US3909367A - Method for creating a polychrome motif on an object made of aluminum or aluminum alloy - Google Patents
Method for creating a polychrome motif on an object made of aluminum or aluminum alloy Download PDFInfo
- Publication number
- US3909367A US3909367A US444512A US44451274A US3909367A US 3909367 A US3909367 A US 3909367A US 444512 A US444512 A US 444512A US 44451274 A US44451274 A US 44451274A US 3909367 A US3909367 A US 3909367A
- Authority
- US
- United States
- Prior art keywords
- colloid
- aluminum
- motif
- coloring
- cut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 26
- PLXMOAALOJOTIY-FPTXNFDTSA-N Aesculin Natural products OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)[C@H]1Oc2cc3C=CC(=O)Oc3cc2O PLXMOAALOJOTIY-FPTXNFDTSA-N 0.000 title claims description 11
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 10
- 239000000084 colloidal system Substances 0.000 claims abstract description 45
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 10
- 238000007789 sealing Methods 0.000 claims abstract description 6
- 238000004040 coloring Methods 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 abstract description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 26
- 239000003086 colorant Substances 0.000 description 21
- 238000002048 anodisation reaction Methods 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910000365 copper sulfate Inorganic materials 0.000 description 6
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 4
- 229910000367 silver sulfate Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 101001018064 Homo sapiens Lysosomal-trafficking regulator Proteins 0.000 description 3
- 102100033472 Lysosomal-trafficking regulator Human genes 0.000 description 3
- 235000010703 Modiola caroliniana Nutrition 0.000 description 3
- 244000038561 Modiola caroliniana Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229910021505 gold(III) hydroxide Inorganic materials 0.000 description 3
- WDZVNNYQBQRJRX-UHFFFAOYSA-K gold(iii) hydroxide Chemical compound O[Au](O)O WDZVNNYQBQRJRX-UHFFFAOYSA-K 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011449 brick Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/20—Electrolytic after-treatment
- C25D11/22—Electrolytic after-treatment for colouring layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/04—Chromates
Definitions
- Andrews 5 7 ABSTRACT This method is characterized by applying to the sur face of the object a bichromated colloid, exposing the surface to light through a positive cut of the motif to be reproduced, developing the image obtained, treating the object by electrolysis in a bath containing at least one metal salt, eliminating the residual colloid and by plugging or sealing the aluminum layer.
- the present invention relates to the creation of a polychrome motif on an object made of aluminum or aluminum alloy.
- Polychrome motif shall mean a motif comprising several colors, for example brown and black or red and black or several hues of the same color, for example grey or black or lighter or darker shades of brown.
- the effect of coloration results from a continuous coloration of the colored zones and not from the effect produced by a series of colored dots.
- Polychrome motifs already have been produced on aluminum objects by forming on these objects a porous oxide layer, then immersing them in successive baths of mineral or organic dyes, after having produced screened parts for example in fatty ink or with a varnish, on the parts of the surface which should not be colored in the bath in which the object is going to be immersed. Such a method does not make it possible to obtain degraded hues. It also has been suggested to paint the oxidized surface anodically, but even after sealing, the motifs so obtained deteriorate rather rapidly, even under ordinary atmospheric conditions.
- the method according to the invention combines numerous advantages: very good preservation even under conditions of severe exposure; possibility of reproducing designs or motifs prepared by lines, dots or weaving, as well as of motifs in degraded, perfectly continuous hues; and finally, there is a considerable ease of reproduction.
- a porous alumina layer is formed on the surface to be colored
- a layer of bichromated colloid is applied to this surface.
- the object is exposed to light across a cut of the motif to be reproduced.
- the image obtained is developed, the object is washed and then treated in a manner known per se, as by electrolysis in a bath containing at least one metal salt selected from among those known as being usable for the coloration of aluminum, and the residual colloid is eliminated.
- the alumina aluminum layer .thus colored may be sealed, for example by immersing the object in boiling water or by any other method.
- the thickness of the sensitive layer may be slight; a few microns, for example, about 2 microns.
- cut prepared by lines or dots leads to a composite motif or lines or dots.
- a cut resulting from a dummy in degraded hues leads to a motif in continuous degraded hues in function of the degree of insolubilization of the colloid in each dot.
- the diversity of the insolubilization 'of the colloid also permits, in the same electrolysis 'bath, the obtaining of not only varied hues of the same color, but also different colors generally with the progressive passage from one color to another. Finally, by repeating the process, the zones which remained unexposed can be colored in a different color during one or several preceding passes.
- baths For the state of coloration, different baths may be used which are known for dying aluminum, each of them leading to one color, which frequently depends on the tension applied and/or on the time of application of the current.
- these baths are slightly acid baths with a pH ranging from 1 to 5 and containing at least one cation originating from a Fe, Co, Ni, Mn, Cr, Bi, Ag, Sb, Sn, Cu, Cd, Mo, Ti, Ca, Mg, V, Pb, Zn salt.
- brown colors generally are obtained with Ni, Sn, Co; pink or red colors with Cu; yellow colors with Ag or Cd; certain blue colors with Mo. Certain colors are obtained by using certain special salts.
- Baths containing two cations make it possible to obtain from the same bath, different colors in function of the time of application of the current and/or of the voltage applied. It is possible to operate with AC or DC. In the latter case the object is mounted as the cathode.
- anodization bath also may have an influence on the color obtained.
- a surface anodized in sulfuric medium is colored pink, red or black when subjected to the coloring process in a bath containing copper salts and silver salts.
- a deep green is obtained by effecting the anodization in an oxalic-chrome bath.
- a coloring treatment in a bath containing copper sulfate, silver sulfate and gold hydroxide leads to pink or red colors if the anodization has been carried out in sulfuric medium, or to dark green, pink or mauve colors if the anodization was carried out in chrome-oxalic medium.
- the method according to the invention offers very broad possibility for industrially obtaining very diversely decorated surfaces, which are prefectly reproducible and highly resistant against the usual conditions of exposure such as the exposure of a part of an architectural ensemble.
- a porous layer of alumina having a thickness generally ranging between about 5 and about 15 microns, this object is rinsed carefully, for example with distilled water, then the surface is dried, for example with hot air or in a moderately heated oven.
- a thin layer, in the order of 2 microns of a bichromated colloid is applied to the surface to be colored; gelatin sensitized by a bichromate, such as ammonium, potassium or pyridine bichromate, may be used.
- This coating may be carried out by any conventional coating means, for example by immersion, with a spray gun or by centrifuge.
- the surface thus sensitized is dried; a drying of 15 minutes at about 40C may be suitable. Then the surface is exposed through a cut to the action of luminous radiation capable of insolubilizing the points or zones of the colloid engaged by the radiations. This insolubilization is proportional with the'quantity of light received. For example, an arc lamp of amperes, placed at cm from the surface, may be used for an exposure time of 10 minutes. Following this exposure, the image obtained is developed. If the object can be dipped into a bath, it is immersed in a bath for about one minute. Then it is rinsed carefully, for instance with a water jet, under slight pressure. The object then is mounted as an electrode in a coloring bath.
- luminous radiation capable of insolubilizing the points or zones of the colloid engaged by the radiations. This insolubilization is proportional with the'quantity of light received. For example, an arc lamp of amperes, placed at cm from the surface, may be used for an exposure time of 10 minutes
- the colored motif should be protected, it may be subjected to a fill or seal, for example by subjecting it for about minutes or more to the action of boiling water.
- the filling action of this kind must be preceded by the elimination of the colloid which had been insolubilized.
- the object may be immersed for one minute into a concentrated potassium permanganate solution, then be rinsed with water, dipped in an acid solution of hydrogen peroxide for one minute, finally it again is rinsed with water.
- EXAMPLE 1 A 99.5% aluminum plate was used. This plate was anodized in a sulfuric acid bath to a thickness of 8 microns. Following washing and drying, a bichromated gelatin layer (ammonium bichromate), about 2 microns thick, was deposited thereon. There also was a cut resulting from the photography of a design in degraded hues. The surface to be colored was exposed to the radiation from an arc lamp through said cut. The sensitive layer, thus exposed, was developed, rinsed and then the plate was used as electrode in a coloring bath having a pH of 1.5, containing grams/liter of copper sulfate. The previously insolubilized colloid is dissolved, and the plate is washed. A coloring is obtained which ranges from pink to dark red, the color in each dot depends on the opacity of the cut at the corresponding point.
- a bichromated gelatin layer ammonium bichromate
- EXAMPLE 2 A plate of the same metal, prepared as in Example 1, is used. A cut was used which comprises opaque and transparent parts. With this cut, the plate is provided with a print, forming thus completely insolubilixed zones besides soluble colloid zones; this latter colloid is dissolved and the plate is rinsed. Then the plate was mounted as an electrode in a coloring bath having a pH 4, containing 100 grams/liter of nickel sulfate, for 5 minutes at a tension of 13 volts, and then the plate was rinsed. Dark brown areas were obtained. Then the previously insolubilized colloid was dissolved, and the plate was washed and dried.
- EXAMPLE 3 An aluminum panel was anodized in a sulfuric acid bath to a thickness of 8 microns. Following washing and drying, it was coated with a layer of about 2 microns of bichromated gelatin. Use was made of a cut resulting from the photograph of a design in degraded hues, thus a cut comprising grey zones adajcent to light zones and black zones. The surface to be colored was exposed to the radiation of an arc lamp through this cut. The sensitive layer, thus exposed, was developed, thus removing the parts not insolubilized of the sensitive layer.
- the plate was then mounted as an electrode in a bath containing 5 grams/liter of sulfuric acid, 15 grams/liter of copper sulfate and 0.15 gram/liter of silver sulfate, for 3 minutes with an intensity of 0.4 A eff/- square decimeter, at a voltage increased progressively to 11 volts.
- the previously insolubilized colloid was eliminated and the plate was washed.
- zones were obtained whose coloration varied continuously and progressively from yellow to pink, to brick red, in function of the degree of opacity of the corresponding points of the cut used.
- EXAMPLE 4 A plate anodized in a sulfuric bath was used as in the preceding examples and this plate was covered with a layer of about 2 microns of bichromated colloid. A printing was applied to this plate by a cut originating from a photograph of a design in degraded hues. Following development and rinsing, this plate was used as electrode in a bath containing 1 gram/liter of copper sulfate, 0.25 gram/liter of silver sulfate, 0.25 gram of gold hydroxide and 6 grams/liter of sulfuric acid, for 10 minutes with a current density of 0.5 A eff/square decimeter.
- Pink colors were obtained from pale pink to flesh pink in function of the degree of lighting of each point during exposure to light.
- EXAMPLE 5 An anodized plate was prepared in chromic-oxalic bath, and this plate was covered with a layer of about 2 microns ofa bichromated colloid. This plate was provided with a print through a cut from a photograph of a design in degraded hues. Following the development and rinsing, this plate was mounted as an electrode in the same bath as in Example 4 with an electrical current at the terminals of 10.2 volts. Shades were obtained from mauve to purple in function of the degree of lighting of each point during the exposure to light.
- a method for producing a polychrome motif on an object made of aluminum or aluminum alloy having an anodized surface comprising applying a bichromated colloid to the surface of the object, exposing the surface to light through a cut of the motif to be reproduced, developing the image thus obtained to effect removal of colloid from the unexposed portions and reduce the cover over the underlying oxidized surface of the object, mounting the object as an electrode in an electrolysis bath containing at least one metal salt selected from those used for the electrochemical coloring of aluminum, passing an alternating current between the electrodes whereupon a coloring effect is produced in the anodized surface of the object corresponding to the unexposed portions of the colloid coating, and removing the remaining colloid, wherein the cut formed in degraded hues provides a progressively variable insolubilization of the colloid with the removal of colloid 3,909,367 6 varying inversely to the amount of insolubilizatio'n to moval of the remaining colloid. provide a variable amount of coloring corresponding inversely
- the present invention relates to the creation of a polychrome motif on an object made of aluminum or aluminum alloy.
- Polychrome motif shall mean a motif comprising several colors, for example brown and black or red and black or several hues of the same color, for example grey or black or lighter or darker shades of brown.
- the effect of coloration results from a continuous coloration of the colored zones and not from the effect produced by a series of colored dots.
- Polychrome motifs already have been produced on aluminum objects by forming on these objects a porous oxide layer, then immersing them in successive baths of mineral or organic dyes, after having produced screened parts for example in fatty ink or with a varnish, on the parts of the surface which should not be colored in the bath in which the object is going to be immersed. Such a method does not make it possible to obtain degraded hues. It also has been suggested to paint the oxidized surface anodically, but even after sealing, the motifs so obtained deteriorate rather rapidly, even under ordinary atmospheric conditions.
- the method according to the invention combines numerous advantages: very good preservation even under conditions of severe exposure; possibility of reproducing designs or motifs prepared by lines, dots or weaving, as well as of motifs in degraded, perfectly continuous hues; and finally, there is a considerable ease of reproduction.
- a porous alumina layer is formed on the surface to be colored
- a layer of bichromated colloid is applied to this surface.
- the object is exposed to light across a cut of the motif to be reproduced.
- the image obtained is developed, the object is washed and then treated in a manner known per se, as by electrolysis in a bath containing at least one metal salt selected from among those known as being usable for the coloration of aluminum, and the residual colloid is eliminated.
- the alumina aluminum layer .thus colored may be sealed, for example by immersing the object in boiling water or by any other method.
- the thickness of the sensitive layer may be slight; a few microns, for example, about 2 microns.
- cut prepared by lines or dots leads to a composite motif or lines or dots.
- a cut resulting from a dummy in degraded hues leads to a motif in continuous degraded hues in function of the degree of insolubilization of the colloid in each dot.
- the diversity of the insolubilization 'of the colloid also permits, in the same electrolysis 'bath, the obtaining of not only varied hues of the same color, but also different colors generally with the progressive passage from one color to another. Finally, by repeating the process, the zones which remained unexposed can be colored in a different color during one or several preceding passes.
- baths For the state of coloration, different baths may be used which are known for dying aluminum, each of them leading to one color, which frequently depends on the tension applied and/or on the time of application of the current.
- these baths are slightly acid baths with a pH ranging from 1 to 5 and containing at least one cation originating from a Fe, Co, Ni, Mn, Cr, Bi, Ag, Sb, Sn, Cu, Cd, Mo, Ti, Ca, Mg, V, Pb, Zn salt.
- brown colors generally are obtained with Ni, Sn, Co; pink or red colors with Cu; yellow colors with Ag or Cd; certain blue colors with Mo. Certain colors are obtained by using certain special salts.
- Baths containing two cations make it possible to obtain from the same bath, different colors in function of the time of application of the current and/or of the voltage applied. It is possible to operate with AC or DC. In the latter case the object is mounted as the cathode.
- anodization bath also may have an influence on the color obtained.
- a surface anodized in sulfuric medium is colored pink, red or black when subjected to the coloring process in a bath containing copper salts and silver salts.
- a deep green is obtained by effecting the anodization in an oxalic-chrome bath.
- a coloring treatment in a bath containing copper sulfate, silver sulfate and gold hydroxide leads to pink or red colors if the anodization has been carried out in sulfuric medium, or to dark green, pink or mauve colors if the anodization was carried out in chrome-oxalic medium.
- the method according to the invention offers very broad possibility for industrially obtaining very diversely decorated surfaces, which are prefectly reproducible and highly resistant against the usual conditions of exposure such as the exposure of a part of an architectural ensemble.
- a porous layer of alumina having a thickness generally ranging between about 5 and about 15 microns, this object is rinsed carefully, for example with distilled water, then the surface is dried, for example with hot air or in a moderately heated oven.
- a thin layer, in the order of 2 microns of a bichromated colloid is applied to the surface to be colored; gelatin sensitized by a bichromate, such as ammonium, potassium or pyridine bichromate, may be used.
- This coating may be carried out by any conventional coating means, for example by immersion, with a spray gun or by centrifuge.
- the surface thus sensitized is dried; a drying of 15 minutes at about 40C may be suitable. Then the surface is exposed through a cut to the action of luminous radiation capable of insolubilizing the points or zones of the colloid engaged by the radiations. This insolubilization is proportional with the'quantity of light received. For example, an arc lamp of amperes, placed at cm from the surface, may be used for an exposure time of 10 minutes. Following this exposure, the image obtained is developed. If the object can be dipped into a
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Printing Plates And Materials Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Electrochemical Coating By Surface Reaction (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7306481A FR2219437B1 (enrdf_load_stackoverflow) | 1973-02-23 | 1973-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3909367A true US3909367A (en) | 1975-09-30 |
Family
ID=9115308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US444512A Expired - Lifetime US3909367A (en) | 1973-02-23 | 1974-02-21 | Method for creating a polychrome motif on an object made of aluminum or aluminum alloy |
Country Status (13)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001032965A1 (en) * | 1999-11-04 | 2001-05-10 | Koninklijke Philips Electronics N.V. | Protection of a surface by partially subjecting it to an electrochemical treatment |
EP1222322A4 (en) * | 1999-07-14 | 2002-08-21 | Nielsen & Bainbridge Llc | METHOD FOR ELECTROCHEMICALLY DEPOSITING MULTICOLORED LAYERS ON ALUMINUM IMAGE FRAMES USING AN ANODIZATION TECHNIQUE |
US20050174303A1 (en) * | 2001-11-30 | 2005-08-11 | Siemens Aktiengesellschaft | Electrochromic color system |
US20100092797A1 (en) * | 2008-10-01 | 2010-04-15 | Lorin Industries | Outdoor-Suitable Antique Copper Color Aluminum Material and Process |
US20190309434A1 (en) * | 2018-04-09 | 2019-10-10 | Dura Operating, Llc | Method for producing an aluminium component having a coloured surface |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5478336A (en) * | 1977-12-05 | 1979-06-22 | Yoshida Kogyo Kk | Method of forming colored pattern of aluminum or alloys thereof |
CN115961322B (zh) * | 2022-12-30 | 2025-01-10 | 安徽兆鑫铝业科技有限公司 | 一种仿釉面铝合金幕墙板的制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1640961A (en) * | 1926-12-10 | 1927-08-30 | Albert J Pinckney | Superdurable photo plates for ink printing |
US1704523A (en) * | 1926-01-28 | 1929-03-05 | Ullmann G M B H F | Process for the production of printing plates |
US1763533A (en) * | 1923-11-27 | 1930-06-10 | Agfa Ansco Corp | Process for hardening colloids |
US1912693A (en) * | 1928-10-08 | 1933-06-06 | Forbes Lithograph Mfg Co | Photolithographic plate |
US3284321A (en) * | 1962-07-19 | 1966-11-08 | Howard A Fromson | Manufacture of aluminum articles with anodized surfaces presenting multicolor effects |
US3616309A (en) * | 1967-11-24 | 1971-10-26 | Alcan Res & Dev | Method of producing colored coatings on aluminum |
US3669856A (en) * | 1968-06-21 | 1972-06-13 | Ove Christopher Gedde | Process for the production of colored protective coatings on articles of aluminum or aluminum alloys |
US3704209A (en) * | 1969-07-16 | 1972-11-28 | Cegedur Gp | Method for electrochemical coloring of aluminum and alloys |
US3787295A (en) * | 1970-04-02 | 1974-01-22 | Alusuisse | Method of electrolytic coloring of oxide layers on aluminum and aluminum base alloys |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR987079A (fr) * | 1949-03-29 | 1951-08-08 | Procédé pour reproduction directe en noir ou en couleurs de photos, textes ou dessins sur aluminium, ses alliages et autres supports analogues |
-
1973
- 1973-02-23 FR FR7306481A patent/FR2219437B1/fr not_active Expired
-
1974
- 1974-02-20 BE BE141184A patent/BE811335A/xx unknown
- 1974-02-21 IE IE00353/74A patent/IE38915B1/xx unknown
- 1974-02-21 CA CA193,146A patent/CA1018815A/en not_active Expired
- 1974-02-21 ES ES423493A patent/ES423493A1/es not_active Expired
- 1974-02-21 US US444512A patent/US3909367A/en not_active Expired - Lifetime
- 1974-02-21 AT AT141174A patent/AT328247B/de not_active IP Right Cessation
- 1974-02-22 JP JP2133774A patent/JPS5411789B2/ja not_active Expired
- 1974-02-22 CH CH257074A patent/CH591712A5/xx not_active IP Right Cessation
- 1974-02-22 LU LU69463A patent/LU69463A1/xx unknown
- 1974-02-22 GB GB822274A patent/GB1405872A/en not_active Expired
- 1974-02-25 NL NL7402542A patent/NL7402542A/xx not_active Application Discontinuation
- 1974-04-08 IT IT20906/74A patent/IT1006376B/it active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1763533A (en) * | 1923-11-27 | 1930-06-10 | Agfa Ansco Corp | Process for hardening colloids |
US1704523A (en) * | 1926-01-28 | 1929-03-05 | Ullmann G M B H F | Process for the production of printing plates |
US1640961A (en) * | 1926-12-10 | 1927-08-30 | Albert J Pinckney | Superdurable photo plates for ink printing |
US1912693A (en) * | 1928-10-08 | 1933-06-06 | Forbes Lithograph Mfg Co | Photolithographic plate |
US3284321A (en) * | 1962-07-19 | 1966-11-08 | Howard A Fromson | Manufacture of aluminum articles with anodized surfaces presenting multicolor effects |
US3616309A (en) * | 1967-11-24 | 1971-10-26 | Alcan Res & Dev | Method of producing colored coatings on aluminum |
US3669856A (en) * | 1968-06-21 | 1972-06-13 | Ove Christopher Gedde | Process for the production of colored protective coatings on articles of aluminum or aluminum alloys |
US3704209A (en) * | 1969-07-16 | 1972-11-28 | Cegedur Gp | Method for electrochemical coloring of aluminum and alloys |
US3787295A (en) * | 1970-04-02 | 1974-01-22 | Alusuisse | Method of electrolytic coloring of oxide layers on aluminum and aluminum base alloys |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1222322A4 (en) * | 1999-07-14 | 2002-08-21 | Nielsen & Bainbridge Llc | METHOD FOR ELECTROCHEMICALLY DEPOSITING MULTICOLORED LAYERS ON ALUMINUM IMAGE FRAMES USING AN ANODIZATION TECHNIQUE |
WO2001032965A1 (en) * | 1999-11-04 | 2001-05-10 | Koninklijke Philips Electronics N.V. | Protection of a surface by partially subjecting it to an electrochemical treatment |
US6685816B1 (en) * | 1999-11-04 | 2004-02-03 | Koninklijke Philips Electronics N.V. | Protection of a surface by partially subjecting it to an electrochemical treatment |
CN1309877C (zh) * | 1999-11-04 | 2007-04-11 | 皇家菲利浦电子有限公司 | 对表面部分地进行电化学处理的表面保护 |
US20050174303A1 (en) * | 2001-11-30 | 2005-08-11 | Siemens Aktiengesellschaft | Electrochromic color system |
US7085033B2 (en) * | 2001-11-30 | 2006-08-01 | Siemens Aktiengesellschaft | Electrochromic color system |
US20100092797A1 (en) * | 2008-10-01 | 2010-04-15 | Lorin Industries | Outdoor-Suitable Antique Copper Color Aluminum Material and Process |
US8580101B2 (en) * | 2008-10-01 | 2013-11-12 | Lorin Industries | Outdoor-suitable antique copper color aluminum material and process |
US20190309434A1 (en) * | 2018-04-09 | 2019-10-10 | Dura Operating, Llc | Method for producing an aluminium component having a coloured surface |
Also Published As
Publication number | Publication date |
---|---|
NL7402542A (enrdf_load_stackoverflow) | 1974-08-27 |
JPS5024125A (enrdf_load_stackoverflow) | 1975-03-15 |
IE38915L (en) | 1974-08-23 |
JPS5411789B2 (enrdf_load_stackoverflow) | 1979-05-17 |
CH591712A5 (enrdf_load_stackoverflow) | 1977-09-30 |
GB1405872A (en) | 1975-09-10 |
FR2219437B1 (enrdf_load_stackoverflow) | 1975-08-22 |
ATA141174A (de) | 1975-05-15 |
BE811335A (fr) | 1974-08-20 |
LU69463A1 (enrdf_load_stackoverflow) | 1974-09-25 |
ES423493A1 (es) | 1976-05-16 |
DE2408118A1 (de) | 1974-09-19 |
DE2408118B2 (de) | 1977-04-28 |
CA1018815A (en) | 1977-10-11 |
FR2219437A1 (enrdf_load_stackoverflow) | 1974-09-20 |
IE38915B1 (en) | 1978-06-21 |
AT328247B (de) | 1976-03-10 |
IT1006376B (it) | 1976-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5167793A (en) | Process for producing anodic films exhibiting colored patterns and structures incorporating such films | |
US2126017A (en) | Method of producing photographic representations on aluminum surfaces | |
JPS595678B2 (ja) | アルミニウムまたはアルミニウム合金の模様着色法 | |
US3909367A (en) | Method for creating a polychrome motif on an object made of aluminum or aluminum alloy | |
US3284321A (en) | Manufacture of aluminum articles with anodized surfaces presenting multicolor effects | |
US4210499A (en) | Method of forming colored patterns on aluminum or its alloys | |
US3775263A (en) | Article with a multicolored surface decoration thereon produced by light interference effects | |
US4210695A (en) | Method of forming colored patterns on aluminum or its alloys | |
US1903778A (en) | Etching process and composition for use therein | |
US3795590A (en) | Process for coloring aluminum and alloys of aluminum having an anodized surface | |
US3664932A (en) | Objects of aluminum and alloys of aluminum having colored coatings and process | |
US3920488A (en) | Process for coloring aluminum black | |
JPS60110895A (ja) | アルミニウム及びアルミニウム合金の電解着色方法 | |
US4115212A (en) | Electrolytic coloring process for non anodized aluminum and its alloys | |
GB2053972A (en) | Electrolytic colouring of anodized aluminium | |
DE2408118C3 (de) | Verfahren zum Herstellen mehrfarbiger Bilder auf einer Oberfläche aus Aluminium oder einer Aluminiumlegierung | |
DE1621762B1 (de) | Verfahren zur herstellung eines dekorativen gegenstandes mit einem aufgrund des interferenzeffektes mehrfarbig erscheinenden bild auf seiner oberflaeche | |
JPS60208497A (ja) | アルミニウム及びアルミニウム合金の電解着色方法 | |
KR100239506B1 (ko) | 스테인리스강 제품의 산화발색방법 | |
JPS5867894A (ja) | アルミニウムまたはアルミニウム合金の模様着色法 | |
JPS5943560B2 (ja) | アルミニウムまたはアルミニウム合金の模様入り着色法 | |
JPS5867893A (ja) | アルミニウムまたはアルミニウム合金の模様着色法 | |
US2931725A (en) | Coloring of photographic images | |
Patrie | The Use of Electrocolouring Processes to Produce Decorative Panels on Anodized Aluminium in Many Colours | |
CA1142477A (en) | Process for the electrolytic colouring of anodized aluminium |