US3890018A - Rotary rock bit with wiper pad lubrication system - Google Patents

Rotary rock bit with wiper pad lubrication system Download PDF

Info

Publication number
US3890018A
US3890018A US489857A US48985774A US3890018A US 3890018 A US3890018 A US 3890018A US 489857 A US489857 A US 489857A US 48985774 A US48985774 A US 48985774A US 3890018 A US3890018 A US 3890018A
Authority
US
United States
Prior art keywords
cutter
wiper pad
wiper
bit
bearing pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US489857A
Inventor
Robert Dale Clamon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Industries Inc
Original Assignee
Dresser Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Industries Inc filed Critical Dresser Industries Inc
Priority to US489857A priority Critical patent/US3890018A/en
Application granted granted Critical
Publication of US3890018A publication Critical patent/US3890018A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/22Roller bits characterised by bearing, lubrication or sealing details
    • E21B10/24Roller bits characterised by bearing, lubrication or sealing details characterised by lubricating details
    • E21B10/246Roller bits characterised by bearing, lubrication or sealing details characterised by lubricating details with pumping means for feeding lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2352/00Apparatus for drilling

Definitions

  • a system for circulating lubricant into the loaded contact area between the bearing pin and the rotating cutter of an earth boring bit.
  • the cutter is mounted to rotate about the bearing pin.
  • the cutter includes a cutter interior surface.
  • At least one wiper pad cavity is located in the aforementioned interior surface of the cutter.
  • a wiper pad is positioned in the wiper pad cavity and a resilient member is positioned beneath the wiper pad. As the cutter rotates, the wiper pad forces lubricant into the load area between the bearing pin and the interior surface of the cutter.
  • the present invention relates to the art of earth boring and more particularly to a system for lubricating the bearings between the rotatable cutter and the bearing shaft of a rotary rock bit.
  • a rotary rock bit in general consists of a main bit body adapted to be connected to a rotary drill string.
  • the bit includes at least one rotatable cutter mounted upon a bearing shaft extending from the main bit body with bearing systems between the cutter and the bearing shaft for promoting rotation of the cutter. Inserts or steel teeth on the surface of the cutter disintegrate the formations as the bit and cutter rotate and a seal between the cutter and the bearing shaft retains lubricant in the bearing area and prevents borehole fluids and debris from entering the bearing area.
  • U.S. Pat. No. 3,235,316 to J. R. Whanger shows a friction bearing of large load capacity between a pair of relatively rotatable members in which at least one of said members has a quantity of indentations extending from the bearing surface thereof.
  • Said quantity of indentations is filled with a soft metal having anti-galling characteristics, and the balance of said bearing surface is a hard metal of high wear resistance, the hardness and wear resistance of said hard metal being comparable to those of a carburized and hardened steel.
  • the present invention provides a system for circulating lubricant into the loaded contact area between the bearing pin and the rotating bearing element within the cutter.
  • Thebit includes a bit body with at least one bearing pin extending from said bit body.
  • a rotatable cutter is mounted upon the bearing pin and the rotatable cutter has a cutter interior surface. Seal means are provided between the bit body and the rotatable cutter to provide a seal and prevent lubricant from escaping into the borehole and borehole fluids from entering the bearing area.
  • Bearing means between the bearing pin and the rotatable cutter promote rotation of the cutter.
  • At least one wiper cavity is located in the interior surface of the rotatable cutter.
  • a wiper pad is positioned in the wiper cavity and a resilient member is positioned beneath the wiper pad. As the cutter rotates, the wiper pad forces lubricant into the load area between the bearing pin and the interior surface of the cutter.
  • FIG. 1 shows one arm of a three cone rotary rock bit constructed in accordance with the present invention.
  • FIG. 2 shows a bearing element of the bit shown in FIG. 1.
  • FIG. 3 is a sectional view of a bearing pin and bearing element of another embodiment of the present invention.
  • FIG. 4 is a sectional view of a bearing pin and bearing element of another embodiment of the present invention.
  • FIG. 5 illustrates other embodiments of the present invention.
  • the bit 10 includes a bit body 11 adapted to be connected to the lower end of a rotary drill string (not shown).
  • One arm 12 of the bits three arms is shown depending from the bit body 11.
  • a cone cutter I3 is mounted upon a bearing pin 14 extending from the arm 12.
  • the cutter 13 includes cutting structure 15 on its outer surface.
  • Cutting structure 15 is shown in the form of tungsten carbide inserts; however, it is to be understood that other cutting structures, such as steel teeth. may be used as the cutting structure on the cone cutter 13.
  • the cutter I3 is rotatably positioned on the bearing pin 14 and adapted to disintegrate the earth formations as the bit is rotated.
  • the cutting structure 15 on the outer surface of cutter 13 contacts and disintegrates formations in a manner that is well known in the art.
  • a plurality of bearing systems are located in the bearing area between the cutter l3 and the bearing pin 14.
  • the bearing systems in the bearing area include an outer friction bearing 16, a series of ball bearings 17, an inner friction bearing 18, and a thrust button 19.
  • An O-ring seal is positioned between the cutter l3 and the bearing pin 14. This seal retains lubricant in the bearing area around the bearing systems and prevents any materials in the well bore from entering the bearing area.
  • the O-ring seal 20 prevents fluid flow in either direction.
  • the inner surface 21 of the outer friction bearing element 16 includes a multiplicity of wiper cavities 22.
  • a corresponding multiplicity of wiper pads 23 are positioned in the wiper cavities 22.
  • spring elements 24 are positioned beneath the wiper pads 23 in the wiper pad cavities 22. The spring elements 24 force the wiper pads 23 toward the bearing pin 14.
  • the spring elements 24 may be flat springs as shown or other resilient elements such as belville type springs or pads of resilient material.
  • the bit 10 is connected as the lower member of a rotary drill string (not shown) and lowered into a well bore until the cone cutters engage the bottom of the well bore.
  • the drill string is rotated, rotating bit 10 therewith.
  • the cutters rotate upon the respective bearing pins.
  • the wipers 23 push lubricant into the load zone.
  • the wiper moves into the load zone, it is pressed into the wiper cavity 22 compressing spring 24 until the wipers 23 are flush with the interior surface 21 of the outer friction bearing 16.
  • the spring 24 moves the wiper pad 23 outward allowing the wiper pad 23 to project from the interior surface 21 of the outer friction bearing 16 and push lubricant ahead of it.
  • Lubricant generally accumulates in the area between bearing pin 14 and the outer friction bearing 16 on the unloaded side of the bearing pin 14. Lubricant is pulled from this area and pushed into the load Zone to maintain a film of lubricant in the critical area.
  • FIG. 3 another embodiment of the present invention is illustrated.
  • a sectional view of a bearing pin 26 is shown with a bearing element 25 mounted upon the bearing pin 26.
  • the bearing element 25 is adapted to fit within a cone cutter in the manner shown in FIG. 1.
  • a section of the top of bearing pin 26 is relieved thereby providing a lubricant storage area.
  • the top of the bearing pin is the unloaded portion of the bearing pin 26 wherein lubricant normally accumulates.
  • a multiplicity of wiper cavities 27 are machined in bearing element 25.
  • a corresponding multiplicity of wiper pads 28 are positioned in the wiper pad cavities 27.
  • a spring 29 is positioned in each wiper pad cavity 27 to force the wiper pad 28 toward the bearing pin 26.
  • the wiper pad 28 passes the relieved section 30 pushing stored lubricant ahead of the wiper pad 28.
  • the wiper pad 28 continues pushing the lubricant into the loaded side of the bearing pin 26.
  • the wiper pads 28 are forced into the cavities 27 against the force of spring 29 until the wiper pads are flush with the surface of bearing element 25 as they pass the loaded side of the bearing pin 26.
  • a bearing pin 30A is shown in cross section with a bearing element 31 mounted to rotate thereon.
  • a multiplicity of cavities are formed in the interior surface of the bearing element 31.
  • Wiper pads 33 are positioned in the cavities 32.
  • the wiper pads 33 serve to force lubricant into the loaded side of the bearing pin 30A.
  • Lubricant is channeled from a lubricant reservoir in the body of the bit through a passage 34 to the unloaded side of bearing pin 30A.
  • the wiper pads 33 pick up the lubricant and carry it to the loaded side of bearing pin 30A.
  • the bearing element 31 rotates clockwise on the bearing pin 30A shown in FIG. 4.
  • a portion 35 of the passage 34 is relieved. This enables the wiper pads 33 to provide a pumping action as they traverse the unloaded side of the bearing pin 30A.
  • wiper pad cavities are illustrated.
  • the different forms of wiper pad cavities are shown in a bearing element 36.
  • the wiper pad cavities may be horizontal slots such as slots 37.
  • the slots may be inclined in one direction as shown by the slots 39 or in a different direction as shown by the slots 40.
  • the wiper pads in the cavities will direct or pump the lubricant to other critical areas of the bit spaced from the bearing element 36.
  • the wiper pads may be made of a porous material for absorbing lubricant in the unloaded area and contributing a boundary film as it passes under the loaded side.
  • the pads may also incorporate small pockets or include a corrugated configuration on the lead section of the wiper for the purpose of trapping greater amounts of fluid and forcing it into the loaded area.
  • a rotary rock bit comprising:
  • bit body including a bearing pin
  • said rotatable cutter having a cutter interior surface
  • the rotary rock bit of claim 1 including resilient means positioned within said wiper pad cavity for providing a force tending to push said wiper pad out of said wiper pad cavity.
  • the rotary rock bit of claim 2 including seal means between said bit body and said rotatable cutter for providing a seal between said rotatable cutter and said bit body.
  • a rotary rock bit comprising:
  • said rotatable cone cutter having a cutter interior surface
  • seal means between said bit body and said rotatable cone cutter for providing a seal between said rotatable cone cutter and said bit body

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Earth Drilling (AREA)

Abstract

A system is provided for circulating lubricant into the loaded contact area between the bearing pin and the rotating cutter of an earth boring bit. The cutter is mounted to rotate about the bearing pin. The cutter includes a cutter interior surface. At least one wiper pad cavity is located in the aforementioned interior surface of the cutter. A wiper pad is positioned in the wiper pad cavity and a resilient member is positioned beneath the wiper pad. As the cutter rotates, the wiper pad forces lubricant into the load area between the bearing pin and the interior surface of the cutter.

Description

United States Patent 1 June 17, 1975 Clamon ROTARY ROCK BIT WITH WIPER PAD LUBRICATION SYSTEM [75] Inventor: Robert Dale Clamon, Mesquite. Tex.
[73] Assignee: Dresser Industries. Inc., Dallas, Tex.
[22] Filed: July 19, 1974 [21] Appl. No.: 489,857
[52] US. Cl 308/8.2; 308/240 [51] Int. Cl. Fl6c 33/66 [58] Field of Search 308/82, 78, 101, 240; l75/37l [56] References Cited UNITED STATES PATENTS 3,235.3[6 2/1966 Whanger 308/81 3 6603.073 5/1972 Bronson 308/82 3,746,405 7/1973 Welton 308/82 3,845,994 11/1974 Trey 308/82 Primat' E.raminer-M. Henson Wood, Jr. Assistant ExaminerGene A. Church Attorney. Agent. or Firm-Eddie E. Scott [57] ABSTRACT A system is provided for circulating lubricant into the loaded contact area between the bearing pin and the rotating cutter of an earth boring bit. The cutter is mounted to rotate about the bearing pin. The cutter includes a cutter interior surface. At least one wiper pad cavity is located in the aforementioned interior surface of the cutter. A wiper pad is positioned in the wiper pad cavity and a resilient member is positioned beneath the wiper pad. As the cutter rotates, the wiper pad forces lubricant into the load area between the bearing pin and the interior surface of the cutter.
6 Claims, 5 Drawing Figures ROTARY ROCK BIT WITH WIPER PAD LUBRICATION SYSTEM BACKGROUND OF THE INVENTION The present invention relates to the art of earth boring and more particularly to a system for lubricating the bearings between the rotatable cutter and the bearing shaft of a rotary rock bit.
A rotary rock bit in general consists of a main bit body adapted to be connected to a rotary drill string. The bit includes at least one rotatable cutter mounted upon a bearing shaft extending from the main bit body with bearing systems between the cutter and the bearing shaft for promoting rotation of the cutter. Inserts or steel teeth on the surface of the cutter disintegrate the formations as the bit and cutter rotate and a seal between the cutter and the bearing shaft retains lubricant in the bearing area and prevents borehole fluids and debris from entering the bearing area.
The rotary rock bit must operate under very severe environmental conditions and the geometry of the bit is restricted by the operating characteristics. At the same time, the economies of petroleum production demand a longer lifetime and improved performance from the bit. In attempting to provide an improved bit, new and improved materials have been developed for the cutting structure of the cutter, thereby providing a longer useful lifetime for the cutter. This has resulted in the bearing systems being the first to fail during the drilling operation. Consequently, a need clearly exists for a system that will extend the useful lifetime of the bit.
DESCRIPTION OF PRIOR ART In U.S. Pat. No. 3,244,415 to J. E. Ortloff, patented Apr. 5, 1966, a lubricating system for extending the life of the bearings of a roller cone type bit is shown. Sealing means are provided to effectively separate or close off the clearance between the journal of the leg and the bearings of the roller cone from the exterior of the bit. A special pump means is provided to circulate the lubricating fluid under high pressure to this sealed-off clearance space. The pump means is actuated by the rotation of the roller cone element on the shaft.
In U.S. Pat. No. 3,251,634 to D. W. Dareing, patented May 17, 1966, a lubricating system for extending the life of the bearings of a roller cone type bit is shown. Sealing means are provided to effectively separate or close off the clearance or space between the journal of the leg and bearings of the roller cone from the exterior of the bit. An electrical pump means is provided to supply a lubricating fluid under high pressure to this sealed-off clearance space.
In U.S. Pat. No. 3,746,405 to Russell L. Welton, patented July 17, 1973, a well drilling bit lubrication system and seal is shown. A journal bearing lubrication means and a seal cooperatively combined therewith to maintain lubrication throughout the useful life of the roller cutter of a well drilling bit, to the exclusion of foreign materials entering therein from the drilling fluids and surrounding earth formations. A journal hearing of right cylinder form is provided, characterized by the formation of a strategically placed recess, or recesses therein, and all without subtracting from the load carrying capabilities of the bit; the assembly being retained in working condition by a single element combined with the lubrication means and assuring proper axial placement of the roller cutter.
U.S. Pat. No. 3,235,316 to J. R. Whanger, patented Feb. 15, 1966, shows a friction bearing of large load capacity between a pair of relatively rotatable members in which at least one of said members has a quantity of indentations extending from the bearing surface thereof. Said quantity of indentations is filled with a soft metal having anti-galling characteristics, and the balance of said bearing surface is a hard metal of high wear resistance, the hardness and wear resistance of said hard metal being comparable to those of a carburized and hardened steel.
SUMMARY OF THE INVENTION In order to extend the useful lifetime of the bearings of a rotary rock bit, the present invention provides a system for circulating lubricant into the loaded contact area between the bearing pin and the rotating bearing element within the cutter. Thebit includes a bit body with at least one bearing pin extending from said bit body. A rotatable cutter is mounted upon the bearing pin and the rotatable cutter has a cutter interior surface. Seal means are provided between the bit body and the rotatable cutter to provide a seal and prevent lubricant from escaping into the borehole and borehole fluids from entering the bearing area. Bearing means between the bearing pin and the rotatable cutter promote rotation of the cutter. At least one wiper cavity is located in the interior surface of the rotatable cutter. A wiper pad is positioned in the wiper cavity and a resilient member is positioned beneath the wiper pad. As the cutter rotates, the wiper pad forces lubricant into the load area between the bearing pin and the interior surface of the cutter. The above and other features of the present invention will become apparent from a consideration of the following detailed description of the invention when taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows one arm of a three cone rotary rock bit constructed in accordance with the present invention.
FIG. 2 shows a bearing element of the bit shown in FIG. 1.
FIG. 3 is a sectional view of a bearing pin and bearing element of another embodiment of the present invention.
FIG. 4 is a sectional view of a bearing pin and bearing element of another embodiment of the present invention.
FIG. 5 illustrates other embodiments of the present invention.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings and to FIG. 1 in particular, one arm of a three cone rotary rock bit is shown. The bit is generally designated by the reference number 10. The bit 10 includes a bit body 11 adapted to be connected to the lower end of a rotary drill string (not shown). One arm 12 of the bits three arms is shown depending from the bit body 11. A cone cutter I3 is mounted upon a bearing pin 14 extending from the arm 12. The cutter 13 includes cutting structure 15 on its outer surface. Cutting structure 15 is shown in the form of tungsten carbide inserts; however, it is to be understood that other cutting structures, such as steel teeth. may be used as the cutting structure on the cone cutter 13.
The cutter I3 is rotatably positioned on the bearing pin 14 and adapted to disintegrate the earth formations as the bit is rotated. The cutting structure 15 on the outer surface of cutter 13 contacts and disintegrates formations in a manner that is well known in the art. A plurality of bearing systems are located in the bearing area between the cutter l3 and the bearing pin 14. The bearing systems in the bearing area include an outer friction bearing 16, a series of ball bearings 17, an inner friction bearing 18, and a thrust button 19. An O-ring seal is positioned between the cutter l3 and the bearing pin 14. This seal retains lubricant in the bearing area around the bearing systems and prevents any materials in the well bore from entering the bearing area. The O-ring seal 20 prevents fluid flow in either direction.
Referring now to FIG. 2, the outer friction bearing element 16 is shown in greater detail. The inner surface 21 of the outer friction bearing element 16 includes a multiplicity of wiper cavities 22. A corresponding multiplicity of wiper pads 23 are positioned in the wiper cavities 22. As shown in FIG. 1, spring elements 24 are positioned beneath the wiper pads 23 in the wiper pad cavities 22. The spring elements 24 force the wiper pads 23 toward the bearing pin 14. The spring elements 24 may be flat springs as shown or other resilient elements such as belville type springs or pads of resilient material.
The structural details of a bit constructed in accordance with the present invention having been described, the operation of the bit will now be considered with reference to FIGS. 1 and 2. In use. the bit 10 is connected as the lower member of a rotary drill string (not shown) and lowered into a well bore until the cone cutters engage the bottom of the well bore. Upon engagement with the bottom of the well bore, the drill string is rotated, rotating bit 10 therewith. The cutters rotate upon the respective bearing pins. During the rotation of the cutter 13, the wipers 23 push lubricant into the load zone. As the wiper moves into the load zone, it is pressed into the wiper cavity 22 compressing spring 24 until the wipers 23 are flush with the interior surface 21 of the outer friction bearing 16. When the wiper pad 23 passes the load area, the spring 24 moves the wiper pad 23 outward allowing the wiper pad 23 to project from the interior surface 21 of the outer friction bearing 16 and push lubricant ahead of it. Lubricant generally accumulates in the area between bearing pin 14 and the outer friction bearing 16 on the unloaded side of the bearing pin 14. Lubricant is pulled from this area and pushed into the load Zone to maintain a film of lubricant in the critical area.
Referring now to FIG. 3, another embodiment of the present invention is illustrated. A sectional view of a bearing pin 26 is shown with a bearing element 25 mounted upon the bearing pin 26. The bearing element 25 is adapted to fit within a cone cutter in the manner shown in FIG. 1. A section of the top of bearing pin 26 is relieved thereby providing a lubricant storage area. The top of the bearing pin is the unloaded portion of the bearing pin 26 wherein lubricant normally accumulates. A multiplicity of wiper cavities 27 are machined in bearing element 25. A corresponding multiplicity of wiper pads 28 are positioned in the wiper pad cavities 27. A spring 29 is positioned in each wiper pad cavity 27 to force the wiper pad 28 toward the bearing pin 26. As the cone cutter (not shown) and bearing element 25 rotate, the wiper pad 28 passes the relieved section 30 pushing stored lubricant ahead of the wiper pad 28. The wiper pad 28 continues pushing the lubricant into the loaded side of the bearing pin 26. The wiper pads 28 are forced into the cavities 27 against the force of spring 29 until the wiper pads are flush with the surface of bearing element 25 as they pass the loaded side of the bearing pin 26.
Referring now to FIG. 4, another embodiment of the present invention is illustrated. A bearing pin 30A is shown in cross section with a bearing element 31 mounted to rotate thereon. A multiplicity of cavities are formed in the interior surface of the bearing element 31. Wiper pads 33 are positioned in the cavities 32. The wiper pads 33 serve to force lubricant into the loaded side of the bearing pin 30A. Lubricant is channeled from a lubricant reservoir in the body of the bit through a passage 34 to the unloaded side of bearing pin 30A. The wiper pads 33 pick up the lubricant and carry it to the loaded side of bearing pin 30A. The bearing element 31 rotates clockwise on the bearing pin 30A shown in FIG. 4. A portion 35 of the passage 34 is relieved. This enables the wiper pads 33 to provide a pumping action as they traverse the unloaded side of the bearing pin 30A.
Referring now to FIG. 5, various forms of wiper pad cavities are illustrated. The different forms of wiper pad cavities are shown in a bearing element 36. The wiper pad cavities may be horizontal slots such as slots 37. In this form the wiper pads 38 push the lubricant directly around the bearing pin. The slots may be inclined in one direction as shown by the slots 39 or in a different direction as shown by the slots 40. By biasing the cavities in either direction, the wiper pads in the cavities will direct or pump the lubricant to other critical areas of the bit spaced from the bearing element 36. In addition, the wiper pads may be made of a porous material for absorbing lubricant in the unloaded area and contributing a boundary film as it passes under the loaded side. The pads may also incorporate small pockets or include a corrugated configuration on the lead section of the wiper for the purpose of trapping greater amounts of fluid and forcing it into the loaded area.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A rotary rock bit comprising:
a bit body including a bearing pin;
a rotatable cutter mounted upon said bearing pin,
said rotatable cutter having a cutter interior surface;
at least one wiper pad cavity in said cutter interior surface; and
a wiper pad positioned in said wiper pad cavity.
2. The rotary rock bit of claim 1 including resilient means positioned within said wiper pad cavity for providing a force tending to push said wiper pad out of said wiper pad cavity.
3. The rotary rock bit of claim 2 including seal means between said bit body and said rotatable cutter for providing a seal between said rotatable cutter and said bit body.
4. A rotary rock bit comprising:
a bit body;
a bearing pin extending from said bit body;
pin, said rotatable cone cutter having a cutter interior surface;
seal means between said bit body and said rotatable cone cutter for providing a seal between said rotatable cone cutter and said bit body;
at least one wiper pad cavity in said cutter interior surface;
a wiper pad positioned in said wiper pad cavity; and
resilient means positioned within said wiper pad cavity between said wiper pad and said cutter.

Claims (6)

1. A rotary rock bit comprising: a bit body including a bearing pin; a rotatable cutter mounted upon said bearing pin, said rotatable cutter having a cutter interior surface; at least one wiper pad cavity in said cutter interior surface; and a wiper pad positioned in said wiper pad cavity.
2. The rotary rock bit of claim 1 including resilient means positioned within said wiper pad cavity for providing a force tending to push said wiper pad out of said wiper pad cavity.
3. The rotary rock bit of claim 2 including seal means between said bit body and said rotatable cutter for providing a seal between said rotatable cutter and said bit body.
4. A rotary rock bit comprising: a bit body; a bearing pin extending from said bit body; a rotatable cutter mounted upon said bearing pin; an interior surface on said rotatable cutter; at least one groove in said interior surface; and a wiper pad positioned in said groove.
5. The rotary rock bit of claim 4 including resilient means positioned in said groove for urging said wiper pad out of said groove.
6. A rotary rock bit comprising: a bit body, said bit body including at least one bearing pin; a rotatable cone cutter mounted upon said bearing pin, said rotatable cone cutter having a cutter interior surface; seal means between said bit body and said rotatable cone cutter for providing a seal between said rotatable cone cutter and said bit body; at least one wiper pad cavity in said cutter interior surface; a wiper pad positioned in said wiper pad cavity; and resilient means positioned within said wiper pad cavity between said wiper pad and said cutter.
US489857A 1974-07-19 1974-07-19 Rotary rock bit with wiper pad lubrication system Expired - Lifetime US3890018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US489857A US3890018A (en) 1974-07-19 1974-07-19 Rotary rock bit with wiper pad lubrication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US489857A US3890018A (en) 1974-07-19 1974-07-19 Rotary rock bit with wiper pad lubrication system

Publications (1)

Publication Number Publication Date
US3890018A true US3890018A (en) 1975-06-17

Family

ID=23945554

Family Applications (1)

Application Number Title Priority Date Filing Date
US489857A Expired - Lifetime US3890018A (en) 1974-07-19 1974-07-19 Rotary rock bit with wiper pad lubrication system

Country Status (1)

Country Link
US (1) US3890018A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2756964A1 (en) * 1977-12-21 1979-06-28 Skf Kugellagerfabriken Gmbh ROLLING CHISEL WITH SEVERAL CUTTING ROLLS
FR2441048A1 (en) * 1978-07-24 1980-06-06 Dresser Ind DRILL BIT WITH A FACTORY TRUCK IN AN ECCENTRIC SHAPE
US4220377A (en) * 1979-09-04 1980-09-02 Dresser Industries, Inc. Earth boring bit with eccentrically machined bearing pin
US4240674A (en) * 1979-11-19 1980-12-23 Evans Robert F Positive lubricating and indexing bearing assembly
US4244430A (en) * 1979-09-13 1981-01-13 Dresser Industries, Inc. Earth boring bit packed lubrication system
US4256190A (en) * 1979-04-06 1981-03-17 Bodine Albert G Sonically assisted lubrication of journal bearings
EP0508001A1 (en) * 1991-04-08 1992-10-14 Smith International, Inc. Lubricant system for a rotary cone rock bit
US5794726A (en) * 1996-04-24 1998-08-18 Dresser Indistries Rotary rock bit with infiltrated bearings
US5842531A (en) * 1996-04-24 1998-12-01 Dresser Industries, Inc. Rotary rock bit with infiltrated bearings
US20050183888A1 (en) * 2004-02-23 2005-08-25 Dick Aaron J. Hydrodynamic pump passages for rolling cone drill bit
US20090283332A1 (en) * 2008-05-15 2009-11-19 Baker Hughes Incorporated Conformal bearing for rock drill bit
US20120193150A1 (en) * 2011-01-28 2012-08-02 Varel International, Ind., LP. Method and apparatus for reducing lubricant pressure pulsation within a rotary cone rock bit
US8746374B2 (en) 2011-01-28 2014-06-10 Varel International Ind., L.P. Method and apparatus for reducing lubricant pressure pulsation within a rotary cone rock bit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235316A (en) * 1963-04-22 1966-02-15 Hughes Tool Co Journal bearing with alternating surface areas of wear resistant and antigalling materials
US3663073A (en) * 1970-04-16 1972-05-16 Varel Mfg Co Sealed bearing earth boring bit
US3746405A (en) * 1971-11-18 1973-07-17 Globe Oil Tools Co Well drilling bit lubrication and seal
US3845994A (en) * 1972-04-25 1974-11-05 Creusot Loire Plain bearing with high load capacity, particularly for boring tools with cutting wheels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235316A (en) * 1963-04-22 1966-02-15 Hughes Tool Co Journal bearing with alternating surface areas of wear resistant and antigalling materials
US3663073A (en) * 1970-04-16 1972-05-16 Varel Mfg Co Sealed bearing earth boring bit
US3746405A (en) * 1971-11-18 1973-07-17 Globe Oil Tools Co Well drilling bit lubrication and seal
US3845994A (en) * 1972-04-25 1974-11-05 Creusot Loire Plain bearing with high load capacity, particularly for boring tools with cutting wheels

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2756964A1 (en) * 1977-12-21 1979-06-28 Skf Kugellagerfabriken Gmbh ROLLING CHISEL WITH SEVERAL CUTTING ROLLS
FR2441048A1 (en) * 1978-07-24 1980-06-06 Dresser Ind DRILL BIT WITH A FACTORY TRUCK IN AN ECCENTRIC SHAPE
US4256190A (en) * 1979-04-06 1981-03-17 Bodine Albert G Sonically assisted lubrication of journal bearings
US4220377A (en) * 1979-09-04 1980-09-02 Dresser Industries, Inc. Earth boring bit with eccentrically machined bearing pin
US4244430A (en) * 1979-09-13 1981-01-13 Dresser Industries, Inc. Earth boring bit packed lubrication system
US4240674A (en) * 1979-11-19 1980-12-23 Evans Robert F Positive lubricating and indexing bearing assembly
EP0508001A1 (en) * 1991-04-08 1992-10-14 Smith International, Inc. Lubricant system for a rotary cone rock bit
US5842531A (en) * 1996-04-24 1998-12-01 Dresser Industries, Inc. Rotary rock bit with infiltrated bearings
US5794726A (en) * 1996-04-24 1998-08-18 Dresser Indistries Rotary rock bit with infiltrated bearings
US20050183888A1 (en) * 2004-02-23 2005-08-25 Dick Aaron J. Hydrodynamic pump passages for rolling cone drill bit
US7128171B2 (en) * 2004-02-23 2006-10-31 Baker Hughes Incorporated Hydrodynamic pump passages for rolling cone drill bit
US20090283332A1 (en) * 2008-05-15 2009-11-19 Baker Hughes Incorporated Conformal bearing for rock drill bit
US7861805B2 (en) 2008-05-15 2011-01-04 Baker Hughes Incorporated Conformal bearing for rock drill bit
US20110061940A1 (en) * 2008-05-15 2011-03-17 Baker Hughes Incorporated Conformal bearing for rock drill bit
US8028770B2 (en) 2008-05-15 2011-10-04 Baker Hughes Incorporated Conformal bearing for rock drill bit
US20120193150A1 (en) * 2011-01-28 2012-08-02 Varel International, Ind., LP. Method and apparatus for reducing lubricant pressure pulsation within a rotary cone rock bit
US8534389B2 (en) * 2011-01-28 2013-09-17 Varel International, Ind., L.P. Method and apparatus for reducing lubricant pressure pulsation within a rotary cone rock bit
US8746374B2 (en) 2011-01-28 2014-06-10 Varel International Ind., L.P. Method and apparatus for reducing lubricant pressure pulsation within a rotary cone rock bit

Similar Documents

Publication Publication Date Title
US4176848A (en) Rotary bearing seal for drill bits
US4183416A (en) Cutter actuated rock bit lubrication system
US3890018A (en) Rotary rock bit with wiper pad lubrication system
US4249622A (en) Floating seal for drill bits
US4179003A (en) Seal for a rolling cone cutter earth boring bit
US3990525A (en) Sealing system for a rotary rock bit
US4167219A (en) Viscous pump rock bit lubrication system
US4200343A (en) Sealing system for a rotary rock bit
US7708090B2 (en) Excluder ring for earth-boring bit
US4181185A (en) Thrust flange actuated rock bit lubrication system
US4256351A (en) Sealing system for a rolling cone cutter earth boring bit
US4253710A (en) High temperature sealing system for a rotary rock bit
US4073548A (en) Sealing system for a rotary rock bit
US3130801A (en) Drill bit having inserts forming a reamer
US4381824A (en) Drill bit lubrication system
US4252330A (en) Symmetrical seal for a rolling cone cutter earth boring bit
US4277109A (en) Axial compression positive rock bit seal
US3841422A (en) Dynamic rock bit lubrication system
US3480341A (en) Friction bearing
US4209890A (en) Method of making a rotary rock bit with seal recess washer
US4178045A (en) Abrasion resistant bearing seal
US4168868A (en) Sealing system for an earth boring cutter
CA1162183A (en) Rotary rock bit with improved thrust flange
US4220377A (en) Earth boring bit with eccentrically machined bearing pin
US4412590A (en) Rock bit internal lubricant pump