New! View global litigation for patent families

US4143949A - Process for putting a hydrophilic coating on a hydrophobic contact lens - Google Patents

Process for putting a hydrophilic coating on a hydrophobic contact lens Download PDF

Info

Publication number
US4143949A
US4143949A US05736612 US73661276A US4143949A US 4143949 A US4143949 A US 4143949A US 05736612 US05736612 US 05736612 US 73661276 A US73661276 A US 73661276A US 4143949 A US4143949 A US 4143949A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
lens
contact
coating
hydrophobic
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05736612
Inventor
Richard Y. Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bausch and Lomb Inc
Original Assignee
Bausch and Lomb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made
    • G02B1/04Optical elements characterised by the material of which they are made made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses

Abstract

The surface of a contact lens is modified by deposition of an ultrathin coating of a hydrophilic polymer under the influence of plasma glow discharge so as to integrally bond the coating to the surface of the hydrophobic lens thereby effecting a hydrophilic lens.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to transparent contact lenses for correcting vision deficiencies of the eye. More particularly this invention relates to contact lenses having a central core of a transparent hydrophobic oxygen permeable polymeric material of a uniform, ultrathin coating of a hydrophilic polymeric material integrally bonded to the surface of the hydrophobic material.

2. Description of the Prior Art

Presently, contact lenses can be prepared from optically clear hydrophilic gel materials such as disclosed in U.S. Pat. No. 2,976,576 issued Mar. 28, 1961 of O. Wichterle et al. or from hydrophobic materials such as polymethylmethacrylate.

While the hydrogel lenses of Wichterle et al. are optically satisfactory, have excellent wettability characteristics, and are comfortable on the eye, they are sufficiently oxygen permeable to the extent a patient can suitably wear the lens for a period of time of about 12 hours. The hard contact lenses such as those prepared from polymethylmethacrylate are without any manifestation of oxygen permeability and can be uncomfortable to the wearer because of the lack of wettability and the lack of flexibility. The hardness of the lens causes it to be particularly incompatible with the eye surface.

Soft lenses such as those prepared from polysilicones manifest excellent oxygen permeability. However, the silicone lenses are not wettable and hence, subject the wearer to discomfort.

In order to obtain contact lenses having the characteristics of softness and high oxygen permeability together with wettability it has been suggested that the surface of a silicone core be rendered hydrophilic by treating the surface with a hydrophilic material. U.S. Pat. No. 3,745,042 of Lim et al., issued July 10, 1973, discloses a method of hydrophilizing hydrophobic lenses by coating a hydrophobic lens with a hydrophilic polymerizable hydrophilic monomer, swelling the surface of the lens material in a suitable swelling solvent so as to allow a partial soaking of the hydrophilic material into the hydrophobic material and polymerizing.

U.S. Pat. No. 3,916,033 of Merrill, issued Oct. 28, 1975, discloses a method of grafting a hydrophilic polymer onto the surface of a polysiloxane lens by means of high energy ionizing radiation.

U.S. Pat. No. 3,854,982 of Aelion et al., issued Dec. 17, 1974, discloses a method of hydrophilizing the surface of a hydrophobic substrate by coating the hydrophobic surface with a polymerizable hydrophilic material and irradiating the coated substrate with high energy radiation.

Other patents which disclose methods of hydrophilizing hydrophobic substrates are West German Pat. No. 3,165,805 and U.S. Pat. No 3,350,216 of McVannel et al., issued Oct. 31, 1967, and U.S. Pat. No. 3,854,982 of Aelion, issued Dec. 17, 1974. In each of these methods the control of the hydrophilic thickness is difficult and the hydrophilic surface may not be uniform.

SUMMARY OF THE INVENTION

According to the present invention there is provided an optically clear contact lens comprising an oxygen permeable core of a hydrophobic polymer the surface having coated thereon and integrally bonded thereto a hydrophilic polymer, said coating being uniformly thick and in the range of from about 50 Angstroms to about 20,000 Angstroms. Polymerization is achieved by subjecting the monomer, in gaseous state, to the influence of electromagnetic energy, such as for example radio frequency or microwave energy, of a frequency and power sufficient to cause an electrodeless glow discharge of the monomer vapor. The polymer species deposits onto the hydrophobic surface of the contact lens shaped material. The deposition of the growing species results in a highly crosslinked coating bonded to the hydrophobic surface. In accordance with another feature of this invention, the contact lens provided with an ultrathin and uniform hydrophilic coating is obtained by placing a hydrophobic polymer in the shape of a contact lens in a chamber, introducing a quantity of monomer polymerizable to a hydrophilic polymer into the chamber, reducing the pressure and subjecting the monomer to electrodeless glow discharge polymerization. The monomer thereby forms an ultrathin, uniform coating integrally bonded to the hydrophobic core. The lens of this invention as related to the eye is wettable, highly oxygen permeable and soft and has an essentially flawless surface.

Lens surfaces as provided in accordance with this invention have an ultrathin hydrophilic coating which is uniformly thin and absent any noticeable pits and cracks which would disadvantageously affect the comfort of the eye of the patient. The hydrophilic coating of this invention can be bonded to a soft hydrophobic core material such as polyorganosiloxanes or to a hard hydrophobic material.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

As hereinabove referred to, it has been surprisingly discovered that highly oxygen permeable hydrophobic contact lenses can be hydrophilized by coating and integrally bonding a hydrophilic polymer to the surface of the lens without substantially reducing the oxygen permeability of the lens. This accomplishment is obtained even though the hydrophilic polymer itself evidences significantly reduced oxygen permeability as compared to the hydrophobic lens material. The absence of any reduction of oxygen peremability for the coated lens is achieved because of the ultrathin coating which can be in the range of from about 50 Angstroms to about 20,000 Angstroms, desirably from about 100 Angstroms to about 1000 Angstroms and preferably from about 100 Angstroms to about 200 Angstroms. Because the coating is ultrathin and as a result of the method of preparing the hydrophilized contact lens, the coating is uniformly thin about the surface of the lens and is essentially flawless.

Illustrative of the monomers which can be suitably employed and which are polymerizable to hydrophilic polymers are the hydroxyalkylmethacrylates and acrylates, such as 2-hydroxyethylmethacrylate, 2-hydroxypropylmethacrylate, and the corresponding acrylates; the olefin glycol methacrylates and the corresponding acrylates such as diethylene glycol monomethacrylate, triethylene glycol monomethacrylate, tetraethylene glycol monomethacrylate, propylene glycol monomethacrylate and deca(ethylene glycol) methacrylate; the methoxyolefin glycol methacrylates and the corresponding acrylates such as methoxydiethylene glycol methacrylate, methoxytriethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxypropylene glycol methacrylate and methoxydeca(ethyleneoxide) methacrylate; alkylaminoalkylmethacrylates such as 2-dimethylaminoethyl methacrylate and morpholinoethyl methacrylate, piperidimoethylmethacrylate, 2-butylaminoethylmethacrylate. Other monomers which will polymerize by plasma glow discharge and form a hydrophilic coating on the surface of the hydrophobic oxygen permeable core lens can be employed such as glycidylmethacrylate, propylene oxide and N-vinyl-2-pyrrolidone.

Compounds which generally do not polymerize employing convention polymerizing techniques but will polymerize under plasma coating techniques and can be usefully employed in accordance with this invention are alcohols such as methanol, ethanol, propanol, butanol, pentanol and the like; aldehydes, such as methanol, ethanal, propanal, butanal and the like; ketones such as propanone, butanone, 2-pentanone, 3-pentanone, 3-methyl-2-butanone, and the like; ethers such as ethyl ether, methyl ether, methylethylether, and the like; acrylamides and methacrylamides such as acrylamide, methacrylamide, 2-hydroxyethylmethacrylamide and 2-hydroxyethylacrylamide, acrylic and methacrylic carbonylic acids such as acrylic acid, methacrylic acid, crotonic acid, 3-butenoic acid and the like.

The monomers can be employed individually to form homopolymers or in any combination so as to prepare copolymers in forming the hydrophilic coating and can be polymerized with or without the presence of cross-linking agents. Among the cross-linking agents that can be employed are the olefin glycol dimethacrylates such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate. Other cross-linking agents which may be suitably employed are 1,1,1-trimethylol propane trimethacrylate and methacrylyl glycolic acid.

The hydrophobic core material can be prepared from either hard or soft polymer compositions so long as the material is oxygen permeable and optically clear.

Polymeric materials which can be usefully employed are the silicone polymers. Any silicone polymer, copolymer or interpolymer can be employed so long as it is optically transparent and is oxygen permeable. Illustrative polysilicones are polydimethyl siloxane, polydimethyl-co-vinylmethylsiloxane. Other silicones are the silicone rubbers described in U.S. Pat. No. 3,228,741 of Becker issued Jan. 11, 1966; blends such as those described in U.S. Pat. No. 3,341,490 of Burdick et al., issued Sept. 12, 1967 and silicone compositions such as described in U.S. Pat. No. 3,518,324 of Polmanteer, issued June 30, 1970.

Particularly desirable silicone compositions useful in forming the core of the lens of this invention are the cross-linked polysiloxanes obtained by cross-linking siloxane prepolymers by means of hydrosilylation, co-condensation and by free radical mechanisms.

Particularly suitable are the organosiloxane polymer mixtures which readily undergo hydrosilylation. Such prepolymers will comprise vinyl radicals and hydride radicals which serve as cross-linking sites during the chain extension and cross-linking reaction and are of the general formulation comprising polydihydrocarbyl-co-vinylhydrocarbylsiloxane and polydihydrocarbyl-co-hydrocarbylhydrogensiloxanes wherein the hydrocarbyl radicals are monovalent hydrocarbon radicals such as alkyl radicals having 1-7 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl; aryl radicals, such as phenyl, tolyl, xylyl, biphenyl; haloaryl, such as, chlorophenyl and cycloalkyl radicals, such as cyclopentyl, cyclohexyl, etc. Preferably the composition comprises polydialkyl-co-alkylphenyl-co-alkyl-vinylsiloxane and polydialkyl-co-hydrogenalkylsiloxane with at least 50 mole % of the hydrocarbyl being methyl.

In a preferred embodiment of this invention the mixture for hydrosilylation can comprise 100 parts of α,ω-bisdimethylvinylsiloxy-poly(dimethylsiloxane) having a degree of polymerization (DP) of about 650, 20 parts of α,ω-bisdimethylvinylsiloxy-poly(dimethylsiloxane-co-methylvinylsiloxane) having a DP of about 20, wherein the ratio of dimethylsiloxane to methylvinylsiloxane is about 95 to 5 on a molar basis, and 9.3 parts of α,ω-bisdimethylhydrogensiloxy-poly(dimethylsiloxane-co-methylhydrogensiloxane) having a DP of about 15 and wherein the dimethylsiloxane to methylhydrogensiloxane is present in a ratio of about 70 to 30 on a molar basis; the mixture having a viscosity of about 47.5 Stokes at 25° C. Another preferred hydrosilylation composition comprises 100 parts of α,ω-bisdimethylvinylsiloxy-poly(dimethylsiloxane) having a DP of about 650, 13.3 parts of α,ω-bisdimethylvinylsiloxy-poly(dimethylsiloxane-co-methylvinylsiloxane) having a DP of about 650 and wherein the dimethylsiloxane to methylvinylsiloxane is present in a ratio of about 97.5 to 2.5 on a molar basis, and 8.3 parts of bistrimethylsiloxy-poly(dimethylsiloxane-co-methylhydrogensiloxane) having a DP of about 250 and wherein the ratio of dimethylsiloxane to methylhydrogensiloxane is about 90 to 10 on a molar basis; the mixture having a viscosity of about 104.3 Stokes at 25° C. Still another preferred hydrosilylation composition comprises 100 parts of α,ω-bisdimethylvinylsiloxy-poly(dimethylsiloxane) having a DP of about 650, 19.6 parts of α,ω-bistrimethylsiloxy-poly(dimethylsiloxane-co-methylvinylsiloxane) having a DP of about 250 and wherein the dimethylsiloxane to methylvinylsiloxane ratio is about 90 to 10 on a molar basis, and 7.8 parts of α,ω-bisdimethylhydrogensiloxy-poly(dimethylsiloxane-co-methylhydrogensiloxane) having a DP of about 15 and wherein the dimethylsiloxane to methylhydrogensiloxane ratio is about 70 to 30 on a molar basis; the mixture having a viscosity of about 47.5 Stokes at 25° C.

Another particularly suitable organosiloxane mixture which can be suitably employed to provide the hydrophobic portion of this invention are the prepolymers of poly(organosiloxanes) which readily undergo condensation reactions to form a cross-linked poly(organosiloxane).

The prepolymer(organosiloxane) mixtures comprise a mixture of poly(organosiloxanes) containing terminal silicone-bonded hydroxy groups, said polymer mixtures having a viscosity of about 1 Stoke at 10,000 Stokes to 25° C., and an organosiloxane cross-linking agent containing alkoxy groups. The hydroxy terminated siloxanes have the general formula: ##STR1## wherein each R' can be the same or different and is selected from one of alkyl radicals having 1-7 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl; aryl radicals such as phenyl, tolyl, xylyl, ethylphenyl, benzyl and the like; haloaryl such as chlorophenyl and the like. Preferably at least 50 percent of the R' radicals will be methyl radicals and n is an integer selected so as to obtain a viscosity of from about 1 Stoke to about 10,000 Stokes at 25° C.

The cross-linking agent portion of the mixture can be one or more of (a) monomeric organosilicates having the general formula Rm Si(OR")4-m, (b) partial hydrolyzates of (a), (c) poly(organosiloxanes) having the general formula Rm (R"O)3-m SiO(R2 SiO)n Si(OR")3-m Rm and (d) poly(organosiloxane resins comprising R3 SiO1/2 and SiO2 units in a ratio of about 0.3:1 to 1:1 wherein R" can be alkyl radicals having 1-7 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl, R can be R" and phenyl, M is an integer of 0 or 1 and n is such that (c) has a viscosity of 0.1 Stokes to about 1,000 Stokes at 25° C.

The individual ingredients of the condensation composition can have a wide variety of viscosities. Preferably, however, the total composition can have a viscosity of from about 1 Stoke to about 10,000 Stokes at 25° C. and preferably about 10 Stokes to about 4,000 Stokes at 25° C.

In a preferred embodiment of this aspect of the invention the polysiloxane condensation composition comprises about 0.5 gm of α,ω-bisdimethylhydroxysiloxy-poly(dimethylsiloxane) having a viscosity of about 50 Stokes at 25° C., about 38 microliters of ethylsilicate prepolymer having a molecular weight of about 600 to 620 and 7 microliters of dibutyltin dilaurate.

Another mechanism by which poly(organosiloxanes) are known to cross-link is by free radical cross-linking. The poly(organosiloxanes) which can be readily employed are the poly(organosiloxanes) containing vinyl unsaturation described above. Typically, benzophenone can be selectively employed for the free radical cross-linking of the poly(organosiloxanes).

Other suitable silicone polymer compositions such as block polymers of polysilicones with polycarbonates and polysilicones with polystyrene can be readily employed.

The polysilicones can be free of filler or can contain a filler having substantially the same index of refraction as the silicones such as, for example, silica.

Other core materials which can suitably be employed are cellulose acetate butyrate disclosed in U.S. Pat. No. 3,900,250 of Ivani issued Aug. 19, 1975, the copolymers of polysiloxanylalkyl esters disclosed in U.S. Pat. No. 3,808,178 of Gaylord, issued Apr. 30, 1974 and the perfluoroalkyl alkyl methacrylates having a refractive index of about 1.36 to about 1.45 disclosed in U.S. Pat. No. 3,950,315 of Cleaver issued Apr. 13, 1976.

In the process of preparing the lens of this invention, the core is shaped in the form of a contact lens of desired dimensions by any of the methods well known in the art such as placing the material to form the core in a mold cavity contoured in the form of a lens, the core material being polymerized therein. The core material can be prepared by polymerizing and shaping the polymerized product into a rod and by means of cutting and lathing forming a lens shaped core. The core materials can be shaped by spin casting the core forming materials. Each of these methods of forming contact lenses are well known in the art and hence need not be elaborated upon.

The hydrophobic core in the shape of a contact lens is then placed into the reaction chamber of an electrodeless plasma excitor such as Plasma Excitor model 320 manufactured by Technics, Inc., Alexandria, Va. The monomer or monomers with or without cross-linking agents is placed in a reservoir having an inlet means into the polymerization chamber. The reaction chamber is evacuated to a pressure of about 50 to about 1,000 millitorr and preferably 200 millitorr. The reaction chamber containing hydrophobic lenses and monomer in vapor form is subjected to electromagnetic radiation thereby initiating a glow discharge which initiates ionization of the vaporized monomer and polymerization of the ionized material onto and integrally to the surface of the hydrophobic lens. Throughout the evacuation and glow discharge the inlet means from the reservoir is maintained in an open position in order to maintain a constant partial pressure of the monomer in the reaction chamber as monomer is depleted. The frequency of the electromagnetic radiation employed can vary over a wide range and is determined primarily by the instrument employed. The frequency desirably employed is about 15.6 megahertz. The reaction time under which the substrate is exposed to the glow discharge of the monomer as well as the polymerization rate and monomer vapor pressure in the chamber will determine the thickness of the coating, the thickness being nearly linear to the rate, time and monomer vapor pressure. Generally exposures of from about 0.2 minutes to 10 minutes will be sufficient to obtain the ultrathin hydrophilic coatings of this invention. Longer exposures can result in undesirable mechanical properties. It has been surprisingly discovered that the ultrathin coating, which can be in the range of 50 Angstroms to about 20,000 Angstroms, desirably 100 Angstroms to about 100 Angstroms and preferably 100 Angstroms to about 200 Angstroms, does not reduce the oxygen permeability of the hydrophobic material in noticeable amounts.

The wettability of hydrophilized lenses was determined by measuring the contact angle of a water drop on the lens. The contact angle measurements were determined by the sessile drop (air-H2 O) technique whereby a sessile liquid drop on the surface is defined by the interior angle made by a line tangent to the curve of the image of the drop at the surface of the solid and a line defining the base of the drop.

As mentioned above it has been discovered that the oxygen transport rate and permeability of the core material is not appreciably affected by a coating of a less oxygen permeable material. The oxygen transport rate of a polysiloxane lens, for example, the polysiloxane being sold under the tradename Sylgard 184 (Dow Corning) at one atmosphere is about 8.1 × 10-6 cm3 /cm2 sec. for a sample of 0.16 mm thick. After being coated with 2-hydroxyethyl-methacrylate in accordance with this invention the oxygen transport rate was measured at 7.5 × 10-6 cm3 /cm2 sec. The coating virtually did not change the O2 transport rate.

The following examples illustrate the invention.

EXAMPLE I

A lens, made from cross-linked polydialkylsiloxane, namely Dow Corning's Sylgard 184, which is a mixture of predominantly polydimethylsiloxanes having hydrogen and vinyl cross-linking sites, was placed in a chamber of a plasma excitor, model Plasma Excitor 320 by Technics, Inc., Alexandria, Va. Eight microliters of N-vinyl-2-pyrrolidone was placed into the chamber and the chamber pressure was reduced to 200 millitorr ± 10 millitorr. The chamber was then subjected to electromagnetic radiation of 15.6 megahertz for one minute. The lens is uniformly coated with an ultrathin coating of poly-N-vinyl-2-pyrrolidone which is integrally bonded to the core.

Four additional polydiorganosiloxanes lenses are each subjected to the treatment as described above with exception that the amount of N-vinyl-2-pyrrolidone is varied.

The wettability of the lens was determined at room temperature by contact angle goniometry. The contact angles were measured on a NRL Contact Angle Goniometer (Model A-100 Rome-Hart, Inc., Mountain Lakes, N.J.) by measuring the advancing contact angle employing the sessile droplet technique as described in Wettability of Hydrogels by Frank V. Holly and Miguel F. Refojo (J. Biomed. Mater. Res. 9, 315-326, 1975). The lenses were further tested for optical transparency and oxygen permeability.

The oxygen permeability and transport rate remains virtually unchanged as compared with the lens without the coating. The lenses were wettable and the coatings uniformly thin.

The results are summarized in Table I.

              TABLE I______________________________________Amount of    Contact Angle                Contact Angle                            OpticalN-vp     Before Coating                After Coating                            Transparency______________________________________ 8 μl 98°  43°  transparent16 μl 90°  49°  transparent24 μl 94°  47°  transparent32 μl 95°  45°  translucent40 μl 95°  43°  translucent______________________________________
EXAMPLE II

Three lenses prepared from the material described in Example I are each exposed to electromagnetic radiation of a frequency of 15.6 megahertz in the presence of 16 of N-vinyl pyrrolidone under a pressure of 200 millitorr ± 10 millitorr. Each lens is subjected to the radiation for an increasing period of time. The lenses having a uniform, ultrathin coating were tested for wettability, oxygen permeability and optical transparency. The contact angles are determined as described in Example I. The oxygen permeability and transport rate remains virtually unchanged as compared with the lens not coated. The results are summarized in Table II.

              TABLE II______________________________________Time ofGrafting Contact Angle                Contact Angle                            Optical(min)    Before Coating                After Coating                            Transparency______________________________________1        103° 49°  transparent2        102° 41°  translucent3        103° 40°  translucent______________________________________
EXAMPLE III

A contact lens was prepared from a substrate of cross-linked polydialkylsiloxane, namely Dow Corning's Slygard 184 and an ultrathin coating of poly-2-hydroxyethylmethacrylate. The ultrathin coating was obtained by the method described in Example I.

The contact angle of the substrate was 110°. The contact angle obtained after the coating was 65°.

Claims (4)

I claim:
1. An electrodeless glow discharge polymerization and coating process for making a hydrophobic contact lens into a hydrophilic contact lens consisting essentially of:
(1) providing a hydrophobic, optically transparent, oxygen permeable contact lens,
(2) placing the hydrophobic contact lens into a glow discharge apparatus containing an atmosphere comprising a polymerizable organic monomer consisting essentially of hydroxyalkylmethacrylates, hydroxyalkylacrylates, glycidylmethacrylate, propylene oxide and N-vinyl-2-pyrrolidone; and
(3) subjecting the monomer to electromagnetic radiation sufficient to produce an electrodeless glow discharge at a pressure of about 100 to about 700 millitorr to cause the polymerizable organic monomer to polymerize and to form hydrohilic polymeric integrally bonded uniform coating from about 50A to about 20,000A thick on the hydrophobic contact lens thereby forming a hydrophilic, optically transparent, oxygen permeable contact lens.
2. The process of claim 1 wherein the electromagnetic energy has a frequency of about 15.6 megahertz.
3. The process of claim 1 wherein the atmosphere is at a pressure of from about 100 millitorr to about 500 millitorr.
4. The process of claim 1 wherein the hydrophobic contact lens is a polysiloxane polymeric material and the polymerized surface coating is selected from the group consisting of poly(2-hydroxyethylmethacrylate) and poly(N-vinyl-pyrrolidone).
US05736612 1976-10-28 1976-10-28 Process for putting a hydrophilic coating on a hydrophobic contact lens Expired - Lifetime US4143949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05736612 US4143949A (en) 1976-10-28 1976-10-28 Process for putting a hydrophilic coating on a hydrophobic contact lens

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US05736612 US4143949A (en) 1976-10-28 1976-10-28 Process for putting a hydrophilic coating on a hydrophobic contact lens
CA 288961 CA1074254A (en) 1976-10-28 1977-10-18 Contact lens
GB4463877A GB1579469A (en) 1976-10-28 1977-10-26 Contact lens
DE19772748256 DE2748256C2 (en) 1976-10-28 1977-10-27
JP12956277A JPS5383642A (en) 1976-10-28 1977-10-28 Contact lens and its production method

Publications (1)

Publication Number Publication Date
US4143949A true US4143949A (en) 1979-03-13

Family

ID=24960555

Family Applications (1)

Application Number Title Priority Date Filing Date
US05736612 Expired - Lifetime US4143949A (en) 1976-10-28 1976-10-28 Process for putting a hydrophilic coating on a hydrophobic contact lens

Country Status (5)

Country Link
US (1) US4143949A (en)
JP (1) JPS5383642A (en)
CA (1) CA1074254A (en)
DE (1) DE2748256C2 (en)
GB (1) GB1579469A (en)

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217038A (en) * 1978-06-05 1980-08-12 Bausch & Lomb Incorporated Glass coated polysiloxane contact lens
US4312575A (en) * 1979-09-18 1982-01-26 Peyman Gholam A Soft corneal contact lens with tightly cross-linked polymer coating and method of making same
US4332922A (en) * 1980-07-18 1982-06-01 Titmus Eurocon Process for rendering silicone rubber contact lenses hydrophilic
DE3202666A1 (en) * 1981-01-29 1982-08-26 Kendall & Co Hydrogel composite structure, process for its preparation and hard contact lenses obtained by using it
DE3143839A1 (en) * 1981-11-05 1983-05-19 Gholam A Peyman Contact lens
US4409258A (en) * 1980-05-29 1983-10-11 Alcon Pharmaceuticals Limited Treatment process for rendering corneal contact lenses hydrophilic
US4411932A (en) * 1981-11-23 1983-10-25 Alcon Laboratories, Inc. Method for the prevention of soilant deposits on contact lenses
US4465738A (en) * 1983-06-15 1984-08-14 Borg-Warner Corporation Wettable coatings for inorganic substrates
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
EP0152256A3 (en) * 1984-02-04 1987-12-02 Japan Synthetic Rubber Co., Ltd. Optical product having a thin surface film
US4713244A (en) * 1985-08-16 1987-12-15 Bausch & Lomb Incorporated Sustained-release formulation containing an amino acid polymer with a lower alkyl (C1 -C4) polar solvent
US4729906A (en) * 1983-07-22 1988-03-08 Siemens Aktiengesellschaft Method for producing glow polymerisate layers
US4743258A (en) * 1984-04-27 1988-05-10 Japan Medical Supply Co., Ltd. Polymer materials for vascular prostheses
US4815962A (en) * 1987-12-11 1989-03-28 Polaroid Corporation Process for coating synthetic optical substrates
US4885077A (en) * 1988-11-17 1989-12-05 Becton, Dickinson And Company Composite membrane, method for its preparation and electrolyte sensor including same
US4890911A (en) * 1988-04-22 1990-01-02 Ceskoslovenska Akademie Ved Contact lens and the method of manufacturing thereof
US4893918A (en) * 1987-01-12 1990-01-16 Ceskoslovenska Akademie Ved Contact or intraocular lens from lightly crosslinked polymer or copolymer of 2-hydroxyethyl methacrylate and a method for producing thereof
US4920184A (en) * 1985-05-15 1990-04-24 Ciba-Geigy Corporation Hydrophilic silicone rubber article and process for its preparation
US4983702A (en) * 1988-09-28 1991-01-08 Ciba-Geigy Corporation Crosslinked siloxane-urethane polymer contact lens
US5007928A (en) * 1988-05-31 1991-04-16 Canon Kabushiki Kaisha Intraocular implant having coating layer
US5080924A (en) * 1989-04-24 1992-01-14 Drexel University Method of making biocompatible, surface modified materials
US5147396A (en) * 1988-03-28 1992-09-15 Hoya Corporation Intraocular lens
US5162469A (en) * 1991-08-05 1992-11-10 Optical Research Inc. Composition for rigid gas permeable contact lenses
US5326584A (en) * 1989-04-24 1994-07-05 Drexel University Biocompatible, surface modified materials and method of making the same
US5369012A (en) * 1992-03-26 1994-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals
US5798261A (en) * 1989-10-31 1998-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
EP0896035A2 (en) * 1997-08-08 1999-02-10 Board of Regents, The University of Texas System Non-fouling wettable coatings
US5958194A (en) * 1997-09-18 1999-09-28 Glazier; Alan N. Gas permeable elastomer contact lens bonded with titanium and/or oxides thereof
EP0995762A2 (en) * 1998-10-20 2000-04-26 JOHNSON & JOHNSON VISION PRODUCTS, INC. Coatings for biomedical Devices
WO2000071613A1 (en) * 1999-05-20 2000-11-30 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
WO2000071612A1 (en) * 1999-05-20 2000-11-30 Bausch & Lomb Incorporated Surface-treatment of silicone medical devices comprising an intermediate carbon coating and graft polymerization
WO2000071611A1 (en) * 1999-05-20 2000-11-30 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses with a flexible carbon coating
US6193369B1 (en) 1998-05-05 2001-02-27 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses
US6329024B1 (en) 1996-04-16 2001-12-11 Board Of Regents, The University Of Texas System Method for depositing a coating comprising pulsed plasma polymerization of a macrocycle
US6348507B1 (en) 1998-05-05 2002-02-19 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses
US6428839B1 (en) 2000-06-02 2002-08-06 Bausch & Lomb Incorporated Surface treatment of medical device
US6478423B1 (en) 1999-10-12 2002-11-12 Johnson & Johnson Vison Care, Inc. Contact lens coating selection and manufacturing process
US6482531B1 (en) 1996-04-16 2002-11-19 Board Of Regents, The University Of Texas System Non-fouling, wettable coated devices
US6500481B1 (en) 1998-06-11 2002-12-31 Johnson & Johnson Vision Care, Inc. Biomedical devices with amid-containing coatings
US6514438B1 (en) 1999-12-21 2003-02-04 Bausch & Lomb Incorporated Pulse extraction of ocular medical devices
US6543984B1 (en) 2000-03-31 2003-04-08 Bausch & Lomb Incorporated Lens transfer method and devices
US20030087022A1 (en) * 2000-10-24 2003-05-08 Bausch & Lomb Incorporated Prevention of bacterial attachment to biomaterials by cationic polysaccharides
US20030129397A1 (en) * 2001-09-07 2003-07-10 Wilson Daniel A. Coated optical fibers using adhesion promoters, and methods for making and using same
EP1336123A2 (en) * 2000-11-01 2003-08-20 Avery Dennison Corporation Optical coating having low refractive index
US6702983B2 (en) 2001-05-15 2004-03-09 Bausch & Lomb Incorporated Low ionic strength method and composition for reducing bacterial attachment to biomaterials
US20040116310A1 (en) * 2002-12-17 2004-06-17 Bausch & Lomb Incorporated Surface treatment of medical device
WO2004058318A1 (en) * 2002-12-23 2004-07-15 Bausch & Lomb Incorporated Surface treatment utilizing microwave radiation
US20050045589A1 (en) * 2003-08-25 2005-03-03 Sanjay Rastogi Plasma treatment of contact lens and IOL
US20050153055A1 (en) * 2003-12-22 2005-07-14 Bausch & Lomb Incorporated Surface treatment utilizing supercritical fluid
US6951894B1 (en) 1994-09-06 2005-10-04 Ciba Vision Corporation Extended wear ophthalmic lens
US20050228065A1 (en) * 1994-09-06 2005-10-13 Ciba Vision Corporation Extended wear ophthalmic lens
US20060068224A1 (en) * 2004-09-30 2006-03-30 George Grobe Coated biomedical device and associated method
US7021761B2 (en) 2002-06-28 2006-04-04 Bausch & Lomb Incorporated Lens with colored portion and coated surface
EP1644989A1 (en) 2003-07-07 2006-04-12 Dow Corning Corporation Encapsulation of solar cells
US20060122560A1 (en) * 2004-12-07 2006-06-08 Robert Burgmeier Medical devices and processes for preparing same
US20060178572A1 (en) * 2001-04-27 2006-08-10 March Wayne F Apparatus for measuring blood glucose concentrations
US20060193894A1 (en) * 2005-02-28 2006-08-31 Jen James S Methods for providing biomedical devices with hydrophilic antimicrobial coatings
WO2005059040A3 (en) * 2003-12-16 2006-10-26 Sun Chemical Corp Method of forming a radiation curable coating and coated article
US20070049713A1 (en) * 2005-08-30 2007-03-01 Bausch & Lomb Incorporated Polymeric materials having enhanced ion and water transport property and medical devices comprising same
US20070048349A1 (en) * 2005-08-29 2007-03-01 Bausch & Lomb Incorporated Surface-modified medical devices and methods of making
US20070122540A1 (en) * 2005-11-29 2007-05-31 Bausch & Lomb Incorporated Coatings on ophthalmic lenses
US20070120279A1 (en) * 2005-11-29 2007-05-31 Bausch & Lomb Incorporated Method for coating lens material
US20070255014A1 (en) * 2006-04-28 2007-11-01 Salamone Joseph C Gas-permeable materials and medical devices
US20080002146A1 (en) * 2006-06-28 2008-01-03 Stachowski Mark J Biocompatible, surface modified materials
US20080143957A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Surface Treatment of Biomedical Devices
US20080142038A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Surface treatment of medical devices
US20080143956A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20080143955A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Silicone Contact Lenses with Silicate Coating
US20080153938A1 (en) * 2006-12-20 2008-06-26 Grobe George L Surface Treatment of Fluorinated Biomedical Devices
US20080206481A1 (en) * 2007-02-26 2008-08-28 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20090111942A1 (en) * 2007-10-25 2009-04-30 Bausch & Lomb Incorporated Method for Making Surface Modified Biomedical Devices
US20090156708A1 (en) * 2007-12-14 2009-06-18 Yu-Chin Lai Biomedical devices
US20090156745A1 (en) * 2007-12-14 2009-06-18 Yu-Chin Lai Surface modified biomedical devices
US20090153793A1 (en) * 2007-12-14 2009-06-18 Weihong Lang Surface modified biomedical devices
US20100168851A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Surface Modified Biomedical Devices
US20100168852A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Brush Copolymers
US20100168850A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Brush CoPolymers
US20100162661A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Packaging Solutions
WO2011107592A1 (en) 2010-03-05 2011-09-09 Momentive Performance Materials Gmbh Curable polyorganosiloxane composition for use as an encapsulant for a solar cell module
US20120158133A1 (en) * 2009-08-28 2012-06-21 Miro Gmbh Intraocular Lens
EP2492718A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Silicone Hydrogel Contact Lenses
DE202012101023U1 (en) 2012-03-01 2013-06-04 Solarworld Innovations Gmbh solar module
US8480227B2 (en) 2010-07-30 2013-07-09 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
DE102012101710A1 (en) 2012-03-01 2013-09-05 Solarworld Innovations Gmbh A method of encapsulating a solar cell in a polymer matrix
US20140171541A1 (en) * 2009-03-31 2014-06-19 Johnson & Johnson Vision Care, Inc. Polymeric articles comprising oxygen permeability enhancing particles
WO2014096852A1 (en) 2012-12-21 2014-06-26 Coopervision International Holding Company, Lp Antimicrobial ophthalmic contact lenses
US8798332B2 (en) 2012-05-15 2014-08-05 Google Inc. Contact lenses
US8820934B1 (en) 2012-09-05 2014-09-02 Google Inc. Passive surface acoustic wave communication
US8821811B2 (en) 2012-09-26 2014-09-02 Google Inc. In-vitro contact lens testing
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US8870370B1 (en) 2012-09-24 2014-10-28 Google Inc. Contact lens that facilitates antenna communication via sensor impedance modulation
US8880139B1 (en) 2013-06-17 2014-11-04 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
US8926809B2 (en) 2013-01-25 2015-01-06 Google Inc. Standby biasing of electrochemical sensor to reduce sensor stabilization time during measurement
US8950068B2 (en) 2013-03-26 2015-02-10 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US8960898B1 (en) 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8965478B2 (en) 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US8979261B2 (en) 2010-07-30 2015-03-17 Coopervision International Holding Company, Lp Silicone hydrogel ophthalmic devices molded in vinyl alcohol copolymer molds and related methods
US8979271B2 (en) 2012-09-25 2015-03-17 Google Inc. Facilitation of temperature compensation for contact lens sensors and temperature sensing
US8989834B2 (en) 2012-09-25 2015-03-24 Google Inc. Wearable device
US8985763B1 (en) 2012-09-26 2015-03-24 Google Inc. Contact lens having an uneven embedded substrate and method of manufacture
US9005700B2 (en) 2011-10-12 2015-04-14 Novartis Ag Method for making UV-absorbing ophthalmic lenses
US9009958B2 (en) 2013-03-27 2015-04-21 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9028772B2 (en) 2013-06-28 2015-05-12 Google Inc. Methods for forming a channel through a polymer layer using one or more photoresist layers
WO2015073758A1 (en) * 2013-11-15 2015-05-21 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US9063351B1 (en) 2012-09-28 2015-06-23 Google Inc. Input detection system
US9111473B1 (en) 2012-08-24 2015-08-18 Google Inc. Input system
US9158133B1 (en) 2012-07-26 2015-10-13 Google Inc. Contact lens employing optical signals for power and/or communication
US9176332B1 (en) 2012-10-24 2015-11-03 Google Inc. Contact lens and method of manufacture to improve sensor sensitivity
US9184698B1 (en) 2014-03-11 2015-11-10 Google Inc. Reference frequency from ambient light signal
US9289954B2 (en) 2013-01-17 2016-03-22 Verily Life Sciences Llc Method of ring-shaped structure placement in an eye-mountable device
US9298020B1 (en) 2012-07-26 2016-03-29 Verily Life Sciences Llc Input system
US9307901B1 (en) 2013-06-28 2016-04-12 Verily Life Sciences Llc Methods for leaving a channel in a polymer layer using a cross-linked polymer plug
US9320460B2 (en) 2012-09-07 2016-04-26 Verily Life Sciences Llc In-situ tear sample collection and testing using a contact lens
US9326710B1 (en) 2012-09-20 2016-05-03 Verily Life Sciences Llc Contact lenses having sensors with adjustable sensitivity
US9332935B2 (en) 2013-06-14 2016-05-10 Verily Life Sciences Llc Device having embedded antenna
WO2016087881A1 (en) 2014-12-05 2016-06-09 Coopervision International Holding Company, Lp Method of manufacturing wettable silicone hydrogel contact lenses
US9366570B1 (en) 2014-03-10 2016-06-14 Verily Life Sciences Llc Photodiode operable in photoconductive mode and photovoltaic mode
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US9398868B1 (en) 2012-09-11 2016-07-26 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US9492118B1 (en) 2013-06-28 2016-11-15 Life Sciences Llc Pre-treatment process for electrochemical amperometric sensor
US9523865B2 (en) 2012-07-26 2016-12-20 Verily Life Sciences Llc Contact lenses with hybrid power sources
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
WO2017037610A1 (en) 2015-09-04 2017-03-09 Novartis Ag Method for producing contact lenses with durable lubricious coatings thereon
WO2017037611A1 (en) 2015-09-04 2017-03-09 Novartis Ag Soft silicone medical devices with durable lubricious coatings thereon
US9636016B1 (en) 2013-01-25 2017-05-02 Verily Life Sciences Llc Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices
US9654674B1 (en) 2013-12-20 2017-05-16 Verily Life Sciences Llc Image sensor with a plurality of light channels
US9685689B1 (en) 2013-06-27 2017-06-20 Verily Life Sciences Llc Fabrication methods for bio-compatible devices
US9696564B1 (en) 2012-08-21 2017-07-04 Verily Life Sciences Llc Contact lens with metal portion and polymer layer having indentations
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9757056B1 (en) 2012-10-26 2017-09-12 Verily Life Sciences Llc Over-molding of sensor apparatus in eye-mountable device
US9789655B1 (en) 2014-03-14 2017-10-17 Verily Life Sciences Llc Methods for mold release of body-mountable devices including microelectronics
US9814387B2 (en) 2013-06-28 2017-11-14 Verily Life Sciences, LLC Device identification
US9884180B1 (en) 2012-09-26 2018-02-06 Verily Life Sciences Llc Power transducer for a retinal implant using a contact lens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168112A (en) * 1978-01-05 1979-09-18 Polymer Technology Corporation Contact lens with a hydrophilic, polyelectrolyte complex coating and method for forming same
DE3004685C2 (en) * 1980-02-08 1986-07-31 Titmus Eurocon Kontaktlinsen Gmbh, 8750 Aschaffenburg, De
JPS59500276A (en) * 1982-02-08 1984-02-23
JPS6210616A (en) * 1985-07-09 1987-01-19 Seiko Epson Corp Contact lens
JP2551580B2 (en) * 1987-04-30 1996-11-06 ホ−ヤ株式会社 Hydrophilic method of contact lens
US4955711A (en) * 1987-11-30 1990-09-11 Animalens, Inc. Contact lenses for animals
GB9113875D0 (en) * 1991-06-27 1991-08-14 Biointeractions Ltd Polymer coatings
JP2565036B2 (en) * 1991-11-06 1996-12-18 東レ株式会社 Plastic moldings and a method of manufacturing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068510A (en) * 1959-12-14 1962-12-18 Radiation Res Corp Polymerizing method and apparatus
US3389012A (en) * 1965-07-15 1968-06-18 Plastic Contact Lens Company Teflon coating on edges of contact lens
US3700573A (en) * 1966-12-01 1972-10-24 Jacques Laizier Method of preparation of hydrophilic silicones by radiochemical grafting
US3808178A (en) * 1972-06-16 1974-04-30 Polycon Laboratories Oxygen-permeable contact lens composition,methods and article of manufacture
GB1362939A (en) * 1971-12-31 1974-08-07 Agfa Gevaert Ag Method for rendering silicone rubber surfaces hydrophilic
US3900250A (en) * 1973-10-26 1975-08-19 Rynco Scient Corp Semi-rigid, gas permeable contact lenses
US3916033A (en) * 1971-06-09 1975-10-28 High Voltage Engineering Corp Contact lens
US3943045A (en) * 1972-03-13 1976-03-09 Special Polymers Limited Irradiation of hydrophilic and hydrophobic monomers to produce hydrophilic copolymers
US3950315A (en) * 1971-06-11 1976-04-13 E. I. Du Pont De Nemours And Company Contact lens having an optimum combination of properties

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421867B2 (en) * 1972-05-10 1979-08-02
FR2240463B1 (en) * 1973-08-06 1976-04-30 Essilor Int
JPS5052198A (en) * 1973-09-11 1975-05-09
JPS5815483B2 (en) * 1974-08-22 1983-03-25 Susumu Kogyo Kk
JPS5127546A (en) * 1974-09-01 1976-03-08 Takahiko Kondo Sakumotsubaichi

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068510A (en) * 1959-12-14 1962-12-18 Radiation Res Corp Polymerizing method and apparatus
US3389012A (en) * 1965-07-15 1968-06-18 Plastic Contact Lens Company Teflon coating on edges of contact lens
US3700573A (en) * 1966-12-01 1972-10-24 Jacques Laizier Method of preparation of hydrophilic silicones by radiochemical grafting
US3916033A (en) * 1971-06-09 1975-10-28 High Voltage Engineering Corp Contact lens
US3950315A (en) * 1971-06-11 1976-04-13 E. I. Du Pont De Nemours And Company Contact lens having an optimum combination of properties
GB1362939A (en) * 1971-12-31 1974-08-07 Agfa Gevaert Ag Method for rendering silicone rubber surfaces hydrophilic
US3943045A (en) * 1972-03-13 1976-03-09 Special Polymers Limited Irradiation of hydrophilic and hydrophobic monomers to produce hydrophilic copolymers
US3808178A (en) * 1972-06-16 1974-04-30 Polycon Laboratories Oxygen-permeable contact lens composition,methods and article of manufacture
US3900250A (en) * 1973-10-26 1975-08-19 Rynco Scient Corp Semi-rigid, gas permeable contact lenses

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Gas Phase Polymerization," Plastics Technology, vol. 10, Feb. 1964, pp. 9-11. *
Yasuda et al., "Graft Copolymerization of Vinylpyrrolidone onto Polydimethylsiloxane," J. of Polymer Science: Part A, vol. 2, pp. 5093-5098, (1964). *
Yasuda et al., "Ultrathin Coating by Plasma Polymerization Applied to Corneal Contact Lens," J. Biomed. Mater. Res., vol. 9, 1975, pp. 629-643. *

Cited By (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217038A (en) * 1978-06-05 1980-08-12 Bausch & Lomb Incorporated Glass coated polysiloxane contact lens
US4312575A (en) * 1979-09-18 1982-01-26 Peyman Gholam A Soft corneal contact lens with tightly cross-linked polymer coating and method of making same
US4409258A (en) * 1980-05-29 1983-10-11 Alcon Pharmaceuticals Limited Treatment process for rendering corneal contact lenses hydrophilic
US4332922A (en) * 1980-07-18 1982-06-01 Titmus Eurocon Process for rendering silicone rubber contact lenses hydrophilic
DE3202666A1 (en) * 1981-01-29 1982-08-26 Kendall & Co Hydrogel composite structure, process for its preparation and hard contact lenses obtained by using it
DE3143839A1 (en) * 1981-11-05 1983-05-19 Gholam A Peyman Contact lens
US4411932A (en) * 1981-11-23 1983-10-25 Alcon Laboratories, Inc. Method for the prevention of soilant deposits on contact lenses
US4465738A (en) * 1983-06-15 1984-08-14 Borg-Warner Corporation Wettable coatings for inorganic substrates
US4729906A (en) * 1983-07-22 1988-03-08 Siemens Aktiengesellschaft Method for producing glow polymerisate layers
EP0152256A3 (en) * 1984-02-04 1987-12-02 Japan Synthetic Rubber Co., Ltd. Optical product having a thin surface film
US4743258A (en) * 1984-04-27 1988-05-10 Japan Medical Supply Co., Ltd. Polymer materials for vascular prostheses
US4920184A (en) * 1985-05-15 1990-04-24 Ciba-Geigy Corporation Hydrophilic silicone rubber article and process for its preparation
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
US4713244A (en) * 1985-08-16 1987-12-15 Bausch & Lomb Incorporated Sustained-release formulation containing an amino acid polymer with a lower alkyl (C1 -C4) polar solvent
US4893918A (en) * 1987-01-12 1990-01-16 Ceskoslovenska Akademie Ved Contact or intraocular lens from lightly crosslinked polymer or copolymer of 2-hydroxyethyl methacrylate and a method for producing thereof
US4815962A (en) * 1987-12-11 1989-03-28 Polaroid Corporation Process for coating synthetic optical substrates
US5147396A (en) * 1988-03-28 1992-09-15 Hoya Corporation Intraocular lens
US4890911A (en) * 1988-04-22 1990-01-02 Ceskoslovenska Akademie Ved Contact lens and the method of manufacturing thereof
US5007928A (en) * 1988-05-31 1991-04-16 Canon Kabushiki Kaisha Intraocular implant having coating layer
US4983702A (en) * 1988-09-28 1991-01-08 Ciba-Geigy Corporation Crosslinked siloxane-urethane polymer contact lens
US4885077A (en) * 1988-11-17 1989-12-05 Becton, Dickinson And Company Composite membrane, method for its preparation and electrolyte sensor including same
US5080924A (en) * 1989-04-24 1992-01-14 Drexel University Method of making biocompatible, surface modified materials
US5578079A (en) * 1989-04-24 1996-11-26 Drexel University Biocompatible, surface modified materials
US5326584A (en) * 1989-04-24 1994-07-05 Drexel University Biocompatible, surface modified materials and method of making the same
US5260093A (en) * 1989-04-24 1993-11-09 Drexel University Method of making biocompatible, surface modified materials
US5798261A (en) * 1989-10-31 1998-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
US5162469A (en) * 1991-08-05 1992-11-10 Optical Research Inc. Composition for rigid gas permeable contact lenses
US5369012A (en) * 1992-03-26 1994-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals
US8568626B2 (en) 1994-09-06 2013-10-29 Ciba Vision Corporation Extended wear ophthalmic lens
US20100238398A1 (en) * 1994-09-06 2010-09-23 Ciba Vision Corporation Extended Wear Ophthalmic Lens
US8415404B2 (en) 1994-09-06 2013-04-09 Ciba Vision Corporation Extended wear ophthalmic lens
US7468398B2 (en) 1994-09-06 2008-12-23 Ciba Vision Corporation Extended wear ophthalmic lens
US20050228065A1 (en) * 1994-09-06 2005-10-13 Ciba Vision Corporation Extended wear ophthalmic lens
US20090046242A1 (en) * 1994-09-06 2009-02-19 Ciba Vision Corporation Extended Wear Ophthalmic Lens
US7538146B2 (en) 1994-09-06 2009-05-26 Ciba Vision Corporation Extended wear ophthalmic lens
US7553880B2 (en) 1994-09-06 2009-06-30 Ciba Vision Corporation Extended wear ophthalmic lens
US6951894B1 (en) 1994-09-06 2005-10-04 Ciba Vision Corporation Extended wear ophthalmic lens
US9612455B2 (en) 1995-04-04 2017-04-04 Novartis Ag Extended wear ophthalmic lens
US6482531B1 (en) 1996-04-16 2002-11-19 Board Of Regents, The University Of Texas System Non-fouling, wettable coated devices
US6329024B1 (en) 1996-04-16 2001-12-11 Board Of Regents, The University Of Texas System Method for depositing a coating comprising pulsed plasma polymerization of a macrocycle
EP0896035A3 (en) * 1997-08-08 2000-07-26 Board of Regents, The University of Texas System Non-fouling wettable coatings
EP0896035A2 (en) * 1997-08-08 1999-02-10 Board of Regents, The University of Texas System Non-fouling wettable coatings
US5958194A (en) * 1997-09-18 1999-09-28 Glazier; Alan N. Gas permeable elastomer contact lens bonded with titanium and/or oxides thereof
US6193369B1 (en) 1998-05-05 2001-02-27 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses
US6348507B1 (en) 1998-05-05 2002-02-19 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses
US6500481B1 (en) 1998-06-11 2002-12-31 Johnson & Johnson Vision Care, Inc. Biomedical devices with amid-containing coatings
EP0995762A3 (en) * 1998-10-20 2001-05-23 JOHNSON & JOHNSON VISION PRODUCTS, INC. Coatings for biomedical Devices
EP0995762A2 (en) * 1998-10-20 2000-04-26 JOHNSON & JOHNSON VISION PRODUCTS, INC. Coatings for biomedical Devices
US6200626B1 (en) 1999-05-20 2001-03-13 Bausch & Lomb Incorporated Surface-treatment of silicone medical devices comprising an intermediate carbon coating and graft polymerization
WO2000071611A1 (en) * 1999-05-20 2000-11-30 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses with a flexible carbon coating
WO2000071612A1 (en) * 1999-05-20 2000-11-30 Bausch & Lomb Incorporated Surface-treatment of silicone medical devices comprising an intermediate carbon coating and graft polymerization
US6630243B2 (en) 1999-05-20 2003-10-07 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US20030224185A1 (en) * 1999-05-20 2003-12-04 Bausch & Lomb Incorporated Surface treatment for silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US6213604B1 (en) 1999-05-20 2001-04-10 Bausch & Lomb Incorporated Plasma surface treatment of silicone hydrogel contact lenses with a flexible carbon coating
WO2000071613A1 (en) * 1999-05-20 2000-11-30 Bausch & Lomb Incorporated Surface treatment of silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US6902812B2 (en) 1999-05-20 2005-06-07 Bausch & Lomb Incorporated Surface treatment for silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US6478423B1 (en) 1999-10-12 2002-11-12 Johnson & Johnson Vison Care, Inc. Contact lens coating selection and manufacturing process
US20030116873A1 (en) * 1999-12-21 2003-06-26 Bausch & Lomb Incorporated Pulse extraction of ocular medical devices
US6514438B1 (en) 1999-12-21 2003-02-04 Bausch & Lomb Incorporated Pulse extraction of ocular medical devices
US6998073B2 (en) 1999-12-21 2006-02-14 Bausch & Lomb Incorporated Pulse extraction of ocular medical devices
US6543984B1 (en) 2000-03-31 2003-04-08 Bausch & Lomb Incorporated Lens transfer method and devices
US6428839B1 (en) 2000-06-02 2002-08-06 Bausch & Lomb Incorporated Surface treatment of medical device
US20030087022A1 (en) * 2000-10-24 2003-05-08 Bausch & Lomb Incorporated Prevention of bacterial attachment to biomaterials by cationic polysaccharides
EP1336123A2 (en) * 2000-11-01 2003-08-20 Avery Dennison Corporation Optical coating having low refractive index
EP1336123A4 (en) * 2000-11-01 2006-03-08 Avery Dennison Corp Optical coating having low refractive index
US6686431B2 (en) * 2000-11-01 2004-02-03 Avery Dennison Corporation Optical coating having low refractive index
US7653424B2 (en) 2001-04-27 2010-01-26 Eyesense Ag Apparatus for measuring blood glucose concentrations
US20100185066A1 (en) * 2001-04-27 2010-07-22 Eyesense Ag Apparatus for measuring blood glucose concentrations
US20060178572A1 (en) * 2001-04-27 2006-08-10 March Wayne F Apparatus for measuring blood glucose concentrations
US6702983B2 (en) 2001-05-15 2004-03-09 Bausch & Lomb Incorporated Low ionic strength method and composition for reducing bacterial attachment to biomaterials
US20030129397A1 (en) * 2001-09-07 2003-07-10 Wilson Daniel A. Coated optical fibers using adhesion promoters, and methods for making and using same
US20060114409A1 (en) * 2002-06-28 2006-06-01 Kunzler Jay F Lens with colored portion and coated surface
US7021761B2 (en) 2002-06-28 2006-04-04 Bausch & Lomb Incorporated Lens with colored portion and coated surface
US7147326B2 (en) 2002-06-28 2006-12-12 Bausch & Lomb Incorporated Lens with colored portion and coated surface
US6958169B2 (en) 2002-12-17 2005-10-25 Bausch & Lomb Incorporated Surface treatment of medical device
US20040116310A1 (en) * 2002-12-17 2004-06-17 Bausch & Lomb Incorporated Surface treatment of medical device
US20040166232A1 (en) * 2002-12-23 2004-08-26 Bausch & Lomb Incorporated Surface treatment utilizing microwave radiation
WO2004058318A1 (en) * 2002-12-23 2004-07-15 Bausch & Lomb Incorporated Surface treatment utilizing microwave radiation
US8847063B2 (en) 2003-07-07 2014-09-30 Dow Corning Corporation Encapsulation of solar cells
US20060207646A1 (en) * 2003-07-07 2006-09-21 Christine Terreau Encapsulation of solar cells
EP1644989A1 (en) 2003-07-07 2006-04-12 Dow Corning Corporation Encapsulation of solar cells
US8847064B2 (en) 2003-07-07 2014-09-30 Dow Corning Corporation Encapsulation of solar cells
US7250197B2 (en) 2003-08-25 2007-07-31 Bausch & Lomb Incorporated Plasma treatment of contact lens and IOL
US20050045589A1 (en) * 2003-08-25 2005-03-03 Sanjay Rastogi Plasma treatment of contact lens and IOL
US20070104957A1 (en) * 2003-12-16 2007-05-10 Sun Chemical Corporation Method of forming a radiation curable coating and coated article
WO2005059040A3 (en) * 2003-12-16 2006-10-26 Sun Chemical Corp Method of forming a radiation curable coating and coated article
US20050153055A1 (en) * 2003-12-22 2005-07-14 Bausch & Lomb Incorporated Surface treatment utilizing supercritical fluid
US20060068224A1 (en) * 2004-09-30 2006-03-30 George Grobe Coated biomedical device and associated method
US20060122560A1 (en) * 2004-12-07 2006-06-08 Robert Burgmeier Medical devices and processes for preparing same
WO2006093725A1 (en) * 2005-02-28 2006-09-08 Johnson & Johnson Vision Care, Inc. Methods for providing biomedical devices with hydrophilic antimicrobial coatings
US20060193894A1 (en) * 2005-02-28 2006-08-31 Jen James S Methods for providing biomedical devices with hydrophilic antimicrobial coatings
US20070048349A1 (en) * 2005-08-29 2007-03-01 Bausch & Lomb Incorporated Surface-modified medical devices and methods of making
US20070049713A1 (en) * 2005-08-30 2007-03-01 Bausch & Lomb Incorporated Polymeric materials having enhanced ion and water transport property and medical devices comprising same
US7390863B2 (en) 2005-08-30 2008-06-24 Bausch & Lomb Incorporated Polymeric materials having enhanced ion and water transport property and medical devices comprising same
US20070122540A1 (en) * 2005-11-29 2007-05-31 Bausch & Lomb Incorporated Coatings on ophthalmic lenses
US20070120279A1 (en) * 2005-11-29 2007-05-31 Bausch & Lomb Incorporated Method for coating lens material
US7576159B2 (en) 2006-04-28 2009-08-18 Bausch & Lomb Incorporated Gas-permeable materials and medical devices
US20070255014A1 (en) * 2006-04-28 2007-11-01 Salamone Joseph C Gas-permeable materials and medical devices
US20080002146A1 (en) * 2006-06-28 2008-01-03 Stachowski Mark J Biocompatible, surface modified materials
US20110152399A1 (en) * 2006-12-15 2011-06-23 Linhardt Jeffrey G Surface treatment of biomedical devices
US7919136B2 (en) 2006-12-15 2011-04-05 Bausch & Lomb Incorporated Surface treatment of biomedical devices
US7625598B2 (en) 2006-12-15 2009-12-01 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20080142038A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Surface treatment of medical devices
US20100039613A1 (en) * 2006-12-15 2010-02-18 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20080143955A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Silicone Contact Lenses with Silicate Coating
US20080143956A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20080143957A1 (en) * 2006-12-15 2008-06-19 Bausch & Lomb Incorporated Surface Treatment of Biomedical Devices
US20080153938A1 (en) * 2006-12-20 2008-06-26 Grobe George L Surface Treatment of Fluorinated Biomedical Devices
US20080206481A1 (en) * 2007-02-26 2008-08-28 Bausch & Lomb Incorporated Silicone contact lenses with wrinkled surface
US20090111942A1 (en) * 2007-10-25 2009-04-30 Bausch & Lomb Incorporated Method for Making Surface Modified Biomedical Devices
US20090156745A1 (en) * 2007-12-14 2009-06-18 Yu-Chin Lai Surface modified biomedical devices
US8071661B2 (en) 2007-12-14 2011-12-06 Bausch & Lomb Incorporated Biomedical devices
US20090156708A1 (en) * 2007-12-14 2009-06-18 Yu-Chin Lai Biomedical devices
US20090153793A1 (en) * 2007-12-14 2009-06-18 Weihong Lang Surface modified biomedical devices
US8071660B2 (en) 2007-12-14 2011-12-06 Bausch & Lomb Incorporated Surface modified biomedical devices
US8631631B2 (en) 2008-12-30 2014-01-21 Bausch & Lomb Incorporated Packaging solutions
US20100168851A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Surface Modified Biomedical Devices
US20100168852A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Brush Copolymers
WO2010077708A1 (en) 2008-12-30 2010-07-08 Bausch & Lomb Incorporated Packaging solutions
US20100162661A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Packaging Solutions
US8419792B2 (en) 2008-12-30 2013-04-16 Bausch & Lomb Incorporated Brush copolymers
US8454689B2 (en) 2008-12-30 2013-06-04 Bausch & Lomb Incorporated Brush copolymers
US20100168850A1 (en) * 2008-12-30 2010-07-01 David Paul Vanderbilt Brush CoPolymers
WO2010078107A1 (en) 2008-12-30 2010-07-08 Bausch & Lomb Incorporated Brush copolymers
US9062180B2 (en) * 2009-03-31 2015-06-23 Johnson & Johnson Vision Care, Inc. Polymeric articles comprising oxygen permeability enhancing particles
US20140171541A1 (en) * 2009-03-31 2014-06-19 Johnson & Johnson Vision Care, Inc. Polymeric articles comprising oxygen permeability enhancing particles
US20120158133A1 (en) * 2009-08-28 2012-06-21 Miro Gmbh Intraocular Lens
WO2011107592A1 (en) 2010-03-05 2011-09-09 Momentive Performance Materials Gmbh Curable polyorganosiloxane composition for use as an encapsulant for a solar cell module
US9543460B2 (en) 2010-03-05 2017-01-10 Momentive Performance Materials Gmbh Curable polyorganosiloxane composition for use as an encapsulant for a solar cell module
US9492951B2 (en) 2010-07-30 2016-11-15 Coopervision International Holding Company, Lp Ophthalmic device molds formed from water-soluble vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US9676153B2 (en) 2010-07-30 2017-06-13 Coopervision International Holding Company, Lp Vinyl alcohol ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
US9507173B2 (en) 2010-07-30 2016-11-29 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9616626B2 (en) 2010-07-30 2017-04-11 Coopervision International Holding Company, Lp Ophthalmic device molds formed from vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US9816009B2 (en) 2010-07-30 2017-11-14 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US8979261B2 (en) 2010-07-30 2015-03-17 Coopervision International Holding Company, Lp Silicone hydrogel ophthalmic devices molded in vinyl alcohol copolymer molds and related methods
US8480227B2 (en) 2010-07-30 2013-07-09 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US9278489B2 (en) 2010-07-30 2016-03-08 Coopervision International Holding Company, Lp Ophthalmic device molds and related methods
US8529057B2 (en) 2010-07-30 2013-09-10 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9239409B2 (en) 2010-07-30 2016-01-19 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9738813B2 (en) 2010-07-30 2017-08-22 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9244200B2 (en) 2010-07-30 2016-01-26 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US9411171B2 (en) 2010-07-30 2016-08-09 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US8939577B2 (en) 2010-07-30 2015-01-27 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US9664925B2 (en) 2010-07-30 2017-05-30 Coopervision International Holding Company, Lp Ophthalmic device molds formed from highly amorphous vinyl alcohol polymer, ophthalmic devices molded therein, and related methods
US8944592B2 (en) 2010-07-30 2015-02-03 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
EP2492718A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Silicone Hydrogel Contact Lenses
US9005700B2 (en) 2011-10-12 2015-04-14 Novartis Ag Method for making UV-absorbing ophthalmic lenses
US9356180B2 (en) 2012-03-01 2016-05-31 Solarworld Innovations Gmbh Process for encapsulating a solar cell in a polymer matrix
DE202012101023U1 (en) 2012-03-01 2013-06-04 Solarworld Innovations Gmbh solar module
DE102012101710A1 (en) 2012-03-01 2013-09-05 Solarworld Innovations Gmbh A method of encapsulating a solar cell in a polymer matrix
US8798332B2 (en) 2012-05-15 2014-08-05 Google Inc. Contact lenses
US9047512B2 (en) 2012-05-15 2015-06-02 Google Inc. Contact lenses
US9523865B2 (en) 2012-07-26 2016-12-20 Verily Life Sciences Llc Contact lenses with hybrid power sources
US9158133B1 (en) 2012-07-26 2015-10-13 Google Inc. Contact lens employing optical signals for power and/or communication
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US9298020B1 (en) 2012-07-26 2016-03-29 Verily Life Sciences Llc Input system
US9735892B1 (en) 2012-07-26 2017-08-15 Verily Life Sciences Llc Employing optical signals for power and/or communication
US8864305B2 (en) 2012-07-26 2014-10-21 Google Inc. Facilitation of contact lenses with capacitive sensors
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
US9696564B1 (en) 2012-08-21 2017-07-04 Verily Life Sciences Llc Contact lens with metal portion and polymer layer having indentations
US9111473B1 (en) 2012-08-24 2015-08-18 Google Inc. Input system
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US8820934B1 (en) 2012-09-05 2014-09-02 Google Inc. Passive surface acoustic wave communication
US9320460B2 (en) 2012-09-07 2016-04-26 Verily Life Sciences Llc In-situ tear sample collection and testing using a contact lens
US9737248B1 (en) 2012-09-11 2017-08-22 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US9398868B1 (en) 2012-09-11 2016-07-26 Verily Life Sciences Llc Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit
US9326710B1 (en) 2012-09-20 2016-05-03 Verily Life Sciences Llc Contact lenses having sensors with adjustable sensitivity
US8960898B1 (en) 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8870370B1 (en) 2012-09-24 2014-10-28 Google Inc. Contact lens that facilitates antenna communication via sensor impedance modulation
US8979271B2 (en) 2012-09-25 2015-03-17 Google Inc. Facilitation of temperature compensation for contact lens sensors and temperature sensing
US8989834B2 (en) 2012-09-25 2015-03-24 Google Inc. Wearable device
US9488853B2 (en) 2012-09-26 2016-11-08 Verily Life Sciences Llc Assembly bonding
US8985763B1 (en) 2012-09-26 2015-03-24 Google Inc. Contact lens having an uneven embedded substrate and method of manufacture
US8821811B2 (en) 2012-09-26 2014-09-02 Google Inc. In-vitro contact lens testing
US8960899B2 (en) 2012-09-26 2015-02-24 Google Inc. Assembling thin silicon chips on a contact lens
US9054079B2 (en) 2012-09-26 2015-06-09 Google Inc. Assembling thin silicon chips on a contact lens
US9884180B1 (en) 2012-09-26 2018-02-06 Verily Life Sciences Llc Power transducer for a retinal implant using a contact lens
US9063351B1 (en) 2012-09-28 2015-06-23 Google Inc. Input detection system
US9775513B1 (en) 2012-09-28 2017-10-03 Verily Life Sciences Llc Input detection system
US9055902B2 (en) 2012-10-12 2015-06-16 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US8965478B2 (en) 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US9724027B2 (en) 2012-10-12 2017-08-08 Verily Life Sciences Llc Microelectrodes in an ophthalmic electrochemical sensor
US9176332B1 (en) 2012-10-24 2015-11-03 Google Inc. Contact lens and method of manufacture to improve sensor sensitivity
US9757056B1 (en) 2012-10-26 2017-09-12 Verily Life Sciences Llc Over-molding of sensor apparatus in eye-mountable device
EP3151040A1 (en) 2012-12-21 2017-04-05 CooperVision International Holding Company, LP Antimicrobial ophthalmic lenses
WO2014096852A1 (en) 2012-12-21 2014-06-26 Coopervision International Holding Company, Lp Antimicrobial ophthalmic contact lenses
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US8886275B2 (en) 2013-01-15 2014-11-11 Google Inc. Encapsulated electronics
US9289954B2 (en) 2013-01-17 2016-03-22 Verily Life Sciences Llc Method of ring-shaped structure placement in an eye-mountable device
US8926809B2 (en) 2013-01-25 2015-01-06 Google Inc. Standby biasing of electrochemical sensor to reduce sensor stabilization time during measurement
US9636016B1 (en) 2013-01-25 2017-05-02 Verily Life Sciences Llc Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices
US9161712B2 (en) 2013-03-26 2015-10-20 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US8950068B2 (en) 2013-03-26 2015-02-10 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9009958B2 (en) 2013-03-27 2015-04-21 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9113829B2 (en) 2013-03-27 2015-08-25 Google Inc. Systems and methods for encapsulating electronics in a mountable device
US9332935B2 (en) 2013-06-14 2016-05-10 Verily Life Sciences Llc Device having embedded antenna
US9084561B2 (en) 2013-06-17 2015-07-21 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US9662054B2 (en) 2013-06-17 2017-05-30 Verily Life Sciences Llc Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US8880139B1 (en) 2013-06-17 2014-11-04 Google Inc. Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor
US9685689B1 (en) 2013-06-27 2017-06-20 Verily Life Sciences Llc Fabrication methods for bio-compatible devices
US9028772B2 (en) 2013-06-28 2015-05-12 Google Inc. Methods for forming a channel through a polymer layer using one or more photoresist layers
US9492118B1 (en) 2013-06-28 2016-11-15 Life Sciences Llc Pre-treatment process for electrochemical amperometric sensor
US9814387B2 (en) 2013-06-28 2017-11-14 Verily Life Sciences, LLC Device identification
US9307901B1 (en) 2013-06-28 2016-04-12 Verily Life Sciences Llc Methods for leaving a channel in a polymer layer using a cross-linked polymer plug
WO2015073758A1 (en) * 2013-11-15 2015-05-21 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US9310627B2 (en) 2013-11-15 2016-04-12 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9654674B1 (en) 2013-12-20 2017-05-16 Verily Life Sciences Llc Image sensor with a plurality of light channels
US9572522B2 (en) 2013-12-20 2017-02-21 Verily Life Sciences Llc Tear fluid conductivity sensor
US9366570B1 (en) 2014-03-10 2016-06-14 Verily Life Sciences Llc Photodiode operable in photoconductive mode and photovoltaic mode
US9184698B1 (en) 2014-03-11 2015-11-10 Google Inc. Reference frequency from ambient light signal
US9789655B1 (en) 2014-03-14 2017-10-17 Verily Life Sciences Llc Methods for mold release of body-mountable devices including microelectronics
WO2016087881A1 (en) 2014-12-05 2016-06-09 Coopervision International Holding Company, Lp Method of manufacturing wettable silicone hydrogel contact lenses
US9789654B2 (en) 2014-12-05 2017-10-17 Coopervision International Holding Company, Lp Method of manufacturing wettable silicone hydrogel contact lenses
US9810812B2 (en) 2015-09-04 2017-11-07 Novartis Ag Method for producing contact lenses with durable lubricious coatings thereon
WO2017037611A1 (en) 2015-09-04 2017-03-09 Novartis Ag Soft silicone medical devices with durable lubricious coatings thereon
WO2017037610A1 (en) 2015-09-04 2017-03-09 Novartis Ag Method for producing contact lenses with durable lubricious coatings thereon

Also Published As

Publication number Publication date Type
DE2748256A1 (en) 1978-05-03 application
GB1579469A (en) 1980-11-19 application
CA1074254A (en) 1980-03-25 grant
JPS5383642A (en) 1978-07-24 application
CA1074254A1 (en) grant
DE2748256C2 (en) 1984-08-16 grant

Similar Documents

Publication Publication Date Title
US3532679A (en) Hydrogels from cross-linked polymers of n-vinyl lactams and alkyl acrylates
US5170192A (en) Oxygen permeable bifocal contact lenses and their manufacture
US4826936A (en) Silicone-containing contact lens material and contact lenses made thereof
US4424328A (en) Silicone-containing contact lens material and contact lenses made thereof
US4582884A (en) Lens composition, article and method of manufacture
US20100048847A1 (en) Contact Lens
US4229273A (en) Method for preparing silicone graft copolymers
US20080234457A1 (en) Silicone-containing prepolymers with dangling hydrophilic polymer chains
US5779943A (en) Molded polymeric object with wettable surface made from latent-hydrophilic monomers
US6630243B2 (en) Surface treatment of silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US20020016383A1 (en) Long wearable soft contact lens
US20060063852A1 (en) Silicone hydrogel contact lens
US6582754B1 (en) Coating process
US5387663A (en) Macromonomers
EP0362145B1 (en) Crosslinked siloxane-urethane polymer contact lens
US20100296049A1 (en) Actinically-crosslinkable siloxane-containing copolymers
Liu et al. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials
US4604479A (en) Silicone-containing contact lens material and contact lenses made thereof
US4341889A (en) Polysiloxane composition and biomedical devices
US20060001184A1 (en) Method for lathing silicone hydrogel lenses
US4327203A (en) Polysiloxane with cycloalkyl modifier composition and biomedical devices
US20110230589A1 (en) Silicone hydrogel, lens for eye and contact lens
US20110063567A1 (en) Prepolymers suitable for making ultra-violet absorbing contact lenses
US6689480B2 (en) Surface-treated plastic article and method of surface treatment
US4355147A (en) Polysiloxane with polycyclic modifier composition and biomedical devices