US4487841A - Material for plasma spraying and method of making same - Google Patents

Material for plasma spraying and method of making same Download PDF

Info

Publication number
US4487841A
US4487841A US06348227 US34822782A US4487841A US 4487841 A US4487841 A US 4487841A US 06348227 US06348227 US 06348227 US 34822782 A US34822782 A US 34822782A US 4487841 A US4487841 A US 4487841A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
weight
sio
material
spraying
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06348227
Inventor
Miloslav Bartuska
Petr Kroupa
Josef Szabo
Karel Zverina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vysoka Skola Chemicko-Technologicka
Original Assignee
Vysoka Skola Chemicko-Technologicka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Abstract

There is disclosed a material for hot or plasma spraying, especially a material based on oxide ceramics, and a process for the production thereof. The composition of the invention is a mixture of powdered oxides containing at least two fundamental oxides with high melting point, and at least one glass-forming oxide the melting point of which is lower. The invention also includes a process for the production of such composition by the melting and agglomeration of individual components in the oxidizing medium of a plasma stream, including the special treatment of the starting components.

Description

This application is a continuation of application Ser. No. 155,078, filed June 2, 1980, now abandoned.

The invention relates to a material for hot or plasma spraying, especially to non-metallic refractory material suitable for the formation of resistant coatings, and to a process for the production of such a material.

At present, miscellaneous metallic and non-metallic materials are used for the production of protective coatings; the composition of the materials is varied according to the required properties of the coating regarding the chemical composition of starting materials and their physical properties. Such properties are especially refractoriness, abrasive wear resistance, minimum porosity, good holding on subjacent material, and resistance to mechanical and thermal impacts as well as chemical resistance to the influence of surrounding media. A problem still remains in realizing all the desired properties in one coating.

For example, metallic, especially noble, materials such as chromium, titanium, nickel and the like, even refined with another additive or alloy additions, if necessary, are used. With these materials, it follows from the properties of their starting components that very good mechanical properties of the resulting coatings are achieved, but heat resistance or chemical resistance of the resulting thus coating made is usually substantially worse.

Another large group of spraying materials are non-metallic materials, especially those based on oxide ceramics where the spraying material is made up either from one oxide or from a mixture of several oxides in the proper ratio. Typical representatives of these materials are materials on the basis of aluminum oxide Al2 O3 whose characteristic feature is the composition of the coating made from a mixture of gamma and alpha Al2 O3 modification. At temperature above 1180° C. irreversible modification transformation of the Al2 O3 gamma modification to the alpha modification takes place; at the same time there is a permanent contraction of the coating and an increase of its density. Coatings on the basis of Al2 O3, the so-called corundum coatings, are characterized by extraordinary abrasive wear resistance, high adhesion to subjacent material, and by very good electric properties; their corrosion resistance is, however, lower as a result of their open porosity, which amounts to 6 to 8%, and after transformation to the alpha modification it increases to 9 to 10%. Coatings on the basis of zirconium oxide ZrO2 have especially excellent heat insulating properties; layers made from chromium oxide Cr2 O are very hard and abrasive wear resistant; coatings of titanium oxide TiO2 are compact and readily machinable, and there are very hard layers, for example, layers of hafnium oxide HfO2. A common disadvantage of these one-component spraying materials is, however, their relatively high porosity, and from it a resulting smaller resistance to influence of aggressive media.

This disadvantage is partially overcome by coatings on the basis of silicium oxide SiO2 which forms a compact coating with a very small coefficient of thermal expansion and zero porosity. This coating is considerably resistant to corrosion and sudden temperature changes; on the other hand its resistance to mechanical impacts is entirely insufficient.

The problem of improving properties of plasma coatings has been lately solved by the formation of a mixture of several oxides exhibiting in the proper ratio more convenient properties than the properties of the basic components. It is, for example, zirconium silicate ZrSiO4 in which in coating composition ZrO2 prevails in its volume stable tetragonal modification in a homogeneous mixture with SiO2 in glass form. At temperatures above 1150° C. zircon is reversely synthetized. The coating has excellent resistance to temperature changes, a good heat insulating power, and it resists very well corrosion by melted glass materials, slags and by colored metals due to poor wetting of the zircon by the above-mentioned melts. The general corrosion resistance is, however, negatively influenced because of the open porosity of the coating, 15 to 25%, in spite of the presence of glass in the form of SiO2.

From further multi-component spraying materials, for example, magnesia spinel MgAl2 O4 can be formed; it has a low porosity, high electrical resistance, and excellent adhesion to subjacent material, but its corrosion resistance is substantially lower. There are also a number of multicomponent spraying materials on the basis of Al2 O3 with additives of TiO2 or Cr2 O3 where a TiO2 addition increases especially the compactness of the coating with a simultaneous improvement of the resistance to temperature changes, and a Cr2 O3 addition ensures better abrasive wear resistance; however, other disadvantages are not influenced.

Finally, the use of Al2 O3 with the addition of SiO2 is also known. This spraying material retains the very good mechanical properties of corundum (Al2 O3) coatings; the presence of SiO2 also enhancing corrosion resistance. With regard to the mechanism of transformation of the gamma and alpha Al2 O3 modifications, however, not even here as a result of the negative influencing of resulting coating porosity can there be achieved a corrosion resistance comparable with protective SiO2 layers.

This result, with the simultaneous achieving of high refractoriness, abrasive wear, and resistance to sudden temperature changes is the main object of the present invention.

A further possible way of lowering the porosity of the coating and thus to increase corrosion resistance is a choice of the proper granulation of starting spraying material, or the use of an amorphous additive as, for example, zinc by which, however, the hardness and heat resistance of the coating again becomes worse. Known two-component coatings with an amorphous additive do not make it possible to attain a sufficient resistance to corrosion medium of a given composition.

As concerns the process of the production of spraying material for hot or plasma spraying there are used altogether traditional ways of the treatment by the melting of the starting materials or their mixtures in arc furnaces and by the subsequent treatment to produce the desired granularity and shape of the material proper for its application by use of a plasma burner. These processes are considerably uneconomical with respect to relatively small treated amounts of material, especially with respect to high melting temperatures of the usual spraying materials. Besides, with the treatment of materials alloyed with small amounts of additives to very small grains of the size usual in the spraying by plasma stream it has been discovered that the heterogeneities in the structure of material negatively influence the quality of the coatings produced.

There is known as well a substantially power-consuming alloying of spraying materials by the diffusion of corresponding additives under high temperatures or the granulation of the mixture grains of individual components for the production of spraying materials consisting of two or more fundamental components contained in the mixture in a relatively high weight ratio. There is also known a process in which the relatively large grains of one or more components are enveloped by very fine additives with a grain size smaller than 0.3 micrometer. However, not even these processes comply with the requirement of a high homogenity of the spraying materials.

The above-mentioned disadvantages of prior art spraying materials for hot or plasma spraying are overcome by the spraying material of the present invention; such material consists of several metal oxides of which at least one oxide is a glass-forming oxide. In accordance with the invention the spraying material is formed by agglomerates of at least two fundamental oxides, especially Al2 O3, MgO, CaO, BaO, Cr2 O3, TiO2 or ZrO2, in the total amount of 50 to 99% by weight, and by at least one glass-forming oxide with a melting point lower by about 50° to 1100° C. than the melting points of the fundamental oxides, such glass-forming oxide being preferably SiO2, in the amount of 1 to 50% by weight. The spraying material preferably contains agglomerates of (1) 50 to 80% by weight CaO, 1 to 5% by weight MgO, and 18 to 45% by weight SiO2, or (2) 50 to 90 % by weight MgO, 1 to 5% by weight CaO, and 5 to 45% by weight SiO2, or (3) 90 to 95% by weight Cr2 O3, 2 to 8% by weight TiO2, and 1 to 3% by weight SiO2, or (4) 65 to 75% by weight Cr2 O3, 20 to 30% by weight MgO, and 2 to 10% by weight SiO2, or (5) 30 to 40% by weight Al2 O3, 15 to 25% by weight CaO, and 35 to 50% by weight SiO2, or (6) 25 to 30% by weight Al2 O3, 40 to 45% by weight BaO, and 25 to 35% by weight SiO2, or (7) 46 to 51% by weight Al2 O3, 33 to 41% by weight ZrO2, and 8 to 21% by weight SiO2, or (8) 25 to 30% by weight Al2 O3, 25 to 30% by weight Cr2 O3, 25 to 30% by weight ZrO2, and 10 to 25% by weight SiO2.

The above-mentioned disadvantages of prior art processes for the production of spraying materials for hot or plasma spraying consisting of several metal oxides from which at least one oxide is a glass-forming oxide are overcome by the process according to the invention, wherein the fundamental oxides and glass-forming oxide are brought separately or in a previously prepared mixture into the plasma stream with a concentration of charged particles between 2.00×1024 and 0.3×1023 per cm3 in the water stabilized plasma they are partially melted or melted-down and the resulting agglomerates are captured, for example, by a water or an air screen. The process according to the invention is preferably carried out so that into the plasma stream there is brought a mixture of fundamental oxides with a particle size of 0.01 to 0.2 mm and a glass-forming oxide or oxides with a particle size of 0.0002 to 0.04 mm. The particles of the fundamental oxides are surface melted and the particles of the glass-forming oxide or oxides are melted-down, or so that the fundamental oxides and the glass-forming oxide or oxides are brought separately or in a previously prepared mixture into the plasma stream with a concentration of charged particles between 2.00×1024 and 0.3×1023 per cm3 especially into a water stabilized plasma. In such partially melted or melted-down condition the particles are applied directly onto the surface which is to be protected by the coating.

The invention is further explained in the following examples of concrete embodiments thereof.

EXAMPLE 1

Into the plasma stream of a water stabilized plasma burner adapted for the spraying of powdered materials there is introduced a mixture of 65% by weight of powdered CaO with a particle size 0.04 to 0.06 mm, 3% by weight of MgO with the same particle size, and 32% by weight of SiO2 with a particle size 0.0005 to 0.0008 mm. The individual particles are exposed to temperature between 15,000° and 60,000° C., and after relevant reactions take place they are captured by a water screen. The resulting agglomerates are formed predominantly of dicalcium silicate accompanied by a small amount of monticellite (CaMgSiO4) as a binding phase and smaller amount of a glass phase.

EXAMPLE 2

Into the plasma stream there are introduced 70% by weight of MgO and 2% by weight of CaO in a mixture with 28% by weight of SiO2 under conditions analogous to those employed in Example 1. The materials are applied to the surface of a preheated constructional component, and they are allowed to cool slowly. The resulting material of the coating is formed by forsterite accompanied by small amounts of periclase (MgO), monticellite and a glass phase.

EXAMPLE 3

For spraying carried out under conditions analogous to Example 1, 95% by weight of Cr2 O3, 3% by weight of TiO2, and 2% by weight of SiO2 are used. The resulting material is formed mostly by eskolaite (Cr2 O3) and a small amount of a glass phase.

EXAMPLE 4

70% by weight of Cr2 O3, 25% by weight of MgO, and 5% by weight of SiO2 are used, the spray being formed as in Example 1. The resulting material is mostly formed by chrompicotite accompanied by a small amount of forsterite (Mg2 SiO4) and of a glass phase.

EXAMPLE 5

36% by weight of Al2 O3, 20% by weight of CaO, and 44% by weight of SiO2 are used in the same manner as in Example 1. A substantial part of resulting material is formed by anorthite (CaAl2 Si2 O8) accompanied with a glass phase.

EXAMPLE 6

27% by weight of Al2 O3, 41% by weight of BaO, and 32% by weight of SiO2 are used in the same manner as in Example 1. The resulting material is mostly formed by celsian (BaO.Al2.O3.2SiO2) accompanied by a glass phase.

EXAMPLE 7

28% by weight of Al2 O3, 28% by weight of Cr2 O3, 28% by weight of ZrO2, and 16% by weight of SiO2 are used in the same manner as in Example 1. The resulting material is mostly formed by corundum accompanied with baddeleyite (ZrO2), mullite (3Al2 O3.2SiO) and a glass phase.

EXAMPLE 8

28% by weight of Al2 O3, 28% by weight of Cr2 O3, 28% by weight of ZrO2, and 16% by weight of SiO2 are used in the same manner as in Example 1. The resulting material consists of approximately equal parts of baddeleyite, ruby (Al2 O3) and eskolaite accompanied by a smaller amount of a glass phase.

The materials prepared according to the above-described examples give the security of high refractoriness, resistance to corrosion by metallic or non-metallic melts, abrasive wear resistance, and resistance to sudden changes of temperature. All of such examples employ new materials of proper composition and properties always containing definite amounts of glass phase of SiO2 which substantially increases the corrosion resistance of the coating. Besides this glass phase, there is also always present a crystalline phase the physical and chemical properties of which are co-decisive for the maximum resistance of the coating to a corrosive medium of a given composition, and which is formed at least by two fundamental oxides with respect to the necessity of a sufficiently fine choice of its properties.

High homogeneity of the coating even with relatively small amounts of some additives is achieved by the capture of the resulting agglomerates by water or air screen and by their application to a substrate using a plasma burner. All of the above-mentioned spraying materials can, with very good results, be put directly on the surface which is to be protected by the coating, practically non-porous coatings being obtained with very good mechanical properties by the choice of proper percentile content and size of the SiO2 particles, as set forth above.

Although obviously not limited thereto, the plasma burner employed in practicing the method of the invention can advantageously be carried out by use of a plasma burner in accordance with that disclosed and claimed in Bartuska et al application Ser. No. 144,168, filed Apr. 25, 1980 (now abandoned), and the continuation-in-part thereof, Ser. No. 206,979, filed Nov. 14, 1980, now U.S. Pat. No. 4,338,509.

Although the invention is described with reference to a plurality of preferred embodiments thereof, it is to be expressly understood that it is in no way limited to the disclosure of such a plurality of embodiments, but is capable of numerous modifications within the scope of the appended claims.

Claims (5)

We claim:
1. In a spraying material for hot or plasma spraying consisting of several metal oxides of which at least one oxide is a glass-forming oxide, the improvement wherein the material is formed by agglomerates selected from one of the groups consisting of:
(1) 50% to 80% by weight of CaO, 1% to 5% by weight of MgO, and 18% to 45% by weight of SiO2 ;
(2) 50% to 90% by weight of MgO, 1% to 5% by weight of CaO, and 5% to 45% by weight of SiO2 ;
(3) 90% to 95% by weight of Cr2 O3, 2% to 8% by weight of TiO2, and 1% to 3% by weight of SiO2 ;
(4) 65% to 75% by weight of Cr2 O3, 20% to 30% by weight of MgO, and 2% to 10% by weight of SiO2 ;
(5) 30% to 40% by weight of Al2 O3, 15% to 25% by weight of CaO, and 35% to 50% by weight of SiO2 ;
(6) 25% to 30% by weight of Al2 O3, 40% to 45% by weight of BaO, and 25% to 35% by weight of SiO2 ;
(7) 46% to 51% by weight of Al2 O3, 33% to 41% by weight of ZrO2, and 8% to 21% by weight of SiO2 ; and
(8) 25% to 30% by weight of Al2 O3, 25% to30% by weight of Cr2 O3, 25% to 30% by weight of ZrO2 and 10% to 25% by weight of SiO2 ;
said glass-forming oxide being SiO2 having a particle size of 0.0002 to 0.04 mm, and the other metal oxides being fundamental oxides having a particle size of 0.01 to 0.2 mm.
2. In a process for the production of hot plasma spraying material consisting of several metal oxides of which at least one oxide is a glass-forming oxide, the improvement wherein the material is formed by agglomerates selected from one of the groups consisting of:
(1) 50% to 80% by weight of CaO, 1% to 5% by weight of MgO, and 18% to 45% by weight of SiO2 ;
(2) 50% to 90% by weight of MgO, 1% to 5% by weight of CaO, and 5% to 45% by weight of SiO2 ;
(3) 90% to 95% by weight of Cr2 O3, 2% to 8% by weight of TiO2, and 1% to 3% by weight of SiO2 ;
(4) 65% to 75% by weight of Cr2 O3, 20% to 30% by weight of MgO, and 2% to 10% by weight of SiO2 ;
(5) 30% to 40% by weight of Al2 O3, 15% to 25% by weight of CaO, and 35% to 50% by weight of SiO2 ;
(6) 25% to 30% by weight of Al2 O3, 40% to 45% by weight of BaO, and 25% to 35% by weight of SiO2 ;
(7) 46% to 51% by weight of Al2 O3, 33% to 41% by weight of ZrO2, and 8% to 21% by weight of SiO2 ; and
(8) 25% to 30% by weight of Al2 O3, 25% to 30% by weight of Cr2 O3, 25% to 30% by weight of SrO2 and 10% to 25% by weight of SiO2 ;
said glass-forming oxide being SiO2 having a particle size of 0.0002 to 0.04 mm, and the other metal oxides being fundamental oxides having a particle size of 0.01 to 0.2 mm; and
wherein said fundamental oxides are brought separately or in a previously prepared mixture into the plasma stream with a concentration of charged particles between 2.00×1024 and 0.3×1023 per cm3 into a water stabilized plasma, are partially melted or melted-down, and the resulting agglomerates are captured.
3. In a spraying material for hot or plasma spraying consisting of several metal oxides of which at least one oxide is a glass-forming oxide, the improvement wherein the material is formed by agglomerates consisting of 25% to 30% by weight of Al2 O3, 40% to 45% by weight of BaO, and 25% to 35% by weight of SiO2, said glass-forming oxide being SiO2 having aparticle size of 0.0002 to 0.04 mm, and the other metal oxides being fundamental oxides having a particle size of 0.01 to 0.2 mm.
4. In a process for the production of hot or plasma spraying material consisting of several metal oxides of which at least one oxide is a glass-forming oxide, the improvement wherein the material is formed by agglomerates consisting of 25% to 30% by weight of Al2 O3, 40% to 45% by weight of BaO, and 25% to 35% by weight of SiO2,
said glass-forming oxide being SiO2 having a particle size of 0.0002 to 0.04 mm, and the other metal oxides being fundamental oxides having a particle size of 0.01 to 0.2 mm, and
wherein said fundamental oxides are brought separately or in a previously prepared mixture into the plasma stream with a concentration of charged particles between 2.00×1024 and 0.3×1023 per cm3 into a water stabilized plasma, are partially melted or melted-down, and the resulting agglomerates are captured.
5. The process for the production of spraying material according to claim 4, wherein the particles of said fundamental oxides are brought into the plasma stream, said particles of fundamental oxides are simultaneously surface-melted in the said plasma stream, the particles of SiO2 are brought into the said plasma stream also and melted-down and, resulting agglomerates are captured by water screen or by air screen.
US06348227 1980-06-02 1982-02-12 Material for plasma spraying and method of making same Expired - Fee Related US4487841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15507880 true 1980-06-02 1980-06-02
US06348227 US4487841A (en) 1980-06-02 1982-02-12 Material for plasma spraying and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06348227 US4487841A (en) 1980-06-02 1982-02-12 Material for plasma spraying and method of making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15507880 Continuation 1980-06-02 1980-06-02

Publications (1)

Publication Number Publication Date
US4487841A true US4487841A (en) 1984-12-11

Family

ID=26851996

Family Applications (1)

Application Number Title Priority Date Filing Date
US06348227 Expired - Fee Related US4487841A (en) 1980-06-02 1982-02-12 Material for plasma spraying and method of making same

Country Status (1)

Country Link
US (1) US4487841A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951852A (en) * 1988-06-23 1990-08-28 Gilbert Rancoulle Insulative coating for refractory bodies
US5616263A (en) * 1992-11-09 1997-04-01 American Roller Company Ceramic heater roller
US6319615B1 (en) * 1998-09-07 2001-11-20 Sulzer Innotec Ag Use of a thermal spray method for the manufacture of a heat insulating coat
WO2002044115A2 (en) * 2000-11-30 2002-06-06 Schott Glas Coated metal element used for producing glass
US20090011920A1 (en) * 2005-03-15 2009-01-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gasifier reactor internal coating
WO2009146832A1 (en) 2008-05-30 2009-12-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermally sprayed ai2o3 layers having a high content of corundum without any property-reducing additives, and method for the production thereof
CN105568203A (en) * 2015-12-10 2016-05-11 苏州市嘉明机械制造有限公司 Plasma-spray-based manufacturing method of scratch-resistant insulating mirror plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274007A (en) * 1963-08-01 1966-09-20 Lockheed Aircraft Corp High-temperature resistant self-healing coating and method of application
US3541193A (en) * 1967-08-21 1970-11-17 Corhart Refractories Co Cooling a sintered refractory containing unstabilized zirconia through a disruptive crystal phase inversion
US3565645A (en) * 1967-10-30 1971-02-23 Gen Electric Densified zirconia-glass product
US3567473A (en) * 1968-05-14 1971-03-02 Amsted Ind Inc Composition for making refractory articles
US3576653A (en) * 1967-10-20 1971-04-27 Gen Motors Corp Leachable ceramic core
US3625717A (en) * 1968-04-29 1971-12-07 Avco Corp Spray coating compositions
US3645894A (en) * 1965-12-01 1972-02-29 Gen Electric Free-flowing plasma spray powder
US4053321A (en) * 1975-09-30 1977-10-11 Asahi Glass Company Ltd. Heat fused refractory product containing zirconia having high corrosion resistance
US4141743A (en) * 1977-10-31 1979-02-27 Dresser Industries, Inc. Thermal spray powdered composite

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274007A (en) * 1963-08-01 1966-09-20 Lockheed Aircraft Corp High-temperature resistant self-healing coating and method of application
US3645894A (en) * 1965-12-01 1972-02-29 Gen Electric Free-flowing plasma spray powder
US3541193A (en) * 1967-08-21 1970-11-17 Corhart Refractories Co Cooling a sintered refractory containing unstabilized zirconia through a disruptive crystal phase inversion
US3576653A (en) * 1967-10-20 1971-04-27 Gen Motors Corp Leachable ceramic core
US3565645A (en) * 1967-10-30 1971-02-23 Gen Electric Densified zirconia-glass product
US3625717A (en) * 1968-04-29 1971-12-07 Avco Corp Spray coating compositions
US3567473A (en) * 1968-05-14 1971-03-02 Amsted Ind Inc Composition for making refractory articles
US4053321A (en) * 1975-09-30 1977-10-11 Asahi Glass Company Ltd. Heat fused refractory product containing zirconia having high corrosion resistance
US4141743A (en) * 1977-10-31 1979-02-27 Dresser Industries, Inc. Thermal spray powdered composite

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951852A (en) * 1988-06-23 1990-08-28 Gilbert Rancoulle Insulative coating for refractory bodies
US5616263A (en) * 1992-11-09 1997-04-01 American Roller Company Ceramic heater roller
US6319615B1 (en) * 1998-09-07 2001-11-20 Sulzer Innotec Ag Use of a thermal spray method for the manufacture of a heat insulating coat
CN1526035B (en) 2000-11-30 2011-05-04 肖特股份有限公司 Coated metal element used for producing glass
WO2002044115A2 (en) * 2000-11-30 2002-06-06 Schott Glas Coated metal element used for producing glass
WO2002044115A3 (en) * 2000-11-30 2002-12-27 Dirk Gohlke Coated metal element used for producing glass
US20040067369A1 (en) * 2000-11-30 2004-04-08 Franz Ott Coated metal element used for producing glass
US7338714B2 (en) 2000-11-30 2008-03-04 Schott Ag Coated metal element used for producing glass
US20090011920A1 (en) * 2005-03-15 2009-01-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gasifier reactor internal coating
US8173564B2 (en) 2005-03-15 2012-05-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gasifier reactor internal coating
WO2009146832A1 (en) 2008-05-30 2009-12-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermally sprayed ai2o3 layers having a high content of corundum without any property-reducing additives, and method for the production thereof
US20110123431A1 (en) * 2008-05-30 2011-05-26 Filofteia-Laura Toma Thermally sprayed al2o3 layers having a high content of corundum without any property-reducing additives, and method for the production thereof
JP2011522115A (en) * 2008-05-30 2011-07-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Al2O3-layer and a manufacturing method thereof that is thermally sprayed with a high corundum content excluding additives lowering properties
US8318261B2 (en) 2008-05-30 2012-11-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Thermally sprayed Al2O3 coatings having a high content of corundum without any property-reducing additives, and method for the production thereof
WO2010001355A1 (en) * 2008-07-02 2010-01-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gasifier reactor internal coating
CN105568203A (en) * 2015-12-10 2016-05-11 苏州市嘉明机械制造有限公司 Plasma-spray-based manufacturing method of scratch-resistant insulating mirror plate

Similar Documents

Publication Publication Date Title
US3625717A (en) Spray coating compositions
US3379578A (en) Immersion-type thermocouple having a sheath composed of a sintered ceramic refractory
Fuhrer et al. Microstructural evolution in self-forming spinel/calcium aluminate-bonded castable refractories
US6001494A (en) Metal-ceramic composite coatings, materials, methods and products
US5932506A (en) Alumina-silicon carbide-carbon refractory castable containing magnesium aluminate spinel
Korgul et al. Microstructural analysis of corroded alumina-spinel castable refractories
US3615763A (en) High-alumina ceramic body and method of making same
US5998037A (en) Porcelain enamel composition for electronic applications
US3067050A (en) Alumina refractories
US3753744A (en) Graphite-alumina-silicon carbide base refractory
US2943240A (en) Furnace structures
US4222782A (en) Refractory ramming mix containing aluminum powder for metal melting furnaces
Dal Maschio et al. Industrial applications of refractories containing magnesium aluminate spinel
US4039344A (en) Alumina-chrome refractory composition
US5212123A (en) Refractory materials formed from refractory grains bonded by a sialon matrix containing dispersed graphite and/or boron nitride particles and a process for the preparation of these materials
US3927223A (en) Method of forming refractory oxide coatings
US5106795A (en) Chromic oxide refractories with improved thermal shock resistance
US4792468A (en) Method of forming refractory masses from compositions of matter of specified granulometry
US4585485A (en) Refractory sliding nozzle plate
US4053321A (en) Heat fused refractory product containing zirconia having high corrosion resistance
US3378385A (en) High alumina brick
US4326040A (en) Refractory for casting and process for producing same
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
US4594106A (en) Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials
US5204298A (en) Basic monolithic refractories

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 19921213