Network Systems, Llc | Low-cost radio frequency waveguide devices |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10051630B2 (en) | 2013-05-31 | 2018-08-14 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10069185B2 (en) | 2015-06-25 | 2018-09-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
RU2680733C1 (en) * | 2018-04-10 | 2019-02-26 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Antenna radiator |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10797781B2 (en) | 2015-06-03 | 2020-10-06 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US11070250B2 (en) | 2019-12-03 | 2021-07-20 | At&T Intellectual Property I, L.P. | Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves |
US11277159B2 (en) | 2019-12-03 | 2022-03-15 | At&T Intellectual Property I, L.P. | Method and apparatus for managing propagation delays of electromagnetic waves |
US11502724B2 (en) | 2019-12-03 | 2022-11-15 | At&T Intellectual Property I, L.P. | Method and apparatus for transitioning between electromagnetic wave modes |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2511610A (en) * | 1944-11-16 | 1950-06-13 | Hazeltine Research Inc | High-frequency electromagneticwave translating element |
US2669657A (en) * | 1949-11-19 | 1954-02-16 | Bell Telephone Labor Inc | Electromagnetic lens |
US2762982A (en) * | 1951-05-17 | 1956-09-11 | Bell Telephone Labor Inc | Mode conversion in wave guides |
US2979679A (en) * | 1955-09-02 | 1961-04-11 | Gen Electric Co Ltd | Apparatus of the kind including a waveguide |
US3521288A (en) * | 1968-07-10 | 1970-07-21 | Us Air Force | Antenna array employing beam waveguide feed |
US3611396A (en) * | 1970-06-18 | 1971-10-05 | Us Army | Dual waveguide horn antenna |
US3624655A (en) * | 1968-11-05 | 1971-11-30 | Kobusai Denkshin Denwa Kk | Horn antenna |
US3750182A (en) * | 1972-08-08 | 1973-07-31 | Us Air Force | Suppressed sidelobe equal beamwidth millimeter horn antenna |
US3754271A (en) * | 1972-07-03 | 1973-08-21 | Gte Sylvania Inc | Broadband antenna polarizer |
US3831177A (en) * | 1973-08-02 | 1974-08-20 | United Aircraft Corp | Exponential aperture distribution horn antenna |
US4141015A (en) * | 1976-09-16 | 1979-02-20 | Hughes Aircraft Company | Conical horn antenna having a mode generator |
-
1983
- 1983-05-31 US US06/499,396 patent/US4568943A/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2511610A (en) * | 1944-11-16 | 1950-06-13 | Hazeltine Research Inc | High-frequency electromagneticwave translating element |
US2669657A (en) * | 1949-11-19 | 1954-02-16 | Bell Telephone Labor Inc | Electromagnetic lens |
US2762982A (en) * | 1951-05-17 | 1956-09-11 | Bell Telephone Labor Inc | Mode conversion in wave guides |
US2979679A (en) * | 1955-09-02 | 1961-04-11 | Gen Electric Co Ltd | Apparatus of the kind including a waveguide |
US3521288A (en) * | 1968-07-10 | 1970-07-21 | Us Air Force | Antenna array employing beam waveguide feed |
US3624655A (en) * | 1968-11-05 | 1971-11-30 | Kobusai Denkshin Denwa Kk | Horn antenna |
US3611396A (en) * | 1970-06-18 | 1971-10-05 | Us Army | Dual waveguide horn antenna |
US3754271A (en) * | 1972-07-03 | 1973-08-21 | Gte Sylvania Inc | Broadband antenna polarizer |
US3750182A (en) * | 1972-08-08 | 1973-07-31 | Us Air Force | Suppressed sidelobe equal beamwidth millimeter horn antenna |
US3831177A (en) * | 1973-08-02 | 1974-08-20 | United Aircraft Corp | Exponential aperture distribution horn antenna |
US4141015A (en) * | 1976-09-16 | 1979-02-20 | Hughes Aircraft Company | Conical horn antenna having a mode generator |
Non-Patent Citations (2)
Title |
---|
"Dielectric-Loaded Horn Antenna", IEEE Transactions on Antennas and Propagation, Mar. 1972, pp. 199-201, by Toshio Satoh. |
Dielectric Loaded Horn Antenna , IEEE Transactions on Antennas and Propagation, Mar. 1972, pp. 199 201, by Toshio Satoh. * |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5086301A (en) * | 1990-01-10 | 1992-02-04 | Intelsat | Polarization converter application for accessing linearly polarized satellites with single- or dual-circularly polarized earth station antennas |
US5305001A (en) * | 1992-06-29 | 1994-04-19 | Hughes Aircraft Company | Horn radiator assembly with stepped septum polarizer |
US5337058A (en) * | 1993-04-16 | 1994-08-09 | United Technologies Corporation | Fast switching polarization diverse radar antenna system |
USRE45519E1 (en) | 1999-01-15 | 2015-05-19 | Mbda Uk Limited | Quarter wave plate polarizer with two phase-shifting portions |
EP1022800A2 (en) * | 1999-01-15 | 2000-07-26 | Alenia Marconi Systems Limited | Quarter wave plate |
EP1022800A3 (en) * | 1999-01-15 | 2001-11-14 | Alenia Marconi Systems Limited | Quarter wave plate |
EP1912276A1 (en) * | 1999-01-15 | 2008-04-16 | Alenia Marconi Systems Limited | Quarter wave plate |
US6801789B1 (en) * | 1999-02-01 | 2004-10-05 | Sharp Kabushiki Kaisha | Multiple-beam antenna |
US6445356B1 (en) * | 1999-09-06 | 2002-09-03 | Alps Electric Co., Ltd. | Primary radiator having reduced side lobe |
US20080180335A1 (en) * | 2007-01-25 | 2008-07-31 | Cushcraft Corporation | System and Method for Focusing Antenna Signal Transmission |
US8009113B2 (en) * | 2007-01-25 | 2011-08-30 | Cushcraft Corporation | System and method for focusing antenna signal transmission |
US20120242553A1 (en) * | 2011-03-25 | 2012-09-27 | Kwok Wa Leung | Elliptically or circularly polarized dielectric block antenna |
US8803749B2 (en) * | 2011-03-25 | 2014-08-12 | Kwok Wa Leung | Elliptically or circularly polarized dielectric block antenna |
US20130335282A1 (en) * | 2012-06-13 | 2013-12-19 | City University Of Hong Kong | Omnidirectional circularly polarized dielectric antenna |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10051630B2 (en) | 2013-05-31 | 2018-08-14 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9674711B2 (en) | 2013-11-06 | 2017-06-06 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
CN103762416A (en) * | 2014-02-25 | 2014-04-30 | 中国工程物理研究院电子工程研究所 | Terahertz wave chip-mounted-waveguide-loudspeaker conversion antenna |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9973416B2 (en) | 2014-10-02 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9954286B2 (en) | 2014-10-21 | 2018-04-24 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9912033B2 (en) | 2014-10-21 | 2018-03-06 | At&T Intellectual Property I, Lp | Guided wave coupler, coupling module and methods for use therewith |
US9705610B2 (en) | 2014-10-21 | 2017-07-11 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9876587B2 (en) | 2014-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9960808B2 (en) | 2014-10-21 | 2018-05-01 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9871558B2 (en) | 2014-10-21 | 2018-01-16 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9742521B2 (en) | 2014-11-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9749083B2 (en) | 2014-11-20 | 2017-08-29 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9831912B2 (en) | 2015-04-24 | 2017-11-28 | At&T Intellectual Property I, Lp | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10797781B2 (en) | 2015-06-03 | 2020-10-06 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10050697B2 (en) | 2015-06-03 | 2018-08-14 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9935703B2 (en) | 2015-06-03 | 2018-04-03 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9912382B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9967002B2 (en) | 2015-06-03 | 2018-05-08 | At&T Intellectual I, Lp | Network termination and methods for use therewith |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9787412B2 (en) | 2015-06-25 | 2017-10-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10069185B2 (en) | 2015-06-25 | 2018-09-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9929755B2 (en) | 2015-07-14 | 2018-03-27 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9806818B2 (en) | 2015-07-23 | 2017-10-31 | At&T Intellectual Property I, Lp | Node device, repeater and methods for use therewith |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US12057638B2 (en) | 2016-10-21 | 2024-08-06 | Leonardo UK Ltd | Antenna and method of manufacture thereof |
WO2018073456A1 (en) * | 2016-10-21 | 2018-04-26 | Leonardo Mw Limited | Antenna and method of manufacture thereof |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US20180191048A1 (en) * | 2016-12-30 | 2018-07-05 | Hughes Network Systems, Llc | Low-cost radio frequency waveguide devices |
US10454150B2 (en) * | 2016-12-30 | 2019-10-22 | Hughes Network Systems, Llc | Radio frequency waveguide devices including a dielectric having other exterior surfaces with a feature thereon and coated by a metal layer |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
RU2680733C1 (en) * | 2018-04-10 | 2019-02-26 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Antenna radiator |
US11070250B2 (en) | 2019-12-03 | 2021-07-20 | At&T Intellectual Property I, L.P. | Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves |
US11277159B2 (en) | 2019-12-03 | 2022-03-15 | At&T Intellectual Property I, L.P. | Method and apparatus for managing propagation delays of electromagnetic waves |
US11502724B2 (en) | 2019-12-03 | 2022-11-15 | At&T Intellectual Property I, L.P. | Method and apparatus for transitioning between electromagnetic wave modes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4568943A (en) | Antenna feed with mode conversion and polarization conversion means | |
US4743915A (en) | Four-horn radiating modules with integral power divider/supply network | |
US4498061A (en) | Microwave receiving device | |
US20190229427A1 (en) | Integrated waveguide cavity antenna and reflector dish | |
CA2202843C (en) | Feeder link antenna | |
KR950013143B1 (en) | Micro wave antenna | |
US5243357A (en) | Waveguide feeding array antenna | |
JP2001524276A (en) | Broadband planar radiator | |
JPH07176950A (en) | Antenna for satellite communication | |
RU2107361C1 (en) | Device and method of reception of two signals as minimum polarized in orthogonal plane | |
CA1229161A (en) | Waveguide antenna output for a high-frequency planar antenna comprising an array of radiating or receiving elements and a system for transmitting or receiving high-frequency signals comprising a planar antenna having such an antenna output | |
US6417742B1 (en) | Circular polarizer having two waveguides formed with coaxial structure | |
JP3176217B2 (en) | Antenna device | |
EP0136341A1 (en) | Coaxial line to waveguide adapter. | |
US4990926A (en) | Microwave antenna structure | |
EP0312989B1 (en) | Microwave antenna structure | |
GB2222489A (en) | Waveguide apparatus | |
US4695844A (en) | Device for receiving dual polarized microwave signals | |
EP0564266B1 (en) | Circular polarization apparatus for micro wave antenna | |
US4590479A (en) | Broadcast antenna system with high power aural/visual self-diplexing capability | |
US5973654A (en) | Antenna feed having electrical conductors differentially affecting aperture electrical field | |
JP3829040B2 (en) | Primary radiator for 2 satellite reception | |
US5017938A (en) | UHF-TV broadcast system having circular, non-coaxial waveguide transmission line for operation in the TE11 mode | |
KR20000064587A (en) | Planar emitter | |
JP3490400B2 (en) | Antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RCA CORPROATION, A CORP. OF DEL. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BOWMAN, DAVID F.;REEL/FRAME:004136/0236 Effective date: 19830523 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19900204 |