US4300957A - Vapor treatment of metal tire cord - Google Patents
Vapor treatment of metal tire cord Download PDFInfo
- Publication number
- US4300957A US4300957A US06/103,242 US10324279A US4300957A US 4300957 A US4300957 A US 4300957A US 10324279 A US10324279 A US 10324279A US 4300957 A US4300957 A US 4300957A
- Authority
- US
- United States
- Prior art keywords
- cord
- vapor
- wire
- steel
- brass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011282 treatment Methods 0.000 title abstract description 14
- 229910052751 metal Inorganic materials 0.000 title description 9
- 239000002184 metal Substances 0.000 title description 9
- 229910001369 Brass Inorganic materials 0.000 claims abstract description 27
- 239000010951 brass Substances 0.000 claims abstract description 27
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000012964 benzotriazole Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 19
- 229920001971 elastomer Polymers 0.000 abstract description 19
- 239000005060 rubber Substances 0.000 abstract description 19
- 239000003795 chemical substances by application Substances 0.000 abstract description 14
- 230000014759 maintenance of location Effects 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 description 19
- 239000003153 chemical reaction reagent Substances 0.000 description 18
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 229910001015 Alpha brass Inorganic materials 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 229910000677 High-carbon steel Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004312 hexamethylene tetramine Substances 0.000 description 3
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 1
- QRYFCNPYGUORTK-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-yldisulfanyl)morpholine Chemical compound C1COCCN1SSC1=NC2=CC=CC=C2S1 QRYFCNPYGUORTK-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229960003116 amyl nitrite Drugs 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical compound OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002473 indoazoles Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001455 metallic ions Chemical class 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CSDTZUBPSYWZDX-UHFFFAOYSA-N n-pentyl nitrite Chemical compound CCCCCON=O CSDTZUBPSYWZDX-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000000276 potassium ferrocyanide Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/38—Textile inserts, e.g. cord or canvas layers, for tyres; Treatment of inserts prior to building the tyre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0666—Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/38—Textile inserts, e.g. cord or canvas layers, for tyres; Treatment of inserts prior to building the tyre
- B29D2030/383—Chemical treatment of the reinforcing elements, e.g. cords, wires and filamentary materials, to increase the adhesion to the rubber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10S156/91—Bonding tire cord and elastomer: improved adhesive system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12562—Elastomer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/12917—Next to Fe-base component
- Y10T428/12924—Fe-base has 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2942—Plural coatings
- Y10T428/2944—Free metal in coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2942—Plural coatings
- Y10T428/2945—Natural rubber in coating
Definitions
- This invention relates to the treatment of brass coated steel cord to prevent corrosion of the cord and to improve cord/rubber adhesion retention.
- Pneumatic vehicle tires are often reinforced by means of cords prepared from brass coated steel filaments.
- This tire cord is frequently high carbon steel or high carbon steel cord with a thin layer of alpha brass.
- the cord may be a monofilament, but normally is prepared from several filaments which are stranded together.
- the filament is coated with brass, cold drawn and then stranded to form the cord. In most instances, normally depending upon the type of tire being reinforced, the strands of filaments are further cabled to form the final cord.
- Brass plated steel wire tire cords are subject to corrosion of the steel structure and oxidation of the brass plating if improperly handled prior to incorporation into a tire. Corrosion and oxidation can result in poor adhesion between the cord and rubber and more importantly in a deterioration of the physical properties of the cord.
- BTA benzotriazole
- the objects of the present invention can be accomplished by treating the cord during the course of its preparation or thereafter with reagents capable of promoting and/or retaining adhesion between the metal cord and adjacent vulcanized rubber and/or capable of improving the resistance of the cord to corrosion prior to incorporation into the tire during and after incorporation into the tire, said reagent being in a gaseous state, either saturated or unsaturated.
- Said reagents include compounds capable of preventing the oxidation of the steel substrate and/or capable of preventing the corrosion of the brass.
- the process of the present invention can be used to treat the filament after drawing but before stranding, after stranding to form the cord, in the form of woven fabric or as multiple ends such as may be used at a creel calendering operation.
- the method can be used at any point in the manufacture of the cord and even subsequent thereto, the only requirement being that the cord be treated at some point before it becomes a reinforcing element in the tire or other rubber product.
- Any reagent which can be vaporized can be used within the practice of the present invention including, but not limited to, reagents selected from the group consisting of precipitation compounds, oxidizing compounds, and compounds having the following structural formula ##STR1## wherein the adjacent carbon atoms are joined to form a benzene or naphthylene ring, said ring being substituted (for example, with a single methyl group) or unsubstituted and wherein A and B are selected from the group consisting of --N-- or --CH--, with the proviso that A and B are never both --CH--, said agent being in the form of a gas.
- the precipitation compounds include compounds selected from the group consisting of organic borates, organic phosphate and organic metaphosphates.
- the oxidation compounds include organic nitrites.
- the precipitation compounds offer their protection through an indirect oxidizing (buffering) mechanism.
- the oxidation compounds offer protection by directly oxidizing metallic ions in the substrate surface.
- the vapor contains some moisture since water enhances the ability of the agents to prevent corrosion and to provide improved aged adhesion, that is, to retain to some measure the original adhesion.
- Said moisture can be introduced, for example, by introducing steam into the gaseous atmosphere in a catalytic amount.
- Another embodiment involves exposing the cord to an atmosphere having a high moisture content subsequent to the vapor treatment.
- the vapor technique has the advantage of permitting the reagent to reach the furthest recesses of the stranded cord even when wrapped upon a spool. It also permits the reagent to enter the microscopic pores of the brass coating.
- the cord can be treated while at room temperature or after being heated.
- a filament or a cord can be preheated to a temperature higher than the temperature of the vapor to which it is exposed, for the time necessary to provide the required degree of reaction. This results in a reaction in the gaseous phase only, and therefore the only reactive material deposited is that which reacts with the available copper or steel on the wire surface. It is theorized that monomolecular films may be deposited in this fashion. The resulting thin films thereby create a minimum amount of interference with the sulfur reaction required for bonding the wire to rubber.
- Concentration of the vapor, temperature of the vapor, and temperature of the wire determine the time required for the reactions to occur. Optimum conditions can be routinely determined for each system.
- a wire or cable with a temperature below the temperature of the vapor is passed through the chamber, and the reagent is condensed on the surface of the wire reacting simultaneously therewith.
- the amount deposited will depend upon the vapor concentration, vapor temperature, time exposed and the incoming and exiting temperatures of the wire. Again, optimum conditions can be routinely determined.
- This wire can be used as treated or subsequently heated to vaporize excess reactants and/or to continue the reaction between the reagent and the cord to the desired state of completion, if the desired state has not already been reached.
- the agents can be used alone or in combination. Likewise a series of units can be used, each containing a different agent. It is preferred that one stage of the treatment involve the use of a BTA-type chemical agent. If the agents are to be used in combination, one must naturally consider vapor pressure effects, miscibility effects, potential interaction between the agents in liquid or vapor form at the temperatures being used, etc. None of these remarks are intended to be limitations upon the process of the present invention but are intended only to be used as guidelines.
- the brass coated steel cord which can benefit by the practice of the present invention includes cord treated by methods or with material other than described herein, but which are still subceptible to oxidation and/or corrosion.
- moisture it can be introduced, for example, by the introduction of steam into the reaction area, the addition of water to the molten agents, etc.
- the manner by which the water is introduced is not critical.
- the wire can be first treated in an aqueous solution of one reagent followed by treatment with the BTA type material in vapor form.
- the degree of porosity can be estimated before, during, and after treatment.
- the vapor phase need not be formed strictly from the molten form of the agent.
- the agent tends to sublime, that is, passes from the solid to the gaseous stage without passing through the liquid stage, it can still be used in the vapor treatment method, the only critical factor of said method being that the wire is exposed to the vapor of the agent.
- an agent that is a liquid or a solid at room temperature is not critical so long as it is contacted with the wire in its vapor state.
- the brass coating of a typical brass coated steel cord is microscopically porous, thereby exposing small areas of steel surface to any surrounding environment. It is believed that BTA interacts with copper in a brass coating to form a polymeric complex of BTA plus copper. This polymeric complex is insoluble in most solvents and serves as a protective barrier to any environmental degradation of the underlying brass. On the other hand, anions from the precipitation and oxidation compounds, it is theorized, interact with iron and iron oxide from steel surfaces exposed through microscopic pores to form an adherent oxide film which protects the steel. It is not necessary that the barrier layers of polymeric complexes adsorbed be extremely thick. In fact, as mentioned earlier, such layers should not be so thick as to interfere with the sulfur reaction required for bonding the wire to the rubber, the adhesion of rubber to metal cord requiring the formation of copper-sulfur bonds.
- the practice of the present invention results in increased surface protection of brass coated steel prior to rubber encapsulation and improved aged adhesion of vulcanized brass coated steel/rubber composites. It also prevents cord failure due to excessive corrosion during the use of the product, e.g., a tire being reinforced with the cord.
- the rubber surrounding the metal can be any rubber, preferably diene rubbers such as natural rubber, rubbery copolymers of butadiene with styrene or acrylonitrile, polybutadiene and polyisoprene.
- diene rubbers such as natural rubber, rubbery copolymers of butadiene with styrene or acrylonitrile, polybutadiene and polyisoprene.
- Aged metal to rubber adhesion is particularly poor when the rubber contains oxygen, moisture, and an amine resin capable of releasing ammonia.
- rubbers containing hexamethylenetetramine (HMTA) such as in a resorcinol/HMTA in situ resin system, where oxygen and moisture levels are sufficiently high, can tend to have poor aged-adhesion to brass or brass coated steel.
- HMTA hexamethylenetetramine
- coatings on in-process wire protect the wire from deleterious effects of moisture (humidity) and oxidation, i.e., improve factory storage life.
- high-carbon steel as used in the present specification and claims, applicant is referring to what is known as carbon steel, also called ordinary steel, also called straight carbon steel or plain carbon steel, e.g., American Iron and Steel Institute Grade 1070 high-carbon steel (AISI 1070).
- AISI 1070 American Iron and Steel Institute Grade 1070 high-carbon steel
- Such steel owes its properties chiefly to the presence of carbon without substantial amounts of other alloying elements. In this respect see Metals Handbook, The American Society for Metals, Metals Park, Cleveland, Ohio.
- brass includes, but is not limited to, alpha brass or compositions in which the major component is alpha brass, i.e., which contain from about 65 to 75 percent copper and 35 to 25 percent zinc, respectively.
- a chamber 30 centimeters long was mounted at the exit of a wire drawing machine operating at a speed of 900 meters per minute.
- BTA was vaporized in this chamber with the melt temperature being maintained at 120° C.
- Drawn filaments (brass coated steel) were passed through this chamber. Filaments treated in this manner were formed into a 5 ⁇ 0.25 cable.
- the resulting cable was embedded in carbon black loaded polymer, and the polymer vulcanized. Corrosion resistance on the bare cable and adhesion data on the vulcanized composite were obtained. The results are listed below.
- a chamber 30 centimeters long and approximately 6 centimeters high was equipped with suitable heaters. BTA was melted in the bottom of this chamber and a wire cable passed through this vapor zone. Test results on cable treated in this manner were as follows.
- Example 2 The chamber used in Example 2 was mounted on a strander running at 90 meters per minute. Test results on cables produced when exposing the cable with the melted BTA at a temperature of 180° C. are as follows.
- the treated cord possessed a higher wet compound adhesion and better corrosion resistance than the untreated cord.
- treatment can begin. Treatment can occur with the reagents between the plating and drawing steps or between the drawing and stranding steps and even on the final cord prior to calendering. Where the vapor treatment results in film formation, it is preferably accomplished before drawing since drawing will naturally destroy the film continuity.
- BTA type compounds which complexes with the copper in the brass to form an insoluble film, i.e., insoluble in any of the environments to which the material is to be exposed.
- These compounds include triazoles, imidazoles and indazoles.
- Such compounds include those compounds conforming to the structural formula recited earlier herein.
- the rubber used in the earlier described working examples was a carbon black loaded natural rubber.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Ropes Or Cables (AREA)
Abstract
Brass coated steel tire cord is treated with vaporized benzotriazole and/or other treatment agents to promote corrosion resistance and cord to rubber adhesion retention.
Description
This is a division of application Ser. No. 950,333 filed Oct. 10, 1978, now U.S. Pat. No. 4,189,332, which was a continuation of application Ser. No. 644,673, filed Dec. 29, 1975, abandoned.
This invention relates to the treatment of brass coated steel cord to prevent corrosion of the cord and to improve cord/rubber adhesion retention.
Pneumatic vehicle tires are often reinforced by means of cords prepared from brass coated steel filaments. This tire cord is frequently high carbon steel or high carbon steel cord with a thin layer of alpha brass. The cord may be a monofilament, but normally is prepared from several filaments which are stranded together. The filament is coated with brass, cold drawn and then stranded to form the cord. In most instances, normally depending upon the type of tire being reinforced, the strands of filaments are further cabled to form the final cord.
Brass plated steel wire tire cords are subject to corrosion of the steel structure and oxidation of the brass plating if improperly handled prior to incorporation into a tire. Corrosion and oxidation can result in poor adhesion between the cord and rubber and more importantly in a deterioration of the physical properties of the cord.
Various chemical reagents such as benzotriazole (BTA) have been proposed to protect such wire against corrosion and oxidation. Such reagents are described in copending applications. These reagents normally have been applied by immersing the wire in a water solution of the reagent. The wire is then dried to remove the water. The reagents react with wire to offer it protection against oxidation and/or corrosion. For example, BTA reacts with the copper to form a polymer layer. This layer must be sufficiently thin to allow a sulfur/copper bond to be formed between the wire and the adjacent rubber within the tire, and yet the film must be of such a continuous uniformity as to facilitate resistance to corrosion.
Water application of reagents such as BTA requires lengthy immersion and drying times which can be expensive in commercial operations. The poor wetability of metal cord contributes to the length of the immersion time. The porosity of the brass coating presents the possiblity that water may be occluded and therefore difficult to remove by drying. There is also the possibility that it will be difficult for the water to penetrate the porous openings because of surface tension effects. Where the tire filament is freshly drawn, the filament is cooled by the water immersion thereby requiring expensive reheating of the cord both to dry the cord and to promote the reaction between the reagents and the cord. It is therefore necesssary that a method be found which does not require the use of expensive equipment and which permits the rapid treatment of the cord.
It is an object of the present invention to provide an efficient, low cost method of applying protective agents to brass coated steel wire, said method being capable of rapidly treating the wire and reaching even remote surfaces of the wire. It is also an object of the present invention to provide a method which will not require the use of drying equipment or other expensive and time consuming follow-up treatments. It is still another object of the present invention to provide treated brass coated steel tire cord possessing effective corrosion resistance.
The objects of the present invention can be accomplished by treating the cord during the course of its preparation or thereafter with reagents capable of promoting and/or retaining adhesion between the metal cord and adjacent vulcanized rubber and/or capable of improving the resistance of the cord to corrosion prior to incorporation into the tire during and after incorporation into the tire, said reagent being in a gaseous state, either saturated or unsaturated. Said reagents include compounds capable of preventing the oxidation of the steel substrate and/or capable of preventing the corrosion of the brass.
The process of the present invention can be used to treat the filament after drawing but before stranding, after stranding to form the cord, in the form of woven fabric or as multiple ends such as may be used at a creel calendering operation. In fact, the method can be used at any point in the manufacture of the cord and even subsequent thereto, the only requirement being that the cord be treated at some point before it becomes a reinforcing element in the tire or other rubber product.
Any reagent which can be vaporized can be used within the practice of the present invention including, but not limited to, reagents selected from the group consisting of precipitation compounds, oxidizing compounds, and compounds having the following structural formula ##STR1## wherein the adjacent carbon atoms are joined to form a benzene or naphthylene ring, said ring being substituted (for example, with a single methyl group) or unsubstituted and wherein A and B are selected from the group consisting of --N-- or --CH--, with the proviso that A and B are never both --CH--, said agent being in the form of a gas. The precipitation compounds include compounds selected from the group consisting of organic borates, organic phosphate and organic metaphosphates. The oxidation compounds include organic nitrites.
The precipitation compounds offer their protection through an indirect oxidizing (buffering) mechanism. The oxidation compounds offer protection by directly oxidizing metallic ions in the substrate surface.
Examples of organic compounds which can be used in the practice of the present invention include organic alkyl, cycloalkyl and aryl derivatives of m-boric acid, o- boric acid and pyro-boric acid as well as m-, o-, pyro- and hypo-phosphoric acid.
Preferably the vapor contains some moisture since water enhances the ability of the agents to prevent corrosion and to provide improved aged adhesion, that is, to retain to some measure the original adhesion. Said moisture can be introduced, for example, by introducing steam into the gaseous atmosphere in a catalytic amount. Another embodiment involves exposing the cord to an atmosphere having a high moisture content subsequent to the vapor treatment.
The vapor technique has the advantage of permitting the reagent to reach the furthest recesses of the stranded cord even when wrapped upon a spool. It also permits the reagent to enter the microscopic pores of the brass coating.
Any manner of exposing the cord to the vapors will result in some improvement in corrosion or oxidation resistance.
The cord can be treated while at room temperature or after being heated. For example, a filament or a cord can be preheated to a temperature higher than the temperature of the vapor to which it is exposed, for the time necessary to provide the required degree of reaction. This results in a reaction in the gaseous phase only, and therefore the only reactive material deposited is that which reacts with the available copper or steel on the wire surface. It is theorized that monomolecular films may be deposited in this fashion. The resulting thin films thereby create a minimum amount of interference with the sulfur reaction required for bonding the wire to rubber.
Concentration of the vapor, temperature of the vapor, and temperature of the wire determine the time required for the reactions to occur. Optimum conditions can be routinely determined for each system.
In one embodiment of the present invention, a wire or cable with a temperature below the temperature of the vapor is passed through the chamber, and the reagent is condensed on the surface of the wire reacting simultaneously therewith. The amount deposited will depend upon the vapor concentration, vapor temperature, time exposed and the incoming and exiting temperatures of the wire. Again, optimum conditions can be routinely determined. This wire can be used as treated or subsequently heated to vaporize excess reactants and/or to continue the reaction between the reagent and the cord to the desired state of completion, if the desired state has not already been reached.
The agents can be used alone or in combination. Likewise a series of units can be used, each containing a different agent. It is preferred that one stage of the treatment involve the use of a BTA-type chemical agent. If the agents are to be used in combination, one must naturally consider vapor pressure effects, miscibility effects, potential interaction between the agents in liquid or vapor form at the temperatures being used, etc. None of these remarks are intended to be limitations upon the process of the present invention but are intended only to be used as guidelines.
The brass coated steel cord which can benefit by the practice of the present invention includes cord treated by methods or with material other than described herein, but which are still subceptible to oxidation and/or corrosion.
If moisture is desired, it can be introduced, for example, by the introduction of steam into the reaction area, the addition of water to the molten agents, etc. The manner by which the water is introduced is not critical.
There is no reason why the present method can not be combined with other methods. For example, the wire can be first treated in an aqueous solution of one reagent followed by treatment with the BTA type material in vapor form.
In selecting agents, order of treatment, etc., one should consider that film formation with compounds such as BTA can possibly cover the exposed steel so as to minimize contact thereof with other agents.
It is believed that a reduction of the porosity, for example by film formation on the cord surface, may result in improved corrosion resistance and adhesion retention.
As a guideline, but not a limitation, one can measure the porosity of the wire by immersing it in a potassium ferrocyanide solution. The darker the resulting cord, the greater its porosity. In this way the degree of porosity can be estimated before, during, and after treatment.
It should be noted that the vapor phase need not be formed strictly from the molten form of the agent. For example, if the agent tends to sublime, that is, passes from the solid to the gaseous stage without passing through the liquid stage, it can still be used in the vapor treatment method, the only critical factor of said method being that the wire is exposed to the vapor of the agent. Likewise, whether an agent that is a liquid or a solid at room temperature is not critical so long as it is contacted with the wire in its vapor state.
The brass coating of a typical brass coated steel cord is microscopically porous, thereby exposing small areas of steel surface to any surrounding environment. It is believed that BTA interacts with copper in a brass coating to form a polymeric complex of BTA plus copper. This polymeric complex is insoluble in most solvents and serves as a protective barrier to any environmental degradation of the underlying brass. On the other hand, anions from the precipitation and oxidation compounds, it is theorized, interact with iron and iron oxide from steel surfaces exposed through microscopic pores to form an adherent oxide film which protects the steel. It is not necessary that the barrier layers of polymeric complexes adsorbed be extremely thick. In fact, as mentioned earlier, such layers should not be so thick as to interfere with the sulfur reaction required for bonding the wire to the rubber, the adhesion of rubber to metal cord requiring the formation of copper-sulfur bonds.
The practice of the present invention results in increased surface protection of brass coated steel prior to rubber encapsulation and improved aged adhesion of vulcanized brass coated steel/rubber composites. It also prevents cord failure due to excessive corrosion during the use of the product, e.g., a tire being reinforced with the cord.
The rubber surrounding the metal can be any rubber, preferably diene rubbers such as natural rubber, rubbery copolymers of butadiene with styrene or acrylonitrile, polybutadiene and polyisoprene.
The fact that the adhesion between the copper in the brass and the adjacent rubber is dependent upon the presence of sulfur requires the use in the adjacent rubber of either free sulfur or a compound capable of donating sulfur such as 2-(morpholinodithio)benzothiazole.
Aged metal to rubber adhesion is particularly poor when the rubber contains oxygen, moisture, and an amine resin capable of releasing ammonia. For example, rubbers containing hexamethylenetetramine (HMTA) such as in a resorcinol/HMTA in situ resin system, where oxygen and moisture levels are sufficiently high, can tend to have poor aged-adhesion to brass or brass coated steel. The use of the present process is particularly beneficial in such systems. Further, coatings on in-process wire protect the wire from deleterious effects of moisture (humidity) and oxidation, i.e., improve factory storage life.
By the term "high-carbon" steel as used in the present specification and claims, applicant is referring to what is known as carbon steel, also called ordinary steel, also called straight carbon steel or plain carbon steel, e.g., American Iron and Steel Institute Grade 1070 high-carbon steel (AISI 1070). Such steel owes its properties chiefly to the presence of carbon without substantial amounts of other alloying elements. In this respect see Metals Handbook, The American Society for Metals, Metals Park, Cleveland, Ohio.
The term "brass" includes, but is not limited to, alpha brass or compositions in which the major component is alpha brass, i.e., which contain from about 65 to 75 percent copper and 35 to 25 percent zinc, respectively.
The following examples contain illustrations of, but do not limit the practice of the present invention.
A chamber 30 centimeters long was mounted at the exit of a wire drawing machine operating at a speed of 900 meters per minute.
BTA was vaporized in this chamber with the melt temperature being maintained at 120° C. Drawn filaments (brass coated steel) were passed through this chamber. Filaments treated in this manner were formed into a 5×0.25 cable.
The resulting cable was embedded in carbon black loaded polymer, and the polymer vulcanized. Corrosion resistance on the bare cable and adhesion data on the vulcanized composite were obtained. The results are listed below.
______________________________________
Original Wet Compound
Adhesion Adhesion.sup.(1)
Corrosion
(kilograms)
(kilograms) Resistance
______________________________________
Untreated
57.0 29.0 Poor
Treated 45 38 Excellent
______________________________________
A chamber 30 centimeters long and approximately 6 centimeters high was equipped with suitable heaters. BTA was melted in the bottom of this chamber and a wire cable passed through this vapor zone. Test results on cable treated in this manner were as follows.
______________________________________
Cor-
Sample rosion
1 Expo. Melt Orig. Wet Comp.
Re-
Run Speed Time Temp. Adhes.
Adhes..sup.(1)
sistance
______________________________________
(1) 30m/m .6 180° C.
53 32 Excellent
(2) 30m/m .6 120° C.
55 27 Excellent
(3) 90m/m .2 180° C.
54 28 Excellent
Un-
treated
-- -- -- 57 25 Fair
______________________________________
.sup.(1)Unvulcanized rubber soaked in water before the cable was embedded
therein.
The chamber used in Example 2 was mounted on a strander running at 90 meters per minute. Test results on cables produced when exposing the cable with the melted BTA at a temperature of 180° C. are as follows.
______________________________________
Original Wet Compound Corrosion
Adhesion Adhesion Resistance
______________________________________
Treated 52 30 Excellent
Untreated
48 21 Fair
______________________________________
In every one of the above examples the treated cord possessed a higher wet compound adhesion and better corrosion resistance than the untreated cord.
Once the cord is plated with the brass, treatment can begin. Treatment can occur with the reagents between the plating and drawing steps or between the drawing and stranding steps and even on the final cord prior to calendering. Where the vapor treatment results in film formation, it is preferably accomplished before drawing since drawing will naturally destroy the film continuity.
Any compound could have been substituted for BTA type compounds, which complexes with the copper in the brass to form an insoluble film, i.e., insoluble in any of the environments to which the material is to be exposed. These compounds include triazoles, imidazoles and indazoles. Such compounds include those compounds conforming to the structural formula recited earlier herein.
The rubber used in the earlier described working examples was a carbon black loaded natural rubber.
Any of the previous working examples could have involved a subsequent heat treatment and/or exposure of the wire to water vapor.
Other materials which can be used, for example, to treat wire using the present method are triethyl phosphate and amyl nitrite.
While certain representative embodiments and details have been shown for the purpose of illustrating the invention, it will be apparent to those skilled in this art that various changes and modifications may be made therein without departing from the spirit or scope of the invention.
Claims (2)
1. A process of treating a filament of steel which comprises continually passing a steel filament having a microscopically porous brass coating thereon through the vapor of benzotriazole to form primarily a monomolecular coating thereof on said filament where said filament is at a temperature lower than the temperature of said vapor so that the vapor is condensed on the surface of the wire while interacting therewith.
2. A process of treating a stranded cord which comprises continually passing a cord of stranded steel filaments, said filaments having a microscopically porous brass coating thereon, through benzotriazole vapor to form primarily a monomolecular coating thereon, through benzotriazole vapor to form primarily a monomolecular coating thereof on the filaments of said cord, where said cord is at a temperature lower than the temperature of said vapor so that the vapor is condensed on the surface of the filaments of the cord while interacting therewith.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/103,242 US4300957A (en) | 1978-10-10 | 1979-12-13 | Vapor treatment of metal tire cord |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/950,333 US4189332A (en) | 1975-12-29 | 1978-10-10 | Vapor treatment of metal tire cord |
| US06/103,242 US4300957A (en) | 1978-10-10 | 1979-12-13 | Vapor treatment of metal tire cord |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/950,333 Division US4189332A (en) | 1975-12-29 | 1978-10-10 | Vapor treatment of metal tire cord |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4300957A true US4300957A (en) | 1981-11-17 |
Family
ID=26800227
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/103,242 Expired - Lifetime US4300957A (en) | 1978-10-10 | 1979-12-13 | Vapor treatment of metal tire cord |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4300957A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4391318A (en) * | 1981-05-11 | 1983-07-05 | The Goodyear Tire & Rubber Company | Composite of rubber and metal reinforcement therefor |
| US4569382A (en) * | 1981-05-11 | 1986-02-11 | The Goodyear Tire & Rubber Company | Composite of rubber and metal reinforcement therefor |
| WO1987002307A1 (en) * | 1985-10-18 | 1987-04-23 | N.V. Bekaert S.A. | Steel cord with high corrosion fatigue resistance |
| EP0314230A1 (en) * | 1987-10-22 | 1989-05-03 | N.V. Bekaert S.A. | Steel substrate with metal coatings for the reinforcement of vulcanisable elastomers |
| US20100080957A1 (en) * | 2008-10-01 | 2010-04-01 | Integrated Surface Technologies | Surface Coating |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2468239A (en) * | 1943-11-18 | 1949-04-26 | Us Rubber Co | Method of bonding rubber to metal |
| GB933979A (en) * | 1961-04-27 | 1963-08-14 | Ici Ltd | Improvements in or relating to inhibiting corrosion of copper and copper-base alloys |
| US3597353A (en) * | 1967-07-21 | 1971-08-03 | Geigy Chem Corp | 4,5,6,7-tetrahydro-benzotriazole as metal deactivator |
| US3846160A (en) * | 1972-05-25 | 1974-11-05 | Yokohama Rubber Co Ltd | Process for enhancing the adhesion between steel cord and a rubber compound |
| US4189332A (en) * | 1975-12-29 | 1980-02-19 | The Goodyear Tire & Rubber Company | Vapor treatment of metal tire cord |
-
1979
- 1979-12-13 US US06/103,242 patent/US4300957A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2468239A (en) * | 1943-11-18 | 1949-04-26 | Us Rubber Co | Method of bonding rubber to metal |
| GB933979A (en) * | 1961-04-27 | 1963-08-14 | Ici Ltd | Improvements in or relating to inhibiting corrosion of copper and copper-base alloys |
| US3597353A (en) * | 1967-07-21 | 1971-08-03 | Geigy Chem Corp | 4,5,6,7-tetrahydro-benzotriazole as metal deactivator |
| US3846160A (en) * | 1972-05-25 | 1974-11-05 | Yokohama Rubber Co Ltd | Process for enhancing the adhesion between steel cord and a rubber compound |
| US4189332A (en) * | 1975-12-29 | 1980-02-19 | The Goodyear Tire & Rubber Company | Vapor treatment of metal tire cord |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4391318A (en) * | 1981-05-11 | 1983-07-05 | The Goodyear Tire & Rubber Company | Composite of rubber and metal reinforcement therefor |
| US4569382A (en) * | 1981-05-11 | 1986-02-11 | The Goodyear Tire & Rubber Company | Composite of rubber and metal reinforcement therefor |
| WO1987002307A1 (en) * | 1985-10-18 | 1987-04-23 | N.V. Bekaert S.A. | Steel cord with high corrosion fatigue resistance |
| EP0220766A1 (en) * | 1985-10-18 | 1987-05-06 | N.V. Bekaert S.A. | Steel cord with high corrosion fatigue resistance |
| AU582924B2 (en) * | 1985-10-18 | 1989-04-13 | Bekaert S.A. N.V. | Treated steel wire cord |
| EP0314230A1 (en) * | 1987-10-22 | 1989-05-03 | N.V. Bekaert S.A. | Steel substrate with metal coatings for the reinforcement of vulcanisable elastomers |
| BE1001029A3 (en) * | 1987-10-22 | 1989-06-13 | Bekaert Sa Nv | STEEL SUBSTRATE WITH METAL COATINGS TO STRENGTHEN vulcanisable elastomers. |
| US4978586A (en) * | 1987-10-22 | 1990-12-18 | N. V. Bekaert S.A. | Steel substrate with metal coatings for the reinforcement of vulcanizable elastomers |
| US20100080957A1 (en) * | 2008-10-01 | 2010-04-01 | Integrated Surface Technologies | Surface Coating |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4189332A (en) | Vapor treatment of metal tire cord | |
| US4192694A (en) | Solid or molten reagent treatment of metal tire cord | |
| US4300957A (en) | Vapor treatment of metal tire cord | |
| JPH0112776B2 (en) | ||
| US20100092695A1 (en) | Process for improving the adhesion of carbon fibres with regard to an organic matrix | |
| KR102242903B1 (en) | Bead wire with superior oxidation resistance property by using Electro-plating | |
| JP2009523909A (en) | Arrangement for anticorrosion of substrate, manufacturing method thereof, and belt wheel | |
| CA1081555A (en) | Vapor treatment of metal tire cord | |
| JPS6333135A (en) | Steel element coated with brass having improved rubber tacky characteristic | |
| JPH08100249A (en) | Method of patenting steel wire and method of plating with brass | |
| CA1176514A (en) | Coated filament and composite thereof with rubber | |
| CA1098269A (en) | Solid or molten reagent treatment of metal tire cord | |
| CA2018864C (en) | Process for treating a brass-plated steel wire | |
| US4269877A (en) | Aromatic triazole, precipitation compound and oxidizing compound for increased surface protection and improved adhesion of brass coated steel to rubber | |
| US4304113A (en) | Process of making plated wire for reinforcing rubber goods | |
| US3677809A (en) | Process for the coating of filament bodies with an adhesive for metal and rubber | |
| US5789074A (en) | Method of manufacturing a composite material and the resulting material | |
| US5154975A (en) | Liquid composition for glass fiber impregnation | |
| US4269645A (en) | Aromatic triazoles and alkylamine borates for increased surface protection and improved adhesion of brass-coated steel to rubber | |
| US4250226A (en) | Method for producing an adhesive-coated high-strength steel reinforcing member | |
| US5236742A (en) | Liquid composition for glass fiber impregnation | |
| US5229215A (en) | Brass-plated steel wire | |
| US4715316A (en) | Apparatus for plating and coating | |
| KR100346067B1 (en) | Steel tire cord improved in corrosion-resistance and its production method | |
| US4600662A (en) | Ferrous article layered with ion vapor deposited non-oxidized aluminum |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |