US3975162A - Applying reagent to medium and device therefor - Google Patents
Applying reagent to medium and device therefor Download PDFInfo
- Publication number
- US3975162A US3975162A US05/450,615 US45061574A US3975162A US 3975162 A US3975162 A US 3975162A US 45061574 A US45061574 A US 45061574A US 3975162 A US3975162 A US 3975162A
- Authority
- US
- United States
- Prior art keywords
- water
- film
- reagent
- medium
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 48
- 239000011230 binding agent Substances 0.000 claims abstract description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000007787 solid Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000009792 diffusion process Methods 0.000 claims abstract description 14
- 238000000926 separation method Methods 0.000 claims abstract description 11
- -1 polyethylene Polymers 0.000 claims description 8
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920002307 Dextran Polymers 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 239000000230 xanthan gum Substances 0.000 claims description 3
- 235000010493 xanthan gum Nutrition 0.000 claims description 3
- 229920001285 xanthan gum Polymers 0.000 claims description 3
- 229940082509 xanthan gum Drugs 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 235000010418 carrageenan Nutrition 0.000 claims description 2
- 239000000679 carrageenan Substances 0.000 claims description 2
- 229920001525 carrageenan Polymers 0.000 claims description 2
- 229940113118 carrageenan Drugs 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229940032147 starch Drugs 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims 1
- 229920000620 organic polymer Polymers 0.000 claims 1
- 239000002491 polymer binding agent Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 11
- 210000002966 serum Anatomy 0.000 description 10
- 238000001962 electrophoresis Methods 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 229920000936 Agarose Polymers 0.000 description 5
- 102000004895 Lipoproteins Human genes 0.000 description 5
- 108090001030 Lipoproteins Proteins 0.000 description 5
- 239000011543 agarose gel Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 229960000633 dextran sulfate Drugs 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229940057838 polyethylene glycol 4000 Drugs 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 229960002086 dextran Drugs 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 101710081722 Antitrypsin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004821 Contact adhesive Substances 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001475 anti-trypsic effect Effects 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007982 barbital buffer Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 108010025899 gelatin film Proteins 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- VKWNTWQXVLKCSG-UHFFFAOYSA-N n-ethyl-1-[(4-phenyldiazenylphenyl)diazenyl]naphthalen-2-amine Chemical compound CCNC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 VKWNTWQXVLKCSG-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920006298 saran Polymers 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/32—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/92—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
Definitions
- This invention relates to an assay device or tool and a method of using the same and pertains more specifically to a device and method for applying a measured quantity of a water-soluble or water-dispersible reagent to a water-containing solid medium for use in molecular diffusion or affinity separation processes.
- a variety of analytical procedures have been developed for the separation and identification of different molecular species present in a specimen by applying the specimen to a water-containing solid medium and inducing molecular diffusion of the specimem through the medium.
- chromatography and electrophoresis including immunoelectrophoresis processes have been employed, all of which provide separation of different molecular species by differential diffusion of a specimem through a water-containing solid medium.
- reagents which interact with one or more of the molecular species in the specimem may also be applied to the medium before, during or after the separation process to assist in separation or identification of the species.
- reagents have previously been introduced into the medium in various ways. In some cases, they have been introduced into the medium at the time of manufacture of the latter, but in most cases they have been applied to the surface of the water-containing solid medium at the time they are needed, either by applying a liquid solution or dispersion of the reagent to the surface of the medium and allowing it to stand or by immersing the solid medium in a solution or dispersion of the reagent in a suitable liquid vehicle. In either case, precise measurement and control of the amount and location in the medium into which the reagent diffuses is difficult and uncertain. It has also been proposed to disperse such reagents in a solid water-resistant binder as in Rey et al U.S. Pat. No.
- the present invention provides a device and method which facilitates precise and quantitative introduction of reagent into a solid water-containing medium for use in molecular diffusion or affinity separation procedures.
- the invention has particular utility in conjunction with a thin layer medium, i.e., a water-containing solid medium in the form of a layer having a thickness of 0.l to 2 mm.
- the device of the present invention comprises a film consisting essentially of film-forming solid organic polymeric binder which is soluble in water to the extent of at least 1% by weight at 20°C., and dispersed in the binder a measured quantity of water-soluble or water-dispersible reagent, the film being of a size and shape adapted to be placed in contact with a water-containing solid medium for use in molecular diffusion or affinity separation processes to permit the reagent and the binder to diffuse completely into the medium.
- binders which are "soluble in water” it is intended to include those materials which form colloidal solutions or dispersions as well as those which form true solutions.
- the binders which can be used in the present invention include various polymeric materials such as dextran, water-soluble polyacrylamide, polyacrylic acid and water-soluble metal salts thereof, water-soluble polyvinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, clarified guar gum, water-soluble carboxymethyl cellulose, water-soluble hydroxyethyl cellulose, water-soluble methyl cellulose, algin, carrageenan, xanthan gum, starch, water-soluble copolymers of maleic anhydride with various vinyl monomers as described, for example, in U.S. Pat. No. 2,047,398, particularly copolymers of maleic anhydride with vinyl ethers or vinyl esters or their corresponding salts.
- the film of polymeric binder may be of any desired thickness but is preferably from 0.01 to 2 mm. It may be provided with a temporary removable support or backing in the form of paper or water-insoluble plastic film, but such backing or support is important only for extremely weak or fragile films and may be omitted in the case of self-supporting films.
- a support or backing it is desirably transparent; suitable backings include those formed of such plastics as polyesters, polystyrene, cellulose acetate, polyamides and the like of varying thickness.
- the thickness of the backing is usually kept to a minimum in order to minimize cost while at the same time providing the desired mechanical reinforcement or strength.
- the extene of bonding of the reagent-binder film to the backing film is not critical; sufficient bonding is usually provided if the binder film is formed in situ on the surface of the backing film from a solution or a melt.
- the reagents which can be incorporated in the film of polymeric binder can be any of the water-soluble or water-dispersible materials, many of which are commonly employed in assay procedures, such as antibodies, antigens, enzymes, enzyme substrates, precipitin brighteners, stains, precipitants, microbiological organisms and/or nutrients therefor, buffers, salts and the like as well as radioactively tagged or fluorescent reagents of the foregoing types.
- the relative proportions of reagent and of water-soluble polymeric binder in the device can be varied widely depending upon the size or amount of the measured quantity which is desired and is a matter of choice or convenience. Usually it is most convenient to employ a device in which the water-soluble polymeric binder amounts to about 10 to 95% by weight of the film while the reagent constitutes the remainder. Two or more different reagents can be employed in admixture with each other; a mixture of two or more different polymeric binders can also be employed although usually there is no advantage in using such a mixture.
- the reagents can be incorporated in the film of polymeric binder in a variety of ways bearing in mind that it is usually important to have the reagent distributed as uniformly as possible throughout the mass of polymeric binder.
- the reagent can be mixed with the polymeric binder while the latter is in molten form or in the form of a solution in a volatile solvent, after which the mixture is formed into a film of the desired thickness and allowed to dry or to cool in order to solidify it.
- the film of water-soluble polymeric binder can also be formed separately from a solution of the binder or from a melt, after which a solution or dispersion of the reagent in a suitable liquid vehicle can be applied to the surface of the film, allowed to diffuse into the film, and the film dried.
- the reagent in dry, finely-divided particulate form can be spread on the surface of the film of water-soluble polymeric binder after which the latter is melted and resolidified. While forced air drying can usually be employed in forming the film and/or incorporating the reagent in the film, vacuum or freeze-dryng can also be employed in the case of heat-sensitive materials.
- the size of the device of the present invention is a matter of choice depending upon the nature of the assay procedure being carried out. Generally, it is not convenient to employ devices in which the dimensions of the film are less than about 5 mm. square, but smaller devices can be employed in special cases where it is desired to confine the reagent to a small localized area of the medium, and larger devices can be employed including those large enough to cover the entire exposed surface of the medium to which the reagent is to be applied, which may be of the order of 15 sq. inches or even more.
- the film may be of any desired shape, including annular or perforated.
- the devices of the present invention can be employed in applying reagents to any water-containing solid medium used in molecular diffusion of affinity separation procedures, such as, for example, chromatography and electrophoresis, particularly those in the form of thin layers (i.e., having a maximum thickness of 2 mm.) whether in the form of a gel, membrane, cellular product or tissue.
- affinity separation procedures such as, for example, chromatography and electrophoresis, particularly those in the form of thin layers (i.e., having a maximum thickness of 2 mm.) whether in the form of a gel, membrane, cellular product or tissue.
- hydrated gels formed of agarose, agar, polyacrylamide (cross-linked to prevent dissolution), or cellulose acetate; paper and cellulose acetate membranes are also of importance.
- the face of the reagent-containing film is simply placed in contact with the water-containing solid medium and allowed to remain there until complete dissolution or diffusion of the reagent and polymeric binder occurs and the reagent and binder diffuse into the medium.
- This step is usually carried out at room temperature although other temperatures from 1°to 60°C. can also be employed.
- a water-insoluble backing or support is provided for the film as a part of the device, it may be allowed to remain in place on the surface of the water-containing medium, or if desired, it can be removed when diffusion of the reagent and binder is complete.
- the device can also be used to introduce reagents into media used for culturing bacteria, and can be used for histological staining by applying a stain-containing device in contact with tissue.
- Lactic Dehydrogenase (LDH) localizing reagent was prepared from a commercially available substratedye and buffer mixture. To 1 ml. of this solution was added 9 ml. of a 0.5% be weight water solution of polyethylene glycol 4000 binder and the mixture stirred. Five ml. of this mixed solution was then placed evenly on a 31/4 ⁇ 4 inch backing or support film of water-insoluble hydrophilic polyethylene terephthlate sold under the trade name "Cronar" and rapidly dried at 40°C. in a forced air oven to form a binder--LDH film approximately 0.02 mm. thick on the backing.
- LDH Lactic Dehydrogenase
- a conventional hydrated agarose electrophoresis medium (a layer of hydrated agarose 1-2 mm. thick on a support of Cronar film) was equilibrated with standard aqueous buffer solution, inoculated with human serum, and subjected to electrophoresis. After completion of the electrophoresis, the LDH-binder film was placed on the agarose medium with the backing uppermost and the sandwich assembly was placed in an incubator at 37°C. for one hour. Visible purple lines appeared in the medium identifying the location of the serum components with which the LDH had reacted. The backing film was then removed from the surface of the medium, the latter was washed briefly in running water, then soaked in 5% by weight aqueous acetic acid to fix the colored lines and dried to form a permanent record.
- the reagent-binder film after preparation can be stored indefinitely before use by enclosing in a bag of 3 mil polyethylene and maintaining at 4°-8°C.
- Example 2 The same type of reagent-binder film as in Example 1 was prepared except that the solution of polyethylene glycol 4,000 was placed separately on the backing film and dried. The LDH visualization solution (1 ml.) was then evenly distributed on the surface of the polyethylene glycol 4,000 and dried. The device so produced was used in the same procedure as described in Example 1.
- the device so prepared was used by placing the reagent-binder film in contact with the surface of a 31/4 ⁇ 4 inch plain hydrated agarose electrophoresis film medium provided with the usual sample wells for electroimmunodiffusion. After 30 minutes at room temperature, the backing film was removed, the sample wells were cleared of residual liquid, and specimens of serum were introduced into the wells. After electrophoresis for 45 minutes at 100 V. the desired visible "rocket" precipitin patterns had developed where interaction of the reagent with the serum constituents had occurred.
- the reagent-binder film prepared as described in Example 3 was placed in contact with a freshly prepared 1% aqueous agarose gel medium 1 mm. thick containing 0.85% sodium chloride and 0.05% sodium azide in which two 2 mm. diameter wells were cut for radialimmunodiffusion. After 30 minutes at room temperature, the backing film was removed and the residual fluid removed from the wells. Five microliter specimens of human serum were placed in the wells and the gel medium placed in a humidity chamber. After 24 hours, the gel showed the desired precipitin rings around the wells showing the location of reaction products of the serum and the reagent after diffusion.
- a reagent-binder film useful for the procedures described in Examples 3 and 4 can also be prepared by mixing 0.4 ml. of the antisera with 10 ml. of a 0.5% aqueous polyvinyl pyrrolidone binder solution, freeze drying the mixed solution, and spreading the freeze-dried solid on a plastic backing either on a thin layer of wet polyvinyl pyrrolidone film or other contact adhesive.
- polyvinyl pyrrolidone binder there were used, respectively, polyvinyl alcohol, polyethyleneoxide, polyethyleneglycol 20,000, polyacrylamide (water-soluble), sodium alginate, methylcellulose, clarified guar gum, water-soluble hydroxyethyl cellulose, xanthan gum, soluble starch, and dextran as the binder.
- polyvinylidene chloride Saran Wrap
- polycarbonate polymethyl methacrylate
- cellulose acetate all of which are water-insoluble.
- Self-supporting films of reagent-binder were prepared from the foregoing mixtures by employing polytetrafluoroethylene film (Teflon) as the backing, then stripping the dried reagent-binder film from the backing before use.
- a 0.2 g. quantity of lipoprotein stain Fat Red 7B (Sigma) was dissolved in 0.2 ml. polyethylene glycol 400 and the mixture thoroughly stirred into 2 grams of molten polyethylene glycol 4000, then the mixture was spread quickly and evenly on a 31/4 ⁇ 4 inch backing film of hydrophilic polyethylene terephthalate and allowed to harden.
- the film was used without further change by placing the reagent-binder surface in contact with the surface of a hydrated agarose gel medium in which serum protein had previously been subjected to electroporesis. After 10 minutes contact at room temperature, the backing film was removed, whereupon the bands or reacted lipoprotein were visible in the medium.
- reagent-binder mixture 0.01 g. of a nonionic surface-active agent, octyl phenoxy polyethoxy (9-10) ethanol sold under the trade name Triton X-100.
- a nonionic surface-active agent octyl phenoxy polyethoxy (9-10) ethanol sold under the trade name Triton X-100.
- Triton X-100 octyl phenoxy polyethoxy
- Equal volumes of 0.08 ionic strength pH 8.2 barbital buffer and 1% aqueous polyethylene glycol 4000 binder were mixed; 5 ml. of this mixture was poured onto the surface of a 4 mil hydrophilic polyethylene terephthalate backing film and dried in a forced air oven at 40°C.
- the resulting reagent-binder film approximately 0.5 mm. thick was placed in contact with the surface of a hydrated agarose gel film medium approximately 2 mm. thick, leaving the backing film in place on the side of the reagent-binder film away from the medium. After 10 minutes at room temperature, the backing film was removed and the gel medium was ready to receive a test specimen prior to an electrophotetic procedure.
- Dextran sulfate a specific precipitant for lipoproteins
- a reagent-binder film About 0.5 g. of dextran sulfate reagent was dissolved in 1 ml. of water and spread evenly on the surface of a previously prepared dried film of polyethylene glycol 4,000 binder approximately 0.25 mm. thick, then dried in a forced air oven at 40°C.
- a reagent-binder film was prepared by distributing 1 ml. of a 1:5 alpha 1 antitrypsin antisera reagent in 0.85% saline solution evenly on the surface of a previously prepared and dried film of polyethylene glycol 6,000 binder approximately 0.25 mm. thick. The resulting product was rapidly dried at 20°C. This reagent-binder film was used in the manner described in Example 10 for pi typing human serum after electrophoretic runs.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Endocrinology (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Device for applying a measured quantity of water-soluble or water-dispersible reagent to a water-containing solid medium for use in molecular diffusion or affinity separation procedures is provided in the form of a film consisting essentially of a film-forming solid organic polymeric binder which is soluble in water to the extent of at least 1% by weight at 20°C. and dispersed in said binder a measured quantity of said reagent, said film being of a size and shape adapted to be placed in contact with said medium to permit said reagent and binder to diffuse completely into said medium. The device is used by placing it in face-to-face contact with a water-containing solid medium.
Description
This invention relates to an assay device or tool and a method of using the same and pertains more specifically to a device and method for applying a measured quantity of a water-soluble or water-dispersible reagent to a water-containing solid medium for use in molecular diffusion or affinity separation processes.
A variety of analytical procedures have been developed for the separation and identification of different molecular species present in a specimen by applying the specimen to a water-containing solid medium and inducing molecular diffusion of the specimem through the medium. In particular, chromatography and electrophoresis including immunoelectrophoresis processes have been employed, all of which provide separation of different molecular species by differential diffusion of a specimem through a water-containing solid medium. In such processes, a variety of reagents which interact with one or more of the molecular species in the specimem may also be applied to the medium before, during or after the separation process to assist in separation or identification of the species.
These reagents have previously been introduced into the medium in various ways. In some cases, they have been introduced into the medium at the time of manufacture of the latter, but in most cases they have been applied to the surface of the water-containing solid medium at the time they are needed, either by applying a liquid solution or dispersion of the reagent to the surface of the medium and allowing it to stand or by immersing the solid medium in a solution or dispersion of the reagent in a suitable liquid vehicle. In either case, precise measurement and control of the amount and location in the medium into which the reagent diffuses is difficult and uncertain. It has also been proposed to disperse such reagents in a solid water-resistant binder as in Rey et al U.S. Pat. No. 3,630,957 and Sherelis U.S. Pat. No. 3,694,163; and to maintain a reagent-containing solid water-insoluble binder in contact with the surface of a water-containing or absorbing medium such as paper, as in Verbeck U.S. Pat. No. 3,672,845. However, reagents in water-resistant or water-insoluble binders cannot readily be completely extracted and diffused into a water-containing solid medium, making control and measurement of the quantity introduced into the medium impractical.
The present invention provides a device and method which facilitates precise and quantitative introduction of reagent into a solid water-containing medium for use in molecular diffusion or affinity separation procedures. The invention has particular utility in conjunction with a thin layer medium, i.e., a water-containing solid medium in the form of a layer having a thickness of 0.l to 2 mm. The device of the present invention comprises a film consisting essentially of film-forming solid organic polymeric binder which is soluble in water to the extent of at least 1% by weight at 20°C., and dispersed in the binder a measured quantity of water-soluble or water-dispersible reagent, the film being of a size and shape adapted to be placed in contact with a water-containing solid medium for use in molecular diffusion or affinity separation processes to permit the reagent and the binder to diffuse completely into the medium. By binders which are "soluble in water," it is intended to include those materials which form colloidal solutions or dispersions as well as those which form true solutions.
The binders which can be used in the present invention include various polymeric materials such as dextran, water-soluble polyacrylamide, polyacrylic acid and water-soluble metal salts thereof, water-soluble polyvinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, clarified guar gum, water-soluble carboxymethyl cellulose, water-soluble hydroxyethyl cellulose, water-soluble methyl cellulose, algin, carrageenan, xanthan gum, starch, water-soluble copolymers of maleic anhydride with various vinyl monomers as described, for example, in U.S. Pat. No. 2,047,398, particularly copolymers of maleic anhydride with vinyl ethers or vinyl esters or their corresponding salts. There can also be present along with the binder conventional humectants or surface-active agents (dispersing agents) to maintain the flexibility of the binder and to facilitate or accelerate its dispersion or dissolution in water.
The film of polymeric binder may be of any desired thickness but is preferably from 0.01 to 2 mm. It may be provided with a temporary removable support or backing in the form of paper or water-insoluble plastic film, but such backing or support is important only for extremely weak or fragile films and may be omitted in the case of self-supporting films. When a support or backing is employed, it is desirably transparent; suitable backings include those formed of such plastics as polyesters, polystyrene, cellulose acetate, polyamides and the like of varying thickness. The thickness of the backing is usually kept to a minimum in order to minimize cost while at the same time providing the desired mechanical reinforcement or strength. The extene of bonding of the reagent-binder film to the backing film is not critical; sufficient bonding is usually provided if the binder film is formed in situ on the surface of the backing film from a solution or a melt.
The reagents which can be incorporated in the film of polymeric binder can be any of the water-soluble or water-dispersible materials, many of which are commonly employed in assay procedures, such as antibodies, antigens, enzymes, enzyme substrates, precipitin brighteners, stains, precipitants, microbiological organisms and/or nutrients therefor, buffers, salts and the like as well as radioactively tagged or fluorescent reagents of the foregoing types.
The relative proportions of reagent and of water-soluble polymeric binder in the device can be varied widely depending upon the size or amount of the measured quantity which is desired and is a matter of choice or convenience. Usually it is most convenient to employ a device in which the water-soluble polymeric binder amounts to about 10 to 95% by weight of the film while the reagent constitutes the remainder. Two or more different reagents can be employed in admixture with each other; a mixture of two or more different polymeric binders can also be employed although usually there is no advantage in using such a mixture.
The reagents can be incorporated in the film of polymeric binder in a variety of ways bearing in mind that it is usually important to have the reagent distributed as uniformly as possible throughout the mass of polymeric binder. The reagent can be mixed with the polymeric binder while the latter is in molten form or in the form of a solution in a volatile solvent, after which the mixture is formed into a film of the desired thickness and allowed to dry or to cool in order to solidify it. The film of water-soluble polymeric binder can also be formed separately from a solution of the binder or from a melt, after which a solution or dispersion of the reagent in a suitable liquid vehicle can be applied to the surface of the film, allowed to diffuse into the film, and the film dried. In some cases, the reagent in dry, finely-divided particulate form can be spread on the surface of the film of water-soluble polymeric binder after which the latter is melted and resolidified. While forced air drying can usually be employed in forming the film and/or incorporating the reagent in the film, vacuum or freeze-dryng can also be employed in the case of heat-sensitive materials.
The size of the device of the present invention is a matter of choice depending upon the nature of the assay procedure being carried out. Generally, it is not convenient to employ devices in which the dimensions of the film are less than about 5 mm. square, but smaller devices can be employed in special cases where it is desired to confine the reagent to a small localized area of the medium, and larger devices can be employed including those large enough to cover the entire exposed surface of the medium to which the reagent is to be applied, which may be of the order of 15 sq. inches or even more. The film may be of any desired shape, including annular or perforated.
The devices of the present invention can be employed in applying reagents to any water-containing solid medium used in molecular diffusion of affinity separation procedures, such as, for example, chromatography and electrophoresis, particularly those in the form of thin layers (i.e., having a maximum thickness of 2 mm.) whether in the form of a gel, membrane, cellular product or tissue. Of particular importance are hydrated gels formed of agarose, agar, polyacrylamide (cross-linked to prevent dissolution), or cellulose acetate; paper and cellulose acetate membranes are also of importance.
In using the device of the present invention, the face of the reagent-containing film is simply placed in contact with the water-containing solid medium and allowed to remain there until complete dissolution or diffusion of the reagent and polymeric binder occurs and the reagent and binder diffuse into the medium. This step is usually carried out at room temperature although other temperatures from 1°to 60°C. can also be employed. When a water-insoluble backing or support is provided for the film as a part of the device, it may be allowed to remain in place on the surface of the water-containing medium, or if desired, it can be removed when diffusion of the reagent and binder is complete. The device can also be used to introduce reagents into media used for culturing bacteria, and can be used for histological staining by applying a stain-containing device in contact with tissue.
The following specific examples are intended to illustrate the nature of the invention without acting as a limitation upon its scope.
A solution of Lactic Dehydrogenase (LDH) localizing reagent was prepared from a commercially available substratedye and buffer mixture. To 1 ml. of this solution was added 9 ml. of a 0.5% be weight water solution of polyethylene glycol 4000 binder and the mixture stirred. Five ml. of this mixed solution was then placed evenly on a 31/4 × 4 inch backing or support film of water-insoluble hydrophilic polyethylene terephthlate sold under the trade name "Cronar" and rapidly dried at 40°C. in a forced air oven to form a binder--LDH film approximately 0.02 mm. thick on the backing.
A conventional hydrated agarose electrophoresis medium (a layer of hydrated agarose 1-2 mm. thick on a support of Cronar film) was equilibrated with standard aqueous buffer solution, inoculated with human serum, and subjected to electrophoresis. After completion of the electrophoresis, the LDH-binder film was placed on the agarose medium with the backing uppermost and the sandwich assembly was placed in an incubator at 37°C. for one hour. Visible purple lines appeared in the medium identifying the location of the serum components with which the LDH had reacted. The backing film was then removed from the surface of the medium, the latter was washed briefly in running water, then soaked in 5% by weight aqueous acetic acid to fix the colored lines and dried to form a permanent record.
If desired, the reagent-binder film after preparation can be stored indefinitely before use by enclosing in a bag of 3 mil polyethylene and maintaining at 4°-8°C.
The same type of reagent-binder film as in Example 1 was prepared except that the solution of polyethylene glycol 4,000 was placed separately on the backing film and dried. The LDH visualization solution (1 ml.) was then evenly distributed on the surface of the polyethylene glycol 4,000 and dried. The device so produced was used in the same procedure as described in Example 1.
To 10 ml. of a 0.5% water solution of polyvinyl pyrrolidone binder was added 0.4 ml. of anti-whole human serum prepared in goats as the reagent and the mixture stirred briefly. Five milliliters of this was distributed on a 31/4 × 4 inch backing film as in Example 1 and dried at 25°C. in a forced air oven to form a reagent-binder film approximately 0.1 mm. thick on the backing film.
The device so prepared was used by placing the reagent-binder film in contact with the surface of a 31/4 × 4 inch plain hydrated agarose electrophoresis film medium provided with the usual sample wells for electroimmunodiffusion. After 30 minutes at room temperature, the backing film was removed, the sample wells were cleared of residual liquid, and specimens of serum were introduced into the wells. After electrophoresis for 45 minutes at 100 V. the desired visible "rocket" precipitin patterns had developed where interaction of the reagent with the serum constituents had occurred.
The reagent-binder film prepared as described in Example 3 was placed in contact with a freshly prepared 1% aqueous agarose gel medium 1 mm. thick containing 0.85% sodium chloride and 0.05% sodium azide in which two 2 mm. diameter wells were cut for radialimmunodiffusion. After 30 minutes at room temperature, the backing film was removed and the residual fluid removed from the wells. Five microliter specimens of human serum were placed in the wells and the gel medium placed in a humidity chamber. After 24 hours, the gel showed the desired precipitin rings around the wells showing the location of reaction products of the serum and the reagent after diffusion.
A reagent-binder film useful for the procedures described in Examples 3 and 4 can also be prepared by mixing 0.4 ml. of the antisera with 10 ml. of a 0.5% aqueous polyvinyl pyrrolidone binder solution, freeze drying the mixed solution, and spreading the freeze-dried solid on a plastic backing either on a thin layer of wet polyvinyl pyrrolidone film or other contact adhesive.
The same procedure was followed as in Examples 3, 4 and 5 except that the antigen, normal human serum, was used as the reagent in the binder film and the antibody was used as the test specimen.
The same procedure was used as in Example 3 except that in place of polyvinyl pyrrolidone binder there were used, respectively, polyvinyl alcohol, polyethyleneoxide, polyethyleneglycol 20,000, polyacrylamide (water-soluble), sodium alginate, methylcellulose, clarified guar gum, water-soluble hydroxyethyl cellulose, xanthan gum, soluble starch, and dextran as the binder. In addition, there were substituted for the backing film films of polyvinylidene chloride (Saran Wrap), polycarbonate, polymethyl methacrylate, and cellulose acetate, all of which are water-insoluble. Self-supporting films of reagent-binder were prepared from the foregoing mixtures by employing polytetrafluoroethylene film (Teflon) as the backing, then stripping the dried reagent-binder film from the backing before use.
A 0.2 g. quantity of lipoprotein stain Fat Red 7B (Sigma) was dissolved in 0.2 ml. polyethylene glycol 400 and the mixture thoroughly stirred into 2 grams of molten polyethylene glycol 4000, then the mixture was spread quickly and evenly on a 31/4 × 4 inch backing film of hydrophilic polyethylene terephthalate and allowed to harden. The film was used without further change by placing the reagent-binder surface in contact with the surface of a hydrated agarose gel medium in which serum protein had previously been subjected to electroporesis. After 10 minutes contact at room temperature, the backing film was removed, whereupon the bands or reacted lipoprotein were visible in the medium.
In another embodiment, there was added to the reagent-binder mixture 0.01 g. of a nonionic surface-active agent, octyl phenoxy polyethoxy (9-10) ethanol sold under the trade name Triton X-100. The reagent-binder film so prepared exhibited more rapid diffusion into the agarose gel medium.
Equal volumes of 0.08 ionic strength pH 8.2 barbital buffer and 1% aqueous polyethylene glycol 4000 binder were mixed; 5 ml. of this mixture was poured onto the surface of a 4 mil hydrophilic polyethylene terephthalate backing film and dried in a forced air oven at 40°C. The resulting reagent-binder film approximately 0.5 mm. thick was placed in contact with the surface of a hydrated agarose gel film medium approximately 2 mm. thick, leaving the backing film in place on the side of the reagent-binder film away from the medium. After 10 minutes at room temperature, the backing film was removed and the gel medium was ready to receive a test specimen prior to an electrophotetic procedure.
Dextran sulfate, a specific precipitant for lipoproteins, can be used as such when incorporated in a reagent-binder film. About 0.5 g. of dextran sulfate reagent was dissolved in 1 ml. of water and spread evenly on the surface of a previously prepared dried film of polyethylene glycol 4,000 binder approximately 0.25 mm. thick, then dried in a forced air oven at 40°C.
Human serum specimens were subjected to electrophoresis in a conventional hydrated agarose gel medium approximately 1 mm. thick supported on a backing of hydrophilic polyethylene terephthalate film. After completion of the electrophoresis, the reagent-binder film surface was placed in contact with the gel medium and allowed to remain for 15 minutes at room temperature, after which the surface of the medium was washed with water. White bands of the precipitated reaction products of lipoproteins with the dextran sulfate were visible in the medium, measurement of which made possible the determination of the quantity of lipoproteins.
A reagent-binder film was prepared by distributing 1 ml. of a 1:5 alpha1 antitrypsin antisera reagent in 0.85% saline solution evenly on the surface of a previously prepared and dried film of polyethylene glycol 6,000 binder approximately 0.25 mm. thick. The resulting product was rapidly dried at 20°C. This reagent-binder film was used in the manner described in Example 10 for pi typing human serum after electrophoretic runs.
Claims (6)
1. The process of analyzing a specimen by subjecting it to a molecular diffusion separation procedure in a water-containing solid medium and causing constituents of the specimen to react with a reagent in said medium, wherein the improvement comprises
providing a measured quantity of water-soluble or water-dispersible reagent incorporated within a solid film of solid film-forming organic polymer binder which is soluble in water to the extent of at least 1% by weight at 20°C.,
placing one face of said film in contact with said water-containing solid medium and maintaining it in contact for sufficient time to permit said reagent and binder to diffuse completely into said medium.
2. The process as claimed in claim 1 in which said device includes a supporting backing of water-insoluble synthetic plastic bonded to the other face of said film.
3. The process as claimed in claim 2 including the additional step of removing said supporting backing after said diffusion is complete.
4. Device for applying a measured quantity of water-soluble or water-dispersible reagent to a water-containing solid medium for use in molecular diffusion or affinity separation procedures, said device comprising
a solid film consisting essentially of a film-forming solid organic polymeric binder which is soluble in water to the extent of at least 1% be weight at 20°C. and incorporated within said binder film a measured quantity of said reagent, said film being of a size and shape adapted to be placed in contact with said medium to permit said reagent and binder to diffuse completely into said medium.
5. A device as claimed in claim 4 including a supporting backing of water-insoluble synthetic plastic bonded to one face of said film.
6. A device as claimed in claim 5 in which said binder is selected from the group consisting of dextran, polyacrylamide, polyacrylic acid, polyvinyl alcohol, polyethylene gylcol, polyethylene oxide, polyvinyl pyrrolidone, guar, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, algin, carrageenan, xanthan gum, starch, and copolymers of maleic anhydride with vinyl monomers.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/450,615 US3975162A (en) | 1974-03-13 | 1974-03-13 | Applying reagent to medium and device therefor |
| CA212,747A CA1025756A (en) | 1974-03-13 | 1974-10-31 | Applying reagent to medium and device therefor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/450,615 US3975162A (en) | 1974-03-13 | 1974-03-13 | Applying reagent to medium and device therefor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3975162A true US3975162A (en) | 1976-08-17 |
Family
ID=23788817
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/450,615 Expired - Lifetime US3975162A (en) | 1974-03-13 | 1974-03-13 | Applying reagent to medium and device therefor |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US3975162A (en) |
| CA (1) | CA1025756A (en) |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4061468A (en) * | 1974-07-30 | 1977-12-06 | Boehringer Mannheim Gmbh | Stable test strips having a water-soluble paper layer and methods for making same |
| US4188188A (en) * | 1978-09-27 | 1980-02-12 | Bio-Rad Laboratories, Inc. | High density lipoprotein cholesterol assay |
| US4216245A (en) * | 1978-07-25 | 1980-08-05 | Miles Laboratories, Inc. | Method of making printed reagent test devices |
| EP0017414A1 (en) * | 1979-04-02 | 1980-10-15 | FMC Corporation | Device for delivering measured quantities of reagent to an assay medium and method of assaying a liquid aqueous assay medium |
| US4250257A (en) * | 1978-08-24 | 1981-02-10 | Technicon Instruments Corporation | Whole blood analyses in porous media |
| US4260392A (en) * | 1978-07-07 | 1981-04-07 | Technicon Instruments Corporation | Method and apparatus for obtaining an aliquot of a liquid in a gel medium |
| EP0051541A3 (en) * | 1980-11-05 | 1982-08-04 | Fmc Corporation | Improved method and device for use with automated chemical analyses |
| US4382063A (en) * | 1979-09-10 | 1983-05-03 | Parke-Davis Company | Sterile indicator device |
| US4425438A (en) | 1981-03-13 | 1984-01-10 | Bauman David S | Assay method and device |
| US4493821A (en) * | 1982-02-04 | 1985-01-15 | Harrison James S | Preservative and fixative preparations for biological systems |
| US4578282A (en) * | 1982-02-04 | 1986-03-25 | Harrison James S | Composition for diagnostic reagents |
| WO1988005912A1 (en) * | 1987-01-28 | 1988-08-11 | Technimed Corporation | Dry reagent delivery system |
| US4844787A (en) * | 1986-09-26 | 1989-07-04 | Fuji Photo Film Co., Ltd. | Packaging bag for sheets for electrophoresis |
| US4870007A (en) * | 1987-12-18 | 1989-09-26 | Eastman Kodak Company | Immobilized biotinylated receptor in test device, kit and method for determining a ligand |
| US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
| US4935347A (en) * | 1976-01-12 | 1990-06-19 | Radiometer Corporate Development Ltd. | Stabilization of compounds |
| US4956300A (en) * | 1982-01-05 | 1990-09-11 | Helena Laboratories Corporation | Aid for determining the presence of occult blood, method of making the aid, and method of using the aid |
| US4994238A (en) * | 1988-06-09 | 1991-02-19 | Daffern George M | Constant volume chemical analysis test device |
| US5047322A (en) * | 1985-12-19 | 1991-09-10 | Eastman Kodak Company | Use of dry analytical elements to determine analytes |
| US5106757A (en) * | 1989-02-25 | 1992-04-21 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Process for the visualization of substance stains on layer chromatograms |
| WO1993007466A1 (en) * | 1991-10-11 | 1993-04-15 | Abbott Laboratories | Unit-of-use reagent compositions for specific binding assays |
| EP0653637A2 (en) | 1993-11-12 | 1995-05-17 | Eastman Kodak Company | Dry elements, test devices, test kits and methods for chemiluminescent detection of analytes using peroxidase labeled reagents |
| EP0609265B1 (en) * | 1991-10-11 | 1997-05-28 | Abbott Laboratories | Unit-of-use reagent composition for specific binding assays |
| US5736343A (en) * | 1995-08-18 | 1998-04-07 | Landry; Donald | Detection of organic compounds through regulation of antibody-catalyzed reactions |
| US5877028A (en) * | 1991-05-29 | 1999-03-02 | Smithkline Diagnostics, Inc. | Immunochromatographic assay device |
| US5927547A (en) * | 1996-05-31 | 1999-07-27 | Packard Instrument Company | System for dispensing microvolume quantities of liquids |
| US5998220A (en) * | 1991-05-29 | 1999-12-07 | Beckman Coulter, Inc. | Opposable-element assay devices, kits, and methods employing them |
| US6168956B1 (en) | 1991-05-29 | 2001-01-02 | Beckman Coulter, Inc. | Multiple component chromatographic assay device |
| US6203759B1 (en) | 1996-05-31 | 2001-03-20 | Packard Instrument Company | Microvolume liquid handling system |
| US6521187B1 (en) | 1996-05-31 | 2003-02-18 | Packard Instrument Company | Dispensing liquid drops onto porous brittle substrates |
| US6537817B1 (en) | 1993-05-31 | 2003-03-25 | Packard Instrument Company | Piezoelectric-drop-on-demand technology |
| US20040134784A1 (en) * | 2000-10-17 | 2004-07-15 | Bio-Rad Laboratories, Inc. | Coating of pre-cast electrophoresis slab gels |
| US6927062B2 (en) | 2002-11-25 | 2005-08-09 | Agdia, Inc. | Controls and standards for assays and method for manufacture thereof |
| US20060057740A1 (en) * | 2002-12-02 | 2006-03-16 | Arkray | Method for manufacturing tool for analysis |
| US20070148040A1 (en) * | 2005-12-27 | 2007-06-28 | Anna Wong | Pipette tip indicator |
| US20080101991A1 (en) * | 2005-06-23 | 2008-05-01 | Arkray, Inc. | Analysis Tool |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3092463A (en) * | 1959-11-02 | 1963-06-04 | Miles Lab | Stable blood detecting composition |
| US3126325A (en) * | 1964-03-24 | Kzhpox | ||
| US3252762A (en) * | 1961-05-04 | 1966-05-24 | Miles Lab | Stabilized occult blood diagnostic |
| US3416998A (en) * | 1967-10-11 | 1968-12-17 | Research Corp | Method of detecting or classifying microorganisms using agar reagent sheets |
| US3619371A (en) * | 1967-07-03 | 1971-11-09 | Nat Res Dev | Production of a polymeric matrix having a biologically active substance bound thereto |
| US3630957A (en) * | 1966-11-22 | 1971-12-28 | Boehringer Mannheim Gmbh | Diagnostic agent |
-
1974
- 1974-03-13 US US05/450,615 patent/US3975162A/en not_active Expired - Lifetime
- 1974-10-31 CA CA212,747A patent/CA1025756A/en not_active Expired
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3126325A (en) * | 1964-03-24 | Kzhpox | ||
| US3092463A (en) * | 1959-11-02 | 1963-06-04 | Miles Lab | Stable blood detecting composition |
| US3252762A (en) * | 1961-05-04 | 1966-05-24 | Miles Lab | Stabilized occult blood diagnostic |
| US3630957A (en) * | 1966-11-22 | 1971-12-28 | Boehringer Mannheim Gmbh | Diagnostic agent |
| US3619371A (en) * | 1967-07-03 | 1971-11-09 | Nat Res Dev | Production of a polymeric matrix having a biologically active substance bound thereto |
| US3416998A (en) * | 1967-10-11 | 1968-12-17 | Research Corp | Method of detecting or classifying microorganisms using agar reagent sheets |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4061468A (en) * | 1974-07-30 | 1977-12-06 | Boehringer Mannheim Gmbh | Stable test strips having a water-soluble paper layer and methods for making same |
| US4935347A (en) * | 1976-01-12 | 1990-06-19 | Radiometer Corporate Development Ltd. | Stabilization of compounds |
| US4260392A (en) * | 1978-07-07 | 1981-04-07 | Technicon Instruments Corporation | Method and apparatus for obtaining an aliquot of a liquid in a gel medium |
| US4216245A (en) * | 1978-07-25 | 1980-08-05 | Miles Laboratories, Inc. | Method of making printed reagent test devices |
| US4250257A (en) * | 1978-08-24 | 1981-02-10 | Technicon Instruments Corporation | Whole blood analyses in porous media |
| US4188188A (en) * | 1978-09-27 | 1980-02-12 | Bio-Rad Laboratories, Inc. | High density lipoprotein cholesterol assay |
| EP0017414A1 (en) * | 1979-04-02 | 1980-10-15 | FMC Corporation | Device for delivering measured quantities of reagent to an assay medium and method of assaying a liquid aqueous assay medium |
| US4234316A (en) * | 1979-04-02 | 1980-11-18 | Fmc Corporation | Device for delivering measured quantities of reagents into assay medium |
| US4382063A (en) * | 1979-09-10 | 1983-05-03 | Parke-Davis Company | Sterile indicator device |
| EP0051541A3 (en) * | 1980-11-05 | 1982-08-04 | Fmc Corporation | Improved method and device for use with automated chemical analyses |
| US4387164A (en) * | 1980-11-05 | 1983-06-07 | Fmc Corporation | Method and apparatus for chemical analysis using reactive reagents dispersed in soluble film |
| US4425438A (en) | 1981-03-13 | 1984-01-10 | Bauman David S | Assay method and device |
| US4956300A (en) * | 1982-01-05 | 1990-09-11 | Helena Laboratories Corporation | Aid for determining the presence of occult blood, method of making the aid, and method of using the aid |
| US4578282A (en) * | 1982-02-04 | 1986-03-25 | Harrison James S | Composition for diagnostic reagents |
| US4493821A (en) * | 1982-02-04 | 1985-01-15 | Harrison James S | Preservative and fixative preparations for biological systems |
| US5047322A (en) * | 1985-12-19 | 1991-09-10 | Eastman Kodak Company | Use of dry analytical elements to determine analytes |
| US4844787A (en) * | 1986-09-26 | 1989-07-04 | Fuji Photo Film Co., Ltd. | Packaging bag for sheets for electrophoresis |
| US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
| WO1988005912A1 (en) * | 1987-01-28 | 1988-08-11 | Technimed Corporation | Dry reagent delivery system |
| US4774192A (en) * | 1987-01-28 | 1988-09-27 | Technimed Corporation | A dry reagent delivery system with membrane having porosity gradient |
| US4870007A (en) * | 1987-12-18 | 1989-09-26 | Eastman Kodak Company | Immobilized biotinylated receptor in test device, kit and method for determining a ligand |
| US4994238A (en) * | 1988-06-09 | 1991-02-19 | Daffern George M | Constant volume chemical analysis test device |
| US5106757A (en) * | 1989-02-25 | 1992-04-21 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Process for the visualization of substance stains on layer chromatograms |
| US6168956B1 (en) | 1991-05-29 | 2001-01-02 | Beckman Coulter, Inc. | Multiple component chromatographic assay device |
| US5877028A (en) * | 1991-05-29 | 1999-03-02 | Smithkline Diagnostics, Inc. | Immunochromatographic assay device |
| US5998220A (en) * | 1991-05-29 | 1999-12-07 | Beckman Coulter, Inc. | Opposable-element assay devices, kits, and methods employing them |
| US6017767A (en) * | 1991-05-29 | 2000-01-25 | Beckman Coulter, Inc. | Assay device |
| EP0609265B1 (en) * | 1991-10-11 | 1997-05-28 | Abbott Laboratories | Unit-of-use reagent composition for specific binding assays |
| US6267969B1 (en) * | 1991-10-11 | 2001-07-31 | Abbott Laboratories | Unit-of-use reagent composition for specific binding assays |
| WO1993007466A1 (en) * | 1991-10-11 | 1993-04-15 | Abbott Laboratories | Unit-of-use reagent compositions for specific binding assays |
| US6537817B1 (en) | 1993-05-31 | 2003-03-25 | Packard Instrument Company | Piezoelectric-drop-on-demand technology |
| EP0653637A2 (en) | 1993-11-12 | 1995-05-17 | Eastman Kodak Company | Dry elements, test devices, test kits and methods for chemiluminescent detection of analytes using peroxidase labeled reagents |
| US5736343A (en) * | 1995-08-18 | 1998-04-07 | Landry; Donald | Detection of organic compounds through regulation of antibody-catalyzed reactions |
| US6203759B1 (en) | 1996-05-31 | 2001-03-20 | Packard Instrument Company | Microvolume liquid handling system |
| US6592825B2 (en) | 1996-05-31 | 2003-07-15 | Packard Instrument Company, Inc. | Microvolume liquid handling system |
| US6083762A (en) * | 1996-05-31 | 2000-07-04 | Packard Instruments Company | Microvolume liquid handling system |
| US6079283A (en) * | 1996-05-31 | 2000-06-27 | Packard Instruments Comapny | Method for aspirating sample liquid into a dispenser tip and thereafter ejecting droplets therethrough |
| US6422431B2 (en) | 1996-05-31 | 2002-07-23 | Packard Instrument Company, Inc. | Microvolume liquid handling system |
| US6521187B1 (en) | 1996-05-31 | 2003-02-18 | Packard Instrument Company | Dispensing liquid drops onto porous brittle substrates |
| US5927547A (en) * | 1996-05-31 | 1999-07-27 | Packard Instrument Company | System for dispensing microvolume quantities of liquids |
| US6112605A (en) * | 1996-05-31 | 2000-09-05 | Packard Instrument Company | Method for dispensing and determining a microvolume of sample liquid |
| US20040134784A1 (en) * | 2000-10-17 | 2004-07-15 | Bio-Rad Laboratories, Inc. | Coating of pre-cast electrophoresis slab gels |
| US7384528B2 (en) * | 2000-10-17 | 2008-06-10 | Bio-Rad Laboratories, Inc. | Coating of pre-cast electrophoresis slab gels |
| US6927062B2 (en) | 2002-11-25 | 2005-08-09 | Agdia, Inc. | Controls and standards for assays and method for manufacture thereof |
| US20060057740A1 (en) * | 2002-12-02 | 2006-03-16 | Arkray | Method for manufacturing tool for analysis |
| US20080101991A1 (en) * | 2005-06-23 | 2008-05-01 | Arkray, Inc. | Analysis Tool |
| US20070148040A1 (en) * | 2005-12-27 | 2007-06-28 | Anna Wong | Pipette tip indicator |
Also Published As
| Publication number | Publication date |
|---|---|
| CA1025756A (en) | 1978-02-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3975162A (en) | Applying reagent to medium and device therefor | |
| KR920000258B1 (en) | Carrier matrix with drssolvably impregnate reagent | |
| EP0013156B1 (en) | Particulate structure and element for analysis or transport of a liquid and method of making said element | |
| US4824639A (en) | Test device and a method for the detection of a component of a liquid sample | |
| US3607093A (en) | Devices for testing biological liquids | |
| US3552928A (en) | Whole blood separation means and test system using same | |
| US4153668A (en) | Multi-zone analytical element and method using same | |
| US4578282A (en) | Composition for diagnostic reagents | |
| US5260195A (en) | Nonaqueous polymeric reagent compositions and applications thereof | |
| JPS59228166A (en) | Test device and method for measuring the presence of a substance in a sample, and method for manufacturing the test device | |
| US4066509A (en) | Detection of hydrolyzing enzymes | |
| US5980746A (en) | Membrane and methods of preparing and using same | |
| EP0194578A2 (en) | Proteins immobilised on polyamides or cellulose hydrate and the use thereof for the preparation of biocatalysts, test strips or chromatography materials | |
| JPH03295466A (en) | Immunological analytical elements and immunological analytical methods | |
| JPH0627732B2 (en) | Analytical element manufacturing method | |
| US4808524A (en) | Test kit and method for the determination of Streptococcus A antigen | |
| JPH0673472B2 (en) | Analytical element | |
| CN109580600B (en) | Seminal plasma biochemical zinc ion rapid detection reagent strip and detection method | |
| USRE33850E (en) | Test kit and method for the determination of Streptococcus A antigen | |
| JPS6018010B2 (en) | Application of reagents to the medium and equipment therefor | |
| JPH0253897A (en) | Purified guaiac butter and its manufacturing method | |
| US5047322A (en) | Use of dry analytical elements to determine analytes | |
| US5250443A (en) | Biological diagnostic assay system | |
| GB2186078A (en) | Method and apparatus for carrying out biochemical assay | |
| DK145286B (en) | METHOD FOR APPLYING A MEASURED QUANTITY OF A WATER SOLUBLE COUNTER WATER DISPERSIBLE REAGENT TO A WATER SOLID MEDIUM AND RELATED PROCEDURE TO ANALYSIS OF A TEST |