US4452722A - Suspensions containing microfibrillated cellulose - Google Patents
Suspensions containing microfibrillated cellulose Download PDFInfo
- Publication number
- US4452722A US4452722A US06/441,628 US44162882A US4452722A US 4452722 A US4452722 A US 4452722A US 44162882 A US44162882 A US 44162882A US 4452722 A US4452722 A US 4452722A
- Authority
- US
- United States
- Prior art keywords
- suspension
- microfibrillated cellulose
- cellulose
- stable
- microfibrillated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002678 cellulose Polymers 0.000 title claims abstract description 94
- 239000001913 cellulose Substances 0.000 title claims abstract description 91
- 239000000725 suspension Substances 0.000 title claims abstract description 54
- 229920001477 hydrophilic polymer Polymers 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 9
- 239000004615 ingredient Substances 0.000 claims description 7
- 229920002472 Starch Polymers 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229920003086 cellulose ether Polymers 0.000 claims description 2
- 229920001206 natural gum Polymers 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims 1
- 239000002861 polymer material Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 11
- 235000010980 cellulose Nutrition 0.000 description 83
- 239000000839 emulsion Substances 0.000 description 19
- 239000002002 slurry Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 239000003921 oil Substances 0.000 description 15
- 235000019198 oils Nutrition 0.000 description 14
- 239000000047 product Substances 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000003973 paint Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000004576 sand Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 6
- 239000012467 final product Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 235000015071 dressings Nutrition 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 235000015220 hamburgers Nutrition 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 206010061592 cardiac fibrillation Diseases 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010411 cooking Methods 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000002600 fibrillogenic effect Effects 0.000 description 3
- 239000006194 liquid suspension Substances 0.000 description 3
- 235000014438 salad dressings Nutrition 0.000 description 3
- 235000013599 spices Nutrition 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004166 Lanolin Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008269 hand cream Substances 0.000 description 2
- 229940039717 lanolin Drugs 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000013580 sausages Nutrition 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000000052 vinegar Substances 0.000 description 2
- 235000021419 vinegar Nutrition 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 206010039792 Seborrhoea Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000003250 coal slurry Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008278 cosmetic cream Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000021185 dessert Nutrition 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 235000019692 hotdogs Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 230000037312 oily skin Effects 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 235000012045 salad Nutrition 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/05—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/14—Clay-containing compositions
- C09K8/18—Clay-containing compositions characterised by the organic compounds
- C09K8/20—Natural organic compounds or derivatives thereof, e.g. polysaccharides or lignin derivatives
- C09K8/206—Derivatives of other natural products, e.g. cellulose, starch, sugars
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/02—Cellulose; Modified cellulose
Definitions
- This invention relates to stable homogeneous suspensions containing microfibrillated cellulose.
- microfibrillated cellulose in U.S. Pat. No. 4,374,702 which issued on a continuation of our copending application, Ser. No. 107,446, filed Dec. 26, 1979 and now abandoned, there is disclosed a new type of cellulose, denominated microfibrillated cellulose, distinguished from prior celluloses by a vastly increased surface area, greater liquid absorption characteristics and greater reactivity.
- the microfibrillated cellulose there disclosed is prepared by repeatedly passing a liquid suspension of fibrous cellulose through a high pressure homogenizer until the cellulose suspension becomes substantially stable. The process converts the cellulose into microfibrillated cellulose without substantial chemical change.
- microfibrillated cellulose has the unique capability of enhancing the homogeneity and stability of a wide variety of suspensions.
- the presence of microfibrillated cellulose in suspensions of the type used in foods, cosmetics, pharmaceuticals and such industrial products as paints and drilling muds has been found to confer a number of unusual property characteristics on the resulting product.
- suspensions may be made which were not previously possible.
- the microfibrillated cellulose may be formed in situ in the suspension in a single stage operation by mixing fibrous cellulose with the ingredients of the suspension and then passing the mixture through an homogenizer or alternatively, the microfibrillated cellulose may be separately prepared and added to the suspension after preparation.
- the invention involves a suspension of finely divided material in a liquid suspending medium which swells cellulose, the suspension containing microfibrillated cellulose in an amount sufficient to produce a stable, homogeneous suspension.
- the suspension is prepared in situ by mixing together a liquid which swells cellulose, a finely divided material suspended in said liquid and fibrous cellulose to form a liquid suspension and repeatedly passing the liquid suspension through a small diameter orifice in which the mixture is subjected to a pressure drop of at least 3000 psi and a high velocity shearing action followed by a high velocity decelerating impact, the process of converting the cellulose into microfibrillated cellulose, the microfibrillated cellulose being present in an amount sufficient to form a stable homogeneous suspension of the liquid and suspended material.
- the suspension may be prepared by mixing together the liquid which swells cellulose, the finely divided material suspended in the liquid and the separately prepared microfibrillated cellulose in an amount sufficient to form a stable, homogeneous suspension of the liquid and suspended material.
- suspension as used herein is intended to include within its scope, suspensions in which a finely divided solid, liquid or gas are mixed with, but undissolved in, a liquid.
- the term thus includes an emulsion in which a liquid is dispersed in a second immiscible liquid, and a foam in which a gas is entrapped in the liquid and stabilized.
- microfibrillated cellulose used in preparing the suspensions of the invention will vary considerably depending on the nature and intended use of the suspension. For example, it has been found that oil-in-water emulsions may be rendered stable with 1% by weight of less of microfibrillated cellulose. The properties of latex paint suspensions are enhanced with as little as 0.25% of microfibrillated cellulose while sand suspensions are stabilized with from 2 to 3% of microfibrillated cellulose. At the other extreme, the microfibrillated cellulose may be present as the predominant or major ingredient of the suspension. In general, the microfibrillated cellulose should be present in an amount sufficient to accomplish its function of producing a stable, homogeneous suspension. In most applications, this amount will range from about 0.25% to about 5%, the percentages being the weight of cellulose solids present as microfibrillated cellulose based on the total weight of the suspension.
- microfibrillated cellulose is assisted by the addition to the starting mixture of a hydrophilic polymer which may be a cellulose ester or ether, a synthetic acid polymer (or copolymer), a natural gum or a starch.
- a hydrophilic polymer which may be a cellulose ester or ether, a synthetic acid polymer (or copolymer), a natural gum or a starch.
- hydrophilic polymers are carboxymethyl cellulose, methyl cellulose (methocel), hydroxypropyl cellulose, polyacrylic acid, carageenin and guar gum.
- hydrophilic polymer additive to the liquid suspending medium, prior to cellulosic pulp addition, appears to prevent dewatering of the pulp (or other fibrous cellulose) under the high pressures of the fibrillation process and thus allows the slurry to pass through the homogenizer at higher slurry concentrations.
- the microfibrillated cellulose produced with the additive present also displays improved freeze-thaw stability and improved dewatering resistance under pressure and thus produces improved suspensions in accordance with the invention in those products where smoothness is important, as for example in hand creams, cosmetics and paints.
- the hydrophilic polymer will enhance the fibrillation process at levels as low as 0.1% by weight of the suspension, and may be used in amounts as high as 25%, depending on the nature of the suspension.
- a 4% cellulose slurry in approximately 3 gallons of water was prepared using prehydrolyzed kraft pulp which had been cut to pass through a 0.125 inch screen.
- the starting temperature of the slurry was 25° C.
- the slurry was passed through a Manton-Gaulin (trademark) homogenizer at 8000 lbs/sq. in. (gauge) ten consecutive times until a stable suspension or gel-point was reached.
- Microfibrillated cellulose can be used to adjust the rheology of paint to reduce dripping.
- the microfibrillated cellulose assists in the coverage of the surface to be painted and thus reduces the required levels of titanium dioxide pigment. This is illustrated by Examples 2-7.
- microfibrillated cellulose of Example 1 was added as a 4% slurry in water to a commercial latex enamel white paint.
- a comparison of the drip length of the paint at various solid levels with and without various percentages of microfibrillated cellulose addition is set forth in Table I.
- Microfibrillated cellulose acts as a non-ionic emulsifying agent as well as a stabilizer for emulsions. This is illustrated by the following examples.
- Example 2 A 4.7% solids microfibrillated cellulose slurry in water was prepared as in Example 1 from sulfite pulp. The slurry was then intimately mixed with food grade soybean oil and additional water in a blender. Table II sets forth the results of a series of experiments with and without microfibrillated cellulose and with various quantities of microfibrillated cellulose, oil and added water to prepare an oil-in-water emulsion.
- a 20% by weight stable emulsion was prepared from 80 grams of pulp which had been cut to pass through a 0.125 inch screen, 800 grams of a liquid vegetable oil (a food grade oil sold under the trademark Crisco) and 3112 grams of water. The entire mixture was passed through an homogenizer at 8000 psig for ten passes. The final emulsion contained about 2% microfibrillated cellulose and was stable on the shelf at room temperature for at least six months.
- Microfibrillated cellulose is also capable of use in relatively small, economical proportions for the preparation of stable emulsions of dense solids such as sand and coal for pipeline coal slurry pumping.
- the following examples demonstrate the usefulness of microfibrillated cellulose for use as "packer fluids" of the type used for preventing settling of suspended material during shutdown of drilling operations.
- a 2% suspension in water of cellulosic pulp cut to pass through a 0.125 inch screen was prepared as a control. To 100 grams of this suspension was added about 10 grams of ordinary sand. The mixture was shaken and allowed to stand. As expected, the sand settled rapidly to the bottom--no suspending action was noted.
- a second experiment was performed in which a layer of the sand was placed on top of a layer of the microfibrillated cellulose. Again, the sand did not settle through the microfibrillated cellulose and did not penetrate it appreciably over a period of months.
- Microfibrillated cellulose thus may be used at low concentrations (2 to 3%) and therefore inexpensively in drilling operations and for enhancing the stability of suspensions of relatively dense solids.
- microfibrillated cellulose may be substituted for oil to produce a low calorie salad dressing.
- the product obtained from mixing a commercial Italian dressing mix yields a stable suspension of spices which are uniformly distributed throughout the mix.
- a commercial Thousand Island mix with microfibrillated cellulose yields a creamy stable suspension similar to the texture of its oil base counterpart.
- Commercial preparations of Italian salad dressings generally require shaking before use. The corresponding product made with microfibrillated cellulose does not.
- a vinegar solution was approximated by preparing a 5% (V/V) acetic acid solution. Fifty-five milliliters of this vinegar was added to 25 ml of water in a cruet. In place of oil, 150 ml of a 1.7% microfibrillated cellulose was substituted. An envelope of dried Italian salad mix was added and the entire mixture well shaken. A stable dispersion of the spices resulted. The color and texture of the material resembled very closely an authentic Italian dressing.
- a commercially available dry Thousand Island dressing mix was added to approximately 225 ml of a 2% slurry in water of microfibrillated cellulose and mixed well. A smooth consistency was obtained which appeared quite similar to a regular Thousand Island dressing. The suspension was stable to settling.
- microfibrillated cellulose as an aid for emulsifying oils or fats in foods.
- a 2% microfibrillated cellulose slurry was added to a ground pork sausage mixture in an amount equal to 0.2% total cellulose based on final product weight. Upon frying, there was considerably less shrinkage of the sausage link and far less fat rendered as compared to the same ground mixture with no added microfibrillated cellulose.
- a 2.5% microfibrillated cellulose slurry in water was added in the proportion of 1/3 slurry by weight to 2/3 by weight of ground chuck hamburger. This results in a product having 0.83% added cellulose based on final product weight i.e. 27 g of hamburger, 12.67 g added H 2 O and 0.33 g of cellulose.
- a control weighing 40 grams ended up at 26 g after identical frying conditions which corresponds to a 34% weight loss.
- microfibrillated cellulose did not lose less weight, but it was far juicier and did not have the extremely mealy taste of the control.
- addition of the 0.83% cellulose as microfibrillated cellulose served both to reduce cooking losses and to improve overall taste and acceptance of the final product.
- a 2% microfibrillated cellulose slurry in water was added to a commercial meat emulsion used for making hot dogs in an amount equal to 2% cellulose based on total weight of product.
- the resultant wieners had a juicier taste and an improved smoke flavor retention as compared with an equivalent wiener without microfibrillated cellulose. Further, there is considerably less formation of fat globules throughout the final product. Palate response was excellent.
- Example 24 was repeated using a commercial bologna emulsion with 3% cellulose based on final product. As compared with the same bologna without microfibrillated cellulose, the resulting bologna has vastly improved response to lowered formation of fat pockets which is one of the major problems in the industry. The product was also juicier and had better flavor retention than the control.
- a low calorie whipped dessert topping was made by mixing together 2.2% cellulosic pulp, 6% sugar, 8% soybean oil and 83.8% water. The mixed ingredients formed a slurry which was passed through an homogenizer having an 8000 psig pressure for ten passes. A whipped topping was produced with a smooth, consistent texture. The topping may, but need not be, further whipped in a blender.
- glycerine and propylene glycol which are used as moisturizing ingredients.
- microfibrillated cellulose is produced in glycerol or propylene glycol sufficient body is imparted to the moisturizer so that expensive oils are not required. This not only lowers the costs, but also is an advantage for controlling oily skin.
- the translucent glycerine-cellulose (MFC) and propylene glycol-cellulose (MFC) give a stable suspension of smooth consistency quite like a commercial hand cream.
- the high absorbency of the microfibrillated cellulose may additionally be used to carry other agents as a slow release vehicle.
- the other agents may be bacteriostats or other special skin care agents.
- a 2% slurry of cellulosic pulp in glycerine was passed through a Manton-Gaulin homogenizer for 950 seconds at 8000 psig for 12 passes to a final temperature of 135° C.
- the result was a stable suspension of smooth consistency quite similar to a commercial hand cream.
- To this suspension base may be added varioius aroma contributing ingredients, lanolin, other softening oils, cleansing agents or bacteriocides as desired.
- Example 27 was repeated, using however propylene glycol as the liquid carrier.
- the resulting product was similar to the glycerine based product.
- a 2% slurry of fluffed sulfite pulp in water containing 0.5% sodium carboxymethyl cellulose was passed through the homogenizer at 8000 psig for 600 seconds or 10 passes to a final temperature of 100° C.
- a thick opaque paste was obtained which had an excellent consistency for cosmetic cream based uses, showing that water can also be used in addition to glycols.
- Various aroma contributing ingredients, lanolin, other softening oils, cleansing agents or bacteriocides may be added to this base as in Example 27.
- microfibrillated cellulose useful in the invention is more specifically defined as cellulose having a water retention value over 280%, a settling volume after 60 minutes in a 0.5% by weight suspension in water of greater than 60% and a rate of degradation increase by hydrolysis at 60° C. in one molar hydrochloric acid at least twice as great as cellulose beaten to a Canadian Standard Freeness value of 50 ml. Further and more detailed information concerning microfibrillated cellulose, as well as its preparation, may be found in our aforesaid copending application Ser. No. 107,446, the disclosure of which is hereby incorporated by reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Jellies, Jams, And Syrups (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
TABLE I
______________________________________
Drip
Ex- Length
ample % MFC % Pigment % Solids
% Vehicle
(Inches)
______________________________________
2 0 15.97 15.97 84.03 8.8
3 0.25 15.72 15.97 84.03 8.2
4 0 15.34 15.34 84.66 8.5
5 0.50 14.84 15.34 84.66 6.0
6 0 14.06 14.06 85.93 12.0
7 1.0 13.06 14.06 85.93 4.0
______________________________________
TABLE II
______________________________________
Ex- MFC Water
am- Slurry Oil Added
ple Grams Grams Grams % MFC % Oil Result
______________________________________
8 0 40 160 0 20 Stable emul-
sion not
possible
9 10.6 40 150 0.25 20 Stable emul-
sion not
possible
10 25 44 150 0.54 20 Stable emul-
sion not
possible
11 40 40 120 0.94 20 Stable
emulsion
12 40 80 80 0.94 40 Stable
emulsion
13 70 251 30 0.94 71.5 Stable
emulsion
14 50 64 51 1.42 38.8 Stable
emulsion
15 85 176 15 1.45 63.8 Stable
emulsion
16 85 100 15 2.0 50 Stable
emulsion
______________________________________
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/441,628 US4452722A (en) | 1980-10-31 | 1982-11-15 | Suspensions containing microfibrillated cellulose |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/202,740 US4378381A (en) | 1980-10-31 | 1980-10-31 | Suspensions containing microfibrillated cellulose |
| US06/441,628 US4452722A (en) | 1980-10-31 | 1982-11-15 | Suspensions containing microfibrillated cellulose |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/202,740 Division US4378381A (en) | 1980-10-31 | 1980-10-31 | Suspensions containing microfibrillated cellulose |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4452722A true US4452722A (en) | 1984-06-05 |
Family
ID=26897986
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/441,628 Expired - Lifetime US4452722A (en) | 1980-10-31 | 1982-11-15 | Suspensions containing microfibrillated cellulose |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4452722A (en) |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4659388A (en) * | 1984-06-08 | 1987-04-21 | Daicel Chemical Industries, Ltd. | Additive composition for foods or drugs |
| US4744987A (en) * | 1985-03-08 | 1988-05-17 | Fmc Corporation | Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation |
| WO1991002463A1 (en) * | 1989-08-18 | 1991-03-07 | Kraft General Foods, Inc. | Low calorie food products having smooth, creamy, organoleptic characteristics |
| US5385640A (en) * | 1993-07-09 | 1995-01-31 | Microcell, Inc. | Process for making microdenominated cellulose |
| US5415804A (en) * | 1991-09-30 | 1995-05-16 | Asahi Kasei Kogyo Kabushiki Kaisha | Water-dispersible complex and a process for the production thereof |
| US5487419A (en) * | 1993-07-09 | 1996-01-30 | Microcell, Inc. | Redispersible microdenominated cellulose |
| US6103790A (en) * | 1994-03-01 | 2000-08-15 | Elf Atochem S.A. | Cellulose microfibril-reinforced polymers and their applications |
| US6602994B1 (en) | 1999-02-10 | 2003-08-05 | Hercules Incorporated | Derivatized microfibrillar polysaccharide |
| US6689405B1 (en) | 1993-07-26 | 2004-02-10 | Fmc Corporation | Fat-like agents for low calorie food compositions |
| US20080108541A1 (en) * | 2006-11-08 | 2008-05-08 | Swazey John M | Surfactant Thickened Systems Comprising Microfibrous Cellulose and Methods of Making Same |
| US20080108714A1 (en) * | 2006-11-08 | 2008-05-08 | Swazey John M | Surfactant Thickened Systems Comprising Microfibrous Cellulose and Methods of Making Same |
| US20080146485A1 (en) * | 2006-12-19 | 2008-06-19 | Swazey John M | Cationic Surfactant Systems Comprising Microfibrous Cellulose |
| EP1675470A4 (en) * | 2003-09-24 | 2009-06-10 | Triveni P Shukla | Emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid |
| US20110059883A1 (en) * | 2009-09-08 | 2011-03-10 | Cp Kelco U.S., Inc. | Methods to Improve the Compatibility and Efficiency of Powdered Versions of Microfibrous Cellulose |
| US8231764B2 (en) | 2009-05-15 | 2012-07-31 | Imerys Minerals, Limited | Paper filler method |
| EP2496766B1 (en) | 2009-11-06 | 2017-08-02 | Stora Enso Oyj | Process for the production of a paper or board product and a paper or board produced according to the process |
| US10053817B2 (en) | 2010-04-27 | 2018-08-21 | Fiberlean Technologies Limited | Process for the manufacture of structured materials using nano-fibrillar cellulose gels |
| NO343138B1 (en) * | 2013-03-20 | 2018-11-19 | Elkem Materials | Viscosity-increasing agent for drilling fluids |
| US10214859B2 (en) | 2016-04-05 | 2019-02-26 | Fiberlean Technologies Limited | Paper and paperboard products |
| US10253457B2 (en) | 2010-11-15 | 2019-04-09 | Fiberlean Technologies Limited | Compositions |
| US10294371B2 (en) | 2009-03-30 | 2019-05-21 | Fiberlean Technologies Limited | Process for the production of nano-fibrillar cellulose gels |
| US10301774B2 (en) | 2009-03-30 | 2019-05-28 | Fiberlean Technologies Limited | Process for the production of nano-fibrillar cellulose suspensions |
| US10577469B2 (en) | 2015-10-14 | 2020-03-03 | Fiberlean Technologies Limited | 3D-formable sheet material |
| US10662366B2 (en) | 2016-08-09 | 2020-05-26 | Schlumberger Technology Corporation | Compositions and methods for servicing subterranean wells |
| US10689564B2 (en) | 2015-11-23 | 2020-06-23 | Schlumberger Technology Corporation | Fluids containing cellulose fibers and cellulose nanoparticles for oilfield applications |
| US10794006B2 (en) | 2016-04-22 | 2020-10-06 | Fiberlean Technologies Limited | Compositions comprising microfibrilated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom |
| US10815414B2 (en) | 2015-05-20 | 2020-10-27 | Schlumberger Technology Corporation | Water control agent for oilfield application |
| US11155697B2 (en) | 2010-04-27 | 2021-10-26 | Fiberlean Technologies Limited | Process for the production of gel-based composite materials |
| US11846072B2 (en) | 2016-04-05 | 2023-12-19 | Fiberlean Technologies Limited | Process of making paper and paperboard products |
| EP4267661A4 (en) * | 2020-12-23 | 2024-10-09 | 11584022 Canada Inc. | HOMOGENEOUS BIOPOLYMER SUSPENSIONS, METHODS FOR THEIR PRODUCTION AND USES THEREOF |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2574210A (en) * | 1943-07-26 | 1951-11-06 | Anglo Internat Ind Ltd | Method of preparing a hydrophilic cellulose gel |
| US2716072A (en) * | 1951-06-05 | 1955-08-23 | Dow Chemical Co | Methylcellulose composition and method |
| US3023104A (en) * | 1960-07-05 | 1962-02-27 | American Viscose Corp | Food compositions incorporating cellulose crystallite aggregates |
| US3067037A (en) * | 1960-12-02 | 1962-12-04 | American Viscose Corp | Foamable products containing disintegrated cellulose crystallite aggregates |
| US3689298A (en) * | 1968-04-29 | 1972-09-05 | Armour Ind Chem Co | Method of incorporating fillers in cationic bituminous emulsions and products produced thereby |
| US3880771A (en) * | 1968-01-26 | 1975-04-29 | Normac | Aqueous suspension vehicle useful in suspension polymerization system for spheres |
| US3899439A (en) * | 1973-03-12 | 1975-08-12 | Hercules Inc | Method of preparing aqueous dispersions of hydroxypropyl cellulose |
| US4104035A (en) * | 1975-12-11 | 1978-08-01 | Texaco Inc. | Preparation of solid fuel-water slurries |
-
1982
- 1982-11-15 US US06/441,628 patent/US4452722A/en not_active Expired - Lifetime
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2574210A (en) * | 1943-07-26 | 1951-11-06 | Anglo Internat Ind Ltd | Method of preparing a hydrophilic cellulose gel |
| US2716072A (en) * | 1951-06-05 | 1955-08-23 | Dow Chemical Co | Methylcellulose composition and method |
| US3023104A (en) * | 1960-07-05 | 1962-02-27 | American Viscose Corp | Food compositions incorporating cellulose crystallite aggregates |
| US3067037A (en) * | 1960-12-02 | 1962-12-04 | American Viscose Corp | Foamable products containing disintegrated cellulose crystallite aggregates |
| US3880771A (en) * | 1968-01-26 | 1975-04-29 | Normac | Aqueous suspension vehicle useful in suspension polymerization system for spheres |
| US3689298A (en) * | 1968-04-29 | 1972-09-05 | Armour Ind Chem Co | Method of incorporating fillers in cationic bituminous emulsions and products produced thereby |
| US3899439A (en) * | 1973-03-12 | 1975-08-12 | Hercules Inc | Method of preparing aqueous dispersions of hydroxypropyl cellulose |
| US4104035A (en) * | 1975-12-11 | 1978-08-01 | Texaco Inc. | Preparation of solid fuel-water slurries |
Cited By (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4659388A (en) * | 1984-06-08 | 1987-04-21 | Daicel Chemical Industries, Ltd. | Additive composition for foods or drugs |
| US4744987A (en) * | 1985-03-08 | 1988-05-17 | Fmc Corporation | Coprocessed microcrystalline cellulose and calcium carbonate composition and its preparation |
| US5011701A (en) * | 1988-12-30 | 1991-04-30 | Kraft General Foods, Inc. | Low calorie food products having smooth, creamy, organoleptic characteristics |
| WO1991002463A1 (en) * | 1989-08-18 | 1991-03-07 | Kraft General Foods, Inc. | Low calorie food products having smooth, creamy, organoleptic characteristics |
| US5415804A (en) * | 1991-09-30 | 1995-05-16 | Asahi Kasei Kogyo Kabushiki Kaisha | Water-dispersible complex and a process for the production thereof |
| US5487419A (en) * | 1993-07-09 | 1996-01-30 | Microcell, Inc. | Redispersible microdenominated cellulose |
| US5385640A (en) * | 1993-07-09 | 1995-01-31 | Microcell, Inc. | Process for making microdenominated cellulose |
| US6689405B1 (en) | 1993-07-26 | 2004-02-10 | Fmc Corporation | Fat-like agents for low calorie food compositions |
| US6103790A (en) * | 1994-03-01 | 2000-08-15 | Elf Atochem S.A. | Cellulose microfibril-reinforced polymers and their applications |
| US6602994B1 (en) | 1999-02-10 | 2003-08-05 | Hercules Incorporated | Derivatized microfibrillar polysaccharide |
| EP1675470A4 (en) * | 2003-09-24 | 2009-06-10 | Triveni P Shukla | Emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid |
| US20080108714A1 (en) * | 2006-11-08 | 2008-05-08 | Swazey John M | Surfactant Thickened Systems Comprising Microfibrous Cellulose and Methods of Making Same |
| US10030214B2 (en) | 2006-11-08 | 2018-07-24 | Cp Kelco U.S., Inc. | Personal care products comprising microfibrous cellulose and methods of making the same |
| US20080108541A1 (en) * | 2006-11-08 | 2008-05-08 | Swazey John M | Surfactant Thickened Systems Comprising Microfibrous Cellulose and Methods of Making Same |
| US10214708B2 (en) | 2006-11-08 | 2019-02-26 | Cp Kelco U.S., Inc. | Liquid detergents comprising microfibrous cellulose and methods of making the same |
| US8772359B2 (en) * | 2006-11-08 | 2014-07-08 | Cp Kelco U.S., Inc. | Surfactant thickened systems comprising microfibrous cellulose and methods of making same |
| US9045716B2 (en) * | 2006-11-08 | 2015-06-02 | Cp Kelco U.S., Inc. | Surfactant thickened systems comprising microfibrous cellulose and methods of making same |
| US20080146485A1 (en) * | 2006-12-19 | 2008-06-19 | Swazey John M | Cationic Surfactant Systems Comprising Microfibrous Cellulose |
| US7888308B2 (en) | 2006-12-19 | 2011-02-15 | Cp Kelco U.S., Inc. | Cationic surfactant systems comprising microfibrous cellulose |
| US20110104096A1 (en) * | 2006-12-19 | 2011-05-05 | Cp Kelco U.S., Inc. | Cationic Surfactant Systems Comprising Microfibrous Cellulose |
| US10982387B2 (en) | 2009-03-30 | 2021-04-20 | Fiberlean Technologies Limited | Process for the production of nano-fibrillar cellulose suspensions |
| US10294371B2 (en) | 2009-03-30 | 2019-05-21 | Fiberlean Technologies Limited | Process for the production of nano-fibrillar cellulose gels |
| US10975242B2 (en) | 2009-03-30 | 2021-04-13 | Fiberlean Technologies Limited | Process for the production of nano-fibrillar cellulose gels |
| US10301774B2 (en) | 2009-03-30 | 2019-05-28 | Fiberlean Technologies Limited | Process for the production of nano-fibrillar cellulose suspensions |
| US11377791B2 (en) | 2009-05-15 | 2022-07-05 | Fiberlean Technologies Limited | Paper filler composition |
| US9127405B2 (en) | 2009-05-15 | 2015-09-08 | Imerys Minerals, Limited | Paper filler composition |
| US11970817B2 (en) | 2009-05-15 | 2024-04-30 | Fiberlean Technologies Limited | Paper filler composition |
| US11732411B2 (en) | 2009-05-15 | 2023-08-22 | Fiberlean Technologies Limited | Paper filler composition |
| US8231764B2 (en) | 2009-05-15 | 2012-07-31 | Imerys Minerals, Limited | Paper filler method |
| US10100464B2 (en) | 2009-05-15 | 2018-10-16 | Fiberlean Technologies Limited | Paper filler composition |
| US11162219B2 (en) | 2009-05-15 | 2021-11-02 | Fiberlean Technologies Limited | Paper filler composition |
| US20110059883A1 (en) * | 2009-09-08 | 2011-03-10 | Cp Kelco U.S., Inc. | Methods to Improve the Compatibility and Efficiency of Powdered Versions of Microfibrous Cellulose |
| EP2496766B1 (en) | 2009-11-06 | 2017-08-02 | Stora Enso Oyj | Process for the production of a paper or board product and a paper or board produced according to the process |
| US10633796B2 (en) | 2010-04-27 | 2020-04-28 | Fiberlean Technologies Limited | Process for the manufacture of structured materials using nano-fibrillar cellulose gels |
| US10100467B2 (en) | 2010-04-27 | 2018-10-16 | Fiberlean Technologies Limited | Process for the manufacture of structured materials using nano-fibrillar cellulose gels |
| US10053817B2 (en) | 2010-04-27 | 2018-08-21 | Fiberlean Technologies Limited | Process for the manufacture of structured materials using nano-fibrillar cellulose gels |
| US11155697B2 (en) | 2010-04-27 | 2021-10-26 | Fiberlean Technologies Limited | Process for the production of gel-based composite materials |
| US11136721B2 (en) | 2010-11-15 | 2021-10-05 | Fiberlean Technologies Limited | Compositions |
| US10253457B2 (en) | 2010-11-15 | 2019-04-09 | Fiberlean Technologies Limited | Compositions |
| US11655594B2 (en) | 2010-11-15 | 2023-05-23 | Fiberlean Technologies Limited | Compositions |
| US10800961B2 (en) | 2013-03-20 | 2020-10-13 | Elkem Asa | Viscosifier for oil well fluids |
| NO343138B1 (en) * | 2013-03-20 | 2018-11-19 | Elkem Materials | Viscosity-increasing agent for drilling fluids |
| US10202534B2 (en) | 2013-03-20 | 2019-02-12 | Elkem Asa | Viscosifier for oil well fluids |
| US10815414B2 (en) | 2015-05-20 | 2020-10-27 | Schlumberger Technology Corporation | Water control agent for oilfield application |
| US10577469B2 (en) | 2015-10-14 | 2020-03-03 | Fiberlean Technologies Limited | 3D-formable sheet material |
| US11932740B2 (en) | 2015-10-14 | 2024-03-19 | Fiberlean Technologies Limited | 3D-formable sheet material |
| US11384210B2 (en) | 2015-10-14 | 2022-07-12 | Fiberlean Technologies Limited | 3-D formable sheet material |
| US11434417B2 (en) | 2015-11-23 | 2022-09-06 | Schlumberger Technology Corporation | Fluids containing cellulose fibers and cellulose nanoparticles for oilfield applications |
| US10689564B2 (en) | 2015-11-23 | 2020-06-23 | Schlumberger Technology Corporation | Fluids containing cellulose fibers and cellulose nanoparticles for oilfield applications |
| US11274399B2 (en) | 2016-04-05 | 2022-03-15 | Fiberlean Technologies Limited | Paper and paperboard products |
| US10214859B2 (en) | 2016-04-05 | 2019-02-26 | Fiberlean Technologies Limited | Paper and paperboard products |
| US11732421B2 (en) | 2016-04-05 | 2023-08-22 | Fiberlean Technologies Limited | Method of making paper or board products |
| US11846072B2 (en) | 2016-04-05 | 2023-12-19 | Fiberlean Technologies Limited | Process of making paper and paperboard products |
| US10801162B2 (en) | 2016-04-05 | 2020-10-13 | Fiberlean Technologies Limited | Paper and paperboard products |
| US12203223B2 (en) | 2016-04-05 | 2025-01-21 | Fiberlean Technologies, Ltd. | Method of making paper or board products |
| US11572659B2 (en) | 2016-04-22 | 2023-02-07 | Fiberlean Technologies Limited | Compositions comprising microfibrillated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom |
| US10794006B2 (en) | 2016-04-22 | 2020-10-06 | Fiberlean Technologies Limited | Compositions comprising microfibrilated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom |
| US10662366B2 (en) | 2016-08-09 | 2020-05-26 | Schlumberger Technology Corporation | Compositions and methods for servicing subterranean wells |
| EP4267661A4 (en) * | 2020-12-23 | 2024-10-09 | 11584022 Canada Inc. | HOMOGENEOUS BIOPOLYMER SUSPENSIONS, METHODS FOR THEIR PRODUCTION AND USES THEREOF |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4487634A (en) | Suspensions containing microfibrillated cellulose | |
| US4378381A (en) | Suspensions containing microfibrillated cellulose | |
| US4500546A (en) | Suspensions containing microfibrillated cellulose | |
| US4452722A (en) | Suspensions containing microfibrillated cellulose | |
| US4464287A (en) | Suspensions containing microfibrillated cellulose | |
| US4452721A (en) | Suspensions containing microfibrillated cellulose | |
| CA1149219A (en) | Food products containing microfibrillated cellulose | |
| US5286510A (en) | Fat mimetic containing salad dressing and process therefor | |
| US5795614A (en) | Method of making a reduced fat emulsified dressing | |
| TW304868B (en) | ||
| US4129663A (en) | Pourable salad dressing composition | |
| EP0377312B1 (en) | Low oil mayonnaise | |
| DE60028880T2 (en) | Liquefied sago starch and its uses | |
| EP0051230A1 (en) | Suspensions containing microfibrillated cullulose, and process for their preparation | |
| EA001787B1 (en) | Pourable edible aqueous-continuous emulsions | |
| EP0018153A1 (en) | Gelled or thickened food products and their preparation | |
| US2217699A (en) | Salad dressing and method of preparing the same | |
| EP0477827A2 (en) | A low fat mayonnaise product and method for making the same | |
| JP2008253161A (en) | Acid liquid seasoning | |
| CA2082544A1 (en) | Liquid with coloured particles | |
| JP2023021438A (en) | Emulsified liquid seasoning with reduced content of oil and fat and production method thereof | |
| JPS6139021B2 (en) | ||
| TW508220B (en) | Mayonnaise base and method for producing it | |
| EP0771151A1 (en) | Pourable salad dressing | |
| JPH0339065A (en) | Low-caloric mayonnaise-like food |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: ITT CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION;REEL/FRAME:004389/0606 Effective date: 19831122 |
|
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| SULP | Surcharge for late payment | ||
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: RAYONIER, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ITT CORPORATION;REEL/FRAME:006968/0161 Effective date: 19940404 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |