US3894583A - Artificial lift for oil wells - Google Patents

Artificial lift for oil wells Download PDF

Info

Publication number
US3894583A
US3894583A US496173A US49617374A US3894583A US 3894583 A US3894583 A US 3894583A US 496173 A US496173 A US 496173A US 49617374 A US49617374 A US 49617374A US 3894583 A US3894583 A US 3894583A
Authority
US
United States
Prior art keywords
oil
accumulator
production tubing
casing
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US496173A
Inventor
Thomas H Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US496173A priority Critical patent/US3894583A/en
Priority to US05/567,989 priority patent/US3941510A/en
Application granted granted Critical
Publication of US3894583A publication Critical patent/US3894583A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • E21B43/123Gas lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped

Definitions

  • An apparatus for retrieving oil from a producing zone after the bottom hole pressure has decreased to such an extent that artificial lift is required for production An accumulator is provided by casing sealed off with a packer, or an accumulation chamber located in the area of the casing where oil accumulates. The uppermost portion of the accumulator is vented to atmosphere to allow oil flow therein.
  • a floating piston-type device may be located immediately above the accumulator with a bypass from the accumulator to the top of the floating piston. Pressure is subsequently applied through the vent line to the accumulator to force oil from the accumulator through a stinger tube above the floating piston and subsequently raise the oil and floating piston to the surface. Without the piston, a stinger tube and standing valve may be used to accumulate oil in the production tubing.
  • the vent line may be located inside the production line with the upper casing being used as a pressure storage tank.
  • the apparatus includes an accumulator to receive the oil in the casing and a vent line to the surface which may subsequently be pressurized to raise the oil contained in the accumulator into the production tubing and, subsequently, to the well head.
  • the upper casing may be pressurized for gas lift of a piston type device (or plunger), or used as a pressure storage tank.
  • the present invention is directed towards an economical means and apparatus for continuing production of an oil well after it becomes economically unfeasible using normal production techniques.
  • An accumulator is positioned in the oil that naturally drains into the oil well.
  • a vent line allows the accumulator to be at the same pressure as atmosphere so that the oil will fill the accumulator. Thereafter, the accumulator is pressurized through the vent line, forcing the oil through a standing valve and stinger tube into the production tubing.
  • the vent line is located inside the production tubing with a crossover device being provided above the accumulator.
  • Packers seal off the upper casing which can be used as a storage tank.
  • Packers also may seal off a sump area of the lower casing to be used as the accumulation chamber.
  • a bypass line moves the oil above the free floating piston or swab.
  • the upper casing may be pressurized.
  • a differential pressure valve will operate allowing the pressurized air in the upper casing to rapidly move the piston to the well head.
  • the oil accumulated above the piston will also rise to the surface of the well.
  • a ball float valve in the air line tells an electronic control circuit through an associated pressure switch when the accumulator has been filled; therefore. it is time to pressurize the accumulator and raise the oil to the surface.
  • An appropriate clock mechanism is used to time the cycle to control the compressed air in and out of the accumulator.
  • the stinger tube simply feeds through a crossover seal area above the accumulator into the accumulator.
  • the accumulator is a lower sump area sealed off by packers.
  • oil moves through the standing valve, stinger tube and crossover into the production tubing. Pressure is then relieved and oil again collects in the accumulator with the standing valve preventing the previous collected oil from feeding back from the production tubing into the accumulator.
  • the oil is moved up the production tubing to the well head. Once the oil has been collected in the accumulator. it is never lost, and once the oil enters the production tubing, it never reenters the accumulator.
  • the upper casing if strong enough, may be used as an air storage tank.
  • Yet another object of the present invention is to provide an accumulator located in the oil that collects in the casing, the accumulator being alternately vented to the atmosphere to collect oil and pressurized to force the oil through a standing valve in a stinger tube into the production tubing, the oil column in the production tubing continually increasing until it reaches the well head and flows with each cycle.
  • Even another object of the present invention is to provide an artificial lift mechanism wherein a packer is contained between the casing and the production tubing so that the upper portion of the casing may be used as an air storage tank.
  • a crossover type of device is located near the packer and immediately above the stinger tube so that only one tubing extends through the packer with the other tubing being contained therein.
  • An accumulator chamber may be formed below the producing zone by having another packer located below the oil producing zone with a standing valve allowing the oil to flow into the lower region.
  • a stinger tube would then extend into the lower region which acts as an accumulator so that upon pressurization the oil is forced up through the stinger tube and the crossover device, and the oil may be subsequently raised to the surface of the well.
  • Another object of the present invention is to use a differential pressure valve in conjunction with the crossover device so that when the pressure differential between the column of oil above the piston and the pressure in the casing decreases below a given point the differential pressure valve will operate thereby forcing the plunger to the surface of the well.
  • FIG. la is an elevated sectional view of the well head portion of the artificial lift apparatus of the present invention and the associated control mechanisms.
  • FIG. lb is an elevated sectional view of the down-inthe-hole portion of the artificial lift apparatus of the present invention.
  • FIG. 2 is an elevated sectional view of an alternative embodiment of the present invention.
  • FIGS. la and lb there is shown a hydrocarbon producing well represented generally by the reference numeral 10. Because the present invention is directed towards hydrocarbon producing wells that produce oil, it will hereinafter be referred to as oil well 10.
  • the oil well 10 has the normal casing 12 that extends into the earth formation 14 and is held in place by cement 16 as is the case in most oil wells.
  • the casing 12 extends down into the oil producing zone I8.
  • a production tubing 20 also extends down to the oil producing zone in a manner common in the oil producing industry.
  • the oil well 10 is the type wherein the well head is sealed by means of plate 22 extending around the production tubing 20 to the casing 12.
  • a packer 24 that again seals the production tubing 20 to the casing 12. Therefore, the space between production tubing 20 and casing 12 from the plate 22 to the packer 24 may be used as a pressure tank and is represented generally by the reference numeral 26.
  • a vent/- pressure line 28 extends through the plate 22 and seals therewith. The vent/pressure line 28 also extends down inside the oil well to a point just above packer 24 where the vent/compressor line 28 is connected to the production tubing through opening 30.
  • a plunger 32 that is free floating inside of the production tubing 20.
  • the plunger 32 may be a swab type or a free floating piston commonly referred to as the McMurray piston.
  • the plunger 32 will allow a small amount of flow therethrough, but stop all flow therethrough upon sensing a large pressure differential across plunger 32.
  • a spring 34 to absorb the shock of the plunger 32 as it falls to its lowermost position, such position being shown in FIG. lb.
  • a hook 36 that may be used to retrieve apparatus contained in the production tubing 20 as will be subsequently described.
  • the hook 36 is attached to housing 38 having slots 40 contained therein for communication with the space in the production tubing 20 immediately below plunger 32. Attached to housing 38 below slots 40 are hold downs 42 and 44 that rest against seating nipples of the production tubing 20. The seating nipples of the production tubing 20 are not illustrated due to close tolerances, but are commonly used in the oil producing industry.
  • a differential pressure valve 46 Inside of the hold downs 42 and 44, which form a good seal with the production tubing 20, is located a differential pressure valve 46.
  • the upper portion of the differential pressure valve 46 has a bellows 48 that is in communication with chamber 50 located inside housing 38 by means of hole 52.
  • the valve element 54 normally rests against seat 56.
  • valve element 54 and seat 56 are contained inside of housing 58 with chamber 60 being in communication with annulus 62 by means of cross bore 64. Annulus 62 is in turn in fluid communication with pressure tank 26 by means of holes 66.
  • the pressure developed across differential pressure valve 46 is the difference between the pressure immediately below the plunger 32 and the pressure inside of casing 12 represented by pressure tank 26. As this differential pressure decreases below a predetermined amount, the differential pressure valve 46 will open as will be subsequently described.
  • hold downs 68 and 70 that again mate with seating nipples of the production tub ing 20.
  • a cap 72 of housing 58 that seals the lowermost portion of chamber 60 so that pressure inside of the production tubing above hold downs 68 and 70 is not reflected below hold downs 68 and 70.
  • a housing 74 having slots 76 cut therein so that fluid communications can be transmitted through vent/pressure line 28, opening 30 into chamber 78.
  • a float valve 80 which comprises a ball float 82, seat 84 and chamber 86.
  • Chamber 86 is formed by hold downs 88 and 90 that rest against appropriate seating nipples in the production tubing 20.
  • Chamber 86 is always in communication with crossover line 92 due to the slots 94 cut in flange seat 96.
  • the crossover line 92 extends through chamber 98 that has slots 100 cut therein for fluid communication with annulus 102.
  • a bypass 104 communicates through openings 106 and 108 so that oil contained in chamber 98 may be moved around plunger 32 and other apparatus contained in production tubing 20 via bypass tubing I04 and back into the upper portion of production tubing 20 as will be described in more detail subsequently.
  • Crossover 92 communicates directly with production tubing 20 and the annulus I10 formed between the production tubing 20 and the stinger tube 112. Chamber 98 communicates with stinger tube 112 via tubing 114 which extends through hold downs I16 and 118 that rest on seating nipples of the production tubing 20.
  • the crossover line 92 and the tubing 114 both extend through the hold downs I16 and I18 to form the crossover portion of the present invention represented generally by the reference numeral 120.
  • the reason for having the crossover portion I20 is because of the packer 24 that isolates the upper internal portion of casing 12 from the lower internal portion so that the upper portion may be pressurized without having any effect on the lower portion that is located in the oil producing zone 18.
  • the lower portion of the casing I2 has perforations I22 to allow oil from the oil producing zone I8 to flow into the lower part of casing I2.
  • Attached to the bottom of production tubing 12 and in the oil producing zone 18 is located an accumulator 124 that extends some distance along the lower portion of the casing I2.
  • the length of the accumulator I24 could be as much as feet or even more.
  • the stinger tube I12 extends to almost the bottom of accumulator 124 and has a check valve 126 located therein represented generally by a ball 128 and seat 130.
  • a retrievable standing valve I32 having a fishing neck I34, housing 136 with slots I38 cut therein and ball 138 with the mating seat I40.
  • Standing Valve 132 allows flow upward in a manner very similar to a check valve, but not vice-versa.
  • the entire retrievable standing valve I32 is maintained in position by hold downs I42 and I44 with corresponding seating nipples for lower extension 146 of accumulator 124, the lower extension being of approximately the same radius as the production tubing 20 or less.
  • the entire apparatus contained in lower extension 146 may be retrieved to the surface of the oil well 10.
  • a gas vent valve 148 immediately above the accumulator 124 and directly below the packer 24 is located a gas vent valve 148 which allows the flow of gas inside of the casing 12 into the production tubing 20 by lifting the ball 150 off of seat I52.
  • the gas vent valve I44 allows for additional venting of gas from the oil producing zone 18 so that the oil and gas may be more readily separated before entry into the accumulator 124.
  • the upper production casing 154 extends above plate 122 with a pneumatic bellows 156 being located at the top thereof.
  • the pneumatic bellows 156 may be pushed upward and air forced out through hole 158 by the plunger 32 as will be subsequently described.
  • a sliding valve 160 will be moved upward, thereby establishing communications between tubing 162, hole 164 and the internal portion of production tubing 20.
  • a tubing 166 which has a check valve 168 located therein receives oil from the production tubing 20 and delivers it to the oil tank as will be subsequently described.
  • the vent/compressor line 28 is connected via a threeway solenoid valve 170 that is operated by means of winding 172 and core 174.
  • the three-way valve I70 has a lever arm 176 that is pivotally connected at pivot point 177.
  • ventlcompressor line 28 is in communication through three-way valve 170, conduit 186 through choke 188 to atmosphere.
  • a pop-off valve 190 common in the petroleum producing industry. is also connected to conduit 186 to relieve pressure above a predetermined point in addition to the venting through choke 188.
  • the casing 12 is connected to a source of pressurized air via conduit 192 which has a branch conduit 194 that extends to the three-way valve 170 and ball 178 and seat 180.
  • the source of pressurized air would normally be a compressor with the casing 12 being the storage tank 26 to provide a large volume of compressed air.
  • a pressure switch 196 that is connected to a source of power that may be used to operate the three-way valve 170.
  • the source of power is connected through pressure switch 196 to a clock mechanism 198 and timer 200 to a pressure switch 202 that is responsive to pressure in conduit 192. If the contacts in pressure switch 196 that are responsive to pressure in conduit 186 are closed, and the contacts in pressure switch 202 are closed, the winding coil 172 of three-way valve 170 will be energized for a predetermined period of time as controlled by timer 200.
  • the storage tank 26 inside of casing 12 will be pressurized by compressed air from a compressor through conduit 192 until pressurized to a predetermined point.
  • vent/pressure line 28 and production tubing must be blocked at the well head.
  • the blocking of vent/pressure line 28 and production tubing 20 is removed to practice the present invention.
  • the plunger 32 is located in the position as shown and oil from oil producing zone 18 flows through perforations 122 into the casing 12. The oil in the casing 12 then flows up through standing valve 132 into accumulator 124.
  • Excess gas pressure may enter either through standing valve 132 or gas vent valve 148 into accumulator 124.
  • the gas in accumulator 124 is vented through vent/pressure line 28 via crossover line 92 and float valve 80. Since the vent/pressure line 28 is connected at the well head through three-way valve 170 (as shown) to conduit 186 and choke 188 to atmosphere, the pressure inside of the accumulator is only slightly higher than atmospheric pressure with the difference being controlled by the choke 188.
  • any pressure inside of pressure tank 26 is felt immediately below differential pressure valve 46 by means of cross bore 64 and holes 66.
  • the plunger 32 which may be the McMurray type, allows the oil contained in production tubing 20 to flow through the plunger 32 at a very slow rate. Therefore, the weight of the column of oil generates a pressure which will be reflected below plunger 32 through chamber 50 and hole 52 to bellows 48 of differential valve 46. Once the weight of the column of oil above plunger 32 reaches a predetermined amount so that a given pressure differential exists across differential pressure valve 46, the valve 46 will be open for any pressure differential below that predetermined pressure differential.
  • timer 200 be set so that just enough time will be allowed to raise the column of oil and the plunger to the well head upon deenergizing the three-way valve 170. Once the three-way valve is deenergized, it will return to the position shown in FIG.
  • FIG. 2 of the drawings there is shown an alternative embodiment of the present invention with the control portion not being shown in detail because it is substantially identical to the controls shown and described in conjunction with FIG. la. Numbers that were used in conjunction with the previous description of FIGS. la and lb will be used in FIG. 2 where appropriate.
  • the oil well 10 has casing 12 that is located in the earth formation 14 and held in place by means of cement 16 and extends all the way to the oil producing zone 18.
  • production tubing 20 Inside of the casing 12 is located production tubing 20 with the area between the production tubing 20 and the casing 12, and above packer 24, being pressure storage tank 26.
  • the top of the oil well 12 is sealed by means of a plate 22 so that only the production tubing 20 extends therethrough.
  • vent/pressure line 28 Internal to the production tubing 20 is located vent/pressure line 28 that was contained on the outside thereof in FIGS. la and lb.
  • the vent/pressure line again connects to three-way valve 170 in the manner previously described in conjunction with FIGS. la and
  • the vent/pressure line 28 extends down through the production tubing 20 to the float valve 80 which has a ball float 82 contained inside of housing 204 and a seat 84 contained at the top thereof.
  • the lower portion of the housing 204 is connected to a crossover line 92 by means of a flange seat 96 having slots 94 cut therein so that chamber 86 will be in continual communication with crossover line 92.
  • a chamber 98 having slots 100 cut therein to allow communication with annulus 102. From annulus 102 there is direct communication with the annular space between production tubing 20 and the vent/pressure line 28.
  • the crossover line 92 extends through hold downs 116 and 118 that rest against seating nipples of the production tubing 20. Also, chamber 98 communicates through the hold downs 116 and 118 via tubing 114. Immediately below the crossover portion 120 is located the packer 24. The packer 24 should be located at or near the top of the oil producing zone 18. Immediately below the packer 24 is a standing valve 206 that is represented pictorially by ball 208 and seat 210. The standing valve 206 allows communication from the oil producing zone 18, annulus 212 into the production tubing 20. Near the bottom of the oil producing zone 18 is located another packer 214 that seals off the lower portion 216 of the oil well 10. The lower portion 216 can now serve as the accumulator that was previously described in conjunction with FIG. 1b. Though the production tubing 20 will probably extend to the bottom of the lower portion 216 it contains perforations 218 to allow free flow of oil through the production tubing 20. The casing 12 will extend to the bottom of the oil well 10.
  • stinger tube 112. extends to substantially the bottom of the accumulator formed by the lower portion 216 and has a check valve 126 located therein that is represented pictorially by ball 128 and seat 130.
  • the casing 12 is pressurized to provide pressure in the pressure storage tank 26 formed by the upper portion of the casing 12.
  • the accumulator represented by lower portion 216 is vented to atmosphere via vent/pressure line 28 and crossover line 92 in a manner previously described in conjunction with FIGS. la and lb.
  • Oil from the oil producing zone 18 flows through the perforations 122 into annulus 212. From annulus 212 the oil flows through standing valve 206 into production tubing 20 and down into the accumulator formed by the lower portion 216 of the casing 12. Once the lower portion 216 is filled with oil, the oil will begin to fill production tubing 20 until it reaches float valve 80 located immediately above packer 24.
  • the ball float 82 will float on top of the surface of oil and come to rest against seat 84, thereby terminating the venting through vent/pressure line 28.
  • the three-way valve will now be energized thereby unseating ball valve 178 and seating ball valve 182.
  • Pressure from the pressure tank 26 now flows through the vent/pressure line to force the oil back down through crossover line 92, production tubing 20 and up through stinger 112.
  • the timer is set so that enough time is allowed to force essentially all of the oil contained in lower portion 216 up into stinger tube 112.
  • the cycle of the timer may have to be adjusted due to the increased weight of the oil column contained in production tubing 20. As the weight of the column of oil increases additional time will be necessary to insure that essentially all of the oil contained in the lower portion 216 has been forced into the stinger tube 112.
  • An artificial lift apparatus for a liquid producing well having a well head and a well casing therein, said apparatus comprising:
  • gas tubing means extending from the well head into the accumulator means for communication therewith from the well head;
  • first check valve means for only allowing flow of liquid into said accumulator means
  • control valve for alternately venting and pressurizing said accumulator means via said gas tubing means, liquid being allowed to collect in said accumulator means via said first check valve means during vent' ing, thereafter in response to said pressurizing, said liquid is moved through standing valve means into said production tubing and raised to the well head;
  • first packer means for sealing said well casing to said production tubing above said liquid producing zone, annulus between said plate means and said first packer means being used to store pressurized gas for said pressurizing of said accumulator;
  • control valve alternately connecting said gas tubing to said accumulator means.
  • the artificial lift apparatus as recited in claim 2 further includes a second packer means below said liquid producing zone, said first check valve means located on said production tubing between said first and second packer means to allow the liquid to flow below said second packer means, the area inside said casing below said second packer means forming said accumu lator means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

An apparatus for retrieving oil from a producing zone after the bottom hole pressure has decreased to such an extent that artificial lift is required for production. An accumulator is provided by casing sealed off with a packer, or an accumulation chamber located in the area of the casing where oil accumulates. The uppermost portion of the accumulator is vented to atmosphere to allow oil flow therein. A floating piston-type device may be located immediately above the accumulator with a bypass from the accumulator to the top of the floating piston. Pressure is subsequently applied through the vent line to the accumulator to force oil from the accumulator through a stinger tube above the floating piston and subsequently raise the oil and floating piston to the surface. Without the piston, a stinger tube and standing valve may be used to accumulate oil in the production tubing. The vent line may be located inside the production line with the upper casing being used as a pressure storage tank.

Description

[451 July 15, 1975 ABSTRACT 4 Claims, 3 Drawing Figures An apparatus for retrieving oil from a producing zone after the bottom hole pressure has decreased to such an extent that artificial lift is required for production. An accumulator is provided by casing sealed off with a packer, or an accumulation chamber located in the area of the casing where oil accumulates. The uppermost portion of the accumulator is vented to atmosphere to allow oil flow therein. A floating piston-type device may be located immediately above the accumulator with a bypass from the accumulator to the top of the floating piston. Pressure is subsequently applied through the vent line to the accumulator to force oil from the accumulator through a stinger tube above the floating piston and subsequently raise the oil and floating piston to the surface. Without the piston, a stinger tube and standing valve may be used to accumulate oil in the production tubing. The vent line may be located inside the production line with the upper casing being used as a pressure storage tank.
ATMO?PHERE sronuse Appl. No.: 496,173
Thomas H. Morgan, Suite 528; 800 N.W. Loop 410, San Antonio, Tex. 78216 Aug. 9
F04F 1/06; F04F 3/00; E318 33/03' References Cited UNITED STATES PATENTS Cummings..........................
ARTIFICIAL LIFT FOR OIL WELLS Inventor:
Filed:
US. Cl. Int. CL...
Field of Search 298,990 5/1884 3.106.170 10/1963 3.617.152 11/1971 U United States Patent Morgan Primary E.\'uminerC. J. Husar Axsr'srant Examiner-Richard E. Gluck Attorney. Agent, or FirmCox. Smith. Smith Guenther Incorporated SHEEI 0|| *STORAGE I66 TANK POWER I96 F SOURCE TIMER 200 COMPRESSED lAluIll SEPARATOR I'll \\\\\\\\\\\VHHMHHHM 1 ARTIFICIAL LIFT FOR OIL WELLS BACKGROUND OF THE INVENTION This invention relates to oil recovery devices and, more specifically, to an artificial lift for recovering oil from wells that do not have sufficient bottom hole pressure to raise the oil to the surface. The apparatus includes an accumulator to receive the oil in the casing and a vent line to the surface which may subsequently be pressurized to raise the oil contained in the accumulator into the production tubing and, subsequently, to the well head. The upper casing may be pressurized for gas lift of a piston type device (or plunger), or used as a pressure storage tank.
DESCRIPTION OF THE PRIOR ART This invention is an improvement over US. Pat. application Ser. No. 476,212 filed on June 4, I974 and having the same inventor as the present application.
There are several stages in the productive life of an oil well that should be reviewed before going into the details of the present invention. When a hydrocarbon producing well (oil well) is drilled, the initial stage of production normally does not require any type of lift mechanism to raise the oil from the producing formation to the well head. The pressure on the oil itself is normally sufficient to raise the petroleum (gas and oil) to the well head. As oil is produced from the oil reservoir, the bottom hole pressure will continue to drop until it reaches a point where the bottom hole pressure is no longer sufficient to raise the column of oil to the well head.
Once the bottom hole pressure has reduced to such an extent that it will no longer raise the column of oil to the well head, steps can be taken to reduce the weight of the column. A column of fluid from the oil reservoir to the well head that does not contain gas weighs more than a column that does contain gas. Therefore, a system called gas lift and commonly used by the petroleum industry is to bubble gas up through the column of oil thereby reducing the weight of the column and causing the oil from the well to continue to flow. Now the bottom hole pressure is sufficient to raise the lightened column to the well head for a normal production flow. This continues until the bottom hole pressure is again reduced to a greater degree so that it is no longer sufficient to raise the lightened column to the surface of the well.
The next stage in the productive life of an oil well under present day operating conditions would be to allow the oil to accumulate in the tubing and then to pressurize the casing. By having a gas lift valve below the oil accumulated in the tubing, a blob of oil could be raised to the surface. Thereafter, the pressure on the casing would be relieved and oil would be allowed to accumulate again in the tubing. This process is repeated again and again by allowing oil to accumulate in the tubing, pressurizing the casing and raising the blob of oil to the well head and relieving the pressure to allow oil to accumulate again in the tubing. This process has been aided somewhat by the use of swabs or subsurface plungers (commonly called free floating pistons) with the swabs or plungers allowing the oil to accumulate above their location in the production tubing. Thereafter, further pressure increases in the casing would raise both the oil and the swab or plunger to the III surface. Subsequently, the swab or plunger would be allowed to fall back to its original position in the tubing and the cycle repeated.
Because the casing. which is alternately pressurized and depressurized. can only stand a certain amount of pressure, even the type of gas lift just described has limited application. At this stage of the productive life of the well, some type of subsurface pump is needed to raise oil to the surface of the well. Bottom hole pumps are very expensive, wear out and must be replaced periodically. lt becomes a matter of economics as to when the bottom hole pressure is no longer sufficient to discharge enough oil from the well to justify the cost of maintaining the costly well equipment. At this point in time, the well is usually abandoned unless other drastic steps such as flooding the production zone are used. At this particular point the bottom hole pressure has dropped to substantially zero.
Some production has occurred in old petroleum fields by drilling holes below the productive zone. Actions such as latent water drives, formation compression, gravity and many other contributing factors may cause oil to gradually fill the holes drilled below the productive zone. However, to remove the oil that has accumulated in the hole drilled below the productive zone (commonly called sump bores) is very costly, again requiring some type of subsurface pump to raise the oil to the surface of the well. Such production is normally economically unfeasible.
it should be noted in the previously described gas lift systems that a gas source may be necessary. Because all the gas cannot be recovered, gas lift systems are costly to run because the gas lost is the same as lost income, or operating costs. Atmosphere could not be used because mixing of atmosphere and oil will cause an emulsion that is very detrimental to the oil produced.
SUMMARY OF THE INVENTION The present invention is directed towards an economical means and apparatus for continuing production of an oil well after it becomes economically unfeasible using normal production techniques. An accumulator is positioned in the oil that naturally drains into the oil well. A vent line allows the accumulator to be at the same pressure as atmosphere so that the oil will fill the accumulator. Thereafter, the accumulator is pressurized through the vent line, forcing the oil through a standing valve and stinger tube into the production tubing. The vent line is located inside the production tubing with a crossover device being provided above the accumulator. Packers seal off the upper casing which can be used as a storage tank. Packers also may seal off a sump area of the lower casing to be used as the accumulation chamber.
In the embodiment using a floating piston or swab, a bypass line moves the oil above the free floating piston or swab. By using a crossover type device and packer, the upper casing may be pressurized. As the pressure of the column of oil increases, a differential pressure valve will operate allowing the pressurized air in the upper casing to rapidly move the piston to the well head. The oil accumulated above the piston will also rise to the surface of the well. Once the piston has reached the top of the well and pressure in the production tubing is vented, the piston is allowed to fall back into its position above the accumulator. As oil again collects in the accumulator, the previously mentioned cycle is repeated.
A ball float valve in the air line tells an electronic control circuit through an associated pressure switch when the accumulator has been filled; therefore. it is time to pressurize the accumulator and raise the oil to the surface. An appropriate clock mechanism is used to time the cycle to control the compressed air in and out of the accumulator.
In another embodiment, the stinger tube simply feeds through a crossover seal area above the accumulator into the accumulator. The accumulator is a lower sump area sealed off by packers. Upon pressurizing the accumulator, oil moves through the standing valve, stinger tube and crossover into the production tubing. Pressure is then relieved and oil again collects in the accumulator with the standing valve preventing the previous collected oil from feeding back from the production tubing into the accumulator. By alternately venting and pressurizing the accumulator, the oil is moved up the production tubing to the well head. Once the oil has been collected in the accumulator. it is never lost, and once the oil enters the production tubing, it never reenters the accumulator. The upper casing, if strong enough, may be used as an air storage tank.
Therefore, it is an object of the present invention to provide an apparatus for gathering oil from a well once the well has stopped flowing due to a decrease in pressure of the reservoir.
It is a further object of the present invention to provide artificial lift for an oil well that utilizes the minimum of equipment so that is is economically feasible to continue production from an oil well in ranges of approximately one barrel per day.
It is still another object of the present invention to position an accumulator in oil that would naturally accumulate in the bottom of the well. vent the top of the accumulator to the atmosphere to allow oil to flow through a check valve into the accumulator. Subsequently, the accumulator is pressurized, thereby forcing oil up through a stinger tube and bypass tube to a position above a free floating piston or swab. A differential gas lift valve will raise the free floating piston or swab with the oil contained thereabove to the well head.
It is yet another object of the present invention to use a ball float valve in the vent line in combination with a pressure switch and choke located at the surface to give a signal indication when the accumulator is full of oil. The signal is then used to trigger control circuitry that would be used to pressurize the accumulator.
It is still another object of the present invention to use a differential gas lift valve underneath the free floating piston or swab so that the pressure differential between the column of oil above the piston and in the upper casing (blocked off from the producing zone by a packer) reaches a given point, the differential gas lift valve will operate and the free floating piston or swab will begin to rise to the surface.
It is yet another object of the present invention to provide a retrievable apparatus to allow direct access to the accumulator and to the bottom of the well.
It is yet another object of the present invention to provide a system that can be used in the production of an oil field wherein each of the wells in the oil field have a low volume output and require some type of artificial lift.
Yet another object of the present invention is to provide an accumulator located in the oil that collects in the casing, the accumulator being alternately vented to the atmosphere to collect oil and pressurized to force the oil through a standing valve in a stinger tube into the production tubing, the oil column in the production tubing continually increasing until it reaches the well head and flows with each cycle.
Even another object of the present invention is to provide an artificial lift mechanism wherein a packer is contained between the casing and the production tubing so that the upper portion of the casing may be used as an air storage tank. A crossover type of device is located near the packer and immediately above the stinger tube so that only one tubing extends through the packer with the other tubing being contained therein. An accumulator chamber may be formed below the producing zone by having another packer located below the oil producing zone with a standing valve allowing the oil to flow into the lower region. A stinger tube would then extend into the lower region which acts as an accumulator so that upon pressurization the oil is forced up through the stinger tube and the crossover device, and the oil may be subsequently raised to the surface of the well.
Another object of the present invention is to use a differential pressure valve in conjunction with the crossover device so that when the pressure differential between the column of oil above the piston and the pressure in the casing decreases below a given point the differential pressure valve will operate thereby forcing the plunger to the surface of the well.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. la is an elevated sectional view of the well head portion of the artificial lift apparatus of the present invention and the associated control mechanisms.
FIG. lb is an elevated sectional view of the down-inthe-hole portion of the artificial lift apparatus of the present invention.
FIG. 2 is an elevated sectional view of an alternative embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIGS. la and lb in combination, there is shown a hydrocarbon producing well represented generally by the reference numeral 10. Because the present invention is directed towards hydrocarbon producing wells that produce oil, it will hereinafter be referred to as oil well 10. The oil well 10 has the normal casing 12 that extends into the earth formation 14 and is held in place by cement 16 as is the case in most oil wells. The casing 12 extends down into the oil producing zone I8. Inside the casing 12 a production tubing 20 also extends down to the oil producing zone in a manner common in the oil producing industry.
The oil well 10 is the type wherein the well head is sealed by means of plate 22 extending around the production tubing 20 to the casing 12. Located in the earth formation 14 just above the oil producing zone I8 is a packer 24 that again seals the production tubing 20 to the casing 12. Therefore, the space between production tubing 20 and casing 12 from the plate 22 to the packer 24 may be used as a pressure tank and is represented generally by the reference numeral 26. A vent/- pressure line 28 extends through the plate 22 and seals therewith. The vent/pressure line 28 also extends down inside the oil well to a point just above packer 24 where the vent/compressor line 28 is connected to the production tubing through opening 30.
In the lower portion of the production tubing 20 immediately above packer 24 is located a plunger 32 that is free floating inside of the production tubing 20. The plunger 32 may be a swab type or a free floating piston commonly referred to as the McMurray piston. The plunger 32 will allow a small amount of flow therethrough, but stop all flow therethrough upon sensing a large pressure differential across plunger 32. Immediately below the plunger 32 is a spring 34 to absorb the shock of the plunger 32 as it falls to its lowermost position, such position being shown in FIG. lb. Immediately below the spring 34 is located a hook 36 that may be used to retrieve apparatus contained in the production tubing 20 as will be subsequently described. The hook 36 is attached to housing 38 having slots 40 contained therein for communication with the space in the production tubing 20 immediately below plunger 32. Attached to housing 38 below slots 40 are hold downs 42 and 44 that rest against seating nipples of the production tubing 20. The seating nipples of the production tubing 20 are not illustrated due to close tolerances, but are commonly used in the oil producing industry. Inside of the hold downs 42 and 44, which form a good seal with the production tubing 20, is located a differential pressure valve 46. The upper portion of the differential pressure valve 46 has a bellows 48 that is in communication with chamber 50 located inside housing 38 by means of hole 52. The valve element 54 normally rests against seat 56. The valve element 54 and seat 56 are contained inside of housing 58 with chamber 60 being in communication with annulus 62 by means of cross bore 64. Annulus 62 is in turn in fluid communication with pressure tank 26 by means of holes 66. Hence the pressure developed across differential pressure valve 46 is the difference between the pressure immediately below the plunger 32 and the pressure inside of casing 12 represented by pressure tank 26. As this differential pressure decreases below a predetermined amount, the differential pressure valve 46 will open as will be subsequently described.
Immediately below the differential pressure valve 46 and housing 58 are located hold downs 68 and 70 that again mate with seating nipples of the production tub ing 20. Inside of the hold downs 68 and 70 is located a cap 72 of housing 58 that seals the lowermost portion of chamber 60 so that pressure inside of the production tubing above hold downs 68 and 70 is not reflected below hold downs 68 and 70. Immediately below hold down 70 is a housing 74 having slots 76 cut therein so that fluid communications can be transmitted through vent/pressure line 28, opening 30 into chamber 78.
Immediately below chamber 78 is located a float valve 80 which comprises a ball float 82, seat 84 and chamber 86. Chamber 86 is formed by hold downs 88 and 90 that rest against appropriate seating nipples in the production tubing 20. Chamber 86 is always in communication with crossover line 92 due to the slots 94 cut in flange seat 96. The crossover line 92 extends through chamber 98 that has slots 100 cut therein for fluid communication with annulus 102. From annulus 102 a bypass 104 communicates through openings 106 and 108 so that oil contained in chamber 98 may be moved around plunger 32 and other apparatus contained in production tubing 20 via bypass tubing I04 and back into the upper portion of production tubing 20 as will be described in more detail subsequently.
Crossover 92 communicates directly with production tubing 20 and the annulus I10 formed between the production tubing 20 and the stinger tube 112. Chamber 98 communicates with stinger tube 112 via tubing 114 which extends through hold downs I16 and 118 that rest on seating nipples of the production tubing 20. The crossover line 92 and the tubing 114 both extend through the hold downs I16 and I18 to form the crossover portion of the present invention represented generally by the reference numeral 120. The reason for having the crossover portion I20 is because of the packer 24 that isolates the upper internal portion of casing 12 from the lower internal portion so that the upper portion may be pressurized without having any effect on the lower portion that is located in the oil producing zone 18.
The lower portion of the casing I2 has perforations I22 to allow oil from the oil producing zone I8 to flow into the lower part of casing I2. Attached to the bottom of production tubing 12 and in the oil producing zone 18 is located an accumulator 124 that extends some distance along the lower portion of the casing I2. The length of the accumulator I24 could be as much as feet or even more. The stinger tube I12 extends to almost the bottom of accumulator 124 and has a check valve 126 located therein represented generally by a ball 128 and seat 130. In the bottom of the accumulator 124 is a retrievable standing valve I32 having a fishing neck I34, housing 136 with slots I38 cut therein and ball 138 with the mating seat I40. Standing Valve 132 allows flow upward in a manner very similar to a check valve, but not vice-versa. The entire retrievable standing valve I32 is maintained in position by hold downs I42 and I44 with corresponding seating nipples for lower extension 146 of accumulator 124, the lower extension being of approximately the same radius as the production tubing 20 or less. Upon attaching a line to the fishing neck 134 the entire apparatus contained in lower extension 146 may be retrieved to the surface of the oil well 10. Also, immediately above the accumulator 124 and directly below the packer 24 is located a gas vent valve 148 which allows the flow of gas inside of the casing 12 into the production tubing 20 by lifting the ball 150 off of seat I52. The gas vent valve I44 allows for additional venting of gas from the oil producing zone 18 so that the oil and gas may be more readily separated before entry into the accumulator 124.
Referring back to FIGv la, the upper production casing 154 extends above plate 122 with a pneumatic bellows 156 being located at the top thereof. The pneumatic bellows 156 may be pushed upward and air forced out through hole 158 by the plunger 32 as will be subsequently described. Simultaneously, a sliding valve 160 will be moved upward, thereby establishing communications between tubing 162, hole 164 and the internal portion of production tubing 20. Also, a tubing 166 which has a check valve 168 located therein receives oil from the production tubing 20 and delivers it to the oil tank as will be subsequently described.
The vent/compressor line 28 is connected via a threeway solenoid valve 170 that is operated by means of winding 172 and core 174. The three-way valve I70 has a lever arm 176 that is pivotally connected at pivot point 177. When the winding coil 172 is not energized, the three-way valve 170 will be in the position as shown with ball 178 resting against seat 180. When the winding coil 172 is energized, ball 178 will move away from seat 180 and ball 182 will seal against seat 184.
In the embodiment shown in FlGS. 1a and 1h ventlcompressor line 28 is in communication through three-way valve 170, conduit 186 through choke 188 to atmosphere. A pop-off valve 190, common in the petroleum producing industry. is also connected to conduit 186 to relieve pressure above a predetermined point in addition to the venting through choke 188.
The casing 12 is connected to a source of pressurized air via conduit 192 which has a branch conduit 194 that extends to the three-way valve 170 and ball 178 and seat 180. The source of pressurized air would normally be a compressor with the casing 12 being the storage tank 26 to provide a large volume of compressed air.
Located in conduit 186 is a pressure switch 196 that is connected to a source of power that may be used to operate the three-way valve 170. The source of power is connected through pressure switch 196 to a clock mechanism 198 and timer 200 to a pressure switch 202 that is responsive to pressure in conduit 192. If the contacts in pressure switch 196 that are responsive to pressure in conduit 186 are closed, and the contacts in pressure switch 202 are closed, the winding coil 172 of three-way valve 170 will be energized for a predetermined period of time as controlled by timer 200.
METHOD OF OPERATlON During the normal operation of the present invention, the storage tank 26 inside of casing 12 will be pressurized by compressed air from a compressor through conduit 192 until pressurized to a predetermined point. During initial pressurization vent/pressure line 28 and production tubing must be blocked at the well head. Once the casing 12 is pressurized to a predetermined point, the blocking of vent/pressure line 28 and production tubing 20 is removed to practice the present invention. Referring now to FIGS. 1a and lb in combination, the plunger 32 is located in the position as shown and oil from oil producing zone 18 flows through perforations 122 into the casing 12. The oil in the casing 12 then flows up through standing valve 132 into accumulator 124. Excess gas pressure may enter either through standing valve 132 or gas vent valve 148 into accumulator 124. The gas in accumulator 124 is vented through vent/pressure line 28 via crossover line 92 and float valve 80. Since the vent/pressure line 28 is connected at the well head through three-way valve 170 (as shown) to conduit 186 and choke 188 to atmosphere, the pressure inside of the accumulator is only slightly higher than atmospheric pressure with the difference being controlled by the choke 188. Once the oil from the oil producing zone 18 enters the casing 12 and the accumulator 124 through standing valve 132, it is trapped. As the oil continues to collect in accumulator 124, it will fill the accumulator 124 and begin to fill production tubing 24 up to float valve 80. As the oil accumulates in float valve 80, the ball 82 will come to rest against seat 84, thereby preventing a further venting through vent/pressure line 28, three-way valve 170 and choke 188 to atmosphere. Once the ball 82 comes to rest against the seat 84, the small remaining pressure in vent-pressure line 28 and conduit 186 will be vented through choke 188 to atmosphere. thereby causing pressure switch 196 to close. Pressure switch 196 is set to close when the small amount of pressure contained in conduit 186 is lost, which occurs when float valve closes, thereby indicating the accumulator 124 is full of oil.
Upon the closing of the pressure switch 196 and pressure switch 202, as was previously closed when casing 12 was pressurized to fill storage tank 26, power is fed through the clock 198 and timer 200 to energize the three-way valve 170. Upon energization of the threeway valve 170 the core 174 inside of winding 172 moves downward thereby raising lever 176 to seat ball 182 against seat 184 and unseat ball 178 from seat 180. Now the vent/pressure line 28 is connected to the pressure tank 26. The pressure from pressure tank 26 flows directly through conduit 192 and branch conduit 194, through the three-way valve 170 into the vent/pressure line 28. The pressurized air pushes against the oil inside of float valve 80 and forces it back down through crossover 92 into accumulator 124. At the same time the oil in accumulator 124 is being forced up through check valve 126 and into stinger tube 112. From the stinger tube 112 the oil is being forced upward through chamber 98, bypass tubing 104 and back into production tubing 20 at a location above plunger 32. The pressurized air through vent/pressure line 28 continues to force the oil up through the stinger tube 112 in the manner just previously described until the timer 200 has expired, thereby changing the position of three-way valve 170.
As previously described, any pressure inside of pressure tank 26 is felt immediately below differential pressure valve 46 by means of cross bore 64 and holes 66. The plunger 32, which may be the McMurray type, allows the oil contained in production tubing 20 to flow through the plunger 32 at a very slow rate. Therefore, the weight of the column of oil generates a pressure which will be reflected below plunger 32 through chamber 50 and hole 52 to bellows 48 of differential valve 46. Once the weight of the column of oil above plunger 32 reaches a predetermined amount so that a given pressure differential exists across differential pressure valve 46, the valve 46 will be open for any pressure differential below that predetermined pressure differential. Upon opening the pressure differential valve 46, pressurized air inside of casing 12 will force the plunger 32 and the column of oil to the surface of the oil well 10. The valves inside of plunger 32 close when hit by a large amount of pressurized air, thereby forcing the plunger 32 and the column of oil to the well head without the oil flowing down through the plunger 32. At the surface of the oil well 10 the oil immediately above the plunger 32 will flow through check valve 168 and tubing 166 into the oil storage tank. The plunger 32, however, will continue beyond tubing 66 of the upper production casing 154 to hit pneumatic bellows 156 thereby opening sliding valve 160. The sliding valve 160 would then vent any air below the plunger 32 to a separator through tubing 162. The plunger 32 will be held into position against the pneumatic bellows 156 until essentially all the pressurized air has been re moved from production tubing 20.
It is important that the timer 200 be set so that just enough time will be allowed to raise the column of oil and the plunger to the well head upon deenergizing the three-way valve 170. Once the three-way valve is deenergized, it will return to the position shown in FIG.
la thereby terminating the connection between the vent/pressure line 28 and storage tank 26, and reestablishing the communication between vent/pressure line 28 and atmosphere. After the pressure in production tubing 20 has been relieved, the plunger 32 will fall back to its position shown in FIG. lb and the cycle will begin to repeat itself by oil collecting in the accumulator 124.
ALTERNATIVE EMBODIMENT Referring now to FIG. 2 of the drawings, there is shown an alternative embodiment of the present invention with the control portion not being shown in detail because it is substantially identical to the controls shown and described in conjunction with FIG. la. Numbers that were used in conjunction with the previous description of FIGS. la and lb will be used in FIG. 2 where appropriate. Again the oil well 10 has casing 12 that is located in the earth formation 14 and held in place by means of cement 16 and extends all the way to the oil producing zone 18. Inside of the casing 12 is located production tubing 20 with the area between the production tubing 20 and the casing 12, and above packer 24, being pressure storage tank 26. Again the top of the oil well 12 is sealed by means of a plate 22 so that only the production tubing 20 extends therethrough. Internal to the production tubing 20 is located vent/pressure line 28 that was contained on the outside thereof in FIGS. la and lb. The vent/pressure line again connects to three-way valve 170 in the manner previously described in conjunction with FIGS. la and lb.
The vent/pressure line 28 extends down through the production tubing 20 to the float valve 80 which has a ball float 82 contained inside of housing 204 and a seat 84 contained at the top thereof. The lower portion of the housing 204 is connected to a crossover line 92 by means of a flange seat 96 having slots 94 cut therein so that chamber 86 will be in continual communication with crossover line 92. Immediately below chamber 86 is a chamber 98 having slots 100 cut therein to allow communication with annulus 102. From annulus 102 there is direct communication with the annular space between production tubing 20 and the vent/pressure line 28.
The crossover line 92 extends through hold downs 116 and 118 that rest against seating nipples of the production tubing 20. Also, chamber 98 communicates through the hold downs 116 and 118 via tubing 114. Immediately below the crossover portion 120 is located the packer 24. The packer 24 should be located at or near the top of the oil producing zone 18. Immediately below the packer 24 is a standing valve 206 that is represented pictorially by ball 208 and seat 210. The standing valve 206 allows communication from the oil producing zone 18, annulus 212 into the production tubing 20. Near the bottom of the oil producing zone 18 is located another packer 214 that seals off the lower portion 216 of the oil well 10. The lower portion 216 can now serve as the accumulator that was previously described in conjunction with FIG. 1b. Though the production tubing 20 will probably extend to the bottom of the lower portion 216 it contains perforations 218 to allow free flow of oil through the production tubing 20. The casing 12 will extend to the bottom of the oil well 10.
Also extending from the crossover portion 20 and through packers 24 and 214 is stinger tube 112. The stinger tube extends to substantially the bottom of the accumulator formed by the lower portion 216 and has a check valve 126 located therein that is represented pictorially by ball 128 and seat 130.
METHOD OF OPERATION OF THE ALTERNATIVE EMBODIMENT In the alternative embodiment again the casing 12 is pressurized to provide pressure in the pressure storage tank 26 formed by the upper portion of the casing 12. Again the accumulator represented by lower portion 216 is vented to atmosphere via vent/pressure line 28 and crossover line 92 in a manner previously described in conjunction with FIGS. la and lb. Oil from the oil producing zone 18 flows through the perforations 122 into annulus 212. From annulus 212 the oil flows through standing valve 206 into production tubing 20 and down into the accumulator formed by the lower portion 216 of the casing 12. Once the lower portion 216 is filled with oil, the oil will begin to fill production tubing 20 until it reaches float valve 80 located immediately above packer 24. The ball float 82 will float on top of the surface of oil and come to rest against seat 84, thereby terminating the venting through vent/pressure line 28. In a manner previously described in conjunction with FIGS. la and lb, the three-way valve will now be energized thereby unseating ball valve 178 and seating ball valve 182. Pressure from the pressure tank 26 now flows through the vent/pressure line to force the oil back down through crossover line 92, production tubing 20 and up through stinger 112. In this case the timer is set so that enough time is allowed to force essentially all of the oil contained in lower portion 216 up into stinger tube 112. Thereafter the threeway valve is deenergized and the pressure contained in the lower portion 216 is vented through vent/- pressure line 28 and oil is again allowed to accumulate from oil producing zone 18. Notice that check valve 206 does not allow the pressurized air to be felt against the oil producing zone 18. Once enough oil has again accumulated in the lower portion 216 and production tubing 20 to shut the float valve 80 the cycle will be repeated. Again the oil will be forced up through the stinger tube 112 in the manner previously described for the earlier cycle. This process is repeated again and again until the column of oil in the production tubing 20 will reach the surface of the oil well 10. Thereafter, for each cycle of operation, oil will flow through tubing 166 to the oil storage tank. Once oil has been received in the stinger tube 112, it cannot flow back into the lower portion 216 because of check valve 126.
As the oil well 10 is brought into production, the cycle of the timer may have to be adjusted due to the increased weight of the oil column contained in production tubing 20. As the weight of the column of oil increases additional time will be necessary to insure that essentially all of the oil contained in the lower portion 216 has been forced into the stinger tube 112.
What is claimed is:
1. An artificial lift apparatus for a liquid producing well having a well head and a well casing therein, said apparatus comprising:
production tubing extending from the well head into the casing to a level below which the liquid from a liquid producing zone will fill through perforations in the casing;
accumulator means in the bottom of the well casing for collecting liquid in the well;
gas tubing means extending from the well head into the accumulator means for communication therewith from the well head;
first check valve means for only allowing flow of liquid into said accumulator means;
standing valve means at essentially the bottom of said production tubing to allow flow of said fluid only into said production tubing, said bottom of said production tubing being near the bottom of said accumulator means;
means for receiving and handling said liquid at said well head; and
control valve for alternately venting and pressurizing said accumulator means via said gas tubing means, liquid being allowed to collect in said accumulator means via said first check valve means during vent' ing, thereafter in response to said pressurizing, said liquid is moved through standing valve means into said production tubing and raised to the well head;
plate means for sealing said well casing at the well head;
first packer means for sealing said well casing to said production tubing above said liquid producing zone, annulus between said plate means and said first packer means being used to store pressurized gas for said pressurizing of said accumulator;
a source of compressed air for pressurizing said annulus, said control valve alternately connecting said gas tubing to said accumulator means.
2. The artificial lift apparatus as recited in claim 1 wherein said gas tubing means is inside said production tubing. crossover means inside said production tubing for separately connecting said gas tubing means to said accumulator and said production tubing to said standing valve means.
3. The artificial lift apparatus as recited in claim 2 further includes a second packer means below said liquid producing zone, said first check valve means located on said production tubing between said first and second packer means to allow the liquid to flow below said second packer means, the area inside said casing below said second packer means forming said accumu lator means.
4. The artificial lift apparatus as recited in claim 3 wherein the lower part of said production tubing which contains said standing valve means further includes a stinger tube means which extends to near the bottom of the liquid producing well.

Claims (4)

1. An artificial lift apparatus for a liquid producing well having a well head and a well casing therein, said apparatus comprising: production tubing extending from the well head into the casing to A level below which the liquid from a liquid producing zone will fill through perforations in the casing; accumulator means in the bottom of the well casing for collecting liquid in the well; gas tubing means extending from the well head into the accumulator means for communication therewith from the well head; first check valve means for only allowing flow of liquid into said accumulator means; standing valve means at essentially the bottom of said production tubing to allow flow of said fluid only into said production tubing, said bottom of said production tubing being near the bottom of said accumulator means; means for receiving and handling said liquid at said well head; and control valve for alternately venting and pressurizing said accumulator means via said gas tubing means, liquid being allowed to collect in said accumulator means via said first check valve means during venting, thereafter in response to said pressurizing, said liquid is moved through standing valve means into said production tubing and raised to the well head; plate means for sealing said well casing at the well head; first packer means for sealing said well casing to said production tubing above said liquid producing zone, annulus between said plate means and said first packer means being used to store pressurized gas for said pressurizing of said accumulator; a source of compressed air for pressurizing said annulus, said control valve alternately connecting said gas tubing to said accumulator means.
2. The artificial lift apparatus as recited in claim 1 wherein said gas tubing means is inside said production tubing, crossover means inside said production tubing for separately connecting said gas tubing means to said accumulator and said production tubing to said standing valve means.
3. The artificial lift apparatus as recited in claim 2 further includes a second packer means below said liquid producing zone, said first check valve means located on said production tubing between said first and second packer means to allow the liquid to flow below said second packer means, the area inside said casing below said second packer means forming said accumulator means.
4. The artificial lift apparatus as recited in claim 3 wherein the lower part of said production tubing which contains said standing valve means further includes a stinger tube means which extends to near the bottom of the liquid producing well.
US496173A 1974-08-09 1974-08-09 Artificial lift for oil wells Expired - Lifetime US3894583A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US496173A US3894583A (en) 1974-08-09 1974-08-09 Artificial lift for oil wells
US05/567,989 US3941510A (en) 1974-08-09 1975-04-14 Artificial lift for oil wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US496173A US3894583A (en) 1974-08-09 1974-08-09 Artificial lift for oil wells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/567,989 Division US3941510A (en) 1974-08-09 1975-04-14 Artificial lift for oil wells

Publications (1)

Publication Number Publication Date
US3894583A true US3894583A (en) 1975-07-15

Family

ID=23971559

Family Applications (1)

Application Number Title Priority Date Filing Date
US496173A Expired - Lifetime US3894583A (en) 1974-08-09 1974-08-09 Artificial lift for oil wells

Country Status (1)

Country Link
US (1) US3894583A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974878A (en) * 1975-09-12 1976-08-17 Roeder George K Method and apparatus for artificial lift from multiple production zones
US3991825A (en) * 1976-02-04 1976-11-16 Morgan Thomas H Secondary recovery system utilizing free plunger air lift system
FR2545533A2 (en) * 1983-05-06 1984-11-09 Chaudot Gerard INSTALLATION FOR THE PRODUCTION OF HYDROCARBON DEPOSITS WITH REINJECTION OF EFFLUENTS IN THE STORAGE OR IN THE WELL OR WELLS AND METHOD FOR THE IMPLEMENTATION OF SAID INSTALLATION
WO1985000401A1 (en) * 1983-07-13 1985-01-31 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons from underground water tables
US4546830A (en) * 1983-07-13 1985-10-15 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons from underground water tables
US4625801A (en) * 1983-07-13 1986-12-02 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons from underground water tables
US4826406A (en) * 1987-10-08 1989-05-02 S&Me, Incorporated Pressure extraction pump system for recovering liquid hydrocarbons from ground water
US4844797A (en) * 1988-03-22 1989-07-04 S&Me, Incorporated Vacuum extraction system
US4886432A (en) * 1988-06-23 1989-12-12 Engineering Enterprises, Inc. Bladder pump assembly
WO1998059152A1 (en) 1997-06-20 1998-12-30 Reitz Donald D Calliope oil production system
US5873410A (en) * 1996-07-08 1999-02-23 Elf Exploration Production Method and installation for pumping an oil-well effluent
US6298918B1 (en) * 1999-02-18 2001-10-09 Petroleo Brasileiro S.A.-Petrobras System for lifting petroleum by pneumatic pumping
US6629566B2 (en) 2000-07-18 2003-10-07 Northern Pressure Systems Inc. Method and apparatus for removing water from well-bore of gas wells to permit efficient production of gas
US6672392B2 (en) 2002-03-12 2004-01-06 Donald D. Reitz Gas recovery apparatus, method and cycle having a three chamber evacuation phase for improved natural gas production and down-hole liquid management
US6702028B1 (en) * 1999-06-16 2004-03-09 Heggholmen Jon Kare Apparatus and method for producing oil and gas
US20040123987A1 (en) * 2002-03-12 2004-07-01 Reitz Donald D. Gas recovery apparatus, method and cycle having a three chamber evacuation phase and two liquid extraction phases for improved natural gas production
US20040244991A1 (en) * 2003-06-06 2004-12-09 Reitz Donald D. Method and apparatus using traction seal fluid displacement device for pumping wells
US20050183861A1 (en) * 2004-02-20 2005-08-25 Murray Paul A. Liquid sampler
US20060081378A1 (en) * 2002-01-22 2006-04-20 Howard William F Gas operated pump for hydrocarbon wells
CN100346053C (en) * 2004-12-22 2007-10-31 西南石油学院 Automatic boosting oil production and liquid discharge gas producing device and method for underwell gas
US20100089588A1 (en) * 2008-10-10 2010-04-15 Baker Hughes Incorporated System, method and apparatus for concentric tubing deployed, artificial lift allowing gas venting from below packers
US20100294506A1 (en) * 2009-05-21 2010-11-25 Bp Corporation North America Inc. Systems and methods for deliquifying a commingled well using natural well pressure
US8794307B2 (en) 2008-09-22 2014-08-05 Schlumberger Technology Corporation Wellsite surface equipment systems
US9909400B2 (en) * 2012-10-22 2018-03-06 Blackjack Production Tools, Llc Gas separator assembly for generating artificial sump inside well casing
CN110094187A (en) * 2018-01-29 2019-08-06 中国石油化工股份有限公司 One kind lifting water pumping gas production tubing string and system from energy ladder
US10731452B2 (en) 2017-08-16 2020-08-04 Blackjack Production Tools, Llc Gas separator assembly with degradable material
US11131180B2 (en) 2019-03-11 2021-09-28 Blackjack Production Tools, Llc Multi-stage, limited entry downhole gas separator
US11486237B2 (en) 2019-12-20 2022-11-01 Blackjack Production Tools, Llc Apparatus to locate and isolate a pump intake in an oil and gas well utilizing a casing gas separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US298990A (en) * 1884-05-20 John k
US3106170A (en) * 1961-11-17 1963-10-08 William George Jr Apparatus for flowing oil from a well
US3617152A (en) * 1969-05-19 1971-11-02 Otis Eng Co Well pumps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US298990A (en) * 1884-05-20 John k
US3106170A (en) * 1961-11-17 1963-10-08 William George Jr Apparatus for flowing oil from a well
US3617152A (en) * 1969-05-19 1971-11-02 Otis Eng Co Well pumps

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974878A (en) * 1975-09-12 1976-08-17 Roeder George K Method and apparatus for artificial lift from multiple production zones
US3991825A (en) * 1976-02-04 1976-11-16 Morgan Thomas H Secondary recovery system utilizing free plunger air lift system
FR2545533A2 (en) * 1983-05-06 1984-11-09 Chaudot Gerard INSTALLATION FOR THE PRODUCTION OF HYDROCARBON DEPOSITS WITH REINJECTION OF EFFLUENTS IN THE STORAGE OR IN THE WELL OR WELLS AND METHOD FOR THE IMPLEMENTATION OF SAID INSTALLATION
EP0172971A1 (en) * 1983-05-06 1986-03-05 Gérard Chaudot Production of hydrocarbon formations with reinjection of effluents into the formation
WO1985000401A1 (en) * 1983-07-13 1985-01-31 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons from underground water tables
US4546830A (en) * 1983-07-13 1985-10-15 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons from underground water tables
US4625801A (en) * 1983-07-13 1986-12-02 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons from underground water tables
US4678040A (en) * 1983-07-13 1987-07-07 Pump Engineer Associates, Inc. Methods and apparatus for recovery of hydrocarbons and other liquids from underground
US4826406A (en) * 1987-10-08 1989-05-02 S&Me, Incorporated Pressure extraction pump system for recovering liquid hydrocarbons from ground water
US4844797A (en) * 1988-03-22 1989-07-04 S&Me, Incorporated Vacuum extraction system
US4886432A (en) * 1988-06-23 1989-12-12 Engineering Enterprises, Inc. Bladder pump assembly
US5873410A (en) * 1996-07-08 1999-02-23 Elf Exploration Production Method and installation for pumping an oil-well effluent
WO1998059152A1 (en) 1997-06-20 1998-12-30 Reitz Donald D Calliope oil production system
US5911278A (en) * 1997-06-20 1999-06-15 Reitz; Donald D. Calliope oil production system
US6298918B1 (en) * 1999-02-18 2001-10-09 Petroleo Brasileiro S.A.-Petrobras System for lifting petroleum by pneumatic pumping
US6702028B1 (en) * 1999-06-16 2004-03-09 Heggholmen Jon Kare Apparatus and method for producing oil and gas
US6629566B2 (en) 2000-07-18 2003-10-07 Northern Pressure Systems Inc. Method and apparatus for removing water from well-bore of gas wells to permit efficient production of gas
US7445049B2 (en) * 2002-01-22 2008-11-04 Weatherford/Lamb, Inc. Gas operated pump for hydrocarbon wells
US20060081378A1 (en) * 2002-01-22 2006-04-20 Howard William F Gas operated pump for hydrocarbon wells
US20040123987A1 (en) * 2002-03-12 2004-07-01 Reitz Donald D. Gas recovery apparatus, method and cycle having a three chamber evacuation phase and two liquid extraction phases for improved natural gas production
US7100695B2 (en) 2002-03-12 2006-09-05 Reitz Donald D Gas recovery apparatus, method and cycle having a three chamber evacuation phase and two liquid extraction phases for improved natural gas production
US6672392B2 (en) 2002-03-12 2004-01-06 Donald D. Reitz Gas recovery apparatus, method and cycle having a three chamber evacuation phase for improved natural gas production and down-hole liquid management
US20040244991A1 (en) * 2003-06-06 2004-12-09 Reitz Donald D. Method and apparatus using traction seal fluid displacement device for pumping wells
US7080690B2 (en) 2003-06-06 2006-07-25 Reitz Donald D Method and apparatus using traction seal fluid displacement device for pumping wells
US7121347B2 (en) * 2004-02-20 2006-10-17 Aea Technology Engineering Services, Inc. Liquid sampler
US20050183861A1 (en) * 2004-02-20 2005-08-25 Murray Paul A. Liquid sampler
CN100346053C (en) * 2004-12-22 2007-10-31 西南石油学院 Automatic boosting oil production and liquid discharge gas producing device and method for underwell gas
US8794307B2 (en) 2008-09-22 2014-08-05 Schlumberger Technology Corporation Wellsite surface equipment systems
US7857060B2 (en) 2008-10-10 2010-12-28 Baker Hughes Incorporated System, method and apparatus for concentric tubing deployed, artificial lift allowing gas venting from below packers
US20100089588A1 (en) * 2008-10-10 2010-04-15 Baker Hughes Incorporated System, method and apparatus for concentric tubing deployed, artificial lift allowing gas venting from below packers
US20100294506A1 (en) * 2009-05-21 2010-11-25 Bp Corporation North America Inc. Systems and methods for deliquifying a commingled well using natural well pressure
WO2010135187A3 (en) * 2009-05-21 2011-03-24 Bp Corporation North America Inc. Systems and methods for deliquifying a commingled well using natural well pressure
US8316950B2 (en) 2009-05-21 2012-11-27 Bp Corporation North America Inc. Systems and methods for deliquifying a commingled well using natural well pressure
WO2010135187A2 (en) * 2009-05-21 2010-11-25 Bp Corporation North America Inc. Systems and methods for deliquifying a commingled well using natural well pressure
US9909400B2 (en) * 2012-10-22 2018-03-06 Blackjack Production Tools, Llc Gas separator assembly for generating artificial sump inside well casing
US10731452B2 (en) 2017-08-16 2020-08-04 Blackjack Production Tools, Llc Gas separator assembly with degradable material
CN110094187A (en) * 2018-01-29 2019-08-06 中国石油化工股份有限公司 One kind lifting water pumping gas production tubing string and system from energy ladder
US11131180B2 (en) 2019-03-11 2021-09-28 Blackjack Production Tools, Llc Multi-stage, limited entry downhole gas separator
US11486237B2 (en) 2019-12-20 2022-11-01 Blackjack Production Tools, Llc Apparatus to locate and isolate a pump intake in an oil and gas well utilizing a casing gas separator

Similar Documents

Publication Publication Date Title
US3894583A (en) Artificial lift for oil wells
US3941510A (en) Artificial lift for oil wells
US3894814A (en) Artificial lift for oil wells
US4490095A (en) Oilwell pump system and method
US3941511A (en) Artificial lift for oil wells
US3617152A (en) Well pumps
US8657014B2 (en) Artificial lift system and method for well
US5211242A (en) Apparatus and method for unloading production-inhibiting liquid from a well
US3363692A (en) Method for production of fluids from a well
US20080135259A1 (en) Reciprocated Pump System For Use In Oil Wells
US4267888A (en) Method and apparatus for positioning a treating liquid at the bottom of a well
US5586602A (en) Method and apparatus for shock wave stimulation of an oil-bearing formation
US2680408A (en) Means for dually completing oil wells
US4465435A (en) Apparatus for using natural gas pressure for pumping a well
US4565496A (en) Oil well pump system and method
US20060045781A1 (en) Method and pump apparatus for removing liquids from wells
US2142484A (en) Gas-lift pump
US2865305A (en) Gas lift apparatus
US2948232A (en) Gas lift method and apparatus
US4166715A (en) Oil well pumping tube drain device
US11261714B2 (en) System and method for removing substances from horizontal wells
US3659961A (en) Gas lift system
US3426687A (en) Zone selector actuated by vent line
US1833214A (en) Fluid lifting device for wells
US2064272A (en) Period control valve for plunger lift devices