US4048084A - Functional fluid systems containing alkoxysilane cluster compounds - Google Patents
Functional fluid systems containing alkoxysilane cluster compounds Download PDFInfo
- Publication number
- US4048084A US4048084A US05/675,882 US67588276A US4048084A US 4048084 A US4048084 A US 4048084A US 67588276 A US67588276 A US 67588276A US 4048084 A US4048084 A US 4048084A
- Authority
- US
- United States
- Prior art keywords
- carbon atoms
- fluid
- radicals
- majority
- sterically hindered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 65
- 150000001875 compounds Chemical class 0.000 title claims abstract description 26
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 32
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 30
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 12
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract description 11
- 125000003118 aryl group Chemical group 0.000 claims abstract description 11
- 239000013529 heat transfer fluid Substances 0.000 claims abstract description 9
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 description 12
- 239000003085 diluting agent Substances 0.000 description 11
- -1 2-ethyl pentyl Chemical group 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 231100000241 scar Toxicity 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 125000004337 3-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- MYPKNOIDGYUDRC-UHFFFAOYSA-N CCCCNCCCC.CCCCNCCCC.CCCCNCCCC.OB(O)O Chemical class CCCCNCCCC.CCCCNCCCC.CCCCNCCCC.OB(O)O MYPKNOIDGYUDRC-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- TUEYHEWXYWCDHA-UHFFFAOYSA-N ethyl 5-methylthiadiazole-4-carboxylate Chemical compound CCOC(=O)C=1N=NSC=1C TUEYHEWXYWCDHA-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 230000000063 preceeding effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M3/00—Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/025—Silicon compounds without C-silicon linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0834—Compounds having one or more O-Si linkage
- C07F7/0838—Compounds with one or more Si-O-Si sequences
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0896—Compounds with a Si-H linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/50—Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/18—Tall oil acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/20—Rosin acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
- C10M2215/065—Phenyl-Naphthyl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
- C10M2215/226—Morpholines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/30—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/108—Phenothiazine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/042—Siloxanes with specific structure containing aromatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/043—Siloxanes with specific structure containing carbon-to-carbon double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/044—Siloxanes with specific structure containing silicon-to-hydrogen bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/045—Siloxanes with specific structure containing silicon-to-hydroxyl bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/046—Siloxanes with specific structure containing silicon-oxygen-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/047—Siloxanes with specific structure containing alkylene oxide groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/048—Siloxanes with specific structure containing carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/05—Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
- C10N2040/13—Aircraft turbines
Definitions
- the present invention is directed to functional fluid systems containing specified fluids. More particularly, the present invention is directed to hydraulic and heat transfer fluid systems containing an effective amount of an alkoxysilane cluster compound, the compound being one having the general formula: ##STR1## wherein R is hydrogen, an alkyl, aryl or aralkyl and each R' is independently selected from the same group as R with the proviso that at least a majority of R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms.
- This general Formula (I) may also be written in an abbreviated form as RSi[OSi(OR') 3 ] 3 wherein R and R' are as defined.
- Silicate esters, silanes and oxysilanes are well known for their utility as functional fluids and many of these compounds have been proposed for use as heat transfer fluids, hydraulic fluids, brake fluids, transmission fluids and the like.
- Novel alkoxysilane compounds with desirable functional fluid properties which have heretofore not been described in the literature, are described in the above-identified parent application.
- the present invention is directed to the use of these compounds in functional fluid systems as more fully set forth below.
- R is hydrogen, an alkyl, alkenyl, aryl or aralkyl.
- R is hydrogen, an alkyl or alkenyl having about 1 to about 18 carbon atoms or an aryl or aralkyl having about 6 to about 24 carbon atoms.
- R is hydrogen, an alkyl having about 1 to about 8 carbon atoms or an aryl or aralkyl having about 6 to about 14 carbon atoms.
- each R' is independently selected from the same group as R, with the proviso that at least a majority of the R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms.
- the desired and preferred groups for R' are the same as for R subject to the preceeding proviso.
- at least a majority of the R' radicals are sterically hindered alkyl groups having about 3 to about 24 carbon atoms and preferably are sterically hindered alkyl groups having about 4 to about 12 carbon atoms.
- sterically hindered alkyl groups is meant alkyl radicals which contribute to the hydrolytic stability of the molecule, i.e.
- sterically hindered alkyl radicals are non-linear primary alkyl radicals having a beta position side chain of at least 2 carbon atoms, secondary alkyl radicals and tertiary alkyl radicals.
- Particularly useful sterically hindered alkyl groups include sec. butyl, isobutyl, 2-ethyl butyl, 2-ethyl pentyl, 3-ethyl pentyl, 2-ethyl hexyl, 3-ethyl hexyl, and 2,4-dimethyl-3-pentyl, etc.
- the functional fluid systems to which the present invention is directed includes hydraulic type functional fluid systems and heat transfer type functional fluid systems.
- the hydraulic type fluid systems include any system wherein a mechanical effort is converted to pressure at a first location, the pressure is transmitted from this first location to a second location via a hydraulic fluid, and the pressure is converted to a second mechanical effort at the second location.
- the hydraulic systems contemplated by the present invention include hydraulic brake systems, hydraulic steering mechanisms, hydraulic transmissions, hydraulic jacks and hydraulic lifts. Included among these are the hydraulic systems used in heavy equipment and transportation vehicles including highway and construction equipment, railways, planes and aquatic vehicles. Also included are special or custom fluid-requiring systems such as high pressure or temperature gradient systems including those employed in artic environments as well as those found in aerospace and lunar vehicles and the like.
- the heat transfer type fluid systems include the hydraulic systems described above wherein heat is dissipated by the hydraulic fluid and include many other systems as well.
- the present invention contemplates heat transfer systems wherein heat is passed from a first heat conductor at a first location to a heat transfer fluid, the heat is transmitted from the first location to a second location via the heat transfer fluid, and the heat is passed from the heat transfer fluid to a second conductor at the second location.
- the heat transfer systems of the present invention include heat dissipation systems, fluidic heating systems, e.g.
- radiator type circulating fluid heating systems heat exchange systems such as gas-liquid and liquid-liquid concurrent and countercurrent tubular heat exchangers as are used, for example, in the chemical process industries, cooling systems for nuclear reactors, radiator type cooling systems, and any other temperature gradient systems in which a closed or sealed fluid heat transfer medium is used.
- the compounds of Formula (I) above are used in an effective amount. Due to the particularly advantageous hydrolytic stability of these compounds, as well as their high lubricity and low viscosity indices, the compounds may be used without any additives or diluents. Thus, by an effective amount of these compounds is meant the compound product without additional components as well as fluids containing additional fluid components.
- the compounds of Formula (I) may be employed without additives or diluents.
- these compounds may comprise the base component of a functional fluid or may constitute a minor component, e.g. an additive, in a functional fluid containing a different base component.
- an effective amount may be any amount which will produce the desired fluid characteristics for a given system. Therefore, as little as 5% or less of one or more of the compounds of Formula (I) may be used or as much as about 100% of the compounds may be used, percentages by weight. For example, 20% to about 95% or about 100% of the functional fluid may be one or more of the compounds of Formula (I), e.g. 45% to 90% of the fluid may comprise one or more compounds of Formula (I).
- a diluent component may be one or more glycol monoethers or diethers of the formula:
- R 1 is an alkyl of 1 to 4 carbon atoms
- R 2 is alkylene of 2 to 4 carbon atoms
- R 3 is hydrogen or an alkyl of 1 to 4 carbon atoms
- x is an integer from 2 to 4.
- the R 1 , R 2 and R 3 groups may be straight chained or branched and the alkylene oxide group OR 3 in the above formula may comprise mixtures of alkylene oxides.
- one or more glycols such as the alkylene glycols, having the formula:
- R 4 is an alkylene of 2 to 3 carbon atoms and y is an integer from 1 to 5.
- Illustrative of the above-described diluents are the following: diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol, propylene glycol, diethylene glycol and tetraethylene glycol.
- Various other diluents and mixtures thereof, which are well known in the art may also be used with the organosilane containing base component of this invention.
- U.S. Pat. No. 3,377,288 discloses various diluents which may be utilized.
- the particular amount of diluents which is used is not critical and widely varying amounts may be used. More particularly, the diluent components may constitute from 0 up to about 80 percent by weight of the fluid and preferably from about 20 to about 60 percent.
- additives may be added to the fluids used in the systems of this invention to control or modify various chemical and physical properties.
- various types of additives which can be added to the fluids are included inhibitors for pH and corrosion control, antioxidants, rust inhibitors, viscosity index improvers, pour point depressants, lubricating additives, antifoamants, stabilizers, vapor phase corrosion inhibitors, rubber swelling adjusters, demulsifiers, dyes and odor suppressants.
- the total amount of additives which may be incorporated into the fluid composition will vary between about 0 to about 20 percent, e.g. from about 0.1 to 8 percent and more specifically from about 0.2 to about 5 percent by weight, based on the total weight of the fluid composition.
- alkaline inhibitors for pH and corrosion control may optionally be employed in an amount sufficient to maintain alkaline conditions in the fluid compositions, e.g. at an apparent pH value of from about 7.0 to about 11.5, if desired. These inhibitors may generally be added in an amount of from about 0 to about 8 percent by weight based on the total weight of fluid compositions, e.g. from about 0.5 to about 6 percent.
- Useful alkaline inhibitors include, for example, alkali metal salts of higher fatty acids such as potassium oleate, the potassium soap of rosin or tall oil fatty acids, amines such as morpholine and ethanolamine and amine salts such as mono- or dibutyl ammonium borates.
- antioxidants include, 2,2,-di-(4-hydroxyphenyl)propane, phenothiazine, amines such as phenyl-alpha-napthylamine and hindered phenols such as dibutyl cresol.
- the amount of antioxidant used will vary from 0 to about 3 percent by weight, e.g. from about 0.001 to about 2 percent by weight based on the total weight of the fluid composition.
- additives may be incorporated into the fluid composition.
- corrosion inhibitors such as butynediol and rubber swelling adjusters such as dodecyl benzene may be used.
- inhibitors and additives are merely exemplary and are not intended as an exclusive listing of the many well-known materials which can be added to fluid compositions to obtain various desired properties.
- Other illustrations of additives and diluents which may be used can be found in U.S. Pat. No. 3,377,288 and in "Introduction to Hydraulic Fluids" by Roger E. Hatton, Reinhold Publishing Corp. (1962).
- a functional fluid comprising a compound having the formula:
- the compound fluid was tested for various functional fluid properties.
- the fluid was tested to determine its ASTM slope (ASTM test no. D 341--43).
- ASTM slope is based on viscosity measurements at 100° F. and 210° F. and is used as an indication of change in viscosity in response to temperature changes.
- This fluid exhibited an ASTM slope of 0.45, one which is very good for functional fluids and particularly for one containing no viscosity controlling additives.
- the lubricity properties of the fluid were tested by subjecting the fluid to a wear scar test in which a four ball 40 kg load apparatus is used at 1800 rpm and 168° F. for 1 hour.
- This fluid yielded a wear scar test result of 0.73 mm total scar, illustrating very good lubricity for a fluid containing no lubricity improver.
- One significant test for a hydraulic fluid is its stability in the presence of water. This fluid was subjected to a hydrolysis solids test which was carried out at 210° F. in the presence of 33% by weight water and copper metal catalyst for 100 hours. Only 0.002% solids was found to be present at the end of the test. In addition to the above desirable characteristics, this fluid exhibited a flash point of 390° F. suggesting its use as a hydraulic fluid under severe high thermal conditions. Low temperature functional fluid utility was also suggested by the fact that the fluid was still liquid at temperatures lower than -40° F.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
Abstract
Functional fluid systems, i.e. hydraulic fluid and heat transfer fluid systems, containing alkoxysilane cluster compounds having the formula RSi[OSi(OR')3 ]3 wherein R is hydrogen, an alkyl, alkenyl, aryl or aralkyl group and each R' is independently selected from the same group as R with the proviso that at least a majority of R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms, are described.
Description
This application is a continuation-in-part of co-pending U.S. application Ser. No. 616,438, filed Sept. 24, 1975 by the present inventor, now U.S. Pat. No. 3,965,136, entitled "Alkoxysilane Cluster Compounds and Their Preparation".
The present invention is directed to functional fluid systems containing specified fluids. More particularly, the present invention is directed to hydraulic and heat transfer fluid systems containing an effective amount of an alkoxysilane cluster compound, the compound being one having the general formula: ##STR1## wherein R is hydrogen, an alkyl, aryl or aralkyl and each R' is independently selected from the same group as R with the proviso that at least a majority of R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms. This general Formula (I) may also be written in an abbreviated form as RSi[OSi(OR')3 ]3 wherein R and R' are as defined.
Silicate esters, silanes and oxysilanes are well known for their utility as functional fluids and many of these compounds have been proposed for use as heat transfer fluids, hydraulic fluids, brake fluids, transmission fluids and the like. Novel alkoxysilane compounds with desirable functional fluid properties, which have heretofore not been described in the literature, are described in the above-identified parent application. The present invention is directed to the use of these compounds in functional fluid systems as more fully set forth below.
As mentioned, the compounds used in the functional fluid systems of the present invention are those represented by the Formula (I) above wherein R is hydrogen, an alkyl, alkenyl, aryl or aralkyl. Desirably, R is hydrogen, an alkyl or alkenyl having about 1 to about 18 carbon atoms or an aryl or aralkyl having about 6 to about 24 carbon atoms. Preferably, R is hydrogen, an alkyl having about 1 to about 8 carbon atoms or an aryl or aralkyl having about 6 to about 14 carbon atoms. In Formula (I), each R' is independently selected from the same group as R, with the proviso that at least a majority of the R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms. The desired and preferred groups for R' are the same as for R subject to the preceeding proviso. Desirably, at least a majority of the R' radicals are sterically hindered alkyl groups having about 3 to about 24 carbon atoms and preferably are sterically hindered alkyl groups having about 4 to about 12 carbon atoms. By sterically hindered alkyl groups is meant alkyl radicals which contribute to the hydrolytic stability of the molecule, i.e. which inhibit the reaction of water with the silicon-oxygen or the carbon-oxygen bonds in the molecule. Exemplary of sterically hindered alkyl radicals are non-linear primary alkyl radicals having a beta position side chain of at least 2 carbon atoms, secondary alkyl radicals and tertiary alkyl radicals. Particularly useful sterically hindered alkyl groups include sec. butyl, isobutyl, 2-ethyl butyl, 2-ethyl pentyl, 3-ethyl pentyl, 2-ethyl hexyl, 3-ethyl hexyl, and 2,4-dimethyl-3-pentyl, etc.
The method of preparing the alkoxysilane cluster compounds used in the systems of the present invention is described in detail in parent application Ser. No. 616,438, filed Sept. 24, 1975 by the present inventor, and incorporated herein by reference.
The functional fluid systems to which the present invention is directed includes hydraulic type functional fluid systems and heat transfer type functional fluid systems.
The hydraulic type fluid systems include any system wherein a mechanical effort is converted to pressure at a first location, the pressure is transmitted from this first location to a second location via a hydraulic fluid, and the pressure is converted to a second mechanical effort at the second location. Thus, the hydraulic systems contemplated by the present invention include hydraulic brake systems, hydraulic steering mechanisms, hydraulic transmissions, hydraulic jacks and hydraulic lifts. Included among these are the hydraulic systems used in heavy equipment and transportation vehicles including highway and construction equipment, railways, planes and aquatic vehicles. Also included are special or custom fluid-requiring systems such as high pressure or temperature gradient systems including those employed in artic environments as well as those found in aerospace and lunar vehicles and the like.
The heat transfer type fluid systems include the hydraulic systems described above wherein heat is dissipated by the hydraulic fluid and include many other systems as well. In general, the present invention contemplates heat transfer systems wherein heat is passed from a first heat conductor at a first location to a heat transfer fluid, the heat is transmitted from the first location to a second location via the heat transfer fluid, and the heat is passed from the heat transfer fluid to a second conductor at the second location. Thus, the heat transfer systems of the present invention include heat dissipation systems, fluidic heating systems, e.g. radiator type circulating fluid heating systems, heat exchange systems such as gas-liquid and liquid-liquid concurrent and countercurrent tubular heat exchangers as are used, for example, in the chemical process industries, cooling systems for nuclear reactors, radiator type cooling systems, and any other temperature gradient systems in which a closed or sealed fluid heat transfer medium is used.
In the functional fluid systems of the present invention, the compounds of Formula (I) above are used in an effective amount. Due to the particularly advantageous hydrolytic stability of these compounds, as well as their high lubricity and low viscosity indices, the compounds may be used without any additives or diluents. Thus, by an effective amount of these compounds is meant the compound product without additional components as well as fluids containing additional fluid components. In one embodiment, the compounds of Formula (I) may be employed without additives or diluents. Alternatively, these compounds may comprise the base component of a functional fluid or may constitute a minor component, e.g. an additive, in a functional fluid containing a different base component. In general, an effective amount may be any amount which will produce the desired fluid characteristics for a given system. Therefore, as little as 5% or less of one or more of the compounds of Formula (I) may be used or as much as about 100% of the compounds may be used, percentages by weight. For example, 20% to about 95% or about 100% of the functional fluid may be one or more of the compounds of Formula (I), e.g. 45% to 90% of the fluid may comprise one or more compounds of Formula (I).
Various diluents, inhibitors and other additives are well known in the functional fluid art and these may optionally be added to the functional fluids used in the systems of the present invention, if desired. For example, a diluent component may be one or more glycol monoethers or diethers of the formula:
R.sub.1 [O--R.sub.2 ].sub.x OR.sub.3 (II)
wherein R1 is an alkyl of 1 to 4 carbon atoms, R2 is alkylene of 2 to 4 carbon atoms, R3 is hydrogen or an alkyl of 1 to 4 carbon atoms and x is an integer from 2 to 4. The R1, R2 and R3 groups may be straight chained or branched and the alkylene oxide group OR3 in the above formula may comprise mixtures of alkylene oxides. Also included among the possible diluents are one or more glycols, such as the alkylene glycols, having the formula:
H0(R.sub.4 O).sub.y H (III)
wherein R4 is an alkylene of 2 to 3 carbon atoms and y is an integer from 1 to 5.
Illustrative of the above-described diluents are the following: diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol, propylene glycol, diethylene glycol and tetraethylene glycol. Various other diluents and mixtures thereof, which are well known in the art may also be used with the organosilane containing base component of this invention. U.S. Pat. No. 3,377,288 discloses various diluents which may be utilized.
Generally, the particular amount of diluents which is used is not critical and widely varying amounts may be used. More particularly, the diluent components may constitute from 0 up to about 80 percent by weight of the fluid and preferably from about 20 to about 60 percent.
Various additives may be added to the fluids used in the systems of this invention to control or modify various chemical and physical properties. Among the various types of additives which can be added to the fluids are included inhibitors for pH and corrosion control, antioxidants, rust inhibitors, viscosity index improvers, pour point depressants, lubricating additives, antifoamants, stabilizers, vapor phase corrosion inhibitors, rubber swelling adjusters, demulsifiers, dyes and odor suppressants. Generally, the total amount of additives which may be incorporated into the fluid composition will vary between about 0 to about 20 percent, e.g. from about 0.1 to 8 percent and more specifically from about 0.2 to about 5 percent by weight, based on the total weight of the fluid composition.
For example, alkaline inhibitors for pH and corrosion control may optionally be employed in an amount sufficient to maintain alkaline conditions in the fluid compositions, e.g. at an apparent pH value of from about 7.0 to about 11.5, if desired. These inhibitors may generally be added in an amount of from about 0 to about 8 percent by weight based on the total weight of fluid compositions, e.g. from about 0.5 to about 6 percent. Useful alkaline inhibitors include, for example, alkali metal salts of higher fatty acids such as potassium oleate, the potassium soap of rosin or tall oil fatty acids, amines such as morpholine and ethanolamine and amine salts such as mono- or dibutyl ammonium borates.
An antioxidant may optionally be used, if desired. Typical antioxidants include, 2,2,-di-(4-hydroxyphenyl)propane, phenothiazine, amines such as phenyl-alpha-napthylamine and hindered phenols such as dibutyl cresol. Generally, the amount of antioxidant used will vary from 0 to about 3 percent by weight, e.g. from about 0.001 to about 2 percent by weight based on the total weight of the fluid composition.
Additionally, other additives, if desired, may be incorporated into the fluid composition. For example, corrosion inhibitors such as butynediol and rubber swelling adjusters such as dodecyl benzene may be used.
The above-noted inhibitors and additives are merely exemplary and are not intended as an exclusive listing of the many well-known materials which can be added to fluid compositions to obtain various desired properties. Other illustrations of additives and diluents which may be used can be found in U.S. Pat. No. 3,377,288 and in "Introduction to Hydraulic Fluids" by Roger E. Hatton, Reinhold Publishing Corp. (1962).
The following examples illustrate various embodiments of the present invention, but the present invention should not be construed to be limited thereto. The compounds described in the following examples are prepared as described in the examples of parent application Ser. No. 616,438, filed Sept. 24, 1975 by the present inventor, and incorporated herein by reference.
A functional fluid was prepared comprising a compound having the formula:
CH.sub.3 Si[OSi(sec. C.sub.4 H.sub.9 O).sub.3 ].sub.3
the compound fluid was tested for various functional fluid properties. To examine an important aspect of its heat transfer properties, the fluid was tested to determine its ASTM slope (ASTM test no. D 341--43). The ASTM slope is based on viscosity measurements at 100° F. and 210° F. and is used as an indication of change in viscosity in response to temperature changes. This fluid exhibited an ASTM slope of 0.45, one which is very good for functional fluids and particularly for one containing no viscosity controlling additives. Also, the lubricity properties of the fluid were tested by subjecting the fluid to a wear scar test in which a four ball 40 kg load apparatus is used at 1800 rpm and 168° F. for 1 hour. This fluid yielded a wear scar test result of 0.73 mm total scar, illustrating very good lubricity for a fluid containing no lubricity improver. One significant test for a hydraulic fluid is its stability in the presence of water. This fluid was subjected to a hydrolysis solids test which was carried out at 210° F. in the presence of 33% by weight water and copper metal catalyst for 100 hours. Only 0.002% solids was found to be present at the end of the test. In addition to the above desirable characteristics, this fluid exhibited a flash point of 390° F. suggesting its use as a hydraulic fluid under severe high thermal conditions. Low temperature functional fluid utility was also suggested by the fact that the fluid was still liquid at temperatures lower than -40° F. (Viscosity measurements: 10 centistokes at 210° F.; 37.2 cs at 100° F.; 1050 cs at -40° F.) The ASTM extended viscosity index (ASTM test no. D 22 70) was found to be 310. Weight loss in air was found to be only 13.96% at 1 atmosphere, 400° F. for 1 hour.
The above tests were repeated for the fluids of Examples 2 through 4, as follows:
Example 2
______________________________________
Fluid HSi[OSi(sec. C.sub.4 H.sub.9 O).sub.3 ].sub.3
Viscosity:
at 210° F.
8.02 cs
at 100° F.
26.1 cs
at -40° F.
544.8 cs
ASTM Slope 0.46
Extended Viscosity Index
322
Wear Scar 0.98 mm
% Solids After Hydrolysis
<0.005
Weight Loss in Air Test
19.16
Flash Point 380° F.
______________________________________
Example 3
______________________________________
Fluid C.sub.2 H.sub.5 Si[OSi(sec. C.sub.4 H.sub.9 O).sub.3
].sub.3
Viscosity:
at 210° F.
12.33 cs
at 100° F.
45.21 cs
at -40° F.
1505 cs
ASTM Slope 0.44
Extended Viscosity Index
300
Wear Scar 0.57 mm
% Solids After Hydrolysis
0.01
______________________________________
Example 4
______________________________________
Fluid CH.sub.2 CHSi[OSi(sec. C.sub.4 H.sub.9 O).sub.3]3
Viscosity:
at 212° F.
11.04 cs
at 100° F.
42.7 cs
at -40° F. Frozen
ASTM Slope 0.47
Extended Viscosity Index
270
Wear Scar 0.70 mm
% Solids After Hydrolysis
0.03
______________________________________
Claims (14)
1. In a method wherein a first mechanical effort is converted to pressure at a first location, the pressure is transmitted from said first location to a second location via a hydraulic fluid, and said pressure is converted to a second mechanical effort at said second location, the improvement which comprises using as said hydraulic fluid one which comprises an effective amount of a compound having the formula: ##STR2## wherein R is hydrogen, an alkyl, alkenyl, aryl or aralkyl, and each R' is independently selected from the same group as R with the proviso that at least a majority of R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms.
2. The method of claim 1 wherein R is hydrogen, an alkyl or alkenyl having about 1 to about 18 carbon atoms or an aryl or aralkyl having about 6 to about 24 carbon atoms and wherein each R' is independently selected from the same group as R, subject to the above proviso.
3. The method of claim 2 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 3 to about 24 carbon atoms.
4. The method of claim 1 wherein R is hydrogen, an alkyl having about 1 to about 8 carbon atoms or an aryl or aralkyl having about 6 to about 14 carbon atoms and wherein each R' is independently selected from the same group as R, subject to the above proviso.
5. The method of claim 4 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 4 to about 12 carbon atoms.
6. The method of claim 1 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 3 to about 24 carbon atoms.
7. The method of claim 6 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 4 to about 12 carbon atoms.
8. In a method wherein heat is passed from a first heat conductor to a heat transfer fluid at a first location, the heat is transmitted from said first location to a second location via said heat transfer fluid, and said heat is passed from said heat transfer fluid to a second heat conductor at said second location, the improvement which comprises using as said heat transfer fluid one which comprises an effective amount of a compound having the formula: ##STR3## wherein R is hydrogen, an alkyl, alkenyl, aryl or aralkyl, and each R' is independently selected from the same group as R with the proviso that at least a majority of R' radicals are sterically hindered alkyl groups having at least 3 carbon atoms.
9. The method of claim 8 wherein R is hydrogen, an alkyl or alkenyl having about 1 to about 18 carbon atoms or an aryl or aralkyl having about 6 to about 24 carbon atoms and wherein each R' is independently selected from the same group as R, subject to the above proviso.
10. The method of claim 9 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 3 to about 24 carbon atoms.
11. The method of claim 8 wherein R is hydrogen, an alkyl having about 1 to about 8 carbon atoms or an aryl or aralkyl having about 6 to about 14 carbon atoms and wherein each R' is independently selected from the same group as R, subject to the above proviso.
12. The method of claim 11 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 4 to about 12 carbon atoms.
13. The method of claim 8 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 3 to about 24 carbon atoms.
14. The method of claim 13 wherein a majority of the R' radicals are sterically hindered alkyl groups having about 4 to about 12 carbon atoms.
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/675,882 US4048084A (en) | 1975-09-24 | 1976-04-12 | Functional fluid systems containing alkoxysilane cluster compounds |
| AU17265/76A AU499024B2 (en) | 1976-04-12 | 1976-08-30 | Fluid systems containing alkoxysilane cluster compounds |
| IT51268/76A IT1078744B (en) | 1976-04-12 | 1976-09-14 | IMPROVEMENT IN USEFUL FLUIDS SUCH AS HYDRAULIC FLUIDS FOR COOLING AND SIMILAR |
| DE2642812A DE2642812C3 (en) | 1975-09-24 | 1976-09-23 | Hydraulic fluids based on organopolysiloxanes |
| FR7628870A FR2351170A1 (en) | 1976-04-12 | 1976-09-24 | Hydraulic and heat transfer systems - contg. siloxanes as functional fluids |
| ES451917A ES451917A1 (en) | 1976-04-12 | 1976-09-28 | Hydraulic and heatttransmitting fluid system |
| NL7611012A NL7611012A (en) | 1976-04-12 | 1976-10-06 | PROCESS FOR THE PREPARATION OF FUNCTIONAL LIQUID SYSTEMS CONTAINING ALKOXYSILANE TROS COMPOUNDS. |
| BE171599A BE847398A (en) | 1976-04-12 | 1976-10-18 | FUNCTIONAL FLUID SYSTEMS CONTAINING ALKOXYSILANE COMPOUNDS, |
| JP12635976A JPS52124484A (en) | 1976-04-12 | 1976-10-22 | Hydraulic and heatttransmitting fluid system |
| BR7607327A BR7607327A (en) | 1976-04-12 | 1976-11-03 | IMPROVEMENT IN HYDRAULIC SCHEME AND HEAT TRANSFER SCHEME |
| SE7701730A SE426401B (en) | 1976-04-12 | 1977-02-16 | APPLICATION OF AN ALCOXYSILAN COMPOUND AS HYDRAULIC FLUID OR HEAT TRANSMISSION FLUID |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/616,438 US3965136A (en) | 1975-09-24 | 1975-09-24 | Alkoxysilane cluster compounds and their preparation |
| US05/675,882 US4048084A (en) | 1975-09-24 | 1976-04-12 | Functional fluid systems containing alkoxysilane cluster compounds |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/616,438 Continuation-In-Part US3965136A (en) | 1975-09-24 | 1975-09-24 | Alkoxysilane cluster compounds and their preparation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4048084A true US4048084A (en) | 1977-09-13 |
Family
ID=27087748
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/675,882 Expired - Lifetime US4048084A (en) | 1975-09-24 | 1976-04-12 | Functional fluid systems containing alkoxysilane cluster compounds |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US4048084A (en) |
| DE (1) | DE2642812C3 (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4116847A (en) * | 1977-04-28 | 1978-09-26 | Olin Corporation | Alkoxysilane double cluster compounds with silicone bridges and their preparation and use |
| US4147846A (en) * | 1978-08-17 | 1979-04-03 | Olin Corporation | Alkoxysilane cluster surfactants for rigid polyurethane foam |
| US4175049A (en) * | 1977-04-27 | 1979-11-20 | Olin Corporation | Functional fluid methods using alkoxysilane ester cluster compounds |
| FR2455079A1 (en) * | 1979-04-27 | 1980-11-21 | Olin Corp | SILICON OIL COMPOSITIONS CONTAINING CLUSTER SILICATES |
| US4294713A (en) * | 1980-03-31 | 1981-10-13 | Olin Corporation | Grease compositions containing selected shielded polysilicate compounds |
| EP0028524A3 (en) * | 1979-11-01 | 1981-12-30 | Olin Corporation | Improved method for preparing alkoxysilane cluster compounds; resulting novel compounds; and their use as functional fluids |
| EP0290137A1 (en) * | 1987-04-13 | 1988-11-09 | Toshiba Silicone Co., Ltd. | Lubricating composition and hydraulic fluid |
| DE102009012665A1 (en) | 2009-03-13 | 2010-09-16 | Momentive Performance Materials Gmbh | New polyorganosiloxanes and their uses |
| WO2021113020A1 (en) * | 2019-12-03 | 2021-06-10 | Dow Silicones Corporation | Branched oxydisilane/siloxane oligomers and methods for their preparation and use as heat transfer fluids |
| US20230002660A1 (en) * | 2020-01-09 | 2023-01-05 | Dow Silicones Corporation | Branched polysiloxanes and methods for their preparation and use as heat transfer fluids |
| US12441923B2 (en) * | 2021-01-04 | 2025-10-14 | Dow Global Technologies Llc | Branched polysiloxanes and methods for their preparation and use as heat transfer fluids |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1437187A (en) * | 1918-12-05 | 1922-11-28 | Merrill Process Company | Heater system |
| US1952105A (en) * | 1930-07-26 | 1934-03-27 | Hydraulic Brake Co | Hydraulic brake fluid |
| US3965136A (en) * | 1975-09-24 | 1976-06-22 | Olin Corporation | Alkoxysilane cluster compounds and their preparation |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3354194A (en) * | 1964-01-30 | 1967-11-21 | Olin Mathieson | Meta-phenylphenoxy substituted siloxanes and process therefor |
| US3465020A (en) * | 1967-08-21 | 1969-09-02 | Dow Corning | Heterocyclic silicon compounds |
| US3671433A (en) * | 1970-12-17 | 1972-06-20 | Dow Corning | Lubricant compositions |
-
1976
- 1976-04-12 US US05/675,882 patent/US4048084A/en not_active Expired - Lifetime
- 1976-09-23 DE DE2642812A patent/DE2642812C3/en not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1437187A (en) * | 1918-12-05 | 1922-11-28 | Merrill Process Company | Heater system |
| US1952105A (en) * | 1930-07-26 | 1934-03-27 | Hydraulic Brake Co | Hydraulic brake fluid |
| US3965136A (en) * | 1975-09-24 | 1976-06-22 | Olin Corporation | Alkoxysilane cluster compounds and their preparation |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4175049A (en) * | 1977-04-27 | 1979-11-20 | Olin Corporation | Functional fluid methods using alkoxysilane ester cluster compounds |
| US4116847A (en) * | 1977-04-28 | 1978-09-26 | Olin Corporation | Alkoxysilane double cluster compounds with silicone bridges and their preparation and use |
| US4147846A (en) * | 1978-08-17 | 1979-04-03 | Olin Corporation | Alkoxysilane cluster surfactants for rigid polyurethane foam |
| FR2455079A1 (en) * | 1979-04-27 | 1980-11-21 | Olin Corp | SILICON OIL COMPOSITIONS CONTAINING CLUSTER SILICATES |
| EP0028524A3 (en) * | 1979-11-01 | 1981-12-30 | Olin Corporation | Improved method for preparing alkoxysilane cluster compounds; resulting novel compounds; and their use as functional fluids |
| US4294713A (en) * | 1980-03-31 | 1981-10-13 | Olin Corporation | Grease compositions containing selected shielded polysilicate compounds |
| EP0290137A1 (en) * | 1987-04-13 | 1988-11-09 | Toshiba Silicone Co., Ltd. | Lubricating composition and hydraulic fluid |
| DE102009012665A1 (en) | 2009-03-13 | 2010-09-16 | Momentive Performance Materials Gmbh | New polyorganosiloxanes and their uses |
| WO2010103103A1 (en) | 2009-03-13 | 2010-09-16 | Momentive Performance Materials Gmbh | Novel polyorganosiloxanes and use thereof |
| WO2021113020A1 (en) * | 2019-12-03 | 2021-06-10 | Dow Silicones Corporation | Branched oxydisilane/siloxane oligomers and methods for their preparation and use as heat transfer fluids |
| US20230002660A1 (en) * | 2020-01-09 | 2023-01-05 | Dow Silicones Corporation | Branched polysiloxanes and methods for their preparation and use as heat transfer fluids |
| US12441923B2 (en) * | 2021-01-04 | 2025-10-14 | Dow Global Technologies Llc | Branched polysiloxanes and methods for their preparation and use as heat transfer fluids |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2642812A1 (en) | 1977-04-07 |
| DE2642812C3 (en) | 1982-01-07 |
| DE2642812B2 (en) | 1981-02-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1097368A (en) | Alkoxysilane double cluster compounds with silicone bridges and their preparation and use | |
| US4048084A (en) | Functional fluid systems containing alkoxysilane cluster compounds | |
| JPH05508177A (en) | Improved sulfurized olefins, extreme pressure/anti-wear additives, and compositions thereof | |
| US4374282A (en) | Ethers of polyols, their preparation and use | |
| US4141851A (en) | Silane derivatives | |
| JPH0380196B2 (en) | ||
| US4048083A (en) | Functional fluid systems containing alkoxysilanol cluster compounds | |
| CA1098521A (en) | Tris-(polyalkoxyalkylated) isocyanurate compounds and their use as functional fluids | |
| US4317741A (en) | Use of poly(oxyalkylated) hydrazines as corrosion inhibitors | |
| US4210541A (en) | Stabilized hydraulic fluid composition | |
| US3814691A (en) | Alkyl(polyalkoxy)silanes as components in hydraulic fluids | |
| US4197210A (en) | Oil-soluble adducts of benzotriazole and dialkylamines and lubricant compositions containing the same | |
| US4174285A (en) | Lubricant compositions and ether or ester of 1-hydroxybenzotriazole as antioxidant in the compositions | |
| US4132664A (en) | Functional fluid method using alkoxysilane multiple cluster compounds | |
| US4406807A (en) | Selected siloxane adducts of tris(2-hydroxyethyl)isocyanurate and their use as functional fluids | |
| US4474674A (en) | Multifunctional additives for functional fluids and lubricants | |
| US4532062A (en) | Additive for power transmission shift fluids | |
| US4357473A (en) | Method for preparing alkoxysilane cluster compounds; resulting novel compounds; and their use as functional fluids | |
| US4086260A (en) | Alkoxysilane ester cluster compounds and their preparation and use | |
| US5342532A (en) | Lubricating oil composition comprising alkylnaphthalene and benzothiophene | |
| US4440655A (en) | Sulfur-containing mannich bases and lubricants containing same | |
| US4175049A (en) | Functional fluid methods using alkoxysilane ester cluster compounds | |
| US4374986A (en) | Selected siloxane adducts of tris(2-hydroxyethyl)isocyanurate | |
| CA1083593A (en) | Silane ester ether derivatives for hydraulic fluid | |
| US4162225A (en) | Lubricant compositions of enhanced antioxidant properties |