US3984371A - Stabilization of synthetic polymers - Google Patents

Stabilization of synthetic polymers Download PDF

Info

Publication number
US3984371A
US3984371A US05/402,885 US40288573A US3984371A US 3984371 A US3984371 A US 3984371A US 40288573 A US40288573 A US 40288573A US 3984371 A US3984371 A US 3984371A
Authority
US
United States
Prior art keywords
group
carbon atoms
alkyl
metal atom
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/402,885
Inventor
Keisuke Murayama
Syoji Morimura
Takao Yoshioka
Tomoyuki Kurumada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Application granted granted Critical
Publication of US3984371A publication Critical patent/US3984371A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • C07D211/46Oxygen atoms attached in position 4 having a hydrogen atom as the second substituent in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic System without C-Metal linkages

Definitions

  • This invention relates to a new piperidine derivative and a synthetic polymer composition which comprises the same.
  • piperidine derivatives of this invention have the following formula ##SPC1##
  • R 1 represents hydrogen atom, an alkyl group, a substituted alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, an aliphatic acyl group, an alkoxycarbonyl group or an aralkoxycarbonyl group.
  • R 2 represents hydrogen atom, a lower alkyl group or phenyl group.
  • n Represents an integer of 1 - 4.
  • R 3 represents, when n is 1, hydrogen atom, an alkyl group, a substituted or unsubstituted aralkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an epoxyalkyl group, an aryl group or a group ##SPC2##
  • R 1 is as defined above
  • R 4 is an acyl group) or a divalent metal atom, when n is 3, an alkanetriyl group, an aralkanetriyl group or a trivalent metal atom, and, when n is 4, an alkanetetrayl group, an aralkanetetrayl group or a tetravalent metal atom.
  • the inventors of this invention have found that the new piperidine derivatives having the above-shown formula (I) have a stabilizing effect on synthetic polymeric materials, in particular, a property for effectively preventing photo- and thermal-deteriorations.
  • Polyolefins including low- and high-density polyethylene, polypropylene, polystyrene, polybutadiene, polyisoprene, other olefin homopolymer, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, styrene-butadiene copolymer, acrylonitrile-styrene-butadiene copolymer, and other copolymers of other ethylene-forming unsaturated monomer with olefin;
  • Polyvinyl chloride and polyvinylidene chloride including homopolymers of vinyl chloride, homopolymers of vinylidene chloride, copolymers of vinyl chloride with vinylidene chloride, copolymers of each of vinyl chloride and vinylidene chloride with vinyl acetate or other ethylene-forming unsaturated monomer;
  • Polyacetal for example, polyoxymethylene and polyoxyethylene
  • Polyester for example, polyethylene terephthalate
  • Polyamide for example, 6-nylon, 6,6-nylon and 6,10-nylon;
  • the synthetic polymeric materials are widely utilized in the form of various shapes, e.g., fibres, films, sheets, other molded products, latex and foams, because of their excellent properties.
  • the alkyl group of the R 1 in the above-mentioned formula (I) has carbon atoms of 1 - 8 and is, for example, methyl, ethyl, propyl, butyl or octyl; the substituted alkyl group has carbon atoms of 1 - 3 in its alkyl and is, for example, hydroxyalkyl, e.g., 2-hydroxyethyl, an alkoxyalkyl having carbon atoms of 1 - 4 in its alkoxy, e.g., 2-ethoxyethyl or ethoxymethyl, an acyloxyalkyl having aliphatic carbon atoms of 2 - 8 or aromatic carbon atoms of 7 - 11 in its acyl, e.g., 2-acetoxyethyl, 2-stearoyloxyethyl, 2-benzoyloxyethyl or 2-acrloyloxyethyl, an epoxyalkyl, e.g.,
  • the particularly preferable R 1 is hydrogen atom, methyl group, an allyl group, benzyl group or an aliphatic acyl group having carbon atoms of 2 - 8.
  • the lower alkyl group of the R 2 has carbon atoms of 1 - 4 and is, for example, methyl.
  • the alkyl group, alkenyl group, alkynyl group and epoxyalkyl group of the R 3 are the same as illustrated with regard to the R 1 .
  • the substituted or unsubstituted aralkyl group has carbon atoms of 7 - 8 in its aralkyl wherein its phenyl may be substituted with an alkyl group having carbon atoms of 1 - 4 or hydroxy group, and is, for example, benzyl or 3,5-di-t-butyl-4-hydroxybenzyl;
  • the cycloalkyl group has carbon atoms of 5 - 6 and is, for example, cyclohexyl;
  • the aryl group has carbon atoms of 6 - 11 and is, for example, phenyl or tolyl;
  • the alkylene group has carbon atoms of 2 - 6 and is, for example, ethylene, propylene, tetramethylene or hexamethylene;
  • the alkenylene group has carbon atoms of 4 - 6 and is, for example, 2-butenylene;
  • the alkynylene group has carbon atoms of 4 - 6 and is,
  • the trivalent metal atom is, for example, boron or aluminum;
  • the alkanetetrayl group has carbon atoms of 5 and is, for example, ##STR6##
  • the aralkanetetrayl group has carbon atoms of 10 and is, for example ##SPC4##
  • R 3 is hydrogen atom, an alkyl group having carbon atoms of 1 - 4, or the group ##SPC5##
  • n 1
  • the piperidine derivatives (I) of this invention can be easily prepared by reacting the compounds (II) with the compounds (III) in the presence of a basic catalyst such as sodium methylate, sodium ethylate, potassium butylate or sodium hydroxide in an organic solvent such as toluene or xylene as shown in the following reaction equation: ##SPC6##
  • a basic catalyst such as sodium methylate, sodium ethylate, potassium butylate or sodium hydroxide
  • organic solvent such as toluene or xylene
  • R 1 , R 2 , R 3 and n are as defined above.
  • the piperidine derivatives (I) employed as a stabilizer may be easily incorporated into a synthetic polymeric material by various methods commonly used in the art.
  • the stabilizer may be added to a synthetic polymer material at any stage in the manufacture of a molded product therefrom.
  • the stabilizer of a dry powder may be admixed with a synthetic polymeric material or a suspension or emulsion of the stabilizer may be admixed therewith.
  • the amount of the piperidine derivative (I) which may be added to a synthetic polymeric material according to this invention is varied upon the kind, nature and purpose for use of the synthetic polymeric material to be added. In general, the amount ranging 0.01 - 5.0% by weight may be employed to the weight of a synthetic polymeric material, but a practical range may be varied upon the synthetic polymeric material and there may be used 0.01 - 2.0% by weight, preferably 0.02 - 1.0% by weight for polyolefin; 0.01 - 1.0% by weight, preferably 0.02 - 0.5% by weight for polyvinyl chloride and polyvinylidene chloride; 0.01 - 5.0% by weight, preferably 0.02 - 2.0% by weight for polyurethane and polyamide.
  • the above-mentioned stabilizer may be used alone or in admixture with other known antioxidants, ultraviolet absorbents, fillers, pigments and the like. Examples of such additives are illustratively shown below.
  • esters of 3,5-di-tert.butyl-4-hydroxyphenylpropionic acid with monohydric or polyhydric alcohols are esters of 3,5-di-tert.butyl-4-hydroxyphenylpropionic acid with monohydric or polyhydric alcohols,
  • methanol, ethanol, octadecanol 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, diethylene glycol, thiodiethylene glycol, neopentyl glycol, pentaerythritol, 3-thia-undecanol, 3-thia-pentadecanol, trimethylhexanediol, trimethylolethane, trimethylolpropane, tris-hydroxyethyl-iso-cyanurate and 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2,2,2]octane.
  • esters of 3,5-di-tert.butyl-4-hydroxyphenylacetic acid with monohydric or polyhydric alcohols are esters of 3,5-di-tert.butyl-4-hydroxyphenylacetic acid with monohydric or polyhydric alcohols,
  • methanol, ethanol, octadecanol 1,6-hexanediol, 1,9-nonanediol, ethylene glycol,1,2-propanediol, diethylene glycol, thiodiethylene glycol, neopentyl glycol, pentaerythritol, 3-thia-undecanol, 3-thia-pentadecanol, trimethylhexanediol, trimethylolethane, trimethylolpropane, tris-hydroxyethylisocyanurate and 4-hydroxymethyl-1-phospha-2,6,7-tri-oxa-bicyclo[2,2,2]octane.
  • phenyl-1-naphthylamine such as, for example, phenyl-1-naphthylamine, phenyl-2-naphthylamine, N,N'-diphenyl-p-phenylenediamine, N,N'-di-2-naphthyl-p-phenylenediamine, N,N'-di-sec.butyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, 6-dodecyl-2,2,4-trimethyl-1,2-dihydro-quinoline, mono- and di-octyliminodibenzyl and polymerised 2,2,4-trimethyl-1,2-dihydroquinoline.
  • UV-absorbers and light protection agents UV-absorbers and light protection agents
  • phenyl salicylate such as, for example, phenyl salicylate, octylphenyl salicylate, di-benzoylresorcinol, bis(4-tert.butylbenzoyl)resorcinol, benzoyl-resorcinol, 3,5-di-tert.butyl-4-hydroxybenzoic acid 2,4-di-tert.butylphenyl ester, octadecyl ester or 2-methyl-4,6-di-tert.butylphenyl ester.
  • oxanilide such as, for example, oxanilide, isophthalic acid dihydrazide, sebacic acid bis-phenylhydrazide, bis-benzylidene oxalic acid di-hydrazide, N,N'-diacetyl-adipic acid dihydrazide, N,N'-bis-salicyloyl-oxalic acid dihydrazide, N,N'-bis-salicyloylhydrazine and N,N'-bis-(3,5-di-tert.butyl-4-hydroxyphenyl-propionyl)hydrazine.
  • oxanilide isophthalic acid dihydrazide, sebacic acid bis-phenylhydrazide, bis-benzylidene oxalic acid di-hydrazide, N,N'-diacetyl-adipic acid dihydrazide, N,N'-bis-salicyl
  • triphenylphosphite such as, for example triphenylphosphite, di-phenyl alkyl-phosphites, phenyl dialkylphosphites, trinonylphenylphosphite, trilaurylphosphite, tri-octadecylphosphite, 3,9-di-isodecyloxy-2,4,8,10-tetraoxa-3,9-diphospha-spiro[5.5]undecane and tris-(4-hydroxy-3,5-di-tert.butylphenyl)phosphite.
  • esters of ⁇ -thiodipropionic acid e.g., the lauryl, stearyl, myristryl or tridecyl ester
  • salts of 2-mercaptobenzimidazole e.g., the zinc salt
  • diphenylthiourea such as, for example, esters of ⁇ -thiodipropionic acid, e.g., the lauryl, stearyl, myristryl or tridecyl ester, salts of 2-mercaptobenzimidazole, e.g., the zinc salt, and diphenylthiourea.
  • polyvinylpyrrolidone such as, for example, polyvinylpyrrolidone, malamine, benzoguanamine, triallyl cyanurate, dicyandiamide, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes and alkali metal salts and alkaline earth metal salts of higher saturated or unsaturated fatty acids, e.g., Ca stearate, Mg laurate, Na ricinoleate, K palmitate and Zn stearate.
  • higher saturated or unsaturated fatty acids e.g., Ca stearate, Mg laurate, Na ricinoleate, K palmitate and Zn stearate.
  • organic tin compounds such as, for example, organic tin compounds, organic lead compounds and Ba/Cd salts of fatty acids.
  • plasticizers such as, for example, plasticizers, lubricants, e.g., glycerine, monostearate, emulsifiers, antistatic agents, flameproofing agents, pigments, carbon black, asbestos, glass fibres, kaolin and talc.
  • lubricants e.g., glycerine, monostearate, emulsifiers, antistatic agents, flameproofing agents, pigments, carbon black, asbestos, glass fibres, kaolin and talc.
  • Examples 1 to 8 describe the synthetic polymer compositions having incorporated therein the piperidine derivative (I) and their stabilizing effects and Referential Example describes the preparation of the piperidine derivative (I).
  • the sheet was exposed to irradiation of ultraviolet ray at 45° C in a fade-meter and the time when the sheet becomes brittle was measured.
  • the sheet was exposed to irradiation of ultraviolet ray at 45° C in a fade-meter and the time when the sheet becomes brittle was measured.
  • the plate thus formed was subjected to the exposure of ultraviolet ray irradiation in a fade meter at 45° C for 500 hours.
  • a test piece of the treated plate was tested for color difference by means of a color-difference colorimeter according to the method prescribed in Japanese Industrial Standard (JIS) "K-7103", and a change of the yellowness index of the plate was calculated according to the following equation:
  • ⁇ YI means a change of yellowness index
  • YI means a yellowness index after exposure
  • YI 0 means an initial yellowness index of a test piece.
  • the sheet was treated in a sunshine weather-ometer for 50 hours and tested for retentions of ultimate elongation and of ultimate tensile strength as well as coloration degree were determined by a conventional tensile test method. The results are shown in Table 3.
  • 6-nylon resin ["CM1011", trade name, available from Toray Industries Inc.] was incorporated 0.25 part of the stabilizer of this invention. The resulting mixture was heated and melted and then molded into a film having a thickness of about 0.1 mm. under pressure by a conventional compression molding machine.
  • the film thus formed was aged under the following aging condition and thereafter subjected to a tensile test to determine the retentions of tensile strength and elongation.
  • the sheet thus formed was subjected to the exposure to ultraviolet ray in a fade-meter at 45° C for 15 hours and then tested for the retentions of ultimate elongation and ultimate tensile strength.
  • polyester resin ["Ester-G13", trade name, available from Mitsui Toatsu Chemicals, Inc.] were dissolved and mixed 1 part of benzoyl peroxide and 0.2 part of the stabilizer. The resulting mixture was cured by preheating at 60° C for 30 minutes and then heating at 100° C for addtional 1 hour to be formed into a plate with a thickness of 3 mm.
  • the plate thus formed was exposed to irradiation in the sunshine weather-ometer for 60 hours and the change of yellowness index thereof was determined according to the same method as described in the above Example 3.

Abstract

A new piperidine derivative and a synthetic polymer composition stabilized against photo- and thermal deterioration thereof wherein there is incorporated, in a sufficient amount to prevent such deterioration, said piperidine derivative.

Description

DETAILED EXPLANATION OF THE INVENTION
This invention relates to a new piperidine derivative and a synthetic polymer composition which comprises the same.
More particularly, the piperidine derivatives of this invention have the following formula ##SPC1##
In the above formula, R1 represents hydrogen atom, an alkyl group, a substituted alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, an aliphatic acyl group, an alkoxycarbonyl group or an aralkoxycarbonyl group. R2 represents hydrogen atom, a lower alkyl group or phenyl group. n Represents an integer of 1 - 4. R3 represents, when n is 1, hydrogen atom, an alkyl group, a substituted or unsubstituted aralkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an epoxyalkyl group, an aryl group or a group ##SPC2##
(R1 is as defined above), when n is 2, an alkylene group, an alkenylene group, an alkynylene group, an aralkylene group, a group ##STR1## (R4 is an acyl group) or a divalent metal atom, when n is 3, an alkanetriyl group, an aralkanetriyl group or a trivalent metal atom, and, when n is 4, an alkanetetrayl group, an aralkanetetrayl group or a tetravalent metal atom.
The inventors of this invention have found that the new piperidine derivatives having the above-shown formula (I) have a stabilizing effect on synthetic polymeric materials, in particular, a property for effectively preventing photo- and thermal-deteriorations.
The term "polymeric materials" as used herein are intended to embrace,
Polyolefins including low- and high-density polyethylene, polypropylene, polystyrene, polybutadiene, polyisoprene, other olefin homopolymer, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, styrene-butadiene copolymer, acrylonitrile-styrene-butadiene copolymer, and other copolymers of other ethylene-forming unsaturated monomer with olefin;
Polyvinyl chloride and polyvinylidene chloride including homopolymers of vinyl chloride, homopolymers of vinylidene chloride, copolymers of vinyl chloride with vinylidene chloride, copolymers of each of vinyl chloride and vinylidene chloride with vinyl acetate or other ethylene-forming unsaturated monomer;
Polyacetal, for example, polyoxymethylene and polyoxyethylene;
Polyester, for example, polyethylene terephthalate;
Polyamide, for example, 6-nylon, 6,6-nylon and 6,10-nylon; and,
Polyurethane.
The synthetic polymeric materials are widely utilized in the form of various shapes, e.g., fibres, films, sheets, other molded products, latex and foams, because of their excellent properties.
The alkyl group of the R1 in the above-mentioned formula (I) has carbon atoms of 1 - 8 and is, for example, methyl, ethyl, propyl, butyl or octyl; the substituted alkyl group has carbon atoms of 1 - 3 in its alkyl and is, for example, hydroxyalkyl, e.g., 2-hydroxyethyl, an alkoxyalkyl having carbon atoms of 1 - 4 in its alkoxy, e.g., 2-ethoxyethyl or ethoxymethyl, an acyloxyalkyl having aliphatic carbon atoms of 2 - 8 or aromatic carbon atoms of 7 - 11 in its acyl, e.g., 2-acetoxyethyl, 2-stearoyloxyethyl, 2-benzoyloxyethyl or 2-acrloyloxyethyl, an epoxyalkyl, e.g., 2,3-epoxypropyl, a cyanoalkyl, e.g., cyanomethyl or 2-cyanoethyl, a halogenoalkyl, e.g., 2-chloroethyl, an alkoxycarbonylalkyl having carbon atoms of 1 - 4 in its alkoxy, e.g., ethoxycarbonylmethyl, butoxycarbonylmethyl or 2-methoxycarbonylethyl; the alkenyl group has carbon atoms of 3 - 4 and is, for example, allyl; the alkynyl group has carbon atoms of 3 - 4 and is, for example, 2-propynyl; the aralkyl group has carbon atoms of 7 - 8 and is, for example, benzyl; the aliphatic acyl group has carbon atoms of 2 - 8 and is, for example, acetyl, propionyl, butyryl, octanoyl, acryloyl, methacryloyl or crotonoyl; the alkoxycarbonyl group has carbon atoms of 2 - 10 and is, for example, ethoxycarbonyl or octoxycarbonyl, and the aralkoxycarbonyl group has carbon atoms of 8 - 10 and is, for example, benzyloxycarbonyl. The particularly preferable R1 is hydrogen atom, methyl group, an allyl group, benzyl group or an aliphatic acyl group having carbon atoms of 2 - 8. The lower alkyl group of the R2 has carbon atoms of 1 - 4 and is, for example, methyl. The alkyl group, alkenyl group, alkynyl group and epoxyalkyl group of the R3 are the same as illustrated with regard to the R1. The substituted or unsubstituted aralkyl group has carbon atoms of 7 - 8 in its aralkyl wherein its phenyl may be substituted with an alkyl group having carbon atoms of 1 - 4 or hydroxy group, and is, for example, benzyl or 3,5-di-t-butyl-4-hydroxybenzyl; the cycloalkyl group has carbon atoms of 5 - 6 and is, for example, cyclohexyl; the aryl group has carbon atoms of 6 - 11 and is, for example, phenyl or tolyl; the alkylene group has carbon atoms of 2 - 6 and is, for example, ethylene, propylene, tetramethylene or hexamethylene; the alkenylene group has carbon atoms of 4 - 6 and is, for example, 2-butenylene; the alkynylene group has carbon atoms of 4 - 6 and is, for example 2-butynylene; the aralkylene group has carbon atoms of 8 - 10 and is, for example, xylylene; the group ##STR2## wherein R4 is an aliphatic acyl group having carbon atoms of 2 - 8 is, for example, ##STR3## the divalent metal atom is, for example, calcium, magnesium, zinc, copper or barium; the alkanetriyl group has carbon atoms of 3 - 6 and is, for example, --CH2 --CH--CH2, ##STR4## or ##STR5## the aralkanetriyl group has carbon atoms of 9 and is, for example, ##SPC3##
the trivalent metal atom is, for example, boron or aluminum; the alkanetetrayl group has carbon atoms of 5 and is, for example, ##STR6## the aralkanetetrayl group has carbon atoms of 10 and is, for example ##SPC4##
and the tetravalent metal atom is, for example, tin, silicon or titanium. The particularly preferable R3 is hydrogen atom, an alkyl group having carbon atoms of 1 - 4, or the group ##SPC5##
(R1 ' is hydrogen atom or methyl group) Preferably, n is 1.
Representative compounds of the piperidine derivatives (I) of this invention are illustrated below, but the compounds illustrated hereunder are not intended to limit this invention.
1. Ethyl β-(2,2,6,6-tetramethyl-4-piperidyloxy)acrylate
2. Ethyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)acrylate
3. Methyl β-(2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
4. Methyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
5. Octyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
6. Allyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
7. 2-Propynyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonate
8. 2,3-Epoxypropyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate 4-piperidyloxy)crotonate
9. 3,5-di-t-Butyl-4-hydroxybenzyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
10. Benzyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
11. Cyclohexyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonate
12. Phenyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
13. 2,2,6,6-Tetramethyl-4-piperidyl β-(2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
14. 1,2,2,6,6-Pentamethyl-4-piperidyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate
15. Methyl β-(2,2,6,6,-tetramethyl-1-octyl-4-piperidyloxy)-crotonate
16. Methyl β-(1-allyl-2,2,6,6-tetramethyl-4-piperidyloxy)-crotonate
17. Methyl β-[1-(2-propynyl)-2,2,6,6-tetramethyl-4-piperidyloxy]crotonate
18. Methyl β-(1-benzyl-2,2,6,6-tetramethyl-4-piperidyloxy)-crotonate
19. Methyl β-[1-(2,3-epoxypropyl)-2,2,6,6-tetramethyl-4-piperidyloxy]crotonate
20. Methyl β-[1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperidyloxy]crotonate
21. Methyl β-[1-(2-acetoxyethyl)-2,2,6,6-tetramethyl-4-piperidyloxy]crotonate
22. Methyl β-(1-ethoxycarbonylmethyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
23. Methyl β-(1-ethoxymethyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
24. Methyl β-(1-acryloyl-2,2,6,6-tetramethyl-4-piperidyloxy)-crotonate
25. Methyl β-(1-acetyl-2,2,6,6-tetramethyl-4-piperidyloxy)-crotonate
26. Methyl β-(1-ethoxycarbonyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
27. Methyl β-(1-benzyloxycarbonyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
28. Methyl β-(1-cyanomethyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate
29. Methyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)cinnamate
Ethylene 1,2-bis[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)acrylate]
31. Ethylene 1,2-bis [β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate]
32. 2-Butenylene 1,4-bis[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate]
33. 2-Butynylene 1,4-bis[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate]
34. p-Xylylene α,α'-bis[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate]
35. Calcium bis[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonate]
36. 3-acetoxypropylene 1,2-bis[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate]
37. Tris [β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonin]
38. 1,1,1-Tris[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonoyloxymethyl]ethane
39. 1,1,1-Tris[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonoyloxymethyl]propane
40. 1,3,5-Tris[β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonoyloxymethyl]benzene
41. Boron tris [β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonate]
42. Tetrakis [β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonoyloxymethyl]
43. 1,2,4,5-Tetrakis [β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonoyloxymethyl]benzene
44. Tin tetrakis [β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-crotonate]
The piperidine derivatives (I) of this invention can be easily prepared by reacting the compounds (II) with the compounds (III) in the presence of a basic catalyst such as sodium methylate, sodium ethylate, potassium butylate or sodium hydroxide in an organic solvent such as toluene or xylene as shown in the following reaction equation: ##SPC6##
In the above formulae, R1, R2, R3 and n are as defined above.
In this invention, the piperidine derivatives (I) employed as a stabilizer may be easily incorporated into a synthetic polymeric material by various methods commonly used in the art. The stabilizer may be added to a synthetic polymer material at any stage in the manufacture of a molded product therefrom. For example, the stabilizer of a dry powder may be admixed with a synthetic polymeric material or a suspension or emulsion of the stabilizer may be admixed therewith.
The amount of the piperidine derivative (I) which may be added to a synthetic polymeric material according to this invention is varied upon the kind, nature and purpose for use of the synthetic polymeric material to be added. In general, the amount ranging 0.01 - 5.0% by weight may be employed to the weight of a synthetic polymeric material, but a practical range may be varied upon the synthetic polymeric material and there may be used 0.01 - 2.0% by weight, preferably 0.02 - 1.0% by weight for polyolefin; 0.01 - 1.0% by weight, preferably 0.02 - 0.5% by weight for polyvinyl chloride and polyvinylidene chloride; 0.01 - 5.0% by weight, preferably 0.02 - 2.0% by weight for polyurethane and polyamide.
The above-mentioned stabilizer may be used alone or in admixture with other known antioxidants, ultraviolet absorbents, fillers, pigments and the like. Examples of such additives are illustratively shown below.
ANTIOXIDANTS
Simple 2,6-dialkylphenols,
such as, for example, 2,6-di-tert.butyl-4-methylphenol, 2-tert.butyl-4,6-dimethylphenol, 2,6-di-tert.butyl-4-methoxymethylphenol and 2,6-dioctadecyl-4-methylphenol.
Derivatives of alkylated hydroquinones,
such as, for example, 2,5-di-tert.butyl-hydroquinone, 2,5-di-tert.amyl-hydroquinone, 2,6-di-tert.butyl-hydroquinone, 2,5-di-tert.butyl-4-hydroxyanisole, 3,5-di-tert.butyl-4-hydroxyanisole and tris(3,5-di-tert.-4-hydroxyphenyl)phosphite, 3,5-di-tert.butyl-4-hydroxyphenylstearate, di-(3,5-di-tert.butyl-4-hydroxyphenyl)adipate.
Hydroxylated thiodiphenyl ethers,
such as, for example, 2,2'-thiobis(6-tert.butyl-4-methylphenol), 2,2'-thiobis-(4-octylphenol), 4,4'-thiobis(6-tert.butyl-3-methylphenol), 4,4'-thiobis(3,6-di-sec.amylphenol) and 4,4'-thiobis(6-tert.butyl-2-methylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide.
Alkylidene-bisphenols,
such as, for example, 2,2'-methylene-bis(6-tert.butyl-4-methylphenol), 2,2'-methylene-bis(6-tert.butyl-4-ethylphenol), 4,4'-methylene-bis(6-tert.butyl-2-methylphenol), 4,4-methylene-bis-(2,6-di-tert.butylphenol), 2,6-di-(3-tert.butyl-5-methyl-2-hydroxybenzyl-4-methylphenol, 2,2'-methylene-bis[4-methyl-6-(α-methylcyclohexyl)-phenol], 1,1-bis(3,5-dimethyl-2-hydroxyphenyl)-butane, 1,1-bis(5-tert.butyl-4-hydroxy-2-methylphenyl)-butane, 2,2-bis-(5-tert.butyl-4-hydroxy-2-methylphenyl)butane, 2,2-bis(3,5-di-tert.butyl-4-hydroxyphenyl)propane, 1,1,3-tris-(5-tert.butyl-4-hydroxy-2-methylphenyl)butane, 2,2-bis(5-tert.butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra(5-tert.butyl-4-hydroxy-2-methylphenyl)pentane and ethylene glycol bis[3,3-bis(3'-tert.butyl-4-hydroxyphenyl)butyrate].
O-, N- and S-benzyl compounds,
such as, for example, 3,5,3',5'-tetra-tert.butyl-4,4'-dihydroxydibenzylether, 4-hydroxy-3,5-dimethylbenzyl-mercaptoacetic acid octadecyl ester, tri(3,5-di-tert.butyl-4-hydroxybenzyl)amine, and bis(4-tert.butyl-3-hydroxy-2,6-dimethylbenzyl)dithiolterephthalate.
Hydroxybenzylated malonic esters,
such as, for example, 2,2-bis(3,5-di-tert.butyl-2-hydroxybenyl)malonic acid dioctadecyl ester, 2-(3-tert.butyl-4-hydroxy-5-methylbenzyl)malonic acid dioctadecyl ester, 2,2-bis-(3,5-di-tert.butyl-4-hydroxybenzyl)malonic acid didodecylmercaptoethyl ester and 2,2-bis(3,5-di-tert.butyl-4-hydroxybenzyl)malonic acid di(4-tert.octylphenyl)-ester.
Hydroxybenzyl-aromatics,
such as, for example, 1,3,5-tri(3,5-di-tert.butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-di(3,5-di-tert.butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene and 2,4,6-tri(3,5-di-tert.butyl-4-hydroxybenzyl)phenol.
s-Triazine compounds,
such as, for example, 2,4-bis-octylmercapto-6-(3,5-di-tert.butyl-4-hydroxyanilino)-s-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert.butyl-4-hydroxyanilino)-s-triazne, 2-octylmercapto-4,6-bis-(3,5-di-tert.butyl-4-hydroxyphenoxy)-s-triazine, 2,4,6-tris(3,5-di-tert.butyl-4-hydroxyphenoxy)-s-triazine, 2,4,6-tris(3,5-di-tert.butyl-4-hydroxyphenylethyl)-s-triazine and 1,3,5-tris(3,5-di-tert.butyl-4-hydroxybenzyl)isocyanurate.
Amides of 3,5-di-tert.butyl-4-hydroxyphenylpropionic acid,
such as, for example, 1,3,5-tris(3,5-di-tert.butyl-4-hydroxyphenyl-propionyl)-hexahydro-s-triazine and N,N'-bis(3,5-di-tert.butyl-4-hydroxyphenylpropionyl)-hexamethylenediamine.
Esters of 3,5-di-tert.butyl-4-hydroxyphenylpropionic acid with monohydric or polyhydric alcohols,
such as, for example, methanol, ethanol, octadecanol, 1,6-hexanediol; 1,9-nonanediol, ethylene glycol, 1,2-propanediol, diethylene glycol, thiodiethylene glycol, neopentyl glycol, pentaerythritol, 3-thia-undecanol, 3-thia-pentadecanol, trimethylhexanediol, trimethylolethane, trimethylolpropane, tris-hydroxyethyl-isocyanurate and 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2,2,2]octane.
Esters of 5-tert.butyl-4-hydroxy-3-methylphenylpropionic acid with monohydric or polyhydric alcohols,
such as, for example, methanol, ethanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, diethylene glycol, thiodiethylene glycol, neopentyl glycol, pentaerythritol, 3-thia-undecanol, 3-thia-pentadecanol, trimethylhexanediol, trimethylolethane, trimethylolpropane, tris-hydroxyethyl-iso-cyanurate and 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2,2,2]octane.
Esters of 3,5-di-tert.butyl-4-hydroxyphenylacetic acid with monohydric or polyhydric alcohols,
such as, for example, methanol, ethanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol,1,2-propanediol, diethylene glycol, thiodiethylene glycol, neopentyl glycol, pentaerythritol, 3-thia-undecanol, 3-thia-pentadecanol, trimethylhexanediol, trimethylolethane, trimethylolpropane, tris-hydroxyethylisocyanurate and 4-hydroxymethyl-1-phospha-2,6,7-tri-oxa-bicyclo[2,2,2]octane.
Acylaminophenols,
such as, for example,N-(3,5-di-tert.butyl-4-hydroxyphenyl)stearic acid amide and N,N'-bis(3,5-di-tert.butyl-4-hydroxyphenyl)-thio-bis-acetamide.
Benzylphosphonates,
such as, for example, 3,5-di-tert.butyl-4-hydroxybenzylphosphonic acid dimethyl ester, 3,5-di-tert.butyl-4-hydroxybenzylphosphonic acid diethyl ester, 3,5-di-tert.butyl-4-hydroxybenzylphosphonic acid dioctadecyl ester and 5-tert.-butyl-4-hydroxy-3-methylbenzylphosphonic acid dioctadecyl ester.
Aminoaryl derivatives,
such as, for example, phenyl-1-naphthylamine, phenyl-2-naphthylamine, N,N'-diphenyl-p-phenylenediamine, N,N'-di-2-naphthyl-p-phenylenediamine, N,N'-di-sec.butyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, 6-dodecyl-2,2,4-trimethyl-1,2-dihydro-quinoline, mono- and di-octyliminodibenzyl and polymerised 2,2,4-trimethyl-1,2-dihydroquinoline.
UV-absorbers and light protection agents
2-(2'-Hydroxyphenyl)-benztriazoles,
such as, for example, the 5'-methyl-, 3',5'-di-tert.butyl-, 5'-tert.butyl-, 5'-(1,1,3,3-tetramethyl-butyl)-, 5-chloro-3',5'-di-tert.butyl-, 5-chloro-3'-tert.butyl-5'-methyl-, 3'-sec.butyl-5'-tert.butyl-, 3'-[α-methylbenzyl]-5'-methyl-, 3'-[α-methylbenzyl]5'-methyl-5-chloro-, 4'-hydroxy-, 4'-methoxy-, 4'-octoxy-, 3',5'-di-tert.amyl-, 3'-methyl-5'-carbomethoxyethyl- or 5-chloro-3',5'-di-tert.amyl-derivatives.
2,4-Bis(2'-hydroxyphenyl)-5-alkyl-s-triazines,
such as, for example, the 6-ethyl-, 6-undecyl- or 6-heptadecyl-derivatives.
2-Hydroxy-benzophenones,
such as, for example, the 4-hydroxy-, 4-methoxy-, 4-octoxy-, 4-decyloxy-, 4-dodecyloxy-, 4-benzyloxy-, 4,2',4'-trihydroxy- or 2'-hydroxy-4,4'-dimethoxy-derivatives.
1,3-Bis(2'-hydroxy-benzoyl)benzenes,
such as, for example, 1,3-bis(2'-hydroxy-4'-hexyloxy-benzoyl)-benzene, 1,3-bis(2'-hydroxy-4'-octoxy-benzoyl)benzene and 1,3-bis(2'-hydroxy-4'-dodecyloxy-benzoyl)benzene.
Esters of optionally substituted benzoic acids,
such as, for example, phenyl salicylate, octylphenyl salicylate, di-benzoylresorcinol, bis(4-tert.butylbenzoyl)resorcinol, benzoyl-resorcinol, 3,5-di-tert.butyl-4-hydroxybenzoic acid 2,4-di-tert.butylphenyl ester, octadecyl ester or 2-methyl-4,6-di-tert.butylphenyl ester.
Acrylates,
such as, for example, α-cyano-β,β-diphenylacrylic acid ethyl ester or isooctyl ester, α-carbomethoxycinnamic acid methyl ester, α-cyano-β-methyl-p-methoxycinnamic acid methyl ester or butyl ester and N-(β-carbomethoxy-vinyl)-2-methylindoline.
Nickel compounds,
such as, for example, nickel complexes of 2,2'-thiobis(4-tert.octylphenol), such as the 1:1 and 1:2 complex, optionally with other ligands such as n-butylamine, triethanolamine or N-cyclohexyl-diethanolamine, nickel complexes of bis(4-tert.octylphenyl)-sulphone, such as the 2:1 complex, optionally with other ligands such as 2-ethyl-caproic acid, nickel dibutyldithiocarbamate, nickel salts of 4-hydroxy-3,5-di-tert.butylbenzylphosphonic acid monoakyl esters, such as the methyl, ethyl or butyl ester, the nickel complex of 2-hydroxy-4 -methyl-phenyl-undecyl-ketonoxime and nickel 3,5-di-tert.butyl-4-hydroxybenzoate.
Oxalic acid diamides,
such as, for example, 4,4'-di-octyloxyanilide, 2,2'-dioctyloxy-5,5'-di-tert.-butyloxanilide, 2,2'-di-dodecyloxy-5,5'-di-tert.butyloxanilide, 2-ethoxy-5-tert.butyl-2'-ethyloxanilide, 2-ethoxy-2'-ethyl-oxanilide, N,N' -bis(3-dimethylaminopropyl)oxalamide, mixtures of o- and p-methoxy and o- and p-ethoxy-di-substituted oxanilides and mixtures of 2-ethoxy-5-tert.butyl-2'-ethyloxanilide with 2-ethoxy-2'-5,4'-di-tert.butyloxanilide.
Metal deactivators,
such as, for example, oxanilide, isophthalic acid dihydrazide, sebacic acid bis-phenylhydrazide, bis-benzylidene oxalic acid di-hydrazide, N,N'-diacetyl-adipic acid dihydrazide, N,N'-bis-salicyloyl-oxalic acid dihydrazide, N,N'-bis-salicyloylhydrazine and N,N'-bis-(3,5-di-tert.butyl-4-hydroxyphenyl-propionyl)hydrazine.
Phosphites,
such as, for example triphenylphosphite, di-phenyl alkyl-phosphites, phenyl dialkylphosphites, trinonylphenylphosphite, trilaurylphosphite, tri-octadecylphosphite, 3,9-di-isodecyloxy-2,4,8,10-tetraoxa-3,9-diphospha-spiro[5.5]undecane and tris-(4-hydroxy-3,5-di-tert.butylphenyl)phosphite.
Compounds which destroy peroxide,
such as, for example, esters of β-thiodipropionic acid, e.g., the lauryl, stearyl, myristryl or tridecyl ester, salts of 2-mercaptobenzimidazole, e.g., the zinc salt, and diphenylthiourea.
Polyamide stabilizers,
such as, for example, copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganes.
Basic co-stabilizers,
such as, for example, polyvinylpyrrolidone, malamine, benzoguanamine, triallyl cyanurate, dicyandiamide, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes and alkali metal salts and alkaline earth metal salts of higher saturated or unsaturated fatty acids, e.g., Ca stearate, Mg laurate, Na ricinoleate, K palmitate and Zn stearate.
PVC stabilizers,
such as, for example, organic tin compounds, organic lead compounds and Ba/Cd salts of fatty acids.
Nucleating agents,
such as, for example, 4-tert.-butylbenzoic acid, adipic acid and diphenylacetic acid.
Other additives,
such as, for example, plasticizers, lubricants, e.g., glycerine, monostearate, emulsifiers, antistatic agents, flameproofing agents, pigments, carbon black, asbestos, glass fibres, kaolin and talc.
Other additive such as these may be usually blended into the piperidine derivative (I) of this invention and advantageously employed at a ratio of 0.5 - 3 to 1.
Examples 1 to 8 describe the synthetic polymer compositions having incorporated therein the piperidine derivative (I) and their stabilizing effects and Referential Example describes the preparation of the piperidine derivative (I).
EXAMPLE 1
Into 100 parts of polypropylene ["Noblen JHH-G", trade name, after twice recrystallizations from monochlorobenzene, available from Mitsui Toatsu Chemicals Inc.] was incorporated 0.25 part of the stabilizer of this invention. The resulting mixture was blended and molten. The molten mixture was molded into a sheet with a thickness of 0.5 mm. under heating and pressure.
The sheet was exposed to irradiation of ultraviolet ray at 45° C in a fade-meter and the time when the sheet becomes brittle was measured.
The results are shown in Table 1. The stabilizers numbered hereinafter are referred to hereinbefore.
EXAMPLE 2
Into 100 parts of high-density polyethylene ["Hi-Zex", trade name, available from Mitsui Toatsu Chemicals Inc., after twice recrystallizations from toluene] was incorporated 0.25 part of the stabilizer of this invention. The resulting mixture was blended and molten and molded into a sheet with a thickness of 0.5 mm. under heating and pressure.
The sheet was exposed to irradiation of ultraviolet ray at 45° C in a fade-meter and the time when the sheet becomes brittle was measured.
The results are given in Table 1.
              Table 1                                                     
______________________________________                                    
Stabilizer                High-density                                    
No.         Polypropylene Polyethylene                                    
______________________________________                                    
 2          740       hrs.    1580    hrs.                                
 3          700               1680                                        
 4          780               1640                                        
 8          860               1840                                        
11          740               1420                                        
13          1060              2120                                        
14          1040              2020                                        
18          800               1780                                        
19          920               2040                                        
22          720               1580                                        
24          700               1460                                        
31          780               1760                                        
35          960               2100                                        
______________________________________                                    
None         60                400                                        
______________________________________                                    
EXAMPLE 3
Into 100 parts of polystyrene ["Styron", trade name, after recrystallization from a mixture of benzene with methanol, available from Asahi-Dow Limited] was incorporated 0.25 part of the stabilizer of this invention. The resulting mixture was molded at 180° C under pressure into a plate with a thickness of 1 mm.
The plate thus formed was subjected to the exposure of ultraviolet ray irradiation in a fade meter at 45° C for 500 hours. A test piece of the treated plate was tested for color difference by means of a color-difference colorimeter according to the method prescribed in Japanese Industrial Standard (JIS) "K-7103", and a change of the yellowness index of the plate was calculated according to the following equation:
ΔYI = YI - yi.sub.o
wherein ΔYI means a change of yellowness index, YI means a yellowness index after exposure and YI0 means an initial yellowness index of a test piece.
The results are shown in Table 2.
              Table 2                                                     
______________________________________                                    
Stabilizer No. YI.sub.0    ΔYI                                      
______________________________________                                    
 3             4.3         +3.1                                           
                           +2.8                                           
13             4.5         +3.3                                           
14             4.2         +4.4                                           
19             4.6         +2.9                                           
35             4.4         +17.1                                          
______________________________________                                    
None           4.3         +17.1                                          
______________________________________                                    
EXAMPLE 4
Into 100 parts of ABS resin ["Kane Ace B-12", trade name, available from Kanagafuchi Chemical Industries Co., Ltd.] was incorporated 0.5 part of the stabilizer of this invention. The resulting mixture was kneaded on a kneading roll at 160° C for 6 minutes and then molded into a sheet with a thickness of about 0.5 mm.
The sheet was treated in a sunshine weather-ometer for 50 hours and tested for retentions of ultimate elongation and of ultimate tensile strength as well as coloration degree were determined by a conventional tensile test method. The results are shown in Table 3.
              Table 3                                                     
______________________________________                                    
Stabilizer  Retention of  Retention of                                    
No.         elongation    tensile strength                                
______________________________________                                    
 3          71            77                                              
 4          67            75                                              
13          75            79                                              
19          72            80                                              
31          76            82                                              
______________________________________                                    
None        51            68                                              
______________________________________                                    
EXAMPLE 5
Into 100 parts of 6-nylon resin ["CM1011", trade name, available from Toray Industries Inc.] was incorporated 0.25 part of the stabilizer of this invention. The resulting mixture was heated and melted and then molded into a film having a thickness of about 0.1 mm. under pressure by a conventional compression molding machine.
The film thus formed was aged under the following aging condition and thereafter subjected to a tensile test to determine the retentions of tensile strength and elongation.
Aging conditions
1. Exposure to ultraviolet ray for 200 hours in a fade-meter at 45° C.
2. aging at 160° C for 2 hours in a Geer's aging tester. The results are shown in Table 4.
              Table 4                                                     
______________________________________                                    
Fade-meter          Geer's aging tester                                   
                  Retention         Retention                             
        Retention of        Retention                                     
                                    of                                    
        of        ultimate  of      ultimate                              
Stabilizer                                                                
        ultimate  tensile   ultimate                                      
                                    tensile                               
No.     elongation                                                        
                  strength  elongation                                    
                                    strength                              
______________________________________                                    
 3       68%       74%       71%     65%                                  
13      79        83        77      74                                    
19      77        81        78      76                                    
35      80        84        83      78                                    
______________________________________                                    
None    19        50        18      53                                    
______________________________________                                    
EXAMPLE 6
Into 100 parts of polyurethane resin prepared from polycaprolactone ["E-5080", trade name, available from The Nippon Elastollan Industries Ltd.] was incorporated 0.5 part of the stabilizer of this invention. The resulting mixture was heated and melted and then molded into a sheet having a thickness of about 0.5 mm.
The sheet thus formed was subjected to the exposure to ultraviolet ray in a fade-meter at 45° C for 15 hours and then tested for the retentions of ultimate elongation and ultimate tensile strength.
The results are shown in Table 5.
              Table 5                                                     
______________________________________                                    
Stabilizer                                                                
         Retention of    Retention of ultimate                            
No.      ultimate elongation                                              
                         tensile strength                                 
______________________________________                                    
 3        85%             88%                                             
13       95              96                                               
19       92              93                                               
______________________________________                                    
None     74              52                                               
______________________________________                                    
EXAMPLE 7
Into 100 parts of polyvinyl chloride resin ["Geon 103EP", trade name, available from The Nippon Zeon Co. Ltd] were incorporated 3 parts of butyl tin maleate, 0.5 part of butyl stearate and 0.25part of the stabilizer of this invention and the resulting mixture was kneaded for 5 minutes on a kneading roll at 180° C and formed into a sheet with a thickness of 0.5 mm. The sheet was treated in a sunshine weather-ometer for 300 hours and then the discoloration thereof was observed.
The resultd are shown in Table 6.
              Table 6                                                     
______________________________________                                    
Stabilizer                                                                
No.               Weather-ometer                                          
______________________________________                                    
 3                Pale brown                                              
13                "                                                       
19                Orange-yellow                                           
None              Dark brown                                              
______________________________________                                    
EXAMPLE 8
Into 100 parts of polyester resin ["Ester-G13", trade name, available from Mitsui Toatsu Chemicals, Inc.] were dissolved and mixed 1 part of benzoyl peroxide and 0.2 part of the stabilizer. The resulting mixture was cured by preheating at 60° C for 30 minutes and then heating at 100° C for addtional 1 hour to be formed into a plate with a thickness of 3 mm.
The plate thus formed was exposed to irradiation in the sunshine weather-ometer for 60 hours and the change of yellowness index thereof was determined according to the same method as described in the above Example 3.
The results are shown in Table 7.
              Table 7                                                     
______________________________________                                    
Stabilizer No. YI.sub.0    ΔYI                                      
______________________________________                                    
 3             2.0         +7.0                                           
13             2.2         +8.6                                           
14             2.4         +7.6                                           
19             2.6         +7.7                                           
______________________________________                                    
None           1.8         +13.1                                          
______________________________________                                    
REFERENTIAL EXAMPLE 1 Methyl β-(1,2,2,6,6-pentamethyl-4
To 6.2 g. of 4-hydroxy-1,2,2,6,6-pentamethyl-piperidine were added 4.26 g. of methyl tetrolate and 150 ml. of xylene. To the solution was added under ice-cooling 3 ml. of a methanolic solution of sodium methylate (0.39 g.). The solution was heated under reflux for 8 hours. After cooling, 200 ml. of water was added and separated. The aqueous layer was extracted with ether and the ether solution was combined with the separated xylene layer, washed with water, dried and subjected to distillation under reduced pressure to give the desired product as colorless liquids boiling at 120°- 122° C/0.1 mmHg.
Analysis for C15 H27 NO3 : Calculated: C, 66.88%; H, 10.10%; N, 5.20%. Found : C, 66.59%; H, 10.36%; N, 5.00%. IR spectra (liquid film) : ν C =0 1710, ν C =C 1620, ν C -o 1140 cm- 1.
Physical properties of the compounds prepared according to the methods as shown in the above Referential Example are as follows:
Ethyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)-acrylate bp. 106°- 109° C/0.06 mmHg Methyl β-(2,2,6,6-tetramethyl-4-piperidyloxy)crotonate m.p. 66 - 67° C 2,2,6,6-Tetramethyl-4-piperidyl β-(2,2,6,6-tetramethyl-4-piperidyloxy)crotonate mp. 99° C 1,2,2,6,6-Pentamethyl-4-piperidyl β-(1,2,2,6,6-pentamethyl-4-piperidyloxy)crotonate mp. 136 - 137°C Methyl β-[1-(2,3-epoxypropyl)-2,2,6,6-tetramethyl-4-piperidyloxy)]crotonate mp. 81 - C Methyl β-(1-allyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate mp. 54 - 55° C Methyl β-(1-benzyl-2,2,6,6-tetramethyl-4-piperidyloxy)crotonate mp. 115 - 116° C

Claims (9)

What is claimed is:
1. A synthetic polymer composition stabilized against photo- and thermal deterioration thereof wherein there is incorporated, in a sufficient amount to prevent such deterioration, a compound having the formula ##SPC7##
wherein
n is an integer of 1 to 4,
R1 represents a hydrogen atom, an alkyl group, a hydroxyalkyl, alkoxyalkyl, aliphatic or aromatic acyloxyalkyl, epoxyalkyl, cyanoalkyl, halogenoalkyl or alkoxycarbonylalkyl group, an alkenyl group, an alkynyl group, an aralkyl group, an aliphatic acyl group, an alkoxycarbonyl group or an aralkoxycarbonyl group,
R2 represents a hydrogen atom, a lower alkyl group or a phenyl group, and
R3 represents, when n is 1, a hydrogen atom, an alkyl group, an aralkyl group, an aralkyl group which is substituted on its aryl by alkyl groups having 1 to 4 carbon atoms and/or by hydroxy groups, cycloalkyl group, an alkenyl group, an alkynyl group, an epoxyalkyl group, an aryl group or a group ##SPC8##
wherein R1 is as defined above,
when n is 2, an alkylene group, an alkenylene group, an alkynylene group, an aralkylene group, a group ##EQU1## wherein R4 is an acyl group, or a divalent metal atom selected from calcium, magnesium, zinc copper and barium,
when n is 3, an alkanetriyl group, an aralkanetriyl group, a trivalent metal atom selected from boron and aluminum, and
when n is 4, an alkanetetrayl group, an aralkanetetrayl group or a tetravalent metal atom selected from tin, silicon and titanium.
2. A synthetic polymer composition stabilized against photo- and thermal deterioration thereof wherein there is incorporated, in a sufficient amount to prevent such deterioration, a compound having the formula ##SPC9##
wherein
R1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a substituted alkyl group having 1 to 3 carbon atom in its alkyl and which is selected from the group consisting of hydroxyalkyl, alkoxyalkyl having 1 to 4 carbon atoms in its alkoxy, aliphatic acyloxyalkyl having 2 to 18 carbon atoms in its acyl, aromatic acyloxyalkyl having 7 to 11 carbon atoms in its acyl, epoxyalkyl, cyanoalkyl, halogenoalkyl and alkoxycarbonylalkyl having 1 to 4 carbon atoms in its alkoxy; an alkenyl group having 3 or 4 carbon atoms, an alkynyl group having 3 or 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, an aliphatic acyl group having 2 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, or an aralkoxycarbonyl group having 8 to 10 carbon atoms,
R2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group,
n is an integer of 1 to 4, and
R3 represents, when n is 1, a hydrogen atom, an alkyl, alkenyl, alkynyl or epoxyalkyl group as defined under R1 ; a phenylalkyl group having 7 or 8 carbon atoms in its phenylalkyl and which may be substituted on its phenyl by hydroxy and/or alkyl groups having 1 to 4 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, and aryl group having 6 to 11 carbon atoms or a group ##SPC10##
wherein R1 is as defined above
when n is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 6 carbon atoms, an alkynylene group having 4 to 6 carbon atoms, an aralkylene group having 8 to 10 carbon atoms, a group ##STR7## wherein R4 represents an aliphatic acyl group having 2 to 8 carbon atoms, or a divalent metal atom selected from calcium, magnesium, zinc, copper and barium;
when n is 3, an alkanetriyl group having 3 to 6 carbon atoms, an aralkanetriyl group having 9 carbon atoms, a trivalent metal atom selected from boron and aluminum; and
when n is 4, an alkanetetrayl group having 5 carbon atoms, an aralkanetetrayl group having 10 carbon atoms or a tetravalent metal atom selected from tin, silicon and titanium.
3. A synthetic polymer composition stabilized against photo- and thermal deterioration thereof wherein there is incorporated, in a sufficient amount to prevent such deterioration, a compound having the formula ##SPC11##
wherein
n is 2, 3, or 4,
R1 represents a hydrogen atom, an alkyl group, a hydroxyalkyl, alkoxyalkyl, aliphatic or aromatic acyloxyalkyl, epoxyalkyl, cyanoalkyl, halogenoalkyl or alkoxycarbonylalkyl group, an alkenyl group, an alkynyl group, an aralkyl group, an aliphatic acyl group, an alkoxycarbonyl group or an aralkoxycarbonyl group,
R2 represents a hydrogen atom, a lower alkyl group or a phenyl group, and
R3 represents when n is 2, an alkylene group, an alkenylene group, an alkynylene group, an aralkylene group, a group ##STR8## wherein R4 is an acyl group, or a divalent metal atom selected from calcium, magnesium, zinc, copper and barium,
when n is 3, an alkanetriyl group, an aralkanetriyl group, a trivalent metal atom selected from boron and aluminum, and
when n is 4, an alkanetetrayl group, an aralkanetetrayl group or a tetravalent metal atom selected from tin, silicon and titanium.
4. A synthetic polymer composition stabilized against photo- and thermal deterioration thereof wherein there is incorporated, in a sufficient amount to prevent such deterioration, a compound having the formula ##SPC12##
wherein
R1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a substituted alkyl group having 1 to 3 carbon atom in its alkyl and which is selected from the group consisting of hydroxyalkyl, alkoxyalkyl having 1 to 4 carbon atoms in its alkoxy, aliphatic acyloxyalkyl having 2 to 18 carbon atoms in its acyl, aromatic acyloxyalkyl having 7 to 11 carbon atoms in its acyl, epoxyalkyl, cyanoalkyl, halogenoalkyl and alkoxycarbonylalkyl having 1 to 4 carbon atoms in its alkoxy; an alkenyl group having 3 or 4 carbon atoms, an alkynyl group having 3 or 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, an aliphatic acyl group having 2 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, or an aralkoxycarbonyl group having 8 to 10 carbon atoms,
R2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group, n is 2, 3, or 4, and
R3 represents when n is 2, an alkylene group having 2 to 6 carbon atoms, an alkenylene group having 4 to 6 carbon atoms, an alkylene group having 4 to 6 carbon atoms, an aralkylene group having 8 to 10 carbon atoms, a group ##STR9## wherein R4 represents an aliphatic acyl group having 2 to 8 carbon atoms, or a divalent metal atom selected from calcium, magnesium, zinc, copper and barium;
when n is 3, an alkanetriyl group having 3 to 6 carbon atoms, an aralkanetriyl group having 9 carbon atoms, a trivalent metal atom selected from boron and aluminum; and
when n is 4, an alkanetetrayl group having 5 carbon atoms, an aralkanetetrayl group having 10 carbon atoms or a tetravalent metal atom selected from tin, silicon and titanium.
5. The synthetic polymer composition according to claim 2 wherein said polymer is a polyolefin.
6. The synthetic polymer composition according to claim 2 wherein said polymer is a polyvinyl chloride.
7. The synthetic polymer composition according to claim 2 wherein said polymer is a polyurethane.
8. The synthetic polymer composition according to claim 2 wherein said polymer is a polyamide having recurring amide groups as integral parts of the main polymer chain.
9. The synthetic polymer composition according to claim 2 wherein said polymer is a polyester.
US05/402,885 1972-10-20 1973-10-03 Stabilization of synthetic polymers Expired - Lifetime US3984371A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP47104907A JPS4962543A (en) 1972-10-20 1972-10-20
JA47-104907 1972-10-20

Publications (1)

Publication Number Publication Date
US3984371A true US3984371A (en) 1976-10-05

Family

ID=14393179

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/402,885 Expired - Lifetime US3984371A (en) 1972-10-20 1973-10-03 Stabilization of synthetic polymers

Country Status (9)

Country Link
US (1) US3984371A (en)
JP (1) JPS4962543A (en)
CA (1) CA1015358A (en)
CH (1) CH592128A5 (en)
DE (2) DE2365369C3 (en)
FR (1) FR2203814B1 (en)
GB (1) GB1394952A (en)
IT (1) IT1009052B (en)
NL (1) NL7314506A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069196A (en) * 1976-04-13 1978-01-17 Ciba-Geigy Corporation Piperidyl esters of higher di-tri-, and polybasic aliphatic carboxylic acids as stabilizers for polymeric materials
US4069199A (en) * 1973-12-28 1978-01-17 Ciba-Geigy Corporation Metal salts of hindered piperidine carboxylic acids and stabilized compositions
US4075165A (en) * 1975-05-28 1978-02-21 Ciba-Geigy Corporation Stabilization of polymers by penta- or hexa-substituted 4-piperidinol derivatives
US4110305A (en) * 1971-11-30 1978-08-29 Ciba-Geigy Corporation Polymers stabilized by esters of piperidinols
US4140673A (en) * 1976-03-23 1979-02-20 Bayer Aktiengesellschaft Piperidine derivatives as light stabilizers
US4141883A (en) * 1975-05-28 1979-02-27 Sankyo Company, Limited Stabilization of synthetic polymers by penta-or-hexa-substituted 4-piperidinol derivatives
US4153596A (en) * 1976-09-21 1979-05-08 Bayer Aktiengesellschaft Permanently stabilized polymers produced by after-treatment with piperidine compounds
DE3001114A1 (en) * 1979-01-15 1980-07-24 Borg Warner LIGHT-STABILIZED MOLDS BASED ON POLYPROPYLENE
US4311820A (en) * 1979-02-14 1982-01-19 Ciba-Geigy Corporation Homopolymers and copolymers of vinyl ethers of polyalkylpiperidinols and their use as stabilizers for plastics
EP0518807A1 (en) * 1991-04-12 1992-12-16 Ciba-Geigy Ag Piperidine compounds for use as stabilisers for organic materials
US5496875A (en) * 1993-07-16 1996-03-05 Ciba-Geigy Corporation Derivatives of 2,2,6,6-tetramethyl-4-piperidinol for use as light stabilizers, heat stabilizers and oxidation stabilizers for organic materials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2627688A1 (en) * 1975-06-30 1977-01-27 Ciba Geigy Ag DISABLED PIPERIDINE CARBONIC ACIDS, METAL SALTS THEREOF AND THEREFORE STABILIZED POLYMERS
DE3312611A1 (en) * 1983-04-08 1984-10-11 Röhm GmbH, 6100 Darmstadt METHOD FOR PRODUCING UV-PROTECTED MULTILAYERED PLASTIC MOLDED BODIES
TW270126B (en) * 1993-07-13 1996-02-11 Ciba Geigy
DE19604520A1 (en) * 1996-02-08 1997-08-14 Buna Sow Leuna Olefinverb Gmbh Polyethylene blend

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2778825A (en) * 1954-10-29 1957-01-22 Rohm & Haas Substituted nu-carbamyl derivatives of 2-methyl-oxazolidines and 2-methyltetrahydro-1, 3-oxazines and their preparation
US3436369A (en) * 1966-07-15 1969-04-01 Sankyo Co Polyolefins stabilized with substituted methylene piperidine methylene piperidine-1-oxides
US3497512A (en) * 1965-10-12 1970-02-24 Sandoz Ag Ultraviolet radiation protective phthalazone derivatives
US3573216A (en) * 1962-12-06 1971-03-30 Gaf Corp Heterocyanoacrylate u.v. absorbers
US3640928A (en) * 1968-06-12 1972-02-08 Sankyo Co Stabilization of synthetic polymers
US3705166A (en) * 1969-08-15 1972-12-05 Sankyo Co Acrylic acid derivatives of 2,2,6,6-tetramethylpiperidines
US3759926A (en) * 1970-06-10 1973-09-18 Ciba Geigy Corp Piperidine derivatives as stabilizers
US3790525A (en) * 1972-01-21 1974-02-05 Sankyo Co 4-piperidone ketal derivatives,their preparation and their use as stabilizers
US3850877A (en) * 1972-07-28 1974-11-26 Ciba Geigy Corp Piperidine stabilizers for polymers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2778825A (en) * 1954-10-29 1957-01-22 Rohm & Haas Substituted nu-carbamyl derivatives of 2-methyl-oxazolidines and 2-methyltetrahydro-1, 3-oxazines and their preparation
US3573216A (en) * 1962-12-06 1971-03-30 Gaf Corp Heterocyanoacrylate u.v. absorbers
US3497512A (en) * 1965-10-12 1970-02-24 Sandoz Ag Ultraviolet radiation protective phthalazone derivatives
US3436369A (en) * 1966-07-15 1969-04-01 Sankyo Co Polyolefins stabilized with substituted methylene piperidine methylene piperidine-1-oxides
US3640928A (en) * 1968-06-12 1972-02-08 Sankyo Co Stabilization of synthetic polymers
US3705166A (en) * 1969-08-15 1972-12-05 Sankyo Co Acrylic acid derivatives of 2,2,6,6-tetramethylpiperidines
US3759926A (en) * 1970-06-10 1973-09-18 Ciba Geigy Corp Piperidine derivatives as stabilizers
US3790525A (en) * 1972-01-21 1974-02-05 Sankyo Co 4-piperidone ketal derivatives,their preparation and their use as stabilizers
US3850877A (en) * 1972-07-28 1974-11-26 Ciba Geigy Corp Piperidine stabilizers for polymers

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110305A (en) * 1971-11-30 1978-08-29 Ciba-Geigy Corporation Polymers stabilized by esters of piperidinols
US4069199A (en) * 1973-12-28 1978-01-17 Ciba-Geigy Corporation Metal salts of hindered piperidine carboxylic acids and stabilized compositions
US4075165A (en) * 1975-05-28 1978-02-21 Ciba-Geigy Corporation Stabilization of polymers by penta- or hexa-substituted 4-piperidinol derivatives
US4141883A (en) * 1975-05-28 1979-02-27 Sankyo Company, Limited Stabilization of synthetic polymers by penta-or-hexa-substituted 4-piperidinol derivatives
US4140673A (en) * 1976-03-23 1979-02-20 Bayer Aktiengesellschaft Piperidine derivatives as light stabilizers
US4069196A (en) * 1976-04-13 1978-01-17 Ciba-Geigy Corporation Piperidyl esters of higher di-tri-, and polybasic aliphatic carboxylic acids as stabilizers for polymeric materials
US4153596A (en) * 1976-09-21 1979-05-08 Bayer Aktiengesellschaft Permanently stabilized polymers produced by after-treatment with piperidine compounds
DE3001114A1 (en) * 1979-01-15 1980-07-24 Borg Warner LIGHT-STABILIZED MOLDS BASED ON POLYPROPYLENE
FR2446300A1 (en) * 1979-01-15 1980-08-08 Borg Warner LIGHT-STABLE POLYPROPYLENE COMPOSITIONS CONTAINING A STERICALLY PREVENTED PIPERIDINYLIC COMPOUND AND A PENTAERYTHRITOL POLYPHOSPHITE
US4311820A (en) * 1979-02-14 1982-01-19 Ciba-Geigy Corporation Homopolymers and copolymers of vinyl ethers of polyalkylpiperidinols and their use as stabilizers for plastics
US4360675A (en) * 1979-02-14 1982-11-23 Ciba-Geigy Corporation Homopolymers and copolymers of vinyl ethers of polyalkylpiperidinols and their use as stabilizers for plastics
EP0518807A1 (en) * 1991-04-12 1992-12-16 Ciba-Geigy Ag Piperidine compounds for use as stabilisers for organic materials
US5496875A (en) * 1993-07-16 1996-03-05 Ciba-Geigy Corporation Derivatives of 2,2,6,6-tetramethyl-4-piperidinol for use as light stabilizers, heat stabilizers and oxidation stabilizers for organic materials

Also Published As

Publication number Publication date
IT1009052B (en) 1976-12-10
CA1015358A (en) 1977-08-09
CH592128A5 (en) 1977-10-14
FR2203814B1 (en) 1976-06-18
DE2365369B2 (en) 1978-01-05
NL7314506A (en) 1974-04-23
FR2203814A1 (en) 1974-05-17
DE2365369C3 (en) 1978-09-07
JPS4962543A (en) 1974-06-18
DE2365369A1 (en) 1974-09-12
GB1394952A (en) 1975-05-21
DE2352606A1 (en) 1974-05-22

Similar Documents

Publication Publication Date Title
US3940363A (en) Piperidine derivatives and their use as stabilizers
US3904581A (en) Stabilization of synthetic polymers
US3899464A (en) Piperidine derivative and use thereof as stabilizers
US3971757A (en) 3-Alkyl-4-oxo-imidazolidines and their 1-oxyls
US3984371A (en) Stabilization of synthetic polymers
US4075165A (en) Stabilization of polymers by penta- or hexa-substituted 4-piperidinol derivatives
US3956298A (en) N-(3-hydroxyaryl-propyl)-imides
US3966711A (en) 4-Alkyl-1,4-diaza-5-oxo-cycloheptanes and their 1-oxyls
US4612393A (en) Bis(substituted thioalkyl)hydroxylamines and stabilized polyolefin compositions
US3975357A (en) Stabilized synthetic polymer compositions
US4177186A (en) Stabilization of light-sensitive polymers
US4649221A (en) Polyhydroxylamines
US3887517A (en) Piperidine derivatives and their use as stabilizers
US4013619A (en) Phenol acetals
US4472547A (en) N-Piperidyl lactam light stabilizers
CA1271757A (en) Use of dipiperidine-di-carbamates as stabilisers for synthetic polymers
US4007158A (en) Novel piperidine derivatives for the stabilization of synthetic polymers
US4061616A (en) Stabilization of synthetic polymers
US3948852A (en) Nickel stabilisers for synthetic polymers
CA1051903A (en) Piperidine carboxylic acids and their metal salts
US4044019A (en) Hydroxyphenylated hydantoins
US3992420A (en) 3,5-dialkyl-4-hydroxybenzyl-oxiranes
US3939175A (en) Hydroxyphenylated hydantoins
US4578454A (en) Polyaminoamides containing polyalkylpiperidine radicals
US4673700A (en) Amide substituted benzylhydroxylamines and stabilized polyolefin compositions