US3920777A - Carburetor fast idle cam throttle positioner - Google Patents

Carburetor fast idle cam throttle positioner Download PDF

Info

Publication number
US3920777A
US3920777A US430969A US43096974A US3920777A US 3920777 A US3920777 A US 3920777A US 430969 A US430969 A US 430969A US 43096974 A US43096974 A US 43096974A US 3920777 A US3920777 A US 3920777A
Authority
US
United States
Prior art keywords
cam
series
abutment
engine
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US430969A
Inventor
Robert S Harrison
John D Medrick
Alvin P Nowroski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Motor Co
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Motor Co filed Critical Ford Motor Co
Priority to US430969A priority Critical patent/US3920777A/en
Priority claimed from AU76460/74A external-priority patent/AU479031B2/en
Application granted granted Critical
Publication of US3920777A publication Critical patent/US3920777A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M9/00Carburettors having air or fuel-air mixture passage throttling valves other than of butterfly type; Carburettors having fuel-air mixing chambers of variable shape or position
    • F02M9/10Carburettors having air or fuel-air mixture passage throttling valves other than of butterfly type; Carburettors having fuel-air mixing chambers of variable shape or position having valves, or like controls, of elastic-wall type for controlling the passage, or for varying cross-sectional area, of fuel-air mixing chambers or of the entry passage
    • F02M9/106Pneumatic or hydraulic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/04Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling being auxiliary carburetting apparatus able to be put into, and out of, operation, e.g. having automatically-operated disc valves
    • F02M1/046Auxiliary carburetting apparatus controlled by piston valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • F02M1/08Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling becoming operative or inoperative automatically
    • F02M1/10Carburettors with means for facilitating engine's starting or its idling below operational temperatures the means to facilitate starting or idling becoming operative or inoperative automatically dependent on engine temperature, e.g. having thermostat

Abstract

A downdraft type carburetor has a fast idle cam with a stepped edge that cooperates with a lever attached to the throttle plate shaft to open the throttle plates beyond the normal idle speed positions during cold weather operation for fast idle speeds, the fast idle cam being rotated by a temperature responsive device; during starting, the throttle plates are opened wider, and by degree as a function of the temperature, by the shaft lever engaging a step of a second series of steps on the fast idle cam, the latter steps each projecting more into the path of closing movement of the throttle shaft lever than the first series of steps; a spring positioning the second series of steps in position during starting; a vacuum servo replacing the second series of steps with the first series upon the engine attaining running condition, to close down the throttle plates to less open fast idle positions.

Description

United States Patent [.191
Harrison et al [11] 3,920,777 [451 Nov. 18, 1975 CARBURETOR FAST IDLE CAM THROTTLE POSITIONER [75] Inventors: Robert S. Harrison, Grosse lle; John D. Medrick, Plymouth; Alvin P. Nowroski, Livonia, all of Mich.
[73] Assignee: Ford Motor Company, Dearborn,
Mich.
22 Filed: Jan.4, 1974 21 Appl. No.: 430,969
[52] US. Cl. 261/39 B; 261/50 A; 261/52 [51] Int. Cl. F02M 3/06 [58] Field of Search 261/39 A-39 E,
[56] References Cited UNITED STATES PATENTS 2,102,428 12/1937 Macauley, Jr. etal 261/39 B X 2,665,891 1/1954 Smitley 261/65 X 2,747,848 5/1956 Kehoe 261/65 X 3,642,256 2/1972 Phelps 261/39 D 3,760,785 9/1973 Harrison et al. 261/65 X 3,831,909 8/1974 Freismuth. 261/39 A Primary ExaminerTim R. Miles Assistant Examiner-William Cuchlinski, Jr. Attorney, Agent, or FirmRobert E. McCollum; Keith L. Zerschling ABSTRACT A downdraft type carburetor has a fast idle cam with a stepped edge that cooperates with a lever attached to the throttleplate shaft to open the throttle plates beyond the normal idle speed positions during cold weather operation for fast idle speeds, the fast idle cam being rotated by a temperature responsive device;
during starting, the throttle plates are opened wider,
and by degree as a function of the temperature, by the shaft lever engaging a step of a second series of steps onthe fast idle cam, the latter steps each projecting more into the path of closing movement of the throttle shaft lever than the first series of steps; a spring positioning the second series of steps in position during starting; a vacuum servo replacing the second series of steps with the first series upon the engine attaining running condition, to close down the throttle plates to less open fast idle positions.
I 13 Claims, 14 Drawing Figures r I I I I I I i I 9 i 0 US. Patent N0v."18, 1975 Sheet 1 of 9 US. Patent Nov. 18, 1975 Sheet20f9 3,920,777
FIG-Z FICELS US. Patent Nov. 18, 1975 Sheet 4 of 9 FIG.4-
Sheet 5 of 9 3,920,777
U.S. Patent Nov. 1 8, 1975 US. Patent Nov. 18, 1975 Sheet60f9 3,920,777
, B b -h.
US. Patent Nov. 18,1975 Sheet 7 of9 3,920,777
US. Patent Nov. 18, 1975 Sheet90f9 3,920,777
CARBURETOR FAST IDLE'CIAMVTHROTTLE POSITIONER This invention relates in general to a carburetor for a motor vehicle. More particularly, it relates to a carbu retor that automatically provides'more than just the one high cam engine starting position normally found on a conventional fast idle cam.
Most commercial motor vehicle carburetors equipped with cold enrichment systems include a fast idle cam. The cam is usually moved by a thermostatically responsive coiled spring to project more and more into the path of closing movement of the throttle plate shaft as the temperature becomes colder to provide richer than normal air/fuel mixtures for cold engine operation. The cam usually has a high cam step for the coldest engine starting, followed sequentially, for progressive engagement as the temperature increases, by a number of lesser projecting steps.
In the conventional carburetor having an air movable choke plate, the plate usually is positioned essentially closed for cold engine starts. This lessens airflow and increases the vacuum fuel metering signal to draw in enough extra fuel to provide sufficient vapor for starting the engine. Once the engine fires, however, the throttle plates must be open enough to permit the engine to draw in enough fuel and air to raise the engine cranking speed of say 100 r.p.m. to a 1,000 rpm. fast idle speed sustaining engine operation. Once the engine running operation is attained, then the overrich starting mixture no longer is required, and it becomes desirable to reduce the throttle plate openings to a lower setting, but still one that is richer than that which provides the normal idle speed when the engine has warmed up.
The position of the throttle valve, therefore, is important. The more it is cracked open from the closed position during engine cranking operations, the greater the volume of air and fuel inducted. Therefore, for engine starts, the throttle valve stop is scheduled to be located against the high step of the fast idle cam to provide the richest cranking air/fuel mixture.
As stated above, the conventional carburetor choke mechanism provides a single highcam step position for all cold starting purposes whether the temperature is 80F. or 20F., with a number of lower steps to be progressively engaged as the engine warms, to gradually decrease the engine speed to a normal idle setting. Obviously, there is some temperature level when the degree of throttle opening provided by the high cam step provides the best rich air/fuel mixture. Off this setting in either direction, the mixture is generally not rich enough or too rich.
Accordingly, it is an object of this invention to provide a throttle plate positioner that automatically provides a variable number of high cam positions for engine starting purposes.
It is another object of the invention to provide a throttle plate positioner that provides additional throttle plate openings during cold start operations as a function of the position of the fast idle cam.
Another object of the invention is to provide a throttle plate positioner that includes a stop secured for rotation with the throttle plate and engagable with the stepped edge of a fast idle cam rotatable by a temperature responsive means to present surfaces of progressively increasing radius projecting into the path of movement of the throttle stop as the fast idle cam 2 moves progressively towards a colder engine running position, the fast idle cam having other means associated with it to provide additional throttle plate openings during cold engine starts over that provided by the conventional fast idle cam, the additional openings being terminated once theengine has attained running operation.
It is another object of the invention to provide a throttle plate positioner of the type described above in which the other means comprises a second stepped face on the fast idle cam engagable with the throttle stop during starting operations, and which is withdrawn from engagement once the engine has attained running operation to permit the throttle stop to engage the stepped face of a surface similar to that of a conventional fast idle cam.
It is a still further object of the invention to provide a throttle plate positioner as described above in which the fast idle cam has on its edge two sets of circumferentially contiguous stepped face portions that are axially spaced with one series having steps corresponding in number and axially aligned with those of the other series but each step of the one series being of a greater radial extent than its corresponding step to provide the additional throttle plate opening desired for cold starting, the cam being axially shiftable by an engine vacuum operated servo once the engine has attained running operation to permit closing of the throttle plates to a lesser open position by engagement with the lesser radial extent projections that are similar to a conventional fast idle cam face.
Other objects, features, and advantages of the invention will become more apparent upon reference to the succeeding detailed description thereof, and to the drawings illustrating the preferred embodiment thereof, wherein;
FIG. 1 is a plan view of a variable area venturi type carburetor embodying the invention;
FIG. 2 is a cross sectional view taken on a plane indicated by and viewed in the direction of the arrows 2-2 of FIG. 1;
FIG. 3 is a cross sectional view taken on a plane indicated by and viewed in the direction of the arrows 33 of FIG. 7 and looking down on the main or central body portion of the carburetor;
FIGS. 4 and 5 are enlarged cross sectional views taken on planes indicated by and viewed in the direction of the arrows 4-4 and 5-5 of FIG. 3;
FIG. 6 is an enlarged cross sectional view and FIG. 7 is a cross sectional view taken, respectively, on planes indicated by and viewed in the direction of the arrows 6-6 and 77 of FIG. 1; Y
FIG. 8 is a bottom view taken on a plane indicated by and viewed in the direction of the arrows 8-8 of FIG. 7, and looking up at the underside portion of the air horn portion of the carburetor;
FIG. 9 is an enlarged side elevational view taken on a plane indicated by and viewed in the direction of the arrows of .FIG. 1; I
FIG. 10 is a cross sectional view taken on a plane indicated by and viewed in the direction of the arrows l0 l0 of FIG. 9;
FIGS. 11 and 12 are cross sectional views taken on planes indicated and viewed in the direction of the arrows llll and l2l2 of FIG. 10;
FIG. 13 is a cross sectional view taken on a plane indicated by and viewed in the direction of the arrows l3l3 of FIG. 12; and,
FIG. 14 is an enlarged cross sectional view taken on a plane indicated by and viewed in the direction of the arrows 14-14 of FIG. 13.
FIG. 1, which is essentially to scale, is a plan view of a variable area venturi carburetor of the downdraft type. It has a pair of rectangularly shaped induction passages 10, each having one end wall 12 which is pivotally movable and has the profile (FIG. 2) of one-half of a venturi 13. Each opposite fixed cooperating wall 14 is formed with the mating profile of a portion of aventuri. The airflow capacity, therefore, varies in proportion to the opening movements of walls 12 of the induction passages.
As seen more clearly in FIG. 2, movable walls 12 are pivotally mounted at 15 on a stationary pin. The pin actually is fixed to a strut, not shown, that depends from a section of the air horn or upper body portion of the carburetor. Pivotally attached to each of the wall bodies is a fuel metering rod or needle 16 that is tapered for cooperation with a main fuel metering jet 18. The needles have a controlled taper to provide a richer air/fuel mixture at the lower and higher ends of the venturi opening range. Each jet is located in an aperture inside wall 14 at approximately the throat or most constricted section of venturi 13. A fuel float bowl or reservoir 20 has a pair of identical passages 22 conducting fuel to the main metering jets 18. Downstream of the venturis, the carburetor throttle body portion 23 rotatably mounts a shaft 24 on which are fixed a pair (only one shown) of conventional throttle plates 25 that control the flow of air and fuel through induction passages 10.
The size of venturis l3 and the movement of walls 12 is controlled in this case by a spring returned, control vacuum actuated, diaphragm type servo 26. The servo consists of a hollow two-piece casting divided into two chambers 28 and 30 by an annular flexible diaphragm 32. The diaphragm is sealingly mounted along its edge in the casting. Chamber 28 is an air chamber, connected to ambient or atmospheric pressure through a passage 34 (indicated also in FIGS. 1, 3 and 7). Chamber 30 is a vacuum chamber connected to induction passages 10 at a point below the throat but still in the venturi l3.'This subjects chamber 30 to changes in a control vacuum that varies with airflow but at a rate that is slightly different than true venturi vacuum. The exact location of the tap of course is a matter of choice. Chamber 30 also is connected to be actuated by ported intake manifold vacuum, for cold weather operation, as will be described in more detail later.
Completing the construction, servo 26 has fixed to one side of diaphragm 32, by a retainer 35, a plunger or actuator 36. The plunger is pivotally connected to a shaft 37 interconnecting cast portions of the movable walls 12. Fixed to the other side of diaphragm 32 is a retainer 38 against which is seated a spring 39. The other end of the spring bears against a seat 40 axially adjustable to vary the spring preload.
FIG. 2 indicates schematically in dotted lines a passage p between chamber 30 and induction passages 10. In actuality, as best seen in FIGS. 3, 4, and 5, servo chamber 30 is connected by a restricted line 41 (FIG. 3) to an intersecting passage 42 (FIGS. 3-5). Passage 42 intersects with a vertically downwardly extending passage 44 (FIG. 4) containing a flow restrictor or orifice 46 and terminating in a chamber 48. Chamber 48 is connected by a port 50 to induction passage 10 at a point below the edge of throttle valve 25 when it isin its closed position shown. In the position shown, there- 4 fore, as the throttle valve is rotated to an open position, port 50 is progressively subjected to the increased pressure above the throttle valve to bleed the vacuum in passage 42.
Passage 42 also intersects with a right angled passage 52 (FIGS. 4, 5 and 6) that connects to a passage 54 (FIG. 6). The latter passes vertically through the main body portion of the carburetor into a horizontal passage 56 in turn connected by a pair of passages 58 and 60 to the well 62 (FIG. 3) in which is arcuately movable one of the mounting members (FIG. 2) for movable wall 12. While not shown, the well 62 in FIG. 3 and the adjacent induction passage 10 are interconnected by a depressed portion of the main body between the two so that the opening 63 shown in FIG. 6 senses the control or venturi-like vacuum connected by the passages named to servo chamber 30.
' Looking now at FIG. 6, the opening 63 to the control vacuum in this case is adapted to be alternately blocked or progressively opened by a needle type valve 72. The valve is movable into and out of the seat 63 in response to a temperature sensitive element, in a manner that will be described more clearly later. Suffice it to say at this point, that during normal engine operating temperatures, the needle valve 72 is completely withdrawn from opening 63 thereby permitting venturi-like vacuum to be sensed through passages 60, 58, 56, 54, 52, 42 and 41 to chamber 30 of the servo, the ported manifold vacuum simultaneously being sensed through port 50, chamber 48, line 42 to line 41 and servo chamber It should be noted that the size of the venturi-like vacuum passages 60, 58, 56, 54 and 52 are considerably larger than that of the ported manifold vacuum passage 44, coupled with the orifice 46, so that when the needle valve 72 is in the up position, the manifold vacuum is bled to the level of the venturi-like or control vacuum and, therefore, has essentially no effect on the movement of servo 26. The manifold vacuum is used during cold weather operations to modulate the venturi-like or control vacuum to provide a different richness schedule than would be provided by means of the venturi-like control vacuum above, to provide a finer control of engine operation. When the needle valve 72 is in the closed or nearly closed position, the venturilike vacuum flow will be essentially blocked and manifold vacuum alone will be acting on servo chamber 30. This will cause the movable venturi walls 12 to be moved to a larger area venturi pulling the fuel metering rods 16 out to the desired position.
As thus far described, during normal engine operating temperatures, the operation is as follows. The rotative movement of throttle plates 25 controls total airflow through both passages 10 to increase as the throttle valves are moved from their closed position. An increase in airflow provides essentially a proportional increase in the control vacuum in chamber 30 from port 63 until diaphragm 32 is moved towards the cup 40. This moves both walls 12 to open induction passages 10 and increase the area of venturis 13 while simultaneously retracting the fuel metering rods 16 to provide a change in fuel flow. Thus, the total airflow and fuel flow vary with changes in throttle plate setting up to a maximum.
Returning now to the general construction shown in FIG. 1, during cold weather operation, as stated previously, it is desirable to provide an additional supply of fuel to the induction passages to assure sufficient fuel vapor both for starting the engine aswell as a different schedule of additional fuel for running the cold engine prior to its reaching normal operating temperature level. These requirements are satisfied by providing a combination fuel enrichment system, a cranking fuel enrichment system, as well as a throttle plate positioner to crack open the throttle'plates an additional amount during cold starting operations.
More specifically, FIGS. 3, 6 and 7 show portions of both the cold running enrichment system as well as the cold start cranking fuel system. The body portion of the carburetor is cast with a fuel bowl 20 containing fuel delivered thereto past a conventional inlet needle valve 80 from a supply line 82. The needle valve 80 is moved vertically in a bore 84 by the tab 86 secured to a float member 88 pivotally mounted at 90 on a depending portion of the air horn section of the carburetor.
The inlet valve 80 operates in a known manner. Movement of float 88 downwardly as a result of lowering of the liquid fuel level causes the needle 80 to drop. This permits fuel under pressure to enter the reservoir from line 82 to fill it again to the desired level. Raising of the float raises the inlet valve against a conical seat, not shown, to shut off the supply when the desired level has been reached.
The lower portion of fuel bowl 20 contains a spring opened cranking fuel supply valve 100 (FIG. 6). The latter has a conical valve portion 102 that cooperates with an annular knife edge seat 104 located in the end of a fuel passage 106. Valve 100 has a tapered stern portion 108 and is biased upwardly by a spring 110 to open passage 106 to the flow of fuel frombowl 20. An intersecting passage 112 (FIG. 3) connects with a cross passage 114 to flow fuel into another passage 116 past a solenoid controlled valve unit 118.
As best seen in FIG. 7, unit 1 18 consists essentially of a valve 120 formed on the end of the armature of a solenoid 122. A spring not shown normally biases valve 120 to close communication between passages 114 and l 16. The solenoid normally would be powered from the starter relay of the motor vehicle ignition system so that the solenoid is rendered operative only during engine starting conditions. That is, when the ignition key is turned to the start position, the solenoid 122 would be energized and cause valve 120 to be retracted rightwardly to open communication between passages 114 and 116. A flow of starting fuel would then be permitted from fuel bowl 20 to passage 116. As soon as the engine attained running condition, return of the ignition switch to the on position would de-energize solenoid 122 and again block passage 114 from communicating with passage 116. The solenoid unit could include a manifold vacuum switch so the solenoid is not energized below a vacuum level of say 2 inches Hg, for
example. It also could contain a thermal switch to prevent operation above 80F, for example, when extra cranking fuel usually is not needed.
From passage 114 the fuel passes upwardly through the carburetor main body passage 124 (FIG. 7) where it flows into a plenum 126, shown also in FIG. 8. From the plenum, the fuel is divided equally to be inducted out through'passages 128 into each of the induction passages at a location adjacent the venturi but spaced from the fuel jets 18. Thus, it will be seen that for starting operations, energizationof the solenoid by turning of the vehicle ignition switch causes additional fuel to be added at times to the induction passages, for starting purposes.
The quantity of cranking fuel to be added to the induction passages, or, on the other hand, the position of cranking valve 100, is controlled by the lower end of a needle valve 140 (FIG. 6) that forms a portion of the engine running fuel enrichment system. More specifically, needle valve 140 is tapered at its lower end as shown'at 142 and has threaded to it an abutment portion 144. The latter is adapted to engage the cranking valve 100 when the needle valve is moved downwardly during warmer than the coldest weather operations. The screw connection of member 144 to the needle valve provides axial adjustment for varying the characteristics of the fuel flow. I
The needle valve 140, in this case, is vertically movable in a well 146 in the upper body portion. It is axially aligned by a seal 148 and a valve seat 150 with which the tapered portion of valve 140 cooperates. The seal and seat define a chamber 154 which is connected by an angled passage 154 to the end 156 of a worm-like passage 158 best seen in FIG. 8. The opposite end 160 of passage 158 connects with a vertical passage 162 (FIG. 7) that intersects an angled passage 164 leading to the plenum 126. As stated previously, plenum 126 also receives fuel from the cranking fuel passage 124.
Together then, the fuel passes into each induction passage 10 through the side passages 128. It will be seen then that, depending upon the vertical position of needle valve 140, a quantity of fuel will flow past the tapered portion 142 of the needle valve into the various passages into induction passages 10 to supply additional fuel during cold running operation of the engine.
The vertical movement of needle valve 140 is controlled by a temperature sensitive element that moves the needle valve 140 upwardly to increase fuel flow as the temperature decreases below the normal operating level, and moves the needle'valve 140 to a downward position to shut off the fuel enrichment when the temperature reaches the normal operating level. Concurrently, the downward movement of needle valve 140 as the temperature increases will move the cranking fuel valve downwardly against the force of spring in proportion to the temperature increase. Therefore,
when the normal operating level is reached, cranking valve 100 will be completely closed against seat 102 and no additional fuel will then be added during starting of the engine.
The upper end of needle valve is pivotally connected to the end of a lever 166. The lever is pivotally mounted on a pin 168 projecting through an aperture in a boss 170 projecting from the carburetor upper body. The opposite, end of lever 166 is pivotally connected to an adjustable nut 172 on the upper end of'a depending link 174. The link 174 is adapted to be connected to a thermostatically responsive movable element to be described. Adjusting the upper end 172 of course will vary the operating characteristics of the system. Downward movement of link 174 is limited by abutment of the nut 172 against a stop washer 176. Projecting horizontally or laterally from link 174 is a connector 178 pivotally engaging the threaded upper end 180 of needle valve 72. The upper end 180 contains a yoke member 182 adjustably threaded to the end of needle valve 72 as shown to determine the upward and downward limits of movement of the needle valve.
As thus far described, therefore, when link 174 is in the position shown indicating that'the temperature is at the lowest below normal engine operating level, the
needle valve 140 will have been moved to its upwardmost position to provide maximum fuel flow through this circuit, and the needle valve 72 will have moved to its downwardmost position to block the port or outlet 63 to the induction passage section 62 shown in FIG. 3. Thus, assuming a closed throttle plate position, the higher ported manifold vacuum in port 50 (FIG. 4) will act in servo chamber 30 to move the walls 12 further out than they would be moved by the control vacuum alone, to provide the desired richness schedule by pulling out the metering rods 16. Also, simultaneously, additional fuel will be inducted from the fuel enrichment well 152 into the induction passages 10 and out through the fixed area outlet passages 128.
As soon as the temperature increases from its lowest setting, the link 174 will move vertically upwardly from the position shown. This will gradually and progressively raise the needle valve 72 and lower progressively needle valve 140. The venturi-like control vacuum then bleeds into passage 60 to decrease the vacuum force acting on servo chamber 30 to permit servo spring 46 to slowly close the venturi towards the normal engine idle speed position. While this increases the air velocity and fuel metering signal, the additional fuel enrichment will decrease since the tapered portion 142 of needle valve 140 will be closing the opening to the fuel bowl.
Turning now to the temperature responsive control of the movement of link 174 and the throttle valve positioner of the invention, as best seen in FIGS. 9-14, and especially FIG. 10, the lower end of link 174 is pivotally connected to one end of a lever 216 that is fixed on a shaft 218. The shaft extends rotatably through a sleeve 220 that is mounted in a hole 222 in a hollow box-like housing 224. The housing is bolted to the carburetor throttle flange by mounting tabs 225. The opposite end of shaft 218 is enlarged at 226 to constitute a'stop for the end of sleeve 220. The end 226 also is riveted to a lever 228 that has leg portions 230 and 232 bent in opposite directions.
The leg portion 230 is adapted to engage or move between a pair of drive lugs 234, 235 (FIG. 12) formed on a fast idle cam 236. The cam is rotatably mounted on a second sleeve 238 slidably mounted on sleeve 220. The cam is fixed axially on sleeve 238 between an annular collar 240 at one end and a snap ring 242 at the other end. The cam has a portion 244 in which is mounted a ball 246 of chosen weight, and a fast idle portion 248. The fast idle portion, as best seen in FIGS. 12-14, has two peripheral circumferentially stepped edge surfaces 250 and 252. Each surface contains, in this case, a series of four steps 250, 250", 250", and 250" and 252', 252", 252" and 252", in sequence each ofa greater radial extent than the circumferentially contiguous previous one. The series of steps on surface 250 are axially aligned with and correspond to the series of steps'on surface 252. Each of the steps on surface 252, however, extend or project radially outwardly a greater distance than the steps on surface 250.
The steps are adapted to be engaged individually or one at a time by the end of a plunger 254 shown in FIG. 12. The plunger is slidably mounted within a sleeve 256 fixed in the housing 224 within a hole 258. A spring 260 biases the opposite button end 262 of the plunger to a retracted, inoperative position. The plunger end is engaged by the cam end 264 of a lever 266 that adjustably mounts a screw 268. The end of the screw abuts a tang 270 formed on a lever 272 fixed on the throttle shaft 24. The throttle shaft thus is free to move in a counterclockwise direction to open the throttle plates, but is stopped in its movement in a closing direction by the position of screw 268. The throttle shaft 24 is biased in a closing direction against the screw by a coiled spring not shown.
As stated previously, plunger 254 is adapted to engage only one of the fast idle cam steps at a time on the two surfaces 250 and 252. As seen in FIG. 13, the surfaces are in two different planes. The plunger, however, is movable but in a single plane along the axis of the hole 258. The fast idle cam, therefore, is adapted to be shifted axially to alternately align the plunger end with one or the other of surfaces 250, 252.
As best seen in FIGS. 10 and 11, the sleeve 220 is slipped through a hole 280 in a reaction plate 282 until a collar 283 on the sleeve abuts the plate. The plate then is anchored to the sleeve by a snap ring 284. The plate has a stamped tab portion 286 that is bent upwardly to form a fulcrum 287 for a flat lever 288. The right-hand end of lever 288 is formed as a fork 290 with ears 292 engaged in the channel of collar 240 of slidable sleeve 238. The lever end 290 is biased downwardly in FIG. 10 by a spring 294 stretched over the top surface of lever 288 in a groove 296. The spring is anchored on opposite ends as shown in FIG. 11.
The lever 288 in the position shown in FIG. 10 locates sleeve 238 and fast idle cam 234 so that the less projecting cam surface 250 is aligned with the axis of plunger 254. When the lever 288 is pivoted about the fulcrum 287 in a counterclockwise direction, it raises the sleeve 238 and fast idle cam so that the more projecting cam surface 252 is then aligned with the axis of plunger 254.
The lever 288 is pivoted by a vacuum controlled servo 300. The servo is defined in part by a formed portion 302 of housing 224 and a cover 304 bolted to housing 224. An annular flexible diaphragm 306 subdivides the housing into an air chamber 308 and a vacuum chamber 310. The air chamber is vented to the ambient air inside the housing 224 through a hole 312. A plunger 314 riveted to diaphragm 306 projects through hole 312 against the end of lever 288. The vacuum chamber 310 contains a spring 316 that biases plunger 314 and lever 288 downwardly in FIG. 10 to the dotted line position 318 aligning cam surface 252 with plunger 254. Vacuum applied to the servo retracts diaphragm 306 and plunger 314 to the full line position shown aligning the fast idle cam surface 250 with plunger 254. Engine vacuum is applied to chamber 310 from an engine intake manifold port in the induction passage through a passage 320 (FIG. 12) connected through another passage in a hollow mounting bolt, not shown, adapted to be inserted in hole 321.
The rotative position of fast idle cam 234 to determine which step on either surface 250 or 252 will be engaged by plunger 254 is controlled by a coiled thermostatic bimetal spring 322 shown in FIG. 10. The outer end of the spring engages in a slot in the leg 232 of lever 228 to rotate the same with contractions or expansions of the coiled spring upon changes in temperature level. The inner end 324 of the coil spring is mounted in a slot on a stub shaft 326. The shaft projects loosely through a cover 328 that closes the end of housing 224 with a gasket 329 between, and is attached to an indexing plate 330. Turning the plate places a preload or removes the preload on coiled spring 322 by coiling or uncoiling the spring. The plate is held.frictionally in adjusted position by tightening a cover plate 332 against the plate by means of screws 334.
As best seen in FIGS. 9 and 10, the lowermost portion of housing 224 includes a tube 336. The tube is adapted to be connected to a conventional exhaust manifold heat stove whereby fresh air flowing past the stove into the tube is heated. The chamber defined within housing 224 in turn is connected to the manifold vacuum in passage 320 (FIG. 9) by means of a small hole 338 in the lowermost wall section 340 and a, connecting passage 342 formed in the casting. Thus, when the engine is running, vacuum acting through hole 338 will pull hot air along the lowermost portion of the housing, as seen in FIG. 10, past the coiled spring 322 to heat it.
Warming of the coiled spring 322 will cause a circumferential movement of the outer end 232 of lever 228 in a counterclockwise direction (FIG. 12) to permit the fast idle cam 236 to follow by gravity. This then will place a lower step or none, as shown, of surface 250 in the path of the plunger 254, upon depression and release of the accelerator pedal. Similarly, cooling of the coil 322 will cause it to rotate lever 228 in the opposite direction. This of course simultaneously rotates the fast idle cam 236 by abutment of lever 230 against the projection 234, so that, depending upon the temperature level, one of the higher steps of surface 250 will be presented opposite the end 254 of plunger 254. Thus, the throttle plate idle, speed setting will be determined by which step is engaged by plunger 254, during running operations of the engine. During cold start operations, the fast idle cam is raised by the servo vspring 316 so that the cam surface 252 is aligned with plunger 254. The engagement of the plunger with one of the steps of the higher cam surface thus opens the throttle plates more for starting purposes than they are during normal cold running conditions.
It will be seen, therefore, that regardless of what rotative position the fast idle cam 236 assumes because of the prevailing ambient temperature, the throttle plates will be opened more during starting than for normal, cold running operation. The degree of opening will The rotation of lever 216 moveslink 174 down-.
wardly to its extreme position until the stop 172 shown in FIG. 6 abuts the washer 176. This pivots needle valve 140 to its uppermost position allowing a maximum amount of fuel past the tapered lower portion from fuel bowl 20. This upward position also permits the upward movement of the cranking valve 100 by the spring 110 to open wide the passage 106 to flow fuel to passage 1 12. Therefore, when the ignition switch is turned to an on or start position, the solenoid 118 will withdraw the valve 120 to permit fuel to flow from passage 114 1 16.
When the engine is cranked for starting purposes, the
cranking vacuum signal is sufficient acting across the induction passage outlets 128 (FIG. 8) to draw fuel up cranking fuel circuit passage 124 into plenum 126. Simultaneously, fuel is drawn past the engine running fuel circuit needle valve 140 into the worm passage 158 vary to agree with the ambient temperature level so .that may provide undesirable emissions.
The overall operation of the carburetor is believed to be clear from the above description and by referenceto the drawings. Therefore, it will be repeated now only briefly. Assume that the engine is off and the ambient temperature is essentially 0F. The coiled bimetallic spring 322 will have contracted a maximum amount biasing' lever 228 clockwise (FIG. 12). By opening the throttle plates, plunger 254 will be retracted by its spring, allowing lever 228 to rotate the fast idle cam 236 clockwise. This will locate the highest cam step opposite the plunger 254. Simultaneously, the servo spring 316 will move plunger 314 downwardly to pivot .lever 288. This will shift the fast idle cam upwardly to align the higher cam surface 252 opposite plunger 254,
and in particular, the highest cam surface 252'. Release of the throttle plates now will engage the plunger with the step 252' and the plates will be opened a maximum amount for the coldest start positions. The induction (FIG. 8) to plenum chamber 126, where both circuits combine and the fuel is inducted to provide the necessary starting richness. Once the engine has been started, release of the ignition switch to the engine running position de-energizes solenoid 122 to then again block the connection between the cranking supply line 114 and the line 116. However, with the link 174 in its downwardmost coldest position, the valve 72 will also be down blocking off port 63. Accordingly, engine running manifold vacuum will act in servo chamber 30 and draw the walls 12 of the venturis to open or enlarge the venturi area. This will also withdraw the fuel metering rods 16. The reduced air velocity reduces the fuel metering signal and therefore leans out the overall mixture at this time even though the fuel jet orifices are enlarged. Thus, a richer than normal idle but less rich than cranking mixture is provided at this time.
Simultaneously, upon the engine attaining a'running I condition, the manifold vacuum established in servo chamber 310 will be sufficient, once the throttle lever 264 is pivoted counterclockwise to release plunger 254, to retract plunger 314. This will permit the fast idle cam 234 to drop down to the full line position shown in FIG. 10. Now the lever 264 will abut the step 250 of the fast idle cam and thereby close down the throttle plates to less open positions than during starting. This provides less fuel and airflow for cold running operations, which is desired because a less rich air/fuel mixture now is required once the engine has attained its idle speed horsepower.
As the temperature increases, the bimetallic coiled spring 322 will rotate the lever 216 in a counterclockwise direction away from the fast idle cam. The cam then can move in the same direction by gravity when the throttle plates are opened beyond the fast idle position so that the end of lever 266 gradually moves progressively clockwise to permit the progressive closure of the throttle plates. Simultaneously, the counterclockwise rotation of lever 216 effects an upward movement of link 174 to progressively move the needle valve downwardly and thereby progressively close off the additional fuel flow past the valve. This movement also causes an upward movement of needle valve 72 permitting the venturi-like vacuum to decay the 1 1 ported manifold vacuum signal acting in servo chamber 30.
Thus, the lowering vacuum signal in pressure chamber 30 will permit the venturi walls 12 to move to contract the venturi area and move the metering rods 16 into the jets 18. This richens the main fuel mixture because the fuel metering signal now increases. But at the same time, the supplemental fuel is being cut off. So for the same airflow, the mixture will lean as the temperature increases. Eventually, the throttle plates will be returned to their normal idle speed closed positions, the needle valve 72 will be drawn essentially completely out of port 63 so that movement of the venturi walls will be controlled solely by control or venturi-like vacuum changes, and the supplemental fuel needle valve 140 will be moved downwardly to shut off completely the supply of additional fuel to the system. At this time, the cranking valve 100 will be shut so that even if solenoid 122 opens during engine start condition, no additional cranking fuel will be added to the engine when the engine is started at a normal operating temperature level. It should be noted that during cold engine operation, when the throttle plates are in the fast idle speed positions, the high manifold vacuum provides excess fuel vaporization. This is why the venturi is enlarged, to lean the mixture at this time. The moment the throttle plates are moved off idle to accelerative positions, the manifold vacuum drops, and a richer mixture is required for better engine drivability. The traversing of port 50 by the throttle plates decreases the manifold vacuum progressively to the control vacuum level existing above the throttle plates, and therefore closes the venturi progressively to progressively increase the richness.
From the foregoing, it will be seen that the invention provides a throttle plate positioner to provide variable additional throttle plate openings during cold engine starts regardless of the fast idle cam position, to provide increased air and fuel flow for cold weather operation, and, therefore, improved emissions.
While the invention has been shown and described in its preferred embodiment, it will be clear to those skilled in the arts to which it pertains that many changes and modifications may be made thereto without departing from the scope of the invention.
We claim:
1. An idle speed control for controlling the idle speed of an internal combustion engine having a carburetor throttle plate variably movable between positions opening and closing an air/fuel mixtureconduit of a carburetor, the control means including abutment means operably fixed to the throttle plate, and stop means positioned in the path of movement of the abutment means and plate in one direction, th'e'stop means including thermally sensitive means for moving the stop means to various positions in response to changes in temperature, the stop means having a cam profiled surface engagable' by the abutment means, whereby movement of the stop means by the thermally sensitive means varies the stopped position of the abutment means and thereby the throttle plate idle speed position, and movable means movable during engine startup operations an incremental distance that varies as a function of the change in temperature of the temperature sensitive means to position the abutment means an equal distance away from the cam surface regardless of the position of the cam surface relative to the abutment means to open the throttle plate farther than the idle 12 speed position called for by that portion of the cam surface normally engaged by the abutment means for the prevailing temperature level.
2. An idle speed control as in claim 1, the abutment means comprising a lever, the stop means comprising a fast idle cam rotatably mounted, the thermally sensitive means comprising a coiled bimetallic spring having an end circumferentially movable in response to temperature changes and connected to the fast idle cam for rotating it, the profiled surface being on an edge of the cam engaged by the lever.
3. An idle speed control as in claim 2, the movable means comprising a second cam profiled surface having a second series of circumferentially contiguous steps corresponding in number to the first mentioned steps and each axially aligned with and of a greater radial extent than its corresponding step whereby engine start-up is obtained by engagement of the abutment means with the second series of steps providing a greater opening of the throttle plate than is provided by engagement of the abutment means against the corresponding first steps, and spring means to bias the second series of steps into position against the abutment means.
4. An idle speed control forcontrolling the idle speed of an internal combustion engine having a carburetor throttle plate variably movable between positions opening and closing an air/fuel mixture conduit of a carburetor, the control means including abutment means operably fixed to the throttle plate, and stop means positioned in the path of movement of the abutment means and plate in one direction, the stop means including thermally sensitive means for moving the stop means in response to changes in temperature to vary the stopped position of the abutment means, the stop means having a cam profiled surface engagable by the abutment means, and movable means movable during engine start-up operations to position the abutment means away from the cam surface to a position opening the throttle plate farther than the idle speed position called for by that portion of the cam surface normally engaged by the abutment means for the prevailing temperature level, the profiled surface comprising a series of circumferentially contiguous stepped faces of differing radial extent separately engagable with the abutment means in response to movement of the stop means.
5. A control means as in claim 4, including other means connected to the movable means and operative in response to the engine attaining a running condition to move the movable means to return the abutment means against the cam surface to move the throttle plate to the idle speed position called for by the particular cam surface portion engaged by the abutment means.
6. An idle speed control as in claim 5, the other means comprising a servo operable by engine manifold vacuum.
7. An idle speed control as in claim 4, the movable means comprising a second cam profiled surface.
8. An idle speed control as in claim 7, in which the second cam profiled surface has a second series of circumferentially contiguous steps axially displaced with respect to the first steps and each of a greater radial extent than a step of the first series whereby engine startup is obtained by engagement of the abutment means with the second series of steps providing a greater opening of the throttle plate than is provided by enond series 'of steps into position against. the abutment v} means.
9. An idle speedcontrol as in claim 7, in which the second .cam profiled surface has a second series of circumferentiallycontiguous steps corresponding in number to the first mentioned steps and each axially aligned with and of a greater radial extent than its corresponding step of the first series whereby engine start-up is obtained by engagement of the abutment means with the second series of steps providing a greater opening of the throttle plate than is provided by engagement of the abutment means against the corresponding first steps, and spring means to bias the second series of steps into position against the abutment means.
10. An idle speed control as in claim 9, the cam being axially movable, the spring means biasing the cam axially to a position wherein the lever operatively engages a step of the second series of steps. I
11. An idle speed control as in claim 10, the other means comprising an engine vacuum movable servo operatively connected to the cam to axially move the cam in response to application of engine vacuum thereto to a second position wherein the lever operatively engages a step of the first mentioned series of steps. 7
12. An engine idle speed control for controlling the idle speed position of the throttle plate of a carburetor having an induction passage open at one end to fresh air and adapted to be connected at its other end to the intake manifold of an internal combustion engine, and a spring closed throttle plate mounted for rotation across the passage to control flow of air and fuel therethrough, V
the control including a lever operatively connected to the throttle plate for rotation therewith, a shaft, a fast idle cam rotatably mounted on the shaft and having an edge engagable by the lever during the closing movement of the throttle plate, the edge having a first series of circumferential contiguous surfaces of varying radial extents constituting a multitude of stopsextending sequentially into the v path of closing movement of the lever to control the idle speed position of the throttle plate as a function of the movement of the cam, a tempera-' first series, means mounting the cam and lever for an axial relative movement therebetween so as to engage the lever with the first series'of surfaces in one relative position of the lever and cam and to engage the lever with the second series of surfaces in the alternate relative position of the cam and lever, and movable means movable during engine start-up operations to position the lever and cam in the alternate position to open the throttle plate farther, and engine vacuum servo means operative in response to the engine attaining a running condition to return the lever and cam to the one relative position with the lever against the first series of surfaces to move the throttle plate to the less open idle speed position for the same prevailing temperature level. 13. An idle speed control as in claim 12, the movable means including a link connected at one end to the movable by engine running vacuum to effect movement of the cam to the one position to' provide the lesser throttle plate idle speed openings for the prevailing temperature.

Claims (13)

1. AN IDLE SPEED CONTROL FOR CONTROLLING THE IDLE SPEED OF AN INTERNAL COMBUSTION ENGINE HAVING A CARBURETOR THROTTLE PLATE VARIABLY MOVABLE BETWEEN POSITIONS OPENING AND CLOSING AN AIR/FUEL MIXTURE CONDUIT OF A CARBURETOR, THE CONTROL MEANS INCLUDING ABUTMENT OPERABLY FIXED TO THE THROTTLE PLATE, AND STOP MEANS POSITIONED IN THE PATJ OF MOVEMENT OF THE ABUTMENT MEANS AND PLATE IN ONE DIRECTION, THE STOP MEANS INCLUDING THERMALLY SENSITIVE MEANS FOR MOVING THE STOP MEANS TO VARIOUS POSITIONS IN RESPONSE TO CHANGES IN TEMPERATURE, THE STOP MEANS HAVING A CAM PROFILED SURFACE ENGAGABLE BY THE ABUTMENT MEANS, WHEREBY MOVEMENT OF THE STOP MEANS BY THE THERMALLY SENSITIVE MEANS VARIES THE STOPPED POSITION OF THE
2. An idle speed control as in claim 1, the abutment means comprising a lever, the stop means comprising a fast idle cam rotatably mounted, the thermally sensitive means comprising a coiled bimetallic spring having an end circumferentially movable in response to temperature changes and connected to the fast idle cam for rotating it, the profiled surface being on an edge of the cam engaged by the lever.
3. An idle speed control as in claim 2, the movable means comprising a second cam profiled surface having a second series of circumferentially contiguous steps corresponding in number to the first mentioned steps and each axially aligned with and of a greater radial extent than its corresponding step whereby engine start-up is obtained by engagement of the abutment means with the second series of steps providing a greater opening of the throttle plate than is provided by engagement of the abutment means against the corresponding first steps, and spring means to bias the second series of steps into position against the abutment means.
4. An idle speed control for controlling the idle speed of an internal combustion engine having a carburetor throttle plate variably movable between positions opening and closing an air/fuel mixture conduit of a carburetor, the control means including abutment means operably fixed to the throttle plate, and stop means positioned in the path of movement of the abutment means and plate in one direction, the stop means including thermally sensitive means for moving the stop means in response to changes in temperature to vary the stopped position of the abutment means, the stop means having a cam profiled surface engagable by the abutment means, and movable means movable during engine start-up operations to position the abutment means away from the cam surface to a position opening the throttle plate farther than the idle speed position called for by that portion of the cam surface normally engaged by the abutment means for the prevailing temperature level, the profiled surface comprising a series of circumferentially contiguous stepped faces of differing radial extent separately engagable with the abutment means in response to movement of the stop means.
5. A control means as in claim 4, including other means connected to the movable means and operative in response to the engine attaining a running condition to move the movable means to return the abutment means against the cam surface to move the throttle plate to the idle speed position called for by the particular cam surface portion engaged by the abutment means.
6. An idle speed control as in claim 5, the other means comprising a servo operable by engine manifold vacuum.
7. An idle speed control as in claim 4, the movable means comprising a second cam profiled surface.
8. An idle speed control as in claim 7, in which the second cam profiled surface has a second series of circumferentially contiguous steps axially displaced with respect to the first steps and each of a greater radial extent than a step of the first series whereby engine start-up is obtained by engagement of the abutment means with the second series of steps providing a greater opening of the throttle plate than is provided by engagement of the abutment means against the corresponding first steps, and spring means to bias the second series of steps into position against the abutment means.
9. An idle speed control as in claim 7, in which the second cam profiled surface has a second series of circumferentially contiguous steps corresponding in number to the first mentioned steps and each axially aligned with and of a greater radial extent than its corresponding step of the first series whereby engine start-up is obtained by engagement of the abutment means with the second series of steps providing a greater opening of the throttle plate than is provided by engagement of the abutment means against the corresponding first steps, and spring means to bias the second series of steps into position against the abutment means.
10. An idle speed control as in claim 9, the cam being axially movable, the spring means biasing the cam axially to a position wherein the lever operatively engages a step of the second series of steps.
11. An idle speed control as in claim 10, the other means comprising an engine vacuum movable servo operatively connected to the cam to axially move the cam in response to application of engine vacuum thereto to a second position wherein the lever operatively engages a step of the first mentioned series of steps.
12. An engine idle speed control for controlling the idle speed position of the throttle plate of a carburetor having an induction passage open at one end to fresh air and adapted to be connected at its other end to the intake manifold of an internal combustion engine, and a spring closed throttle plate mounted for rotation across the passage to control flow of air and fuel therethrough, the control including a lever operatively connected to the throttle plate for rotation therewith, a shaft, a fast idle cam rotatably mounted on the shaft and having an edge engagable by the lever during the closing movement of the throttle plate, the edge having a first series of circumferential contiguous surfaces of varying radial extents constituting a multitude of stops extending sequentially into the path of closing movement of the lever to control the idle speed position of the throttle plate as a function of the movement of the cam, a temperature responsive coil spring element movable in response to temperature changes and fixed to the fast idle cam to rotate the cam in response to changes in temperature from a predetermined level, the cam including a second series of circumferentially contiguous corresponding number surfaces axially displaced with respect to and aligned with the corresponding surfaces of the first series, each of the surfaces of the second series being of a greater radial extent than the corresponding surface of the first series, means mounting the cam and lever for an axial relative movement therebetween so as to engage the lever with the first series of surfaces in one relative position of the lever and cam and to engage the lever with the second series of surfaces in the alternate relative position of the cam and lever, and movable means movable during engine start-up operations to position the lever and cam in the alternate position to open the throttle plate farther, and engine vacuum servo means operative in response to the engine attaining a running condition to return the lever and cam to the one relative position with the lever against the first series of surfaces to move the throttle plate to the less open idle speed position for the same prevailing temperature level.
13. An idle speed control as in claim 12, the movable means including a link connected at one end to the cam, the servo having a plunger engagable with the other end of the link, spring means biasing the plunger to move the cam to the alternate position providing the greater throttle plate engine starting idle speed openings for the prevailing temperature, the plunger being movable by engine running vacuum to effect movement of thE cam to the one position to provide the lesser throttle plate idle speed openings for the prevailing temperature.
US430969A 1974-01-04 1974-01-04 Carburetor fast idle cam throttle positioner Expired - Lifetime US3920777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US430969A US3920777A (en) 1974-01-04 1974-01-04 Carburetor fast idle cam throttle positioner

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US430969A US3920777A (en) 1974-01-04 1974-01-04 Carburetor fast idle cam throttle positioner
CA216,295A CA1018028A (en) 1974-01-04 1974-12-16 Carburetor fast idle cam throttle positioner
AU76460/74A AU479031B2 (en) 1974-01-04 1974-12-16 Carburetor fast idle cam throttle positioned
GB5530174A GB1452979A (en) 1974-01-04 1974-12-20 Carburetor having an engine idle speed control
DE19742461275 DE2461275A1 (en) 1974-01-04 1974-12-23 IDLE CONTROL DEVICE FOR THE THROTTLE FLAP OF A CARBURETOR FOR MOTOR VEHICLES
JP49149081A JPS5810576B2 (en) 1974-01-04 1974-12-27

Publications (1)

Publication Number Publication Date
US3920777A true US3920777A (en) 1975-11-18

Family

ID=23709875

Family Applications (1)

Application Number Title Priority Date Filing Date
US430969A Expired - Lifetime US3920777A (en) 1974-01-04 1974-01-04 Carburetor fast idle cam throttle positioner

Country Status (5)

Country Link
US (1) US3920777A (en)
JP (1) JPS5810576B2 (en)
CA (1) CA1018028A (en)
DE (1) DE2461275A1 (en)
GB (1) GB1452979A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127090A (en) * 1977-05-20 1978-11-28 Mcculloch Corporation Carburetor throttle lock
US4129623A (en) * 1977-01-26 1978-12-12 Ford Motor Company Carburetor with fast idle cam automatic release
US4132751A (en) * 1977-09-08 1979-01-02 Acf Industries, Inc. Choke valve closing means
US4265838A (en) * 1980-04-10 1981-05-05 Ford Motor Company Carburetor fast idle cam mechanism
US4615845A (en) * 1984-04-25 1986-10-07 Honda Giken Kogyo Kabushiki Kaisha Variable venturi type carburetor and associated method
US6561496B2 (en) * 2001-05-04 2003-05-13 Walbro Corporation Carburetor throttle control detent mechanism
US20110095141A1 (en) * 2008-10-01 2011-04-28 Yu-Yu Hsieh Auxiliary Fixture for Installation of Wall-Mounted Sanitary Fitting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102428A (en) * 1932-12-13 1937-12-14 Chrysler Corp Internal combustion engine fuel system
US2665891A (en) * 1950-12-30 1954-01-12 George M Holley Antistall device
US2747848A (en) * 1952-06-26 1956-05-29 Gen Motors Corp Carburetor
US3642256A (en) * 1969-07-22 1972-02-15 Harold Phelps Inc Fuel supply system
US3760785A (en) * 1972-08-07 1973-09-25 Ford Motor Co Carburetor throttle valve positioner
US3831909A (en) * 1972-11-03 1974-08-27 Ford Motor Co Carburetor choke altitude compensation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102428A (en) * 1932-12-13 1937-12-14 Chrysler Corp Internal combustion engine fuel system
US2665891A (en) * 1950-12-30 1954-01-12 George M Holley Antistall device
US2747848A (en) * 1952-06-26 1956-05-29 Gen Motors Corp Carburetor
US3642256A (en) * 1969-07-22 1972-02-15 Harold Phelps Inc Fuel supply system
US3760785A (en) * 1972-08-07 1973-09-25 Ford Motor Co Carburetor throttle valve positioner
US3831909A (en) * 1972-11-03 1974-08-27 Ford Motor Co Carburetor choke altitude compensation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129623A (en) * 1977-01-26 1978-12-12 Ford Motor Company Carburetor with fast idle cam automatic release
US4127090A (en) * 1977-05-20 1978-11-28 Mcculloch Corporation Carburetor throttle lock
US4132751A (en) * 1977-09-08 1979-01-02 Acf Industries, Inc. Choke valve closing means
US4265838A (en) * 1980-04-10 1981-05-05 Ford Motor Company Carburetor fast idle cam mechanism
US4615845A (en) * 1984-04-25 1986-10-07 Honda Giken Kogyo Kabushiki Kaisha Variable venturi type carburetor and associated method
US6561496B2 (en) * 2001-05-04 2003-05-13 Walbro Corporation Carburetor throttle control detent mechanism
US20110095141A1 (en) * 2008-10-01 2011-04-28 Yu-Yu Hsieh Auxiliary Fixture for Installation of Wall-Mounted Sanitary Fitting

Also Published As

Publication number Publication date
CA1018028A (en) 1977-09-27
CA1018028A1 (en)
AU7646074A (en) 1976-06-17
GB1452979A (en) 1976-10-20
JPS5097741A (en) 1975-08-04
DE2461275A1 (en) 1975-07-10
JPS5810576B2 (en) 1983-02-26

Similar Documents

Publication Publication Date Title
US2124778A (en) Carburetor
US2675792A (en) Thermostatic choke system
US3752141A (en) Vacuum controlled carburetor throttle valve positioner
US3885545A (en) Carburetor cold enrichment device
US3278171A (en) Carburetor
US3957026A (en) Cold starting enrichment device
US3831567A (en) Supplemental pulldown mechanism for carburetor automatic choke
US3956434A (en) Carburetor cold enrichment fuel metering signal and air flow modulator
US3886241A (en) Carburetor cold enrichment control
US3752450A (en) Vacuum controlled carburetor throttle valve positioner
US3920777A (en) Carburetor fast idle cam throttle positioner
US2694558A (en) Charge forming device
US3333832A (en) Air valve carburetors
US2977948A (en) Automatic carburetor primer
US3897765A (en) Carburetor cranking fuel flow rate control
US3962379A (en) Carburetor cold enrichment system having automatic choke opener and fast idle cam high step pulloff apparatus
US3872847A (en) Temperature supplemental pulldown mechanism for carburetor automatic choke
US3789814A (en) Ambient temperature regulated choke
US3965224A (en) Carburetor choke valve positioner
US3929942A (en) Carburetor cold engine air/fuel mixture enrichment apparatus
US3943206A (en) Carburetor temperature responsive throttle plate positioner
US3785624A (en) Carburetor
US1915851A (en) Carburetor
US4137283A (en) Starting facilities for internal combustion engine caburetors
US4279841A (en) Carburetor with improved choke mechanism