US3870602A - Gas permeable sterile culture bottle - Google Patents

Gas permeable sterile culture bottle Download PDF

Info

Publication number
US3870602A
US3870602A US355754A US35575473A US3870602A US 3870602 A US3870602 A US 3870602A US 355754 A US355754 A US 355754A US 35575473 A US35575473 A US 35575473A US 3870602 A US3870602 A US 3870602A
Authority
US
United States
Prior art keywords
flask
neck
bottle
bottom wall
top wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US355754A
Inventor
Seymour Froman
William L Chandler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Lab Ind Inc
Original Assignee
California Lab Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Lab Ind Inc filed Critical California Lab Ind Inc
Priority to US355754A priority Critical patent/US3870602A/en
Application granted granted Critical
Publication of US3870602A publication Critical patent/US3870602A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/28Constructional details, e.g. recesses, hinges disposable or single use
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/863Mycobacterium
    • Y10S435/866Mycobacterium smegmatis

Abstract

A sterile culture bottle in the form of a flat bottomed flask includes a neck opening arranged at an inclined angle with respect to the bottom wall so that a pipette or other instrument may be inserted into the bottle to reach any portion of the contents therein. The side walls, bottom wall and neck are of a unitary integral structure, the top wall being essentially flat and optically transparent and distortion free to permit microscopic examination of the contents within the culture flask. The top wall is of optical quality plastic material, sonically welded to the side walls and hermetically sealed thereto. The top, bottom and side walls of the flask are of an impact resistant plastic which is permeable to gas and water vapor, but impermeable to microorganisms, thus providing better control of the environment within the flask. A typical such plastic is polystyrene having a 2.4 cm. Kg. f/cm. of notch at 23* C (Izod test - ASTMD 256-56). A threaded cap is received over the neck opening to seal the contents of the flask, and the bottom wall is essentially flat to provide stability against tipping of the flask.

Description

United States Patent [1 1 Froman et al.

[ GAS PERMEABLE STERILE CULTURE BOTTLE [75] Inventors: Seymour Froman, Northridge;

William L. Chandler, Altadena, both of Calif.

[73] Assignee: California Laboratory Industries,

Inc., North Hollywood, Calif.

[22] Filed: Apr. 30, 1973 [2i] Appl. No.: 355,754

ABSTRACT A sterile culture bottle in the form of a flat bottomed flask includes a neck opening arranged at an inclined angle with respect to the bottom wall so that a pipette or other instrument may be inserted into the bottle to reach any portion of the contents therein. The side walls, bottom wall and neck are of a unitary integral structure, the top wall being essentially flat and optically transparent and distortion free to permit microscopic examination of the contents within the culture flask. The top wall is of optical quality plastic material, sonically welded to the side walls and hermetically sealed thereto. The top, bottom and side walls of the flask are of an impact resistant plastic which is permeable to gas and water vapor, but impermeable to microorganisms, thus providing better control of the environment within the flask. A typical such plastic is polystyrene having a 2.4 cm. Kg. f/cm. of notch at 23C (Izod test ASTMD 256-56). A threaded cap is received over the'neck opening to seal the contents of the flask, and the bottom wall is essentially flat to provide stability against tipping of the flask.

10 Claims, 4 Drawing Figures [52] US. Cl 195/139, 195/142, 215/1 C [51] Int. Cl ..C12b1/00 [58] Field of Search 195/139 [56] References Cited UNITED STATES PATENTS 330L769 l/l967 Steel 195/139 3,449,2l0 6/1969 Rohde 195/139 3,726,764 4/l973 White 195/139 Primary ExaminerAlvin E. Tanenholtz Attorney, Agent, or Firm-Bernard Kriegel ter.

GAS PERMEABLE STERILE CULTURE BOTTLE This invention relates to a culture bottle for growing microorganisms, and more particularly to an improved culture bottle which is sterile, permeable to water vapor and gas, but impermeable to microorganisms, the flask being of high impact polystyrene or other suitable plastic and including flat bottom wall, and a spaced flat top wall, the top wall being of optical quality plastic and wherein an inclined neck is integrally formed in the side wall.

Various types of devices are presently employed for growing microorganisms, a typical example of which is the Petri dish. Petri dishes are available in a myriad of types and configurations. Also used are glass tubes or bottles of various dimensions and configurations.

Where the glass bottles or screw-capped test tubes are used for the growth of organisms which require a prolonged incubation period in a CO atmosphere, the practice is to leave the screw caps loose in order to permit passage of the gas into and out of the bottle or test tube. The loose caps operate, however, to enhance dehydration of the culture media. Depending on the looseness of the caps, varying amounts of gas may en- Where loose caps are used with glass tubes or bottles, a hazard to the health and safety of laboratory personnel and other employees is present. Breaking the bottle or tipping of the bottle during handling and examination may release droplets containing infectious microorganisms. When such released organisms contact a surface, an aerosol is created and may result in laboratory acquired infections. Such a practice also permits the release of spores and the like. Moreover, the glass tubes and bottles are relatively heavy and when carried in large numbers or in large trays are difficult to handle.

Many times during the incubation of microorganisms, it is the practice to undertake preliminary visual observation or microscopic scanning to determine whether the microorganism is growing, and to attempt some tentative identification of the microorganism. Usually, this is done by removing a small sample from the culture bottle. In the case of pathogenic organisms, this represents a potential hazard. Accordingly, it is desirable to provide a culture bottle in which preliminary visual or microscopic examination may be conducted without removing any of the material from the bottle itself.

U.S. Pat. No. 3,449,210 of June 10, 1969 describes a sterile culture bottle of glass or plastic, including a neck arranged in the side of the flask.

U.S. Pat. No. 3,702,806 of Nov. 14, 1972 describes a disposable triangular shaped culture bottle of transparent plastic. I

U.S. Pat. No. 3,532,605 of Oct. 6, 1970 describes a culture bottle in which the culture medium is immobilized by a mesh.

U.S. Pat. No. 2,992,974 of July 18, 1961 describes a glass culture bottle containing a congealed layer of hutrient materials. Petri dishes of polystyrene or other plastic materials are described in U.S. Pat. Nos. 3,097,070 and 2,677,647 of July 9, 1963 and May 4, 1954, respectively.

Other tissue culturing devices and microorganism sampling and culturing units are described in U.S. Pat. Nos. 2,942,520 of June 28, 1960; 3,184,395 of May 18, 1965; 3,203,870 of Aug. 31, 1965; 3,503,665 of Mar. 31, 1970; and 3,696,002 of Oct. 3, 1972.

U.S. Pat. No. 3,346,464 of Oct. 10, 1967 describes a semipermeable plastic envelope for use in a device which is a biological sterility indicator.

U.S. Pat. Nos. 2,920,777 and 3,490,501 of Jan. 12, 1960 and Jan. 20, 1970, respectively, relate to bottles or bottle funnel combinations in which the opening is arranged in the side wall and inclined.

The present invention relates to a much improved disposable sterile culture bottle, which overcomes some of the disadvantages of the prior art devices and practices previously described. In its basic form, the culture bottle of the present invention is in the form of an elongated, flat bottom, flask-like member which includes a bottom wall and a spaced top wall. The side walls are integral with the bottom wall and receive the top wall, which is hermetically sealed thereto. Ar-

ranged at one end of the flask is a neck disposed with respect to the bottom wall so as to be at an upwardly inclined angle, the neck having a threaded free end to receive a cap in order to seal the culture bottle to prevent passage of microorganisms therethrough. The portion of the bottle in which the neck is received is tapered slightly so as to avoid sharp right-angle bends rendering the contents of the flask inaccessible to a pipette, or other instrument, inserted through the neck. The top, bottom and side walls and neck of the flask are formed of impact resistant plastic material, which is permeable to gas and water vapor while being impermeable to microorganisms. Moreover, the top wall is of an essentially flat, optical quality transparent plastic arranged essentially parallel to the bottom wall, so as to permit microscopic examination of the culture being grown within the flask.

The sterile disposable culture bottle of the present invention offers the advantage of providing an impact resistant gas permeable flask, which is particularly useful in the incubation of heterotrophic microorganisms in which a gas, such as CO is an essential nutrient. Thus, the gas may permeate through the walls while the entire flask is completely sealed by the cap and while maintaining the proper humidity conditions and gas conditions within the flask itself. From a safety standpoint, the flask is of impact resistant plastic, spillproof because of its design and which includes a tightly stoppered cap. Since the walls are permeable to gas, the cap may be kept tightly on the neck, and accidental spilling during handling of the flask of the present invention is substantially eliminated. Moreover, by providing a top wall which is of optical quality, preliminary visual or microscopic examination of the contents of the flask may be accomplished without the necessity of removing samples from the flask.

Referring to the drawings:

FIG. 1 is a view in perspective of the flask in accordance with the present invention;

FIG. 2 is a plan view, with a portion thereof broken away, of the flask illustrated in FIG. 1; i

FIG. 3 is a view in section, taken along the line 3- of FIG. 2; and I FIG. 4 is an enlarged fragmentary sectional view taken along the line 4--4 of FIG. 2.

Referring to the drawings which illustrate a preferred form of the present invention, a flask 10 is illustrated in FIGS. 1-3 and includes a flat bottom wall 12 and a spaced top wall 15. integrally formed with the bottom wall 12 are spaced side walls l6, l7 and 18. Side wall 18 is provided with reinforcing ribs 19 formed integrally therewith, as illustrated.

Positioned oppositely of side wall 18 is a neck wall 20, the latter being joined to side walls 16 and 17 through transition walls 21 and 22, respectively. The transition walls eliminate sharp right-angle bends at the neck end of the flask, and thus eliminate blind spots not accessible to a pipette or other laboratory instruments.

Formed integrally with the neck wall 20 is a neck opening 25 threaded, as indicated at 26, to receive a cap 30.

As illustrated in FIG. 3, the neck 25 is arranged at an upwardly inclined angle with respect to the bottom wall 12. In practice, the center axis of the neck 25 is disposed at approximately a angle with respect to the bottom wall 12. In this way, a pipette or other laboratory instrument may be inserted and may easily reach any portion of the interior of the flask. It is for this reason that transition walls 21 and 22 are inclined toward the neck 25 so as to enable access to all portions of the interior of the flask.

As illustrated in FIG. 3, neck wall 20 includes a generally vertical short wall 35 forming the junction between the bottom wall 12 and the neck 25. In normal use, the level of material within the flask is kept below the level of the vertical wall. In the form shown, the neck 25 is closer to the top wall 15 than the bottom wall 12.

As shown, the side walls 16, 17 and 18 and the transition walls 21 and 22 and the neck wall are flared outwardly, such that the overall surface area of the top wall 15 is somewhat greater than the surface area of the bottom wall 12. The surface area of the top wall 15 is about square centimeters, in one form.

The flask 10 is composed of polystyrene plastic which is impact resistant and withstands at least 2.4 cm. Kg. f/cm. of notch at 23C (Izod testASTMD 256-56). This impact resistant characteristic is a desirable safety feature and prevents shattering or breakage of the flask in the event that it is dropped. Overall, the flask 10 has a relatively low center of gravity and a large flat bottom which provides stability against inadvertent tipping.

The flask is permeable to water vapor, oxygen and carbon dioxide and impermeable to any microorganism or spores growing within the flask. The carbon dioxide, oxygen and water permeability of the flask are set forth in the following table in which the data taken was in the absence of 'a pressure differential:

at 23C. at 37C. Carbon dioxide 2.833 ml./24 hrs. 4.166 ml./24 hrs. Oxygen l.l66 l.l66 Water vapor 0.0075 g. 0.0090 g.

(100% R.H. inside bottle, 50% R.H. outside bottle.)

Referring now to FIG. 4, it will be seen that the bot- In fabrication of the flask 10, the top wall 15 is formed separately from the remaining structure. The top wall is of a configuration such that its peripheral portion includes a shoulder 40 formed between a peripheral vertical leg section 42 and a horizontal extending lip section 44, the latter overlying the exposed top edge of the mating side walls. The vertical section 42 terminates in a depending foot 46 which is continuous and extends along the periphery of the top wall 15. In this way, there is a substantial surface area between the peripheral portion of the top wall and'the mating side walls, such that the two elements may be hermetically sealed together by sonic welding techniques, or other techniques, known to those skilled in the art.

In the formation of the flask 10, which may be by injection molding, and the like, care should be taken to avoid the use of any additives or mold release agents, which can operate as a source of contamination adversely affecting the growth of any microorganism within the flask.

As illustrated in FIG. 3, the top wall 15 is essentially flat, and disposed in parallel relationship with the bottom wall 12. The top wall is preferably of optical quality and transparent, and formed so as to be distortion free. In this way, microscopic examination at 10 power of the contents of the flask 10 through the top wall is possible for purposes of preliminary screening and preliminary visual inspection of the culture being grown within the flask.

The flask above described is particularly useful as a culture bottle for cultures of the M. tuberculosis type and other pathogenic or non-pathogenic microorganisms, whose growth depends upon the presence of a gas, such as CO or oxygen or other types of gases. The growth of these microorganisms may be at room temperature or at incubator temperatures, and at temperatures below the boiling temperature of water. The flask of this invention offers the advantage of easy deposition of the microorganism to be grown within the flask, and maintaining the proper gas and relative humidity conditions within the flask while keeping the entire bottle sealed tightly. This is in contrast to the prior practice in which glass bottles were used and the stoppers were loosely positioned over the flask to permit passage of CO to the interior of the flask.

Once the microorganism, spore or fungus to be grown is positioned within the flask of the present invention, the cap may be tightened to prevent entrance of contaminating organisms which may destroy the culture being grown, and more importantly to prevent escape of any culture or microorganisms which could be a source of infection to laboratory personnel and other employees.

After assembly of the flask, as described, it is thereafter sterilized by conventional techniques, e.g., gas sterilization using ethylene oxide. Thereafter, the desired culture medium is introduced into the flask under aseptic conditions, and the flask packaged for shipment. Optionally, the flask may be sterilized and need not contain a culture medium. A typical culture medium which may be imployed is, for example, Trypticase Soy Agar, Lowenstein-Jensen Medium, or Agar-Agar with appropriate nutrients. The culture medium is itself well known in the art and any of the known culture media may beemployed.

It will be apparent that the flask, above-described, offers singular advantages from the standpoint of safety and convenience in the growth of pathogenic and nonpathogenic microorganisms, spores and fungus, i.e., growing biological matter in a nutrient. Safety by providing an impact resistant flask which isrelatively stable is another advantage. Due to the gas exchange quality of the walls, the flask may be completely sealed and spillage or accidental release of the contents is substantially eliminated. Preliminary visual or microscopic examination without the necessity of opening and removing a sample is possible. Easy access to all portions of the interior of the flask by the arrangement of the neck and side walls facilitates use and minimizes risk of laboratory infections when the usual degree of care is exercised.

It is obvious that many changes and variations in the design and configuration of the flask and the culture media may be made, as will be apparent to those skilled in the art, without departing from the spirit of the invention as set forth in the appended claims.

We claim:

1. A sterile, disposable culture bottle for growth of microorganisms in a controlled environment of a gas and water vapor comprising: an elongated flask-like member including a bottom wall and a spaced top wall; side walls integral with said bottom wall and defining therewith and with said top wall a flask of unitary structure; one of said side walls including a neck integral with said side arranged at an upwardly inclined angle with respect to said bottom wall, all of said walls and said neck being inseparably secured to each other, said neck having a free end to receive a cap sealably engaging said neck to prevent passage of microorganisms therethrough; said walls of said flask being of an impact resistant plastic material permeable to said gas and water vapor, but impermeable to microorganisms; said top wall being essentially flat, transparent and optically distortion free so as to permit microscopic examination of the culture within said flask, and means on said bottle for maintaining said bottom wall spaced from a supporting surface.

2. A culture bottle as defined in claim 1, wherein said bottle contains a solid media for culturing of microorganisms.

3. A culture bottle as defined in claim 1, wherein said plastic is polystyrene.

4. A culture bottle as defined in claim 3, wherein said polystyrene has the following permeability at no pressure differential:

carbon dioxide 2.833 ml/24 hrs. at 23C and 4.166

ml/24 hrs. at 37C,

oxygen 1.166 ml/24 hrs. at 23C and L166 ml/24 hrs.

at 37C,

water vapor 0.0075 g/24 hrs. at 23C and 0.0090

g/24 hrs. at 37C, said water vapor permeability being measured at RH. within the bottle and 50% RH. outside of said bottle.

5. A culture bottle as defined in claim 1, wherein said plastic has an lzod impact of 2.4 cm. Kg. f/cm. of notch at 23C as determined by ASTMD 256-56.

6. A sterile culture bottle as defined in claim I; wherein said neck is arranged at an angle of about 10 with respect to said bottom wall.

7. A sterile culture bottle as defined in claim 1, wherein said bottom wall is essentially flat, and said top wall being in essentially spaced parallel relative to said bottom wall thereby permitting microscopic examination through said top wall of the culture being grown with said flask.

8. A sterile culture bottle as set forth in claim 5, wherein said top wall is essentially flat and of the same plastic material as the remainder of said flask-like member.

9. A sterile culture bottle as set forth in claim 1, wherein said side walls include transition walls adjacent said one wall which includes said neck thereby eliminating right-angle walls adjacent to said wall which includes said neck.

10. A sterile culture bottle as defined in claim 1, said means comprising legs adapted to rest on the supporting surface.

Claims (10)

1. A STERILE, DISPOSABLE CULTURE BOTTLE FOR GROWTH OF MICROORGANISMS IN A CONTROLLED ENVIRONMENT OF A GAS AND WATER VAPOR COMPRISING: AN ELONGATED FLASK-LIKE MEMBER INCLUDING A BOTTOM WALL AND A SPACED TOP WALL; SAID, WALLS IN TEGEGRAL WITH SAID BOTTOM WALL AND DEFINING THEREWITH AND WITH SAID TOP WALL A FLASK OF UNITARY STRUCTURE; ONE OF SAID SIDE WALLS INCLUDING A NECK INTEGRAL WITH SAID SIDE ARRANGED AT AN UPWARDLY INCLINED ANGLE WITH RESPECT TO SAID BOTTOM WALL, ALL OF SAID WALLS AND SAID NECK BEING INSEPARABLY SECURED TO EACH OTHER, SAID NECK HAVING A FREE END TO RECEIVE A CAP SEALABLY ENGAGING SAID NECK TO PREVENT PASSAGE OF MICROORGANSIMS THERETHROUGH; SAID WALLS OF SAID FLASK BEING OF AN IMPACT RESISTANT PLASTIC MATERIAL PERMEABLE TO SAID GAS AND WATER VAPOR, BUT IMPERMEABLE TO MICROORGANISMS; SAID TOP WALL BEING ESSENTIALLY FLAT, TRANSPARENT AND OPTICALLY DISTORTION FREE SO AS TO PERMIT MICROSCOPIC EXAMINATION OF THE CULTURE WITHIN SAID FLASK, AND MEANS ON SAID BOTTLE FOR MAINTAINING SAID BOTTOM WALL SPACED FROM A SUPPORTING SURFACE.
1. A sterile, disposable culture bottle for growth of microorganisms in a controlled environment of a gas and water vapor comprising: an elongated flask-like member including a bottom wall and a spaced top wall; side walls integral with said bottom wall and defining therewith and with said top wall a flask of unitary structure; one of said side walls including a neck integral with said side arranged at an upwardly inclined angle with respect to said bottom wall, all of said walls and said neck being inseparably secured to each other, said neck having a free end to receive a cap sealably engaging said neck to prevent passage of microorganisms therethrough; said walls of said flask being of an impact resistant plastic material permeable to said gas and water vapor, but impermeable to microorganisms; said top wall being essentially flat, transparent and optically distortion free so as to permit microscopic examination of the culture within said flask, and means on said bottle for maintaining said bottom wall spaced from a supporting surface.
2. A culture bottle as defined in claim 1, wherein said bottle contains a solid media for culturing of microorganisms.
3. A culture bottle as defined in claim 1, wherein said plastic is polystyrene.
4. A culture bottle as defined in claim 3, wherein said polystyrene has the following permeability at no pressure differential: carbon dioxide 2.833 ml/24 hrs. at 23*C and 4.166 ml/24 hrs. at 37*C, oxygen 1.166 ml/24 hrs. at 23*C and 1.166 ml/24 hrs. at 37*C, water vapor 0.0075 g/24 hrs. at 23*C and 0.0090 g/24 hrs. at 37*C, said water vapor permeability being measured at 100% R.H. within the bottle and 50% R.H. outside of said bottle.
5. A culture bottle as defined in claim 1, wherein said plastic has an Izod impact of 2.4 cm. Kg. f/cm. of notch at 23*C as determined by ASTMD 256-56.
6. A sterile culture bottle as defined in claim 1; wherein said neck is arranged at an angle of about 10* with respect to said bottom wall.
7. A sterile culture bottle as defined in claim 1, wherein said bottom wall is essentially flat, and said top wall being in essentially spaced parallel relative to said bottom wall thereby permitting microscopic examination through said top wall of the culture being grown with said flask.
8. A sterile culture bottle as set forth in claim 5, wherein said top wall is essentially flat and of the same plastic material as the remainder of said flask-like member.
9. A sterile culture bottle as set forth in claim 1, wherein said side walls include transition walls adjacent said one wall which includes said neck thereby eliminating right-angle walls adjacent to said wall which includes said neck.
US355754A 1973-04-30 1973-04-30 Gas permeable sterile culture bottle Expired - Lifetime US3870602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US355754A US3870602A (en) 1973-04-30 1973-04-30 Gas permeable sterile culture bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US355754A US3870602A (en) 1973-04-30 1973-04-30 Gas permeable sterile culture bottle

Publications (1)

Publication Number Publication Date
US3870602A true US3870602A (en) 1975-03-11

Family

ID=23398705

Family Applications (1)

Application Number Title Priority Date Filing Date
US355754A Expired - Lifetime US3870602A (en) 1973-04-30 1973-04-30 Gas permeable sterile culture bottle

Country Status (1)

Country Link
US (1) US3870602A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267276A (en) * 1979-09-28 1981-05-12 Honeywell Inc. Medical specimen culture bottle
US4334028A (en) * 1981-01-02 1982-06-08 Carver Joseph L Flask
EP0104001A2 (en) * 1982-08-25 1984-03-28 Hana Biologics, Inc. Triphasic mycoplasmatales culture device and method and competing microorganism inhibiting device for use therein
EP0141104A1 (en) * 1983-09-28 1985-05-15 Becton, Dickinson and Company Culture Flask
US4534483A (en) * 1983-01-05 1985-08-13 Kassis Amin I Culture flask closure
FR2597497A1 (en) * 1986-02-03 1987-10-23 Costar Corp Laboratory bottle for growing cell and tissue crops
WO1987006952A1 (en) * 1986-05-12 1987-11-19 Baxter Travenol Laboratories, Inc. System for metering nutrient media to cell culture containers and method
US4734373A (en) * 1986-06-24 1988-03-29 Bartal Arie H Apparatus for enhancing cell growth, preservation and transport
US4839292A (en) * 1987-09-11 1989-06-13 Cremonese Joseph G Cell culture flask utilizing a membrane barrier
US4927764A (en) * 1987-11-17 1990-05-22 Costar Corporation Tissue culture flask
US4935371A (en) * 1986-12-31 1990-06-19 American Sterilizer Company Sterilizable gas permeable container for use in culturing living cells
US4937194A (en) * 1986-05-12 1990-06-26 Baxter International Inc. Method for metering nutrient media to cell culture containers
US5021351A (en) * 1983-05-02 1991-06-04 Becton, Dickinson And Company Petri dish
US5037754A (en) * 1985-10-19 1991-08-06 Daikin Industries Ltd. Culture vessel
US5139952A (en) * 1983-09-16 1992-08-18 Terumo Corporation Tissue culture flask
US5151366A (en) * 1991-05-24 1992-09-29 Invitro Scientific Products, Inc. Cell culture flask
US5272084A (en) * 1991-12-18 1993-12-21 Corning Incorporated Cell culture vessels having interior ridges and method for cultivating cells in same
US5310676A (en) * 1991-11-15 1994-05-10 A/S Nunc Cell cultivating device
US5358872A (en) * 1993-08-12 1994-10-25 Becton, Dickinson And Company Vessel and closure assembly
US5398837A (en) * 1993-02-15 1995-03-21 Degrassi; Alberto Cell culture flask and closure
US5578491A (en) * 1995-09-08 1996-11-26 Becton, Dickinson And Company Reusable vented flask cap cover
US5595907A (en) * 1995-09-08 1997-01-21 Becton, Dickinson And Company Reusable vented flask cap cover
US5622865A (en) * 1995-09-08 1997-04-22 Becton, Dickinson And Company Reusable vented flask cap cover
US5695987A (en) * 1996-08-08 1997-12-09 Becton Dickinson And Company Reusable vented flask cap cover
US5766936A (en) * 1995-09-08 1998-06-16 Becton Dickinson And Company Reusable vented flask cap cover
US5783440A (en) * 1996-09-30 1998-07-21 Becton Dickinson And Company Culture vessel
US5843380A (en) * 1995-05-31 1998-12-01 Biomerieux Vitek, Inc. Test sample card with raised rails
US5856176A (en) * 1996-03-29 1999-01-05 Corning Incorporated Culture dish
US5924583A (en) * 1995-05-18 1999-07-20 Becton Dickinson And Company Tissue culture flask
US6569675B2 (en) * 2000-06-16 2003-05-27 Corning Incorporated Cell cultivating flask and method for using the cell cultivating flask
US6589790B1 (en) 1997-04-15 2003-07-08 Bio Merieux Method and device for filling an analysis card with a liquid medium
US20040106191A1 (en) * 2002-10-04 2004-06-03 Muser Andrew P. Culture flask
US20050106717A1 (en) * 2003-10-08 2005-05-19 Wilson John R. Cell culture methods and devices utilizing gas permeable materials
US20050277188A1 (en) * 2004-06-09 2005-12-15 Ellis Samuel A Fermentation flask for cultivating microorganisms
US20060199260A1 (en) * 2002-05-01 2006-09-07 Zhiyu Zhang Microbioreactor for continuous cell culture
US20060205065A1 (en) * 2005-03-14 2006-09-14 Bossi Stephen R Cell cultivating flask
US20070012650A1 (en) * 2005-07-12 2007-01-18 Eble Raymond C Container with Improved Crush Resistance
US20070128081A1 (en) * 2005-12-02 2007-06-07 Scientific Plastic Products, Inc. Method and apparatus for transferring growth media and infection fluids to a cell growth bag
US20080176318A1 (en) * 2006-12-07 2008-07-24 Wilson John R Highly efficient devices and methods for culturing cells
US20100055774A1 (en) * 2008-07-08 2010-03-04 Wilson John R Gas permeable cell culture device and method of use
EP2251407A1 (en) * 2009-05-12 2010-11-17 Eppendorf Ag Disposable bioreactor, kit for the same and method for its production
USD668777S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Diamond shaped flask
USD668772S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Tilting flask
USD668776S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Canteen shaped flask
USD668773S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Rhombus shaped flask
USD668775S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Octagon shaped flask
USD668774S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Flask with off-center cap orientation
WO2013097004A1 (en) * 2011-12-29 2013-07-04 Domingues Zucchi Fernando Method for packaging biological agents in sterile packaging
AU2012254908B2 (en) * 2003-10-08 2016-02-25 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US9290730B2 (en) 2005-07-26 2016-03-22 Corning Incorporated Multilayered cell culture apparatus
US9347912B2 (en) 2009-11-06 2016-05-24 Eppendorf Ag Sensor adapter, method for the manufacture thereof, method for the use of a sensor in this sensor adapter and bioreactor with this sensor adapter
USD821603S1 (en) * 2015-06-02 2018-06-26 Tpp Techno Plastic Products Ag Culture bottle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301769A (en) * 1964-09-28 1967-01-31 Upjohn Co Microfermentor and process of using
US3449210A (en) * 1967-08-22 1969-06-10 Baltimore Biolog Lab Microorganism culturing assembly
US3726764A (en) * 1971-08-06 1973-04-10 Miles Lab Microbiological chamber apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301769A (en) * 1964-09-28 1967-01-31 Upjohn Co Microfermentor and process of using
US3449210A (en) * 1967-08-22 1969-06-10 Baltimore Biolog Lab Microorganism culturing assembly
US3726764A (en) * 1971-08-06 1973-04-10 Miles Lab Microbiological chamber apparatus

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267276A (en) * 1979-09-28 1981-05-12 Honeywell Inc. Medical specimen culture bottle
US4334028A (en) * 1981-01-02 1982-06-08 Carver Joseph L Flask
EP0104001A2 (en) * 1982-08-25 1984-03-28 Hana Biologics, Inc. Triphasic mycoplasmatales culture device and method and competing microorganism inhibiting device for use therein
EP0104001A3 (en) * 1982-08-25 1985-08-28 Hana Biologics, Inc. Triphasic mycoplasmatales culture device and method and competing microorganism inhibiting device for use therein
US4534483A (en) * 1983-01-05 1985-08-13 Kassis Amin I Culture flask closure
US5021351A (en) * 1983-05-02 1991-06-04 Becton, Dickinson And Company Petri dish
US5139952A (en) * 1983-09-16 1992-08-18 Terumo Corporation Tissue culture flask
EP0141104A1 (en) * 1983-09-28 1985-05-15 Becton, Dickinson and Company Culture Flask
US5037754A (en) * 1985-10-19 1991-08-06 Daikin Industries Ltd. Culture vessel
FR2597497A1 (en) * 1986-02-03 1987-10-23 Costar Corp Laboratory bottle for growing cell and tissue crops
WO1987006952A1 (en) * 1986-05-12 1987-11-19 Baxter Travenol Laboratories, Inc. System for metering nutrient media to cell culture containers and method
US4829002A (en) * 1986-05-12 1989-05-09 Baxter International Inc. System for metering nutrient media to cell culture containers and method
US4937194A (en) * 1986-05-12 1990-06-26 Baxter International Inc. Method for metering nutrient media to cell culture containers
US4734373A (en) * 1986-06-24 1988-03-29 Bartal Arie H Apparatus for enhancing cell growth, preservation and transport
US4935371A (en) * 1986-12-31 1990-06-19 American Sterilizer Company Sterilizable gas permeable container for use in culturing living cells
US4839292A (en) * 1987-09-11 1989-06-13 Cremonese Joseph G Cell culture flask utilizing a membrane barrier
US4927764A (en) * 1987-11-17 1990-05-22 Costar Corporation Tissue culture flask
US5151366A (en) * 1991-05-24 1992-09-29 Invitro Scientific Products, Inc. Cell culture flask
WO1992020779A1 (en) * 1991-05-24 1992-11-26 In Vitro Scientific Products, Inc. Cell culture flask
US5310676A (en) * 1991-11-15 1994-05-10 A/S Nunc Cell cultivating device
US5272084A (en) * 1991-12-18 1993-12-21 Corning Incorporated Cell culture vessels having interior ridges and method for cultivating cells in same
US5398837A (en) * 1993-02-15 1995-03-21 Degrassi; Alberto Cell culture flask and closure
US5358872A (en) * 1993-08-12 1994-10-25 Becton, Dickinson And Company Vessel and closure assembly
US5924583A (en) * 1995-05-18 1999-07-20 Becton Dickinson And Company Tissue culture flask
US5843380A (en) * 1995-05-31 1998-12-01 Biomerieux Vitek, Inc. Test sample card with raised rails
US5595907A (en) * 1995-09-08 1997-01-21 Becton, Dickinson And Company Reusable vented flask cap cover
US5578491A (en) * 1995-09-08 1996-11-26 Becton, Dickinson And Company Reusable vented flask cap cover
US5766936A (en) * 1995-09-08 1998-06-16 Becton Dickinson And Company Reusable vented flask cap cover
US5622865A (en) * 1995-09-08 1997-04-22 Becton, Dickinson And Company Reusable vented flask cap cover
US5856176A (en) * 1996-03-29 1999-01-05 Corning Incorporated Culture dish
US5695987A (en) * 1996-08-08 1997-12-09 Becton Dickinson And Company Reusable vented flask cap cover
US5783440A (en) * 1996-09-30 1998-07-21 Becton Dickinson And Company Culture vessel
US6589790B1 (en) 1997-04-15 2003-07-08 Bio Merieux Method and device for filling an analysis card with a liquid medium
US6569675B2 (en) * 2000-06-16 2003-05-27 Corning Incorporated Cell cultivating flask and method for using the cell cultivating flask
US20060199260A1 (en) * 2002-05-01 2006-09-07 Zhiyu Zhang Microbioreactor for continuous cell culture
US20040106191A1 (en) * 2002-10-04 2004-06-03 Muser Andrew P. Culture flask
US6818438B2 (en) * 2002-10-04 2004-11-16 Becton, Dickinson And Company Culture flask
US8168432B2 (en) 2003-10-08 2012-05-01 Wilson Wolf Manufacturing Cell culture methods and devices utilizing gas permeable materials
CN103173354B (en) * 2003-10-08 2017-07-14 威尔森沃尔夫制造公司 Using a breathable material for cell culture method and apparatus
US9255243B2 (en) * 2003-10-08 2016-02-09 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
AU2012254908B2 (en) * 2003-10-08 2016-02-25 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US9410114B2 (en) 2003-10-08 2016-08-09 Wilson Wolf Manufacturing Cell culture methods and devices utilizing gas permeable materials
US20070254356A1 (en) * 2003-10-08 2007-11-01 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
CN103173354A (en) * 2003-10-08 2013-06-26 威尔森沃尔夫制造公司 Cell culture methods and devices utilizing gas permeable materials
US20100255576A1 (en) * 2003-10-08 2010-10-07 Wilson John R Cell culture methods and devices utilizing gas permeable materials
US8158427B2 (en) 2003-10-08 2012-04-17 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US8158426B2 (en) 2003-10-08 2012-04-17 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US20110129923A1 (en) * 2003-10-08 2011-06-02 Wilson John R Cell culture methods and devices utilizing gas permeable materials
AU2004280623B2 (en) * 2003-10-08 2010-12-02 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US9441192B2 (en) 2003-10-08 2016-09-13 Wilson Wolf Manufacturing Cell culture methods and devices utilizing gas permeable materials
US8697443B2 (en) 2003-10-08 2014-04-15 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US20050106717A1 (en) * 2003-10-08 2005-05-19 Wilson John R. Cell culture methods and devices utilizing gas permeable materials
US8415144B2 (en) 2003-10-08 2013-04-09 Wilson Wolf Manufacturing Cell culture methods and devices utilizing gas permeable materials
US20050277188A1 (en) * 2004-06-09 2005-12-15 Ellis Samuel A Fermentation flask for cultivating microorganisms
US7381559B2 (en) * 2004-06-09 2008-06-03 Scientific Plastic Products, Inc. Fermentation flask for cultivating microorganisms
US7771991B2 (en) * 2005-03-14 2010-08-10 Corning Incorporated Cell cultivating flask
US20060205065A1 (en) * 2005-03-14 2006-09-14 Bossi Stephen R Cell cultivating flask
US20070012650A1 (en) * 2005-07-12 2007-01-18 Eble Raymond C Container with Improved Crush Resistance
US9290730B2 (en) 2005-07-26 2016-03-22 Corning Incorporated Multilayered cell culture apparatus
US9845451B2 (en) 2005-07-26 2017-12-19 Corning Incorporated Multilayered cell culture apparatus
US7998730B2 (en) * 2005-12-02 2011-08-16 Securus, Inc. Method and apparatus for transferring growth media and infection fluids to a cell growth bag
US20070128081A1 (en) * 2005-12-02 2007-06-07 Scientific Plastic Products, Inc. Method and apparatus for transferring growth media and infection fluids to a cell growth bag
US7709251B2 (en) * 2005-12-02 2010-05-04 Scientific Plastic Products, Inc. Method and apparatus for transferring growth media and infection fluids to a cell growth bag
US20100218847A1 (en) * 2005-12-02 2010-09-02 Scientific Plastic Products, Inc. Method & apparatus for transferring growth media and infection fluids to a cell growth bag
US9732317B2 (en) 2006-12-07 2017-08-15 Wilson Wolf Manufacturing Corporation Highly efficient gas permeable devices and methods for culturing cells
WO2008073314A3 (en) * 2006-12-07 2008-07-31 Wolf Wilson Mfg Corp Highly efficient devices and methods for culturing cells
EP2089507A2 (en) * 2006-12-07 2009-08-19 Wilson Wolf Manufacturing Corporation Highly efficient devices and methods for culturing cells
US8809044B2 (en) 2006-12-07 2014-08-19 Wilson Wolf Manufacturing Corporation Highly efficient gas permeable devices and methods for culturing cells
EP2092052A2 (en) * 2006-12-07 2009-08-26 Wilson Wolf Manufacturing Corporation Highly efficient gas permeable devices and methods for culturing cells
EP2092052A4 (en) * 2006-12-07 2012-11-14 Wolf Wilson Mfg Corp Highly efficient gas permeable devices and methods for culturing cells
EP2089507A4 (en) * 2006-12-07 2012-12-26 Wolf Wilson Mfg Corp Highly efficient devices and methods for culturing cells
US20080227176A1 (en) * 2006-12-07 2008-09-18 Wilson John R Highly efficient gas permeable devices and methods for culturing cells
US20080176318A1 (en) * 2006-12-07 2008-07-24 Wilson John R Highly efficient devices and methods for culturing cells
US20100055774A1 (en) * 2008-07-08 2010-03-04 Wilson John R Gas permeable cell culture device and method of use
US8518692B2 (en) 2008-07-08 2013-08-27 Wilson Wolf Manufacturing Corporation Gas permeable cell culture device and method of use
US8522996B2 (en) 2009-05-12 2013-09-03 Eppendorf Ag Disposable bioreactor, kit for the same and method for its production
EP2251407A1 (en) * 2009-05-12 2010-11-17 Eppendorf Ag Disposable bioreactor, kit for the same and method for its production
US20100291674A1 (en) * 2009-05-12 2010-11-18 Jochen Beese Disposable bioreactor, kit for the same and method for its production
JP2010263891A (en) * 2009-05-12 2010-11-25 Eppendorf Ag Disposable bioreactor, kit for the same and method for producing the same
US9347912B2 (en) 2009-11-06 2016-05-24 Eppendorf Ag Sensor adapter, method for the manufacture thereof, method for the use of a sensor in this sensor adapter and bioreactor with this sensor adapter
USD668776S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Canteen shaped flask
USD668772S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Tilting flask
USD668777S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Diamond shaped flask
USD668773S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Rhombus shaped flask
USD668775S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Octagon shaped flask
USD668774S1 (en) * 2011-10-26 2012-10-09 Becton, Dickinson And Company Flask with off-center cap orientation
WO2013097004A1 (en) * 2011-12-29 2013-07-04 Domingues Zucchi Fernando Method for packaging biological agents in sterile packaging
USD821603S1 (en) * 2015-06-02 2018-06-26 Tpp Techno Plastic Products Ag Culture bottle

Similar Documents

Publication Publication Date Title
US3579303A (en) System for handling specimens and other substances in medicine and physical sciences
US3107204A (en) Microbiological testing method and structure therefor
US3607098A (en) Containers for laboratory use
US3297184A (en) Cap for culture tubes
US4696902A (en) Modular apparatus for cell culture
AU687819B2 (en) Self-contained biological indicator
US4014748A (en) Anaerobic culture collecting and transporting apparatus
US5576211A (en) Modular culture vessel for cell cultures
CA1173337A (en) Sterilization indicator
US5139951A (en) Culture device having a detachable cell or tissue growth surface
KR100436473B1 (en) Microbial detection device and method
US4301799A (en) Non-collapsible medical fluid container with air vent filter
US5863792A (en) Culture vessel assembly
US8846399B2 (en) Multilayered cell culture apparatus
US4669321A (en) Sample taking device
US4743537A (en) Biological indicator for sterilization processes
EP0239058A2 (en) Container for receiving a culture medium of microorganisms
EP0590513B1 (en) Cell culture insert
Hewitt Theory and application of microbiological assay
US4958622A (en) Hypodermic syringe for taking and transporting a specimen
US20050048642A1 (en) Multi-slide assembly including slide, frame and strip cap, and methods thereof
CA2010063C (en) Universal biological indicator system
Harrigan et al. Laboratory methods in microbiology
US4304869A (en) Apparatus for rupturing a sealed, frangible container
AU658079B2 (en) Cell culture insert