US3885355A - Pneumatically driven grinder - Google Patents

Pneumatically driven grinder Download PDF

Info

Publication number
US3885355A
US3885355A US380618A US38061873A US3885355A US 3885355 A US3885355 A US 3885355A US 380618 A US380618 A US 380618A US 38061873 A US38061873 A US 38061873A US 3885355 A US3885355 A US 3885355A
Authority
US
United States
Prior art keywords
air
casing
motor
retainer
grinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US380618A
Inventor
Masakazu Kakimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Inc
Ushio Co Ltd
Original Assignee
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP47017424A external-priority patent/JPS5121088B2/ja
Application filed by Ushio Inc filed Critical Ushio Inc
Priority to US380618A priority Critical patent/US3885355A/en
Application granted granted Critical
Publication of US3885355A publication Critical patent/US3885355A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F01C21/186Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet for variable fluid distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • B24B23/028Angle tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3442Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution

Definitions

  • the air motor has substantially the size of a standard [4 1 May 27, 1975 fountain pen and includes an extruded cylindrical casing formed with a circular cross-section eccentric inner surface which has annular grooves in its forward part and a smooth surface, substantially coincident with the bases of the grooves, in its rear part.
  • the grooves constitute air supply and exhaust passages, a retainer groove and a pin groove.
  • a front retainer closes the forward end of the casing and has a tongue projecting into the retainer groove to maintain a predetermined angular orientation in the casing, and a rear retainer is seated against the ribs defining the grooves in the forward portion of the casing and has a tongue projecting into the retainer groove to maintain a relative angular orientation with respect to the front retainer.
  • a motor cylinder is mounted in the casing between the two retainers and has air supply and exhaust ports communicating with the air supply and exhaust passages, respectively.
  • a vane type rotor is rotatably supported in the two retainers, through bearings, and is eccentric to the motor cylinder.
  • the forward end of the rotor is formed with a shaft by means of which a grinder or another tool can be secured to the rotor.
  • the portion of the casing rearwardly of the rear retainer constitutes an air supply and control chamber in which there is an air filter means, and the air passing through the filter means flows through supply passages in the rear retainer into the air supply passage.
  • a connection is provided at the rear of the casing for connecting the air motor to a source of air under pressure, and a manually operable grip threaded on this connection controls the supply of air under pressure to the supply and control chamber. 1n a modification of the air motor, the exhaust air flows rearwardly along the exterior surface of the motor cylinder and through sound absorbing means to exhaust ports leading to the atmosphere or to an exhaust line.
  • This invention relates to air motors of the rotary type operated by compressed air, and to an air-operated grinder operable by the air motor.
  • the objective of the invention is to provide an air motor of high efficiency which can be manufactured in mass production or at a reduced cost.
  • Another objective of the invention is to provide an air motor of small size, only a little larger than a standard fountain pen, and which is extremely convenient to use.
  • a further object of the invention is to provide a small-size grinder operatively connected to the smallsize air motor.
  • FIG. 1 is an axial sectional view of the air motor
  • FIG. 2 IS a cross-sectional view taken on the line 2-2 of FIG. 1;
  • FIG. 3 is a cross-sectional view taken on the line 3-3 of FIG. 1;
  • FIG. 4 is a cross-sectional view taken on the line 4-4 of FIG. 1; 1 FIG. is a cross-sectional view similar to FIG. 4 but I lustrating the rotor in a different angular position,
  • FIG. 6 1 s a side elevation view, partly in section, illustgating one form of air grinder connected to the air mof
  • FIG. 7 is a view similar to FIG. 6 illustrating anoth 0211 of grinder connected to the air motor;
  • 16. 8 is a view, similar to FIG. 1, illustrating a modifled form of the air motor
  • FIG. 9 IS a cross-sectional view taken on the line 99 of FIG. 8;
  • FIG. 10 is a cross-sectional view taken on the line 10-10 of FIG. 8.
  • an air motor embodymg i nvention includes a cylindrical casing l, a 2 5;; ctylmgier 2, and a rotor 3 rotatable in cylinder 2.
  • 4 h urther includes an air supply valve member aving a connection member for connecting the air 2 thmugh a hose 5, indicated in dot and dash lines, v I Ource of air under pressure. The air flows from a V8 member 4 through an filter 6 and through air supply ports in a back retainer 8.
  • the motor generally ndicated at A, is a small size air motor, having dimensions only slighly larger than those of a standard fountain pen.
  • Tubular or cylindrical casing l is formed of a suitable material, such as aluminum, by extrusion, during which the eccentric circular cross-section inner surface of easing l is formed with longitudinal grooves a, b, b, c, and d, the grooves being spaced angularly from each other.
  • the rear half of the casing I is machined to remove the ribs defining the longitudinal grooves, so as to have a relatively smooth inner surface with an inner diameter slightly larger than the base diameter of the longitudinal grooves.
  • Longitudinal groove 0 constitutes an air supply passage and longitudinal grooves b constitute exhaust passages.
  • Groove c is a locking or retaining groove
  • groove d is a pin groove for receiving a retaining pin.
  • Front retainer 7 is seated against a shoulder at the forward end of easing l, and rear retainer 8 is seated at a shoulder formed by the machining of the rear half of the casing 1.
  • Rear retainer 8 divides the casing into a front motor chamber I and a rear air supply and control chamber 1].
  • Chamber I is provided with the longitudinal grooves a, b, b, e, and d, and chamber I] does not have any grooves.
  • Front and back retainers 7 and B are provided with respective projecting tongues 7 and 8' engaged in retainer or locking groove 0, so as to maintain a predetermined angular relation between the front and back retainers.
  • exhaust ports 9, 9 of front retainer 7 are aligned with respective exhaust grooves b, while the front ends of grooves a, c, and d are blocked or closed by front retainer 7.
  • the air supply port 10 in back retainer 8 is aligned with air supply passage or groove a, whereas the rear ends of grooves b, b, c, and d are closed by back retainer 8.
  • Front retainer 7 and back retainer 8 mount anti-friction bearings which rotatably support the motor rotor 3, and front retainer 7 is maintained in position by a front cover 11 threaded on to casing 1.
  • Back retainer 8 is maintained in position by the valve member 4 threaded into casing I and this valve member also retains filter 6 clamped in position.
  • the motor cylinder 2 is disposed in the front motor chamber I, and clamped between the front retainer 7 and a rear retainer 8.
  • Motor cylinder 2 is retained in a predetermined orientation by means of a pin 12 engaged in the longitudinal groove d and in a longitudinal groove in the outer surface of motor cylinder 2.
  • axially spaced air supply ports 13 are in communication with air supply passage or groove
  • axially spaced exhaust ports 14 are in communication with both exhaust grooves or passages b.
  • rotor 3 is rotatably mounted in the anti-friction bearings in front retainers 7 and back retainer 8, in such a fashion that it rotates eccentrically in motor cylinder 1. Also as mentioned, rotor 3 has the radially reciprocable blades 15 mounted therein.
  • a drive shaft 16 extends from the front end of rotor 3 to project outwardly of the front end of the motor for connection to a grinder or the like to be driven by the motor.
  • valve member 4 retains back retainer 8 in position through the medium of a ported plug 17 engaged between valve member 4 and back retainer 8.
  • the filter 6 is located in the path of air supply from hose 5 into the air supply and control chamber 11.
  • a manually perable grip 18 is threaded onto valve member 4 so that its inner end may be displaced axially relative to the valve seat 4 on valve member 4 to control the cross sectional areas of air supply ports 4". It will be noted that manually operable grip 18 extends rearwardly from the rear end of casing 1.
  • the air hose 5 is connected to a source of air under pressure, and grip 18 is manually turned to open the air flow ports 4". Air under pressure then flows through the interior of valve member 4 and through air ports 4" to flow through filter 6 and the ports or plugs 17 to the air supply port 10 in rear retainer 8. The air flows into air supply passage or groove a and through inlet ports 13 in with the interior of motor cylinder 2 where it acts on blades 15 to rotate rotor 3. The air is discharged from motor cylinder 2 through exhaust ports 14 into exhaust passages or grooves b and then is discharged to atmosphere through ports 9, 9 in front retainer 7. Thus, rotor 3 rotates to rotate the shaft 16.
  • the air motor A is connected to operate a grinder by inserting the grinder shaft 21 into shaft 16 and retaining the grinder shaft in position by means of chuck 22.
  • a grinding stone 23 at the tip of the shaft 21 is rotated through shaft 16 and shaft 21.
  • a grinder housing 24 is screwed onto the front end of air motor A.
  • a bevel gear 27 secured to the output shaft of motor A meshes with a bevel gear 25 which is rotatably mounted in housing 24 to rotate about an axis perpendicular to the axis of the output shaft of motor A
  • a grinding disc 26 is secured to the hub of bevel gear 25 by a headed retaining screw or bolt 28.
  • the manually operable grip 18 may be knurled if desired.
  • the casing 1 is formed essentially the same as is the casing l of the embodiment of the invention shown in FIGS. 1 through 5. That is, the air supply groove a, the air exhaust grooves b, the retainer or locking groove 6 and the pin groove d are formed only in the front half or motor chamber of the casing, and the rear half or supply or control chamber of the casing does not have these grooves.
  • Front retainer 31 and back retainer 32 are formed with respective tongues 31' and 32' extending into retainer groove c to lock the retainers with a predetermined relative angular orientation.
  • the motor cylinder 2, rotor 3, and control valve member 4, together with manually operable grip 18' are essentially the same as in the embodiment of the invention as shown in FIGS. 1 through 5, so that further description thereof is not believed necessary.
  • front retainer 1 is formed with an aruat groove 33 interconnecting the forward ends of the two exhaust passages b with the retainer passage c.
  • Front retainer 31 blocks the forward ends of air supply groove or passage a and pin groove b.
  • Back retainer 32 is formed with an air supply port 34 communicating with the air supply passage a, and supplied with air under pressure through radial passages 39 communicating with a supply pipe 40 in turn communicating with the valve member 4 having the valve seating surface 4' cooperating with grip 18' to define the ports 4".
  • Back retainer 32 is also formed with two exhaust ports 35 each communicating with a respective air exhaust passage b, and the forward surface of back retainer 32 is formed with an arcuate groove 36 interconnecting the rear ends of the two exhaust passages b and the retainer groove cv
  • back retainer 32 divides casing 1 into a front motor chamber and the rear air supply and control chamber.
  • the rear air supply and control chamber in the embodiment of the invention shown in FlGs. 8, 9, and 10, contains a sound arrester 37, and is formed with the exhaust ports 38 through the wall of casing 1. While exhaust ports 38 discharge to atmosphere, the design can be changed so that the exhaust air is discharged when exhaust pipe or hose communicating with ports 38.
  • the air discharged through exhaust ports 14 of motor cylinder 2 flows rearwardly through exhaust passages or grooves b, with part of the exhaust air flowing into arcuate groove 33 and then rearwardly through retainer groove c.
  • the air flowing through exhaust grooves or passages b and that by-passed through retainer groove c flows into arcuate passage or groove 36 and thence through discharge port 35 and arrester 37 to be discharged through exhaust ports 38 in casing 1.
  • the retainer groove c serves as a by-pass exhaust passage, and it is also possible to provide by-pass exhaust passages or grooves in addition to retainer groove c.
  • the air discharged from motor cylinder 2 flows rearwardly over the outer surface of the cylinder, thus preventing overheating of the cylinder due to the high speed rotation of rotor 3. Additionally, the arrester 37 is very useful in preventing or reducing noise during operation.
  • the air motor of the present invention overcomes the shortcomings of conventional air motors in which the cylinder is molded and formed with an extremely complicated exterior surface. That is to say, that the present invention enables both the casing l and the motor cylinder 2 to be manufactured by mass production methods and produced at the lowest cost.
  • tubular casing l As the interior of tubular casing l is divided into two chambers, namely the front motor chamber and the rear air supply and control chamber with the valve member 4, the air motor A can be a little larger in size than the standard fountain pen.
  • the control of the air flow including fine adjustment of the air flow. is effected by rotating the grip 18 or 18', the casing 1 can be handled manually thus enabling elaborate grinding work to be performed efficiently.
  • the advantages in using the air motor of the present invention cannot be over emphasized.
  • the motor cylinder 2 can be prevented from becoming filled with dust, so that a high efficiency can be maintained for many hours.
  • a grinder driven by an air motor comprising, in combination, a tubular extrusion defining a relatively elongated tubular casing having a circular cross-section inner surface which is eccentric to the axis of said casing and which is formed with angularly spaced longitudinal grooves extending through at least a portion of the length of said casing and defining air supply and exhaust passage means; means dividing the interior of said casing into a front motor chamber having said grooves therein and a rear air supply and control chamber, a tubular motor cylinder in said motor chamber having a smooth cylindrical outer surface engaging the circular cross-section inner surface of said casing and having radial ports communicating with said air supply and exhaust passage means; an air pressure rotated cylindrical rotor rotatably mounted in said motor cylinder; a shaft projecting from the front end of said rotor for connection to a tool to be driven by said motor; said dividing means having ports connecting said supply and control chamber to said air supply passage means; exhaust port means connecting said exhaust passage means to atmosphere; a connection at the
  • a grinder driven by an air motor as claimed in claim 1, in which said second bevel gear has a relatively elongated hub threaded at its outer end; a retainer threaded on the hub of said second bevel gear; said means securing said grinder to said second bevel gear comprising a bolt engaged with said grinder and extending through a central opening in said retainer and having a threaded end engaged in a threaded axial bore in the hub of said second bevel gear.

Abstract

The air motor has substantially the size of a standard fountain pen and includes an extruded cylindrical casing formed with a circular cross-section eccentric inner surface which has annular grooves in its forward part and a smooth surface, substantially coincident with the bases of the grooves, in its rear part. The grooves constitute air supply and exhaust passages, a retainer groove and a pin groove. A front retainer closes the forward end of the casing and has a tongue projecting into the retainer groove to maintain a predetermined angular orientation in the casing, and a rear retainer is seated against the ribs defining the grooves in the forward portion of the casing and has a tongue projecting into the retainer groove to maintain a relative angular orientation with respect to the front retainer. A motor cylinder is mounted in the casing between the two retainers and has air supply and exhaust ports communicating with the air supply and exhaust passages, respectively. A vane type rotor is rotatably supported in the two retainers, through bearings, and is eccentric to the motor cylinder. The forward end of the rotor is formed with a shaft by means of which a grinder or another tool can be secured to the rotor. The portion of the casing rearwardly of the rear retainer constitutes an air supply and control chamber in which there is an air filter means, and the air passing through the filter means flows through supply passages in the rear retainer into the air supply passage. A connection is provided at the rear of the casing for connecting the air motor to a source of air under pressure, and a manually operable grip threaded on this connection controls the supply of air under pressure to the supply and control chamber. In a modification of the air motor, the exhaust air flows rearwardly along the exterior surface of the motor cylinder and through sound absorbing means to exhaust ports leading to the atmosphere or to an exhaust line.

Description

United States Patent [1 1 Kakimoto PNEUMATICALLY DRIVEN GRINDER [75] Inventor: Masakazu Kakimoto,Aichi-gun,
Japan [73] Assignee: Ushio Co., Ltd., Japan [22] Filed: July 19, 1973 [21] Appl. No.: 380,618
Related US. Application Data [62] Division of Ser. No. 274,905, July 25, 1972.
415/503; 51/134.5 F, 170 PT, 170 T; 251/122; 173/163 [56] References Cited UNITED STATES PATENTS 1,007,664 11/1911 Baker 138/46 1,041,040 10/1912 Darlington 418/47 2,273,626 2/1942 Connell 51/170 T X 2,400,912 5/1946 Britt 5l/l34.5 F 2,553,688 5/1951 Thompson 51/170 T 3,129,642 4/1964 Sorensen et al.. 173/163 3,164,932 1/1965 Morith 51/170 PT 3,190,183 6/1965 Walker et a1. 418/270 3,439,422 4/1969 Doeden et al. 415/503 FOREIGN PATENTS OR APPLICATIONS 997,904 8/1952 France 173/163 842,253 7/1960 United Kingdom 418/270 Primary Examinerl-1arold D. Whitehead Attorney, Agent, or Firm-McGlew and Tuttle [57] ABSTRACT The air motor has substantially the size of a standard [4 1 May 27, 1975 fountain pen and includes an extruded cylindrical casing formed with a circular cross-section eccentric inner surface which has annular grooves in its forward part and a smooth surface, substantially coincident with the bases of the grooves, in its rear part. The grooves constitute air supply and exhaust passages, a retainer groove and a pin groove. A front retainer closes the forward end of the casing and has a tongue projecting into the retainer groove to maintain a predetermined angular orientation in the casing, and a rear retainer is seated against the ribs defining the grooves in the forward portion of the casing and has a tongue projecting into the retainer groove to maintain a relative angular orientation with respect to the front retainer. A motor cylinder is mounted in the casing between the two retainers and has air supply and exhaust ports communicating with the air supply and exhaust passages, respectively. A vane type rotor is rotatably supported in the two retainers, through bearings, and is eccentric to the motor cylinder. The forward end of the rotor is formed with a shaft by means of which a grinder or another tool can be secured to the rotor. The portion of the casing rearwardly of the rear retainer constitutes an air supply and control chamber in which there is an air filter means, and the air passing through the filter means flows through supply passages in the rear retainer into the air supply passage. A connection is provided at the rear of the casing for connecting the air motor to a source of air under pressure, and a manually operable grip threaded on this connection controls the supply of air under pressure to the supply and control chamber. 1n a modification of the air motor, the exhaust air flows rearwardly along the exterior surface of the motor cylinder and through sound absorbing means to exhaust ports leading to the atmosphere or to an exhaust line.
2 Claims, 10 Drawing Figures PATENTEUMmaHms 1885.355
SHEET 01 0F 3 FIGS PATENTED MY 2 7 1975 SHEET PNEUMATICALLY DRIVEN GRINDER This is a division of application Ser. No. 274,905 filed July 25, 1972.
FIELD AND SUMMARY OF THE INVENTION This invention relates to air motors of the rotary type operated by compressed air, and to an air-operated grinder operable by the air motor.
The objective of the invention is to provide an air motor of high efficiency which can be manufactured in mass production or at a reduced cost.
Another objective of the invention is to provide an air motor of small size, only a little larger than a standard fountain pen, and which is extremely convenient to use.
A further object of the invention is to provide a small-size grinder operatively connected to the smallsize air motor.
For an understanding of the principles of the invention, reference is made to the following description of typical embodiments thereof as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is an axial sectional view of the air motor;
FIG. 2 IS a cross-sectional view taken on the line 2-2 of FIG. 1;
FIG. 3 is a cross-sectional view taken on the line 3-3 of FIG. 1;
FIG. 4 is a cross-sectional view taken on the line 4-4 of FIG. 1; 1 FIG. is a cross-sectional view similar to FIG. 4 but I lustrating the rotor in a different angular position,
IG. 6 1s a side elevation view, partly in section, illustgating one form of air grinder connected to the air mof FIG. 7 is a view similar to FIG. 6 illustrating anoth 0211 of grinder connected to the air motor;
16. 8 is a view, similar to FIG. 1, illustrating a modifled form of the air motor;
FIG. 9 IS a cross-sectional view taken on the line 99 of FIG. 8; and
FIG. 10 is a cross-sectional view taken on the line 10-10 of FIG. 8.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to FIGS. 1 through 5, an air motor embodymg i nvention includes a cylindrical casing l, a 2 5;; ctylmgier 2, and a rotor 3 rotatable in cylinder 2. 4 h urther includes an air supply valve member aving a connection member for connecting the air 2 thmugh a hose 5, indicated in dot and dash lines, v I Ource of air under pressure. The air flows from a V8 member 4 through an filter 6 and through air supply ports in a back retainer 8. From the ports in back retainer the i flows through an air supply passage 0 and p P rts 13 into motor cylinder 2 to drive the vaned rotor 3 which is eccentric with repect to motor cylinder 2 and carries radially displaceable vanes or blades 15. Air leaves motor cylinder 2 through air ports 14 and flows through air passag b to exhaust ports 9 in front retainer 7, from which the eiihaust is discharged to atmosphere. As stated, the motor, generally ndicated at A, is a small size air motor, having dimensions only slighly larger than those of a standard fountain pen.
Tubular or cylindrical casing l is formed of a suitable material, such as aluminum, by extrusion, during which the eccentric circular cross-section inner surface of easing l is formed with longitudinal grooves a, b, b, c, and d, the grooves being spaced angularly from each other. After the extrusion operation, the rear half of the casing I is machined to remove the ribs defining the longitudinal grooves, so as to have a relatively smooth inner surface with an inner diameter slightly larger than the base diameter of the longitudinal grooves.
Longitudinal groove 0 constitutes an air supply passage and longitudinal grooves b constitute exhaust passages. Groove c is a locking or retaining groove, and groove d, is a pin groove for receiving a retaining pin. Front retainer 7 is seated against a shoulder at the forward end of easing l, and rear retainer 8 is seated at a shoulder formed by the machining of the rear half of the casing 1. Rear retainer 8 divides the casing into a front motor chamber I and a rear air supply and control chamber 1]. Chamber I is provided with the longitudinal grooves a, b, b, e, and d, and chamber I] does not have any grooves.
Front and back retainers 7 and B are provided with respective projecting tongues 7 and 8' engaged in retainer or locking groove 0, so as to maintain a predetermined angular relation between the front and back retainers. In this predetermined angular relation, exhaust ports 9, 9 of front retainer 7 are aligned with respective exhaust grooves b, while the front ends of grooves a, c, and d are blocked or closed by front retainer 7. In the predetermined angular relation orientation, the air supply port 10 in back retainer 8 is aligned with air supply passage or groove a, whereas the rear ends of grooves b, b, c, and d are closed by back retainer 8. Front retainer 7 and back retainer 8 mount anti-friction bearings which rotatably support the motor rotor 3, and front retainer 7 is maintained in position by a front cover 11 threaded on to casing 1. Back retainer 8 is maintained in position by the valve member 4 threaded into casing I and this valve member also retains filter 6 clamped in position.
The motor cylinder 2 is disposed in the front motor chamber I, and clamped between the front retainer 7 and a rear retainer 8. Motor cylinder 2 is retained in a predetermined orientation by means of a pin 12 engaged in the longitudinal groove d and in a longitudinal groove in the outer surface of motor cylinder 2. In this predetermined orientation of motor cylinder 2, axially spaced air supply ports 13 are in communication with air supply passage or groove 0, and axially spaced exhaust ports 14 are in communication with both exhaust grooves or passages b.
As mentioned, rotor 3 is rotatably mounted in the anti-friction bearings in front retainers 7 and back retainer 8, in such a fashion that it rotates eccentrically in motor cylinder 1. Also as mentioned, rotor 3 has the radially reciprocable blades 15 mounted therein. A drive shaft 16 extends from the front end of rotor 3 to project outwardly of the front end of the motor for connection to a grinder or the like to be driven by the motor.
The valve member 4 retains back retainer 8 in position through the medium of a ported plug 17 engaged between valve member 4 and back retainer 8. The filter 6 is located in the path of air supply from hose 5 into the air supply and control chamber 11. A manually perable grip 18 is threaded onto valve member 4 so that its inner end may be displaced axially relative to the valve seat 4 on valve member 4 to control the cross sectional areas of air supply ports 4". It will be noted that manually operable grip 18 extends rearwardly from the rear end of casing 1.
To operate the motor, the air hose 5 is connected to a source of air under pressure, and grip 18 is manually turned to open the air flow ports 4". Air under pressure then flows through the interior of valve member 4 and through air ports 4" to flow through filter 6 and the ports or plugs 17 to the air supply port 10 in rear retainer 8. The air flows into air supply passage or groove a and through inlet ports 13 in with the interior of motor cylinder 2 where it acts on blades 15 to rotate rotor 3. The air is discharged from motor cylinder 2 through exhaust ports 14 into exhaust passages or grooves b and then is discharged to atmosphere through ports 9, 9 in front retainer 7. Thus, rotor 3 rotates to rotate the shaft 16.
Referring to FIGS. 6 and 7, as shown in FIG. 6, the air motor A is connected to operate a grinder by inserting the grinder shaft 21 into shaft 16 and retaining the grinder shaft in position by means of chuck 22. When the air motor is operated, a grinding stone 23 at the tip of the shaft 21 is rotated through shaft 16 and shaft 21.
In the embodiment of the invention shown in FIG. 7, a grinder housing 24 is screwed onto the front end of air motor A. A bevel gear 27 secured to the output shaft of motor A meshes with a bevel gear 25 which is rotatably mounted in housing 24 to rotate about an axis perpendicular to the axis of the output shaft of motor A A grinding disc 26 is secured to the hub of bevel gear 25 by a headed retaining screw or bolt 28. As indicated in FIG. 7, the manually operable grip 18 may be knurled if desired.
In the embodiment of the invention shown in FIGS. 8, 9 and 10, the casing 1 is formed essentially the same as is the casing l of the embodiment of the invention shown in FIGS. 1 through 5. That is, the air supply groove a, the air exhaust grooves b, the retainer or locking groove 6 and the pin groove d are formed only in the front half or motor chamber of the casing, and the rear half or supply or control chamber of the casing does not have these grooves. Front retainer 31 and back retainer 32 are formed with respective tongues 31' and 32' extending into retainer groove c to lock the retainers with a predetermined relative angular orientation. The motor cylinder 2, rotor 3, and control valve member 4, together with manually operable grip 18' are essentially the same as in the embodiment of the invention as shown in FIGS. 1 through 5, so that further description thereof is not believed necessary.
in this embodiment of the invention, the rearwardly facing surface of front retainer 1 is formed with an aruat groove 33 interconnecting the forward ends of the two exhaust passages b with the retainer passage c. Front retainer 31 blocks the forward ends of air supply groove or passage a and pin groove b.
Back retainer 32 is formed with an air supply port 34 communicating with the air supply passage a, and supplied with air under pressure through radial passages 39 communicating with a supply pipe 40 in turn communicating with the valve member 4 having the valve seating surface 4' cooperating with grip 18' to define the ports 4". Back retainer 32 is also formed with two exhaust ports 35 each communicating with a respective air exhaust passage b, and the forward surface of back retainer 32 is formed with an arcuate groove 36 interconnecting the rear ends of the two exhaust passages b and the retainer groove cv As in the embodiment of the invention shown in FIGS. 1 through 5, back retainer 32 divides casing 1 into a front motor chamber and the rear air supply and control chamber. The rear air supply and control chamber, in the embodiment of the invention shown in FlGs. 8, 9, and 10, contains a sound arrester 37, and is formed with the exhaust ports 38 through the wall of casing 1. While exhaust ports 38 discharge to atmosphere, the design can be changed so that the exhaust air is discharged when exhaust pipe or hose communicating with ports 38.
As distinguished from the embodiment of the invention shown in FIGS. 1 through 5, in the embodiment of the invention shown in FIGS. 8, 9, and 10, the air discharged through exhaust ports 14 of motor cylinder 2 flows rearwardly through exhaust passages or grooves b, with part of the exhaust air flowing into arcuate groove 33 and then rearwardly through retainer groove c. At the back retainer 32, the air flowing through exhaust grooves or passages b and that by-passed through retainer groove c flows into arcuate passage or groove 36 and thence through discharge port 35 and arrester 37 to be discharged through exhaust ports 38 in casing 1. Thus, the retainer groove c serves as a by-pass exhaust passage, and it is also possible to provide by-pass exhaust passages or grooves in addition to retainer groove c.
In the embodiment of FIGS. 8, 9, and 10, the air discharged from motor cylinder 2 flows rearwardly over the outer surface of the cylinder, thus preventing overheating of the cylinder due to the high speed rotation of rotor 3. Additionally, the arrester 37 is very useful in preventing or reducing noise during operation.
With the present invention and with the inner surface of cylindrical or tubular casing 1 formed with the longitudinal grooves for air supply and exhaust, stop or retainer, and the like, the supply and exhaust passages and the others are formed as parts of the casing and are formed at the same time as the casing is formed by extrusion. Thus, the air motor of the present invention overcomes the shortcomings of conventional air motors in which the cylinder is molded and formed with an extremely complicated exterior surface. That is to say, that the present invention enables both the casing l and the motor cylinder 2 to be manufactured by mass production methods and produced at the lowest cost.
As the air supply and the exhaust passages are shaped in the form of grooves, the air under pressure flowing through these passages flows quite smoothly with little resistance. As a result, the driving force of the rotor can be greatly increased with a corresponding great in crease in the efficiency of the motor,
Moreover, as the interior of tubular casing l is divided into two chambers, namely the front motor chamber and the rear air supply and control chamber with the valve member 4, the air motor A can be a little larger in size than the standard fountain pen. As the control of the air flow, including fine adjustment of the air flow. is effected by rotating the grip 18 or 18', the casing 1 can be handled manually thus enabling elaborate grinding work to be performed efficiently. The advantages in using the air motor of the present invention cannot be over emphasized.
As the air supply and control chamber is provided with a filter through which the compressed air flows through the air supply passage, the motor cylinder 2 can be prevented from becoming filled with dust, so that a high efficiency can be maintained for many hours.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
What is claimed is:
l. A grinder driven by an air motor comprising, in combination, a tubular extrusion defining a relatively elongated tubular casing having a circular cross-section inner surface which is eccentric to the axis of said casing and which is formed with angularly spaced longitudinal grooves extending through at least a portion of the length of said casing and defining air supply and exhaust passage means; means dividing the interior of said casing into a front motor chamber having said grooves therein and a rear air supply and control chamber, a tubular motor cylinder in said motor chamber having a smooth cylindrical outer surface engaging the circular cross-section inner surface of said casing and having radial ports communicating with said air supply and exhaust passage means; an air pressure rotated cylindrical rotor rotatably mounted in said motor cylinder; a shaft projecting from the front end of said rotor for connection to a tool to be driven by said motor; said dividing means having ports connecting said supply and control chamber to said air supply passage means; exhaust port means connecting said exhaust passage means to atmosphere; a connection at the rear of said casing for connecting said air motor to a source of air under pressure, a manually operable control valve controlling communication between said connection and said supply and control chamber; the front end of said casing being externally threaded; a grinder housing threaded onto the front end of said casing; a first bevel gear secured to said shaft and disposed in said grinder housing; a second bevel gear meshing with said first bevel gear; anti-friction means rotatably mounting said second bevel gear in said grinder housing for rotation about an axis perpendicular to the axis of said firstmentioned shaft; and means securing a grinder to said second bevel gear.
2. A grinder driven by an air motor, as claimed in claim 1, in which said second bevel gear has a relatively elongated hub threaded at its outer end; a retainer threaded on the hub of said second bevel gear; said means securing said grinder to said second bevel gear comprising a bolt engaged with said grinder and extending through a central opening in said retainer and having a threaded end engaged in a threaded axial bore in the hub of said second bevel gear.

Claims (2)

1. A grinder driven by an air motor comprising, in combination, a tubular extrusion defining a relatively elongated tubular casing having a circular cross-section inner surface which is eccentric to the axis of said casing and which is formed with angularly spaced longitudinal grooves extending through at least a portion of the length of said casing and defining air supply and exhaust passage means; means dividing the interior of said casing into a front motor chamber having said grooves therein and a rear air supply and control chamber, a tubular motor cylinder in said motor chamber having a smooth cylindrical outer surface engaging the circular cross-section inner surface of said casing and having radial ports communicating with said air supply and exhaust passage means; an air pressure rotated cylindrical rotor rotatably mounted in said motor cylinder; a shaft projecting from the front end of said rotor for connection to a tool to be driven by said motor; said dividing means having ports connecting said supply and control chamber to said air supply passage means; exhaust port means connecting said exhaust passage means to atmosphere; a connection at the rear of said casing for connecting said air motor to a source of air under pressure, a manually operable control valve controlling communication between said connection and said supply and control chamber; the front end of said casing being externally threaded; a grinder housing threaded onto the front end of said casing; a first bevel gear secured to said shaft and disposed in said grinder housing; a second bevel gear meshing with said first bevel gear; antifriction means rotatably mounting said second bevel gear in said grinder housing for rotation about an axis perpendicular to the axis of said first-mentioned shaft; and means securing a grinder to said second bevel gear.
2. A grinder driven by an air motor, as claimed in claim 1, in which said second bevel gear has a relatively elongated hub threaded at its outer end; a retainer threaded on the hub of said second bevel gear; said means securing said grinder to said second bevel gear comprising a bolt engaged with said grinder and extending through a central opening in said retainer and having a threaded end engaged in a threaded axial bore in the hub of said second bevel gear.
US380618A 1972-02-19 1973-07-19 Pneumatically driven grinder Expired - Lifetime US3885355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US380618A US3885355A (en) 1972-02-19 1973-07-19 Pneumatically driven grinder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP47017424A JPS5121088B2 (en) 1972-02-19 1972-02-19
US00274905A US3827834A (en) 1972-02-19 1972-07-25 Small diameter cylindrical air motor for driving grinders and the like
US380618A US3885355A (en) 1972-02-19 1973-07-19 Pneumatically driven grinder

Publications (1)

Publication Number Publication Date
US3885355A true US3885355A (en) 1975-05-27

Family

ID=27281821

Family Applications (1)

Application Number Title Priority Date Filing Date
US380618A Expired - Lifetime US3885355A (en) 1972-02-19 1973-07-19 Pneumatically driven grinder

Country Status (1)

Country Link
US (1) US3885355A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178722A (en) * 1978-01-18 1979-12-18 The United States Of America As Represented By The Secretary Of The Navy Grinding and polishing tool
FR2481982A1 (en) * 1980-05-09 1981-11-13 Dresser Ind IMPROVED GRINDING MACHINE AND COVER FOR SUCH A MACHINE
US4468897A (en) * 1982-09-27 1984-09-04 Joseph V. Munoz Universal pneumatic grinding bar
US4744517A (en) * 1985-08-09 1988-05-17 Aiko Engineering Co., Ltd. Ultra-high-pressure rotary water jet gun
EP0388127A1 (en) * 1989-03-17 1990-09-19 Ingersoll-Rand Company Fluid motor rotor assembly
US5301471A (en) * 1993-06-11 1994-04-12 Fisher Tool Co., Inc. Portable air angle head random orbital unit
EP0659977A1 (en) * 1993-12-20 1995-06-28 Snap-on Incorporated Air motor with offset front and rear exhausts
USD378183S (en) * 1994-09-14 1997-02-25 Black & Decker Inc. Small angle grinder
USD411089S (en) * 1997-05-23 1999-06-15 Black & Decker Inc. Right angle sander with vacuum attachment
US6386961B1 (en) 1999-07-19 2002-05-14 Thomas D. Cureton Hand held grinder
US6464572B2 (en) * 2000-03-08 2002-10-15 Atlas Copco Tools Ab Portable power tool with an anti-vibration balancing device
KR20020090509A (en) * 2001-05-28 2002-12-05 조수용 Revolution apparatus with rotating vanes on the air tools
US20040058631A1 (en) * 2002-09-23 2004-03-25 Fen-Lien Lee Pneumatic grinder
DE102008059247A1 (en) * 2008-11-20 2010-05-27 Metabowerke Gmbh Electric motor-driven angle grinder, has angle transmission arrangement with one section formed as crown wheel, supporting section, and thread section for clamping unit utilized for fixing grinding tool to tool spindle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1007664A (en) * 1911-02-24 1911-11-07 D E Bigelow Gas-regulating valve.
US1041040A (en) * 1907-06-17 1912-10-15 Philip J Darlington Rotary motor.
US2273626A (en) * 1940-07-11 1942-02-17 Chicago Pneumatic Tool Co Two-speed sander
US2400912A (en) * 1944-12-29 1946-05-28 Vernon E Britt Dental appliance
US2553688A (en) * 1947-06-13 1951-05-22 Howard O Thompson Tool attachment
US3129642A (en) * 1961-06-26 1964-04-21 Gardner Denver Co Pneumatically operated tool
US3164932A (en) * 1963-05-17 1965-01-12 Gilbert J Morith Ice skate sharpener
US3190183A (en) * 1962-05-10 1965-06-22 Cooper Bessemer Corp Air tool improvement
US3439422A (en) * 1963-05-22 1969-04-22 Roland E Doeden Air tool

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1041040A (en) * 1907-06-17 1912-10-15 Philip J Darlington Rotary motor.
US1007664A (en) * 1911-02-24 1911-11-07 D E Bigelow Gas-regulating valve.
US2273626A (en) * 1940-07-11 1942-02-17 Chicago Pneumatic Tool Co Two-speed sander
US2400912A (en) * 1944-12-29 1946-05-28 Vernon E Britt Dental appliance
US2553688A (en) * 1947-06-13 1951-05-22 Howard O Thompson Tool attachment
US3129642A (en) * 1961-06-26 1964-04-21 Gardner Denver Co Pneumatically operated tool
US3190183A (en) * 1962-05-10 1965-06-22 Cooper Bessemer Corp Air tool improvement
US3164932A (en) * 1963-05-17 1965-01-12 Gilbert J Morith Ice skate sharpener
US3439422A (en) * 1963-05-22 1969-04-22 Roland E Doeden Air tool

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178722A (en) * 1978-01-18 1979-12-18 The United States Of America As Represented By The Secretary Of The Navy Grinding and polishing tool
FR2481982A1 (en) * 1980-05-09 1981-11-13 Dresser Ind IMPROVED GRINDING MACHINE AND COVER FOR SUCH A MACHINE
US4468897A (en) * 1982-09-27 1984-09-04 Joseph V. Munoz Universal pneumatic grinding bar
US4744517A (en) * 1985-08-09 1988-05-17 Aiko Engineering Co., Ltd. Ultra-high-pressure rotary water jet gun
EP0388127A1 (en) * 1989-03-17 1990-09-19 Ingersoll-Rand Company Fluid motor rotor assembly
US5301471A (en) * 1993-06-11 1994-04-12 Fisher Tool Co., Inc. Portable air angle head random orbital unit
EP0659977A1 (en) * 1993-12-20 1995-06-28 Snap-on Incorporated Air motor with offset front and rear exhausts
USD378183S (en) * 1994-09-14 1997-02-25 Black & Decker Inc. Small angle grinder
USD411089S (en) * 1997-05-23 1999-06-15 Black & Decker Inc. Right angle sander with vacuum attachment
US6386961B1 (en) 1999-07-19 2002-05-14 Thomas D. Cureton Hand held grinder
US6464572B2 (en) * 2000-03-08 2002-10-15 Atlas Copco Tools Ab Portable power tool with an anti-vibration balancing device
KR20020090509A (en) * 2001-05-28 2002-12-05 조수용 Revolution apparatus with rotating vanes on the air tools
US20040058631A1 (en) * 2002-09-23 2004-03-25 Fen-Lien Lee Pneumatic grinder
DE102008059247A1 (en) * 2008-11-20 2010-05-27 Metabowerke Gmbh Electric motor-driven angle grinder, has angle transmission arrangement with one section formed as crown wheel, supporting section, and thread section for clamping unit utilized for fixing grinding tool to tool spindle

Similar Documents

Publication Publication Date Title
US3827834A (en) Small diameter cylindrical air motor for driving grinders and the like
US3885355A (en) Pneumatically driven grinder
US5346024A (en) Tool construction
US5992539A (en) Pneumatically driven power tool
US3439422A (en) Air tool
CA2138338C (en) Air motor with offset front and rear exhausts
US4197061A (en) Rotary pneumatic vane motor with rotatable tubing contacted by vanes
US4470813A (en) High speed turbine assembly for dental handpieces and the like
US3295262A (en) Pneumatic motor mechanism for hand tools
US5061160A (en) Two-speed gerotor with spool valve controlling working fluid
US7077732B2 (en) High torque dual chamber turbine rotor for hand held or spindle mounted pneumatic tool
CN111904625A (en) Hand-held type gas drive medical equipment
GB2042081A (en) Rotary positive-displacement fluid-machines
US3624820A (en) Reversible impact wrenches
US3498186A (en) Multiple lobed chamber air motor
CA2589985C (en) High torque dual chamber turbine rotor for hand held or spindle mounted pneumatic tool
US3618633A (en) Reverse valve for pneumatic tool
US1758760A (en) Air-driven implement or tool
US3590875A (en) Air motor valve
US3530586A (en) Speed reducer construction for driving dental tools
US2893688A (en) Fluid power motor valve
US4458453A (en) Rotary tool and fluid motor
JPS624550A (en) Tool holder unit with oiler
US11498172B2 (en) Dual speed rotary tool
US3717011A (en) Impulse unit