US4132713A - Process for the preparation of N-substituted halopyrrolidones - Google Patents
Process for the preparation of N-substituted halopyrrolidones Download PDFInfo
- Publication number
- US4132713A US4132713A US05/864,021 US86402177A US4132713A US 4132713 A US4132713 A US 4132713A US 86402177 A US86402177 A US 86402177A US 4132713 A US4132713 A US 4132713A
- Authority
- US
- United States
- Prior art keywords
- group
- chlorine
- hydrogen
- process according
- transition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 33
- 239000000460 chlorine Chemical group 0.000 claims abstract description 31
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 29
- 239000001257 hydrogen Substances 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 27
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 18
- 150000003624 transition metals Chemical class 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 17
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims abstract description 13
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 13
- -1 cyan Chemical group 0.000 claims abstract description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000003197 catalytic effect Effects 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 5
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 239000011733 molybdenum Substances 0.000 claims abstract description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 4
- 239000004332 silver Substances 0.000 claims abstract description 4
- 125000004768 (C1-C4) alkylsulfinyl group Chemical group 0.000 claims abstract description 3
- 125000004769 (C1-C4) alkylsulfonyl group Chemical group 0.000 claims abstract description 3
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 claims abstract description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims abstract description 3
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 3
- 125000004414 alkyl thio group Chemical group 0.000 claims abstract description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims abstract description 3
- 125000004803 chlorobenzyl group Chemical group 0.000 claims abstract description 3
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims abstract description 3
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 3
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 3
- 239000011737 fluorine Substances 0.000 claims abstract description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims abstract description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 15
- 150000002431 hydrogen Chemical group 0.000 claims description 15
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 12
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 6
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- HMMPCBAWTWYFLR-UHFFFAOYSA-N n-pyridin-2-ylpyridin-2-amine Chemical compound C=1C=CC=NC=1NC1=CC=CC=N1 HMMPCBAWTWYFLR-UHFFFAOYSA-N 0.000 claims description 5
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims 8
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims 8
- 229940112669 cuprous oxide Drugs 0.000 claims 8
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims 5
- 229940045803 cuprous chloride Drugs 0.000 claims 5
- WIWBLJMBLGWSIN-UHFFFAOYSA-L dichlorotris(triphenylphosphine)ruthenium(ii) Chemical compound [Cl-].[Cl-].[Ru+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 WIWBLJMBLGWSIN-UHFFFAOYSA-L 0.000 claims 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims 2
- FMGSKLZLMKYGDP-BJFTYTPKSA-N (3s,8r,10r,13s)-3-hydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one Chemical compound C1[C@@H](O)CC[C@]2(C)C3CC[C@](C)(C(CC4)=O)C4[C@@H]3CC=C21 FMGSKLZLMKYGDP-BJFTYTPKSA-N 0.000 claims 1
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 claims 1
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 claims 1
- 229910001923 silver oxide Inorganic materials 0.000 claims 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract description 4
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 abstract description 3
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 abstract description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 abstract 3
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 abstract 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 15
- FZERHIULMFGESH-UHFFFAOYSA-N N-phenylacetamide Chemical compound CC(=O)NC1=CC=CC=C1 FZERHIULMFGESH-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 11
- 239000011541 reaction mixture Substances 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229960001413 acetanilide Drugs 0.000 description 6
- 238000013019 agitation Methods 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 230000007928 solubilization Effects 0.000 description 3
- 238000005063 solubilization Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000007824 aliphatic compounds Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 229910001448 ferrous ion Inorganic materials 0.000 description 2
- 238000001030 gas--liquid chromatography Methods 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 238000011027 product recovery Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RIJLRDKBWZSYBG-UHFFFAOYSA-N 3,3-dichloro-4-(chloromethyl)-1-[3-(trifluoromethyl)phenyl]pyrrolidin-2-one Chemical compound FC(F)(F)C1=CC=CC(N2C(C(Cl)(Cl)C(CCl)C2)=O)=C1 RIJLRDKBWZSYBG-UHFFFAOYSA-N 0.000 description 1
- NACWRVJRNZHBOY-UHFFFAOYSA-N 3-bromo-4-(bromomethyl)-1-(3-chlorophenyl)pyrrolidin-2-one Chemical compound ClC1=CC=CC(N2C(C(Br)C(CBr)C2)=O)=C1 NACWRVJRNZHBOY-UHFFFAOYSA-N 0.000 description 1
- ACQRKTXEUBQBBW-UHFFFAOYSA-N 3-chloro-4-(chloromethyl)-1-(2,6-diethylphenyl)pyrrolidin-2-one Chemical compound CCC1=CC=CC(CC)=C1N1C(=O)C(Cl)C(CCl)C1 ACQRKTXEUBQBBW-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 229910018274 Cu2 O Inorganic materials 0.000 description 1
- YRMLFORXOOIJDR-UHFFFAOYSA-N Dichlormid Chemical compound ClC(Cl)C(=O)N(CC=C)CC=C YRMLFORXOOIJDR-UHFFFAOYSA-N 0.000 description 1
- 229910004809 Na2 SO4 Inorganic materials 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- WCGGWVOVFQNRRS-UHFFFAOYSA-N dichloro-acetic acid amide Natural products NC(=O)C(Cl)Cl WCGGWVOVFQNRRS-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LJWKFGGDMBPPAZ-UHFFFAOYSA-N ethoxyethane;toluene Chemical compound CCOCC.CC1=CC=CC=C1 LJWKFGGDMBPPAZ-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- OQZCSNDVOWYALR-UHFFFAOYSA-N flurochloridone Chemical compound FC(F)(F)C1=CC=CC(N2C(C(Cl)C(CCl)C2)=O)=C1 OQZCSNDVOWYALR-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/18—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D207/22—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/24—Oxygen or sulfur atoms
- C07D207/26—2-Pyrrolidones
- C07D207/273—2-Pyrrolidones with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to other ring carbon atoms
Definitions
- N-substituted halopyrrolidones are known to be useful as herbicides of general application. Such compounds and their utility are disclosed in commonly assigned copending applications Ser. No. 647,962, filed Jan. 9, 1976, and Ser. No. 647,963, filed Jan. 9, 1976. These compounds in general have the following formula ##STR3## in which X is selected from the group consisting of hydrogen, chlorine, and methyl;
- Y is selected from the group consisting of hydrogen, chlorine, and bromine
- Z is selected from the group consisting of chlorine and bromine
- R 1 is selected from the group consisting of hydrogen and C 1 -C 4 alkyl
- R 2 is selected from the group consisting of C 1 -C 6 alkyl, C 3 -C 6 alkenyl, C 1 -C 6 haloalkyl, C 3 -C 7 cycloalkyl, C 4 -C 8 cycloalkylalkyl, benzyl, chlorobenzyl, and ##STR4## in which R 3 is selected from the group consisting of hydrogen, C 1 -C 4 alkyl, acetyl, chlorine, bromine, fluorine, iodine, trifluoromethyl, nitro, cyano, C 1 -C 4 alkoxy, C 1 -C 4 alkylthio, C 1 -C 4 alkylsulfinyl, C 1 -C 4 alkylsulfonyl, trifluoromethylthio, trifluoromethylsulfinyl, trifluoromethylsulfonyl, pentafluoropropionamido, and 3-methylureido;
- the compounds are prepared by the intramolecular cyclization of an ⁇ -halogen-containing N-2-alkenyl amide in the presence of a catalytic amount of ferrous ion.
- This invention relates to a process for the preparation of a compound of formula (I) above, which comprises heating an ⁇ -halogen-containing N-2-alkenyl amide of the formula ##STR5## in which X, Y, Z, R 1 , and R 2 are as defined above, to a temperature of from about 60° C. to about 200° C., in the presence of a catalytic amount of a transition-metal-containing catalyst in which the transition metal is selected from the group consisting of vanadium, molybdenum, ruthenium, silver, and copper.
- the halopyrrolidone of Formula (I) and the N-2-alkenyl amide of Formula (II) are defined such that X is chlorine, Y is selected from the group consisting of hydrogen and chlorine, Z is selected from the group consisting of chlorine and bromine, R 1 is hydrogen, and R 2 is selected from the group consisting of allyl and ##STR6## in which R 3 is selected from the group consisting of C 1 -C 4 alkyl, chlorine, bromine, trifluoromethyl, and cyano, and R 4 is selected from the group consisting of hydrogen and C 1 -C 4 alkyl.
- the ⁇ -halogen-containing N-2-alkenyl amide of Formula (II) above which is used as the starting material in the process of the present invention can be prepared by any conventional technique known in the art.
- One such technique involves the acylation of a primary amine followed by treatment with a 2-alkenyl halide, both reagents appropriately substituted to give the desired final product, and both reactions occurring in the presence of a base: ##STR7##
- the reaction sequence can be conducted in reverse to yield the same product: ##STR8##
- the cyclization of the resulting ⁇ -halogen-containing N-2-alkenyl amide is conducted in the presence of a catalyst containing one or more of the metals vanadium, molybdenum, ruthenium, silver, and copper, at a temperature ranging from about 60° C. to about 200° C.
- the preferred temperature range is from about 80° C. to about 150° C. Since the reaction occurs entirely in the liquid phase, the process does not have a critical operating pressure, but is operable over a wide pressure range, subject only to considerations of economy and materials of construction. It is most convenient, however, to conduct the reaction at approximately atmospheric pressure.
- transition-metal-containing catalyst is used herein to designate a catalyst consisting of one or more of the five metals mentioned above chemically bound with other elements in the form of metal-containing compounds. Examples of such compounds are the alkylated metal, the phenylated metal, and salts and oxides of the metal.
- the metal-containing compounds can also be present in the form of complexes with common complexing agents, examples of which are triphenylphosphine, carbon monoxide, and tertiary amines.
- tertiary amines which are useful in the present invention are pyridine, 2,2'-dipyridyl, 2,2'-dipyridylamine, and tetramethylenediamine.
- the transition metal is copper
- the catalytic activity of the compound is frequently enhanced by the addition of such an amine.
- the best results are generally achieved when the relative quantities of amine and copper compound are selected such that the ratio of copper atoms to nitrogen atoms, excluding the nitrogen atoms in the amide to be cyclized, is between about 1:1 and about 1:4.
- the catalyst can either be present as an undissolved solid in the reaction mixture, or as a solute in solution with the starting amide or solvent, when a solvent is used. In general, it is preferred that the catalyst be dissolved.
- solubilization can frequently be achieved by selection of the proper type and quantity of complexing agent, such as those listed above. Solubilization can also be achieved by raising the system temperature.
- the reaction will proceed without agitation.
- agitation is used, however, the progress of the reaction will be significantly enhanced.
- Agitation is particularly advantageous when the catalyst is not dissolved in the mixture, since agitation in such case will increase the contact between the catalyst and the starting amide.
- Agitation can be achieved by any conventional means, for example: stirring, inert gas purging, the use of baffles in the reaction vessel, or conducting the reaction at reflux.
- the quantity of transition-metal-containing catalyst which will constitute a "catalytic amount” will be any quantity that serves to increase the rate of reaction, and that larger quantities will provide a greater increase.
- the quantity used in any particular application will be determined in large part by the individual needs of the manufacturing facility. Factors which enter into such a determination include the catalyst cost, recovery costs, desired reaction time, and system capacity. Aside from these considerations, the catalyst quantity is not a critical feature of the invention, and can vary over a wide range.
- an amount of catalyst which comprises from about 0.5 mole % to about 20.0 mole %, preferably from about 1.0 mole % to about 10.0 mole %, based on the initial quantity of N-2-alkenyl amide.
- reaction can be conducted without the use of a solvent
- a variety of solvents can be used to facilitate the handling of the system components, to aid in solubilization of the catalyst, to facilitate agitation, and to improve reaction control by minimizing decompositions and by-product formation and by controlling reaction rate.
- Any inert solvent can be used, including, but not limited to, the following:
- aliphatic compounds for example heptane or octane
- aromatic compounds for example toluene, xylene, or mesitylene
- chlorinated aliphatic or aromatic compounds for example, 1,2-dichloroethane or chlorobenzene;
- ethers for example 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, or 1,4-dioxane;
- alcohols for example isopropanol or ethylene glycol
- carboxylic acids for example acetic, propionic, or butyric acid.
- the pyrrolidone produced by the reaction can be recovered from the reaction mixture by any conventional technique. Examples of such techniques are solvent extraction, crystallization, sublimation and distillation.
- reaction mixture was sampled at intervals and analyzed by gas-liquid chromatography to monitor the reaction progress. The results of the last analysis in each case are listed.
- Product recovery was then achieved by dissolution of the reaction mixture in toluene, followed by washing of the toluene solution with dilute aqueous acid to remove the catalyst, and finally distillation to remove the solvent.
- the molecular structure of the product pyrrolidone was confirmed by nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared (IR) analyses.
- Example 1-6 The product made in Examples 1-6 was prepared in Examples 7-13 using copper-containing catalysts. The procedure was otherwise the same as that followed in Examples 1-6. The results are listed in Table II.
- This example illustrates the use of a solvent in a large scale preparation of the product prepared in Examples 1-13.
- a 2000 milliliter flask equipped with overhead stirrer and reflux condenser under nitrogen was charged with 280 grams (0.88 mole at 98% purity) of the starting acetanilide, 6.293 grams (44.0 millimoles, 5 mole % based on the acetanilide) of Cu 2 O, 27.8 grams (0.354 moles, 40 mole % based on the acetanilide) of pyridine, and 200 milliliters of toluene.
- the mixture was heated to reflux for approximately one hour.
- reaction mixture was heated at reflux (128° C.) for 13 hours.
- product mixture was then poured into water, acidified to pH 1 with concentrated HCl, extracted with xylene, washed with water, and stripped of solvent to yield 2.4 grams of a heavy dark oil, representing a 60% yield of the title compound, structure confirmed by NMR.
- reaction mixture was heated at reflux (109° C.) for 115 minutes.
- the mixture was then poured into water, acidified to pH 1 with concentrated HCl, extracted with a 2:1 ether-toluene mixture, washed with 1N HCl and water, and stripped of the solvent.
- the result was 9.5 grams of a dark solid with melting point 87-100° C., representing 73% yield of the title compound, structure confirmed by NMR.
- the reaction mixture was heated at reflux (117° C.) for 2 hours. The mixture was then poured into water and acidified to pH 1 with concentrated HCl. The organic phase was washed with 5% HCl and water, and the organics were stripped to yield 16.8 grams of a dark oil, representing 69% yield of the title compound.
- the purity was determined to be 57% by weight, according to gas-liquid chromatographic comparison with a sample of the title compound of known purity.
- reaction mixture was heated at reflux (112° C.) for 12 hours.
- the mixture was then dissolved in methylene dichloride, then washed with 5% HCl and water.
- the solvent was then evaporated to yield 0.4 grams of a dark oil, representing 23% yield of the title compound, structure confirmed by gas chromatography and MS.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Pyrrole Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A novel process is disclosed herein for the preparation of N-substituted halopyrrolidones of the formula <IMAGE> in which X is selected from the group consisting of hydrogen, chlorine, and methyl; Y is selected from the group consisting of hydrogen, chlorine, and bromine; Z is selected from the group consisting of chlorine and bromine; R1 is selected from the group consisting of hydrogen and C1-C4 alkyl; and R2 is selected from the group consisting of C1-C6 alkyl, C3-C6 alkenyl, C1-C6 haloalkyl, C3-C7 cycloalkyl, C4-C8 cycloalkylalkyl, benzyl, chlorobenzyl, and <IMAGE> in which R3 is selected from the group consisting og hydrogen, C1-C4 alkyl, acetyl, chlorine, bromine, fluorine, iodine, trifluoromethyl, nitro, cyan, C1-C4 alkoxy, C1-C4 alkylthio, C1-C4 alkylsulfinyl, C1-C4 alkylsulfonyl, trifluoromethylthio, trifluoromethylsulfinyl, trifluoromethylsulfonyl, pentafluoropropionamido, and 3-methylureido; and R4 is selected from the group consisting of hydrogen, C1-C4 alkyl, chlorine, and trifluoromethyl; WHICH COMPRISES THE INTRAMOLECULAR CYCLIZATION OF AN alpha -HALOGEN-CONTAINING N-2-alkenyl amide at a temperature of from about 60 DEG C to about 200 DEG C in the presence of a catalytic amount of a transition-metal-containing catalyst in which the transition metal is selected from the group consisting of vanadium, molybdenum, ruthenium, silver, and copper.
Description
Certain N-substituted halopyrrolidones are known to be useful as herbicides of general application. Such compounds and their utility are disclosed in commonly assigned copending applications Ser. No. 647,962, filed Jan. 9, 1976, and Ser. No. 647,963, filed Jan. 9, 1976. These compounds in general have the following formula ##STR3## in which X is selected from the group consisting of hydrogen, chlorine, and methyl;
Y is selected from the group consisting of hydrogen, chlorine, and bromine;
Z is selected from the group consisting of chlorine and bromine;
R1 is selected from the group consisting of hydrogen and C1 -C4 alkyl; and
R2 is selected from the group consisting of C1 -C6 alkyl, C3 -C6 alkenyl, C1 -C6 haloalkyl, C3 -C7 cycloalkyl, C4 -C8 cycloalkylalkyl, benzyl, chlorobenzyl, and ##STR4## in which R3 is selected from the group consisting of hydrogen, C1 -C4 alkyl, acetyl, chlorine, bromine, fluorine, iodine, trifluoromethyl, nitro, cyano, C1 -C4 alkoxy, C1 -C4 alkylthio, C1 -C4 alkylsulfinyl, C1 -C4 alkylsulfonyl, trifluoromethylthio, trifluoromethylsulfinyl, trifluoromethylsulfonyl, pentafluoropropionamido, and 3-methylureido; and R4 is selected from the group consisting of hydrogen, C1 -C4 alkyl, chlorine, and trifluoromethyl.
According to the above-mentioned references, the compounds are prepared by the intramolecular cyclization of an α-halogen-containing N-2-alkenyl amide in the presence of a catalytic amount of ferrous ion.
It has now been discovered that the intramolecular cyclization referred to above can be catalyzed by catalysts other than ferrous ion. It is therefore an object of the present invention to provide a novel process for the preparation of N-substituted halopyrrolidones of formula (I). Other objects of the invention will be evident from the following description.
This invention relates to a process for the preparation of a compound of formula (I) above, which comprises heating an α-halogen-containing N-2-alkenyl amide of the formula ##STR5## in which X, Y, Z, R1, and R2 are as defined above, to a temperature of from about 60° C. to about 200° C., in the presence of a catalytic amount of a transition-metal-containing catalyst in which the transition metal is selected from the group consisting of vanadium, molybdenum, ruthenium, silver, and copper.
In a preferred embodiment of the process, the halopyrrolidone of Formula (I) and the N-2-alkenyl amide of Formula (II) are defined such that X is chlorine, Y is selected from the group consisting of hydrogen and chlorine, Z is selected from the group consisting of chlorine and bromine, R1 is hydrogen, and R2 is selected from the group consisting of allyl and ##STR6## in which R3 is selected from the group consisting of C1 -C4 alkyl, chlorine, bromine, trifluoromethyl, and cyano, and R4 is selected from the group consisting of hydrogen and C1 -C4 alkyl.
Other preferred embodiments are described in the remainder of this specification. All carbon atom ranges stated herein are intended to be inclusive of their upper and lower limits.
The α-halogen-containing N-2-alkenyl amide of Formula (II) above which is used as the starting material in the process of the present invention can be prepared by any conventional technique known in the art. One such technique involves the acylation of a primary amine followed by treatment with a 2-alkenyl halide, both reagents appropriately substituted to give the desired final product, and both reactions occurring in the presence of a base: ##STR7## Alternatively, the reaction sequence can be conducted in reverse to yield the same product: ##STR8##
Primary amines capable of use in the above preparation are, in most cases, commercially available, but can be prepared in any event by methods well documented in the chemical literature. Such documentation can be found in Wagner and Zook, "Synthetic Organic Chemistry," John Wiley and Sons, New York (1961), Chapter 24.
The cyclization of the resulting α-halogen-containing N-2-alkenyl amide is conducted in the presence of a catalyst containing one or more of the metals vanadium, molybdenum, ruthenium, silver, and copper, at a temperature ranging from about 60° C. to about 200° C. The preferred temperature range is from about 80° C. to about 150° C. Since the reaction occurs entirely in the liquid phase, the process does not have a critical operating pressure, but is operable over a wide pressure range, subject only to considerations of economy and materials of construction. It is most convenient, however, to conduct the reaction at approximately atmospheric pressure.
The term "transition-metal-containing catalyst" is used herein to designate a catalyst consisting of one or more of the five metals mentioned above chemically bound with other elements in the form of metal-containing compounds. Examples of such compounds are the alkylated metal, the phenylated metal, and salts and oxides of the metal.
The metal-containing compounds can also be present in the form of complexes with common complexing agents, examples of which are triphenylphosphine, carbon monoxide, and tertiary amines. Examples of tertiary amines which are useful in the present invention are pyridine, 2,2'-dipyridyl, 2,2'-dipyridylamine, and tetramethylenediamine. When the transition metal is copper, the catalytic activity of the compound is frequently enhanced by the addition of such an amine. The best results are generally achieved when the relative quantities of amine and copper compound are selected such that the ratio of copper atoms to nitrogen atoms, excluding the nitrogen atoms in the amide to be cyclized, is between about 1:1 and about 1:4.
The catalyst can either be present as an undissolved solid in the reaction mixture, or as a solute in solution with the starting amide or solvent, when a solvent is used. In general, it is preferred that the catalyst be dissolved. When an insoluble transition metal catalyst is used, solubilization can frequently be achieved by selection of the proper type and quantity of complexing agent, such as those listed above. Solubilization can also be achieved by raising the system temperature.
Whether the catalyst is undissolved or in solution, the reaction will proceed without agitation. When agitation is used, however, the progress of the reaction will be significantly enhanced. Agitation is particularly advantageous when the catalyst is not dissolved in the mixture, since agitation in such case will increase the contact between the catalyst and the starting amide. Agitation can be achieved by any conventional means, for example: stirring, inert gas purging, the use of baffles in the reaction vessel, or conducting the reaction at reflux.
It will be apparent to one skilled in the art that the quantity of transition-metal-containing catalyst which will constitute a "catalytic amount" will be any quantity that serves to increase the rate of reaction, and that larger quantities will provide a greater increase. The quantity used in any particular application will be determined in large part by the individual needs of the manufacturing facility. Factors which enter into such a determination include the catalyst cost, recovery costs, desired reaction time, and system capacity. Aside from these considerations, the catalyst quantity is not a critical feature of the invention, and can vary over a wide range. It will be most convenient to use an amount of catalyst which comprises from about 0.5 mole % to about 20.0 mole %, preferably from about 1.0 mole % to about 10.0 mole %, based on the initial quantity of N-2-alkenyl amide.
Although the reaction can be conducted without the use of a solvent, a variety of solvents can be used to facilitate the handling of the system components, to aid in solubilization of the catalyst, to facilitate agitation, and to improve reaction control by minimizing decompositions and by-product formation and by controlling reaction rate. Any inert solvent can be used, including, but not limited to, the following:
aliphatic compounds, for example heptane or octane;
aromatic compounds, for example toluene, xylene, or mesitylene;
chlorinated aliphatic or aromatic compounds, for example, 1,2-dichloroethane or chlorobenzene;
ethers, for example 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, or 1,4-dioxane;
alcohols, for example isopropanol or ethylene glycol; and
carboxylic acids, for example acetic, propionic, or butyric acid.
The pyrrolidone produced by the reaction can be recovered from the reaction mixture by any conventional technique. Examples of such techniques are solvent extraction, crystallization, sublimation and distillation.
The herbicide utility of the halopyrrolidones produced by the present invention is fully demonstrated and described in the two copending applications referred to above. The descriptions in these applications are incorporated herein by reference.
The following examples are offered to illustrate the practice of the present invention and are not intended to limit the invention in any manner.
These examples, as illustrated in Table I, demonstrate the preparation of 3-chloro-4-chloromethyl-1-(m-trifluoromethylphenyl)-2-pyrrolidone using a variety of silver-, ruthenium-, molybdenum-, and vanadium-containing catalysts. In each case, 10.0 grams of N- Allyl -3'-trifluoromethyl-2,2-dichloroacetanilide was used as the starting material. No solvent was used. The catalyst and its mole percent based on the acetanilide are indicated in the table for each example. As also indicated in the table, pyridine was added to the reaction mixture in some cases. The reaction occurred in a flask equipped with a magnetic stirrer. The reaction mixture was sampled at intervals and analyzed by gas-liquid chromatography to monitor the reaction progress. The results of the last analysis in each case are listed. Product recovery was then achieved by dissolution of the reaction mixture in toluene, followed by washing of the toluene solution with dilute aqueous acid to remove the catalyst, and finally distillation to remove the solvent. The molecular structure of the product pyrrolidone was confirmed by nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared (IR) analyses.
TABLE I
______________________________________
Preparation of 3-Chloro-4-chloromethyl-1-
(metrifluoromethylphenyl)-2-pyrrolidone
Temper-
ature Time Yield
Ex. Catalyst.sup.(a) (° C)
(hours)
(%)
______________________________________
1 Ag.sub.2 O (10) 150 5 5
2 Ag.sub.2 0 (10) with pyridine (40)
150 6 1
3 RuO.sub.2 (3) with pyridine (20)
145 3 12
4 RuCl.sub.2 [P(C.sub.6 H.sub.5).sub.3 ].sub.3 (2)
125 17 64
5 [Mo(CO).sub.3 (Cp).sub.2 ].sub.2.sup.(b) (1)
100 8 13
6 VCl.sub.3 (10) 150 10 4
______________________________________
.sup.(a) Mole percent based on starting acetanilide is shown in
parentheses.
.sup.(b) Cp : cyclopentadienyl
The product made in Examples 1-6 was prepared in Examples 7-13 using copper-containing catalysts. The procedure was otherwise the same as that followed in Examples 1-6. The results are listed in Table II.
TABLE II
__________________________________________________________________________
Further Preparation of 3-Chloro-4-chloromethyl-1-
(metripluoromethylphenyl)-2-pyrrolidone
Temperature
Time
Yield
Example
Catalyst.sup.(a) (° C)
(hours)
(%)
__________________________________________________________________________
7 Cu.sub.2 Cl.sub.2 (5)
150 8 27
8 Cu.sub.2 Cl.sub.2 (5) with 2,2'-dipyridyl (10)
125 2.5 59
9 Cu.sub.2 O (10) 145 11 26
10 Cu.sub.2 O (10) with 2,2'-dipyridyl (10)
100 4 64
11 Cu.sub.2 O (10) with pyridine (20)
100 1.5 65
12 Cu.sub.2 O (10) with TMEDA.sup.(b) (10)
100 9 30
13 Cu.sub.2 O (10) with 2,2'-dipyridylamine (20)
100 3 26
__________________________________________________________________________
.sup.(a) Mole percent based on starting acetanilide shown in parentheses.
.sup.(b) TMEDA : tetramethyethylenediamine
This example illustrates the use of a solvent in a large scale preparation of the product prepared in Examples 1-13. A 2000 milliliter flask equipped with overhead stirrer and reflux condenser under nitrogen was charged with 280 grams (0.88 mole at 98% purity) of the starting acetanilide, 6.293 grams (44.0 millimoles, 5 mole % based on the acetanilide) of Cu2 O, 27.8 grams (0.354 moles, 40 mole % based on the acetanilide) of pyridine, and 200 milliliters of toluene. The mixture was heated to reflux for approximately one hour. Analysis by gas-liquid chromatography of the reaction mixture, exclusive of the solvent and catalyst, yielded 0.25% starting material, 97.62% product, and 2.13% impurities. Product recovery was achieved by washing with water and concentrated HCl, followed by toluene and aqueous NaCl washes, drying over Na2 SO4, and evaporation under vacuum. The structure of the product was confirmed by NMR, MS, and IR analyses.
The following examples illustrate the utility of the process of the invention in preparing compounds other than that prepared in Examples 1-14.
A 50-milliliter flask equipped with magnetic stirrer and reflux condenser was charged with the following:
______________________________________
4.0 grams (13 millimoles)
N-allyl-N-(2,6-diethylphenyl)-
2,2-dichloroacetamide
0.38 grams (2.7 millimoles)
Cu.sub.2 O
0.8 milliliters (10 millimoles)
pyridine
10 milliliters toluene
______________________________________
The reaction mixture was heated at reflux (128° C.) for 13 hours. The product mixture was then poured into water, acidified to pH 1 with concentrated HCl, extracted with xylene, washed with water, and stripped of solvent to yield 2.4 grams of a heavy dark oil, representing a 60% yield of the title compound, structure confirmed by NMR.
A 100 milliliter flask with Claisen head, condenser, and magnetic stirrer was charged with the following:
______________________________________
13.0 grams (37.5 millimoles)
N-allyl-N-(m-trifluoromethyl-
phenyl)-2,2,2-trichloroacetamide
0.54 grams (3.8 millimoles)
Cu.sub.2 O
1.2 milliliters (15 millimoles)
pyridine
40 milliliters toluene
______________________________________
The reaction mixture was heated at reflux (109° C.) for 115 minutes. The mixture was then poured into water, acidified to pH 1 with concentrated HCl, extracted with a 2:1 ether-toluene mixture, washed with 1N HCl and water, and stripped of the solvent. The result was 9.5 grams of a dark solid with melting point 87-100° C., representing 73% yield of the title compound, structure confirmed by NMR.
A 100 milliliter flask equipped with magnetic stirrer and reflux condenser was charged with the following:
______________________________________
25.0 grams (97%, 0.117 moles)
N,N-diallyl-2,2-dichloroacetamide
1.71 grams (12 millimoles)
Cu.sub.2 O
3.8 milliliters (47 millimoles)
pyridine
25 milliliters toluene
______________________________________
The reaction mixture was heated at reflux (117° C.) for 2 hours. The mixture was then poured into water and acidified to pH 1 with concentrated HCl. The organic phase was washed with 5% HCl and water, and the organics were stripped to yield 16.8 grams of a dark oil, representing 69% yield of the title compound. The purity was determined to be 57% by weight, according to gas-liquid chromatographic comparison with a sample of the title compound of known purity.
A 50 milliliter flask equipped with magnetic stirrer and reflux condenser was charged with the following:
______________________________________
2.0 grams (87%, 4.8 millimoles)
N-allyl-N-(3-chlorophenyl)-
2,2-dibromoacetamide
0.039 grams (0.3 millimoles)
Cu.sub.2 O
0.172 grams (2.2 millimoles)
pyridine
10 millimeters toluene
______________________________________
The reaction mixture was heated at reflux (112° C.) for 12 hours. The mixture was then dissolved in methylene dichloride, then washed with 5% HCl and water. The solvent was then evaporated to yield 0.4 grams of a dark oil, representing 23% yield of the title compound, structure confirmed by gas chromatography and MS.
Claims (18)
1. A process for the preparation of a compound having the formula ##STR9## in which
X is selected from the group consisting of hydrogen, chlorine, and methyl;
Y is selected from the group consisting of hydrogen, chlorine, and bromine;
Z is selected from the group consisting of chlorine and bromine;
R1 is selected from the group consisting of hydrogen and C1 -C4 alkyl; and
R2 is selected from the group consisting of C1 -C6 alkyl, C3 -C6 alkenyl, C1 -C6 haloalkyl, C3 -C7 cycloalkyl, C4 -C8 cycloalkylalkyl, benzyl, chlorobenzyl, and ##STR10## in which R3 is selected from the group consisting of hydrogen, C1 -C4 alkyl, acetyl, chlorine, bromine, fluorine, iodine, trifluoromethyl, nitro, cyano, C1 -C4 alkoxy, C1 -C4 alkylthio, C1 -C4 alkylsulfinyl, C1 -C4 alkylsulfonyl, trifluoromethylthio, trifluoromethylsulfinyl, trifluromethylsulfonyl, pentafluoropropionamido, and 3-methylureiodo; and R4 is selected from the group consisting of hydrogen, C1 -C4 alkyl, chlorine, and trifluoromethyl;
which comprises heating an α-halogen-containing N-2-alkenyl amide of the formula ##STR11## in which X, Y, Z, R1, and R2 are as defined above, to a temperature of from about 60° C. to about 200° C., in the presence of a catalytic amount of a transition-metal-containing catalyst in which the transition metal is selected from the group consisting of vanadium, molybdenum, ruthenium, silver, and copper.
2. A process according to claim 1 in which X is chlorine; Y is selected from the group consisting of hydrogen and chlorine; Z is selected from the group consisting of chlorine and bromine; R1 is hydrogen; and R2 is selected from the group consisting of allyl and ##STR12## in which R3 is selected from the group consisting of C1 -C4 alkyl, chlorine, bromine, trifluoromethyl, and cyano; and R4 is selected from the group consisting of hydrogen and C1 -C4 alkyl.
3. A process according to claim 1 in which the N-2-alkenyl amide is heated to a temperature of from about 80° C. to about 150° C.
4. A process according to claim 1 in which the transition-metal-containing catalyst is present in an amount ranging from about 0.5 mole % to about 20.0 mole %, based on the initial quantity of N-2-alkenyl amide.
5. A process according to claim 1 in which the transition-metal-containing catalyst is present in an amount ranging from about 1.0 mole % to about 10.0 mole %, based on the initial quantity of N-2-alkenyl amide.
6. A process according to claim 1 in which the transition-metal-containing catalyst is selected from the group consisting of vanadium trichloride, cyclopentadienylmolybdenum tricarbonyl dimer, ruthenium dioxide, tris-triphenylphosphine ruthenium dichloride, silver oxide, cuprous chloride, and cuprous oxide.
7. A process according to claim 1 in which the transition-metal-containing catalyst is selected from the group consisting of tris-triphenylphosphine ruthenium dichloride, cuprous chloride, and cuprous oxide.
8. A process according to claim 1 in which the transition-metal-containing catalyst is selected from the group consisting of cuprous chloride and cuprous oxide, said process being conducted in the further presence of a tertiary amine in such quantity that the ratio of copper atoms to nitrogen atoms, excluding the nitrogen atoms in the N-2-alkenyl amide, is between about 1:1 and about 1:4.
9. A process according to claim 8 in which the tertiary amine is selected from the group consisting of pyridine, 2,2'-dipyridyl, 2,2'-dipyridylamine, and tetramethylethylenediamine.
10. A process according to claim 1 in which X is chlorine, Y is hydrogen, Z is chlorine, R1 is hydrogen, and R2 is 3-trifluoromethylphenyl; and the transition-metal-containing catalyst is tris-triphenylphosphine ruthenium dichloride.
11. A process according to claim 1 in which X is chlorine, Y is hydrogen, Z is chlorine, R1 is hydrogen, and R2 is 3-trifluoromethylphenyl; and the transition-metal-containing catalyst is cuprous chloride.
12. A process according to claim 11 which is conducted in the further presence of 2,2'-dipyridyl in a mole ratio of from about 1:1 to about 4:1 with respect to the cuprous chloride.
13. A process according to claim 1 in which X is chlorine, Y is hydrogen, Z is chlorine, R1 is hydrogen, and R2 is 3-trifluoromethylphenyl; and the transition-metal-containing catalyst is cuprous oxide.
14. A process according to claim 13 which is conducted in the further presence of 2,2'-dipyridyl in a mole ratio of from about 1:1 to about 4:1 with respect to the cuprous oxide.
15. A process according to claim 13 which is conducted in the further presence of tetramethylethylenediamine in a mole ratio of from about 1:1 to about 4:1 with respect to the cuprous oxide.
16. A process according to claim 13 which is conducted in the further presence of 2,2'-dipyridylamine in a mole ratio of from about 2:3 to about 8:3 with respect to the cuprous oxide.
17. A process according to claim 13 which is conducted in the further presence of pyridine in a mole ratio of from about 2:1 to about 8:1 with respect to the cuprous oxide.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/864,021 US4132713A (en) | 1977-12-23 | 1977-12-23 | Process for the preparation of N-substituted halopyrrolidones |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/864,021 US4132713A (en) | 1977-12-23 | 1977-12-23 | Process for the preparation of N-substituted halopyrrolidones |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4132713A true US4132713A (en) | 1979-01-02 |
Family
ID=25342344
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/864,021 Expired - Lifetime US4132713A (en) | 1977-12-23 | 1977-12-23 | Process for the preparation of N-substituted halopyrrolidones |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US4132713A (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4300945A (en) * | 1979-04-05 | 1981-11-17 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4309543A (en) * | 1980-03-17 | 1982-01-05 | Dynapol | Process for preparing cyclic amides |
| US4317673A (en) * | 1979-08-24 | 1982-03-02 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| EP0055215A1 (en) * | 1980-12-19 | 1982-06-30 | Ciba-Geigy Ag | Fluoropyrrolidinones, process for their preparation, herbicides containing them and their use |
| US4416684A (en) * | 1979-04-02 | 1983-11-22 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4428767A (en) | 1979-10-22 | 1984-01-31 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| EP0129296A1 (en) * | 1983-06-16 | 1984-12-27 | Stauffer Chemical Company | Process for the preparation of N-arylhalopyrrolidones |
| US4505737A (en) * | 1980-01-17 | 1985-03-19 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4643762A (en) * | 1984-08-27 | 1987-02-17 | Chevron Research Company | Herbicidal 5-amino-3-oxo-4-(3-substituted-phenyl)-4-pyrroline and derivatives thereof |
| US4645843A (en) * | 1983-06-16 | 1987-02-24 | Stauffer Chemical Company | Process for the preparation of N-arylhalopyrrolid-2-ones |
| EP0387869A3 (en) * | 1989-03-15 | 1990-11-28 | Mitsui Toatsu Chemicals Inc. | 4-ethyl-3-(substituted phenyl)-1-(3-trifluoromethyl-phenyl)-2-pyrrolidinone derivatives, processes for the preparation and use thereof, herbicidal compositions containing them |
| JPH0372456A (en) * | 1989-06-14 | 1991-03-27 | Mitsui Toatsu Chem Inc | 1-(3-substituted benzyl)-3-halogeno-4-(1-halogenoalkyl)-2-pyrrolidinone derivative and herbicide containing the same derivative as active ingredient |
| US5312800A (en) * | 1992-05-22 | 1994-05-17 | Ciba-Geigy Corporation | Pyrrolidinones |
| JP2662274B2 (en) | 1988-12-19 | 1997-10-08 | 三井東圧化学株式会社 | Pyrrolidinone derivative, production method thereof and herbicide containing the same as active ingredient |
| WO2015104722A1 (en) * | 2014-01-13 | 2015-07-16 | Council Of Scientific & Industrial Research | Organic molecules for terahertz tagging applications |
| CN104892481A (en) * | 2014-03-05 | 2015-09-09 | 上海泰禾化工有限公司 | Process for increasing fluorochloridone cyclization synthesis yield |
| CN106359397A (en) * | 2015-07-24 | 2017-02-01 | 四川利尔作物科学有限公司 | Weeding composition and application thereof |
| CN113087648A (en) * | 2021-04-14 | 2021-07-09 | 成都师范学院 | A kind of synthetic method for improving the purity of fluroxazone |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3488732A (en) * | 1967-02-21 | 1970-01-06 | Mobil Oil Corp | Heterocyclic ring compounds and preparation of same |
| US4069038A (en) * | 1975-03-28 | 1978-01-17 | Stauffer Chemical Company | Acyclic and alicyclic N-substituted halo-2-pyrrolidinones and their utility as herbicides |
-
1977
- 1977-12-23 US US05/864,021 patent/US4132713A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3488732A (en) * | 1967-02-21 | 1970-01-06 | Mobil Oil Corp | Heterocyclic ring compounds and preparation of same |
| US4069038A (en) * | 1975-03-28 | 1978-01-17 | Stauffer Chemical Company | Acyclic and alicyclic N-substituted halo-2-pyrrolidinones and their utility as herbicides |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4416684A (en) * | 1979-04-02 | 1983-11-22 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4300945A (en) * | 1979-04-05 | 1981-11-17 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4317673A (en) * | 1979-08-24 | 1982-03-02 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4428767A (en) | 1979-10-22 | 1984-01-31 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4505737A (en) * | 1980-01-17 | 1985-03-19 | Stauffer Chemical Company | Synergistic herbicidal compositions |
| US4309543A (en) * | 1980-03-17 | 1982-01-05 | Dynapol | Process for preparing cyclic amides |
| EP0055215A1 (en) * | 1980-12-19 | 1982-06-30 | Ciba-Geigy Ag | Fluoropyrrolidinones, process for their preparation, herbicides containing them and their use |
| EP0129296A1 (en) * | 1983-06-16 | 1984-12-27 | Stauffer Chemical Company | Process for the preparation of N-arylhalopyrrolidones |
| US4645843A (en) * | 1983-06-16 | 1987-02-24 | Stauffer Chemical Company | Process for the preparation of N-arylhalopyrrolid-2-ones |
| TR22866A (en) * | 1983-06-16 | 1988-09-19 | Stauffer Chemical Co | PROCEDURE FOR THE PREPARATION OF N-ARILHALOPIRROLIDONS |
| US4643762A (en) * | 1984-08-27 | 1987-02-17 | Chevron Research Company | Herbicidal 5-amino-3-oxo-4-(3-substituted-phenyl)-4-pyrroline and derivatives thereof |
| JP2662274B2 (en) | 1988-12-19 | 1997-10-08 | 三井東圧化学株式会社 | Pyrrolidinone derivative, production method thereof and herbicide containing the same as active ingredient |
| EP0387869A3 (en) * | 1989-03-15 | 1990-11-28 | Mitsui Toatsu Chemicals Inc. | 4-ethyl-3-(substituted phenyl)-1-(3-trifluoromethyl-phenyl)-2-pyrrolidinone derivatives, processes for the preparation and use thereof, herbicidal compositions containing them |
| US5131947A (en) * | 1989-03-15 | 1992-07-21 | Mitsui Toatsu Chemicals Incorporated | 4-ethyl-3-(substituted phenyl)-1-(3-trifluoromethylphenyl)-2-pyrrolidinone derivatives, herbicidal compositions containing them and use thereof |
| JPH0372456A (en) * | 1989-06-14 | 1991-03-27 | Mitsui Toatsu Chem Inc | 1-(3-substituted benzyl)-3-halogeno-4-(1-halogenoalkyl)-2-pyrrolidinone derivative and herbicide containing the same derivative as active ingredient |
| AU625135B2 (en) * | 1989-06-14 | 1992-07-02 | Mitsui Toatsu Chemicals Inc. | 3,4-(Cis-1(3-substituted benzyl)-3- halogeno-4- (1-halogenoalkyl)-2-pyrrolidinone derivatives and herbicides containing them |
| JP2728937B2 (en) | 1989-06-14 | 1998-03-18 | 三井東圧化学株式会社 | 1- (3-Substituted benzyl) -3-halogen-4- (1-halogenoalkyl) -2-pyrrolidinone derivatives and herbicides containing these as active ingredients |
| US5312800A (en) * | 1992-05-22 | 1994-05-17 | Ciba-Geigy Corporation | Pyrrolidinones |
| WO2015104722A1 (en) * | 2014-01-13 | 2015-07-16 | Council Of Scientific & Industrial Research | Organic molecules for terahertz tagging applications |
| US10464929B2 (en) | 2014-01-13 | 2019-11-05 | Council Of Scientific & Industrial Research | Organic molecules for terahertz tagging applications |
| CN104892481A (en) * | 2014-03-05 | 2015-09-09 | 上海泰禾化工有限公司 | Process for increasing fluorochloridone cyclization synthesis yield |
| CN104892481B (en) * | 2014-03-05 | 2017-08-25 | 上海泰禾国际贸易有限公司 | A kind of technique for improving fluorochloridone Cyclization yield |
| CN106359397A (en) * | 2015-07-24 | 2017-02-01 | 四川利尔作物科学有限公司 | Weeding composition and application thereof |
| CN113087648A (en) * | 2021-04-14 | 2021-07-09 | 成都师范学院 | A kind of synthetic method for improving the purity of fluroxazone |
| CN113087648B (en) * | 2021-04-14 | 2023-05-19 | 成都师范学院 | A synthetic method for improving the purity of fluroxazone |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4132713A (en) | Process for the preparation of N-substituted halopyrrolidones | |
| JP3168319B2 (en) | Method for producing substituted thiazole | |
| JPS607608B2 (en) | Production method of acyl cyanide | |
| US6222060B1 (en) | Process for preparing o-(carboalkoxy)phenylmethanesulfonyl chloride derivatives | |
| US5710341A (en) | Preparation of α-chloroalkyl aryl ketones | |
| US4645843A (en) | Process for the preparation of N-arylhalopyrrolid-2-ones | |
| JP3831954B2 (en) | Process for producing 4-hydroxy-2-pyrrolidone | |
| US5017705A (en) | Production of 3,5,6-trichloropyridin-2 ol and novel intermediates thereof | |
| JP3091022B2 (en) | Method for producing glutaric acid derivative | |
| EP0774456A1 (en) | Ethenyl amide compounds production process | |
| US20040198985A1 (en) | Processes for preparing pesticidal intermediates | |
| JP2820519B2 (en) | Production method of α-chloro-phosphorylidene | |
| JPH05140157A (en) | Phenothiazine derivative | |
| EP0129296B1 (en) | Process for the preparation of n-arylhalopyrrolidones | |
| EP0001847B1 (en) | Process for the preparation of alkenyl cyanoacetates | |
| US4990705A (en) | Preparation of 4-bromobiphenyl | |
| JPH06234668A (en) | Production of 9,9-dialkylfulorene | |
| SK127097A3 (en) | Method of preparing essentially pure isomers of 'alpha'-bis- -oximes | |
| US4108865A (en) | Thiophene compounds and the production thereof | |
| KR830002719B1 (en) | How to prepare pyridoid insecticide | |
| JPH08259507A (en) | Nitration of acetophenone derivative | |
| US6096894A (en) | Production method of 2-(p-alkylphenyl)pyridine compound | |
| CA1273345A (en) | Process for the production of 3-phenyl-4- cyanopyrroles | |
| KR100252461B1 (en) | Process for preparing carboxylic acid chloride derivatives | |
| JPS63135393A (en) | Production of alkylsilyl cyanide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ICI AMERICAS INC., A DE CORP., DELAWARE Free format text: CHANGE OF NAME;ASSIGNOR:STAUFFER CHEMICAL COMPANY;REEL/FRAME:005197/0025 Effective date: 19890815 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |