US3870427A - Surface finishing method and apparatus - Google Patents

Surface finishing method and apparatus Download PDF

Info

Publication number
US3870427A
US3870427A US275232A US27523272A US3870427A US 3870427 A US3870427 A US 3870427A US 275232 A US275232 A US 275232A US 27523272 A US27523272 A US 27523272A US 3870427 A US3870427 A US 3870427A
Authority
US
United States
Prior art keywords
finisher
assembly
auger
chain
finished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US275232A
Inventor
Thomas E Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMI Terex Corp
Original Assignee
CMI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMI Corp filed Critical CMI Corp
Priority to US275232A priority Critical patent/US3870427A/en
Application granted granted Critical
Publication of US3870427A publication Critical patent/US3870427A/en
Assigned to FEDERAL DEPOSIT INSURANCE CORPORATION AS RECEIVER FOR PENN SQUARE BANK,N.A., NORTHERN TRUST COMPANY, THE, COMMERCIAL BANK,N.A., FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA CITY, THE, REPUBLICBANK DALLAS,N.A., CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPANY OF CHICAGO, HIBERNIA NATIONAL BANK IN NEW ORLEANS THE, BANK OF PENNSYLVAIA, FIDELITY BANK N A., MERCATILE NATIONAL BANK AT DALLAS COMMERCE BANK,, FIRST NATIONAL BANK OF CHICAGO, THE, BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION,, MANUFACTURERS HANOVER TRUST COMPANY reassignment FEDERAL DEPOSIT INSURANCE CORPORATION AS RECEIVER FOR PENN SQUARE BANK,N.A. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: CMI CORPORATION, CMI ENERGY CONVERSION SYSTEMS,INC., CMI INTERNATIONAL CORPORATION, CMI OIL CORPORATION, CRAMCO SPECIALTIES,INC., MACHINERY INVESTMENT CORPORATION, PANOPLY REINSURANCE COMPANY LIMITED, SOONER SCALES,INC.
Assigned to FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA CITY, THE reassignment FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA CITY, THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CIMOIL CORPORATION, CMI CORPORATION, CMI INTERNATIONAL CORPORATION, GRAMCO SPECIALITIES, INC., MACHINERY INVESTMENT CORPORATION, PANOPLY REINSURANACE COMPANY, LTD.
Assigned to FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA CITY, THE, BANK OF PENNSYLVANIA, FIRST NATIONAL BANK OF CHICAGO, BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION, FIDELITY BANK N.A., REPUBLICBANK DALLAS, N.A., MANUFACTURERS HANOVER TRUST COMPANY, COMMERCE BANK, MERCANTILE NATIONAL BANK AT DALLAS, COMMERCIAL BANK, N.A., CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPANY OF CHICAGO, NORTHERN TRUST COMPANY, THE reassignment FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA CITY, THE Assignors: CMI CORPORATION, CMI ENERGY CONVERSION SYSTEMS, INC., CMI INTERNATIONAL CORPORATION, CMIOIL CORPORATION, GRAMCO SPECIALITIES, INC., MACHINERY INVESTMENT CORPORATION, PANOPLY REINSURANCE COMPANY, LTD., SOONER SCALES, INC.
Assigned to FIRST INTERSTATE BANK OF OKLAHOMA, N.A. reassignment FIRST INTERSTATE BANK OF OKLAHOMA, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CMI CORPORATION, A CORP. OF OK
Assigned to CONGRESS FINANCIAL CORPORATION (SOUTHWEST) A CORP. OF TEXAS reassignment CONGRESS FINANCIAL CORPORATION (SOUTHWEST) A CORP. OF TEXAS SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CMI CORPORATION A CORP. OF OKLAHOMA
Assigned to CMI CORPORATION A CORP. OF OKLAHOMA reassignment CMI CORPORATION A CORP. OF OKLAHOMA RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BOATMEN'S FIRST NATIONAL BANK OF OKLAHOMA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/30Tamping or vibrating apparatus other than rollers ; Devices for ramming individual paving elements
    • E01C19/34Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight
    • E01C19/38Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight with means specifically for generating vibrations, e.g. vibrating plate compactors, immersion vibrators
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/29Rolling apparatus adapted to apply a rolling pressure less than its weight, e.g. roller finishers travelling on formrail combined with spread-out, strike-off or smoothing means; Rolling elements with controlled penetration or a controlled path of movement in a vertical plane, e.g. controlled by the formrails, by guides ensuring a desired configuration of the rolled surface
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/30Tamping or vibrating apparatus other than rollers ; Devices for ramming individual paving elements
    • E01C19/34Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight
    • E01C19/40Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight adapted to impart a smooth finish to the paving, e.g. tamping or vibrating finishers
    • E01C19/407Power-driven rammers or tampers, e.g. air-hammer impacted shoes for ramming stone-sett paving; Hand-actuated ramming or tamping machines, e.g. tampers with manually hoisted dropping weight adapted to impart a smooth finish to the paving, e.g. tamping or vibrating finishers with elements or parts partly or fully immersed in or penetrating into the material to act thereon, e.g. immersed vibrators or vibrating parts, kneading tampers, spaders

Definitions

  • a remote controller is positioned 2,084,068 6/1937 Vinton 404/119 such that the operator controls the transverse, pivotal 2.138,l03 l1/1938 lorgensen 404/118 X and rotational movement of surface finishers and au- 2,334,7l7 Long gers from a remote position wherein the finishing 2543966 3/1951 404/119 eration is observable via the operator.
  • a drive apparafn tus moving the surface finishers between the predeterl ir mined positions is connected to pivot the surface fin- 3,094,048 6/1963 Hudrs 404/96 h d h d f 1 3,251,281 5/1966 lannetti 404/120 F 6 t rotatmgy 3,270,634 9/1966 Borges 404/122 dflvmg the Surfaces finlshefs- 3,528,348 9/1970 Rowe 404/120 r 3,541,931 11/1970 Godberson 404/122 28 Clams 18 Draw F'gures x //0 I 50 30 4e 1 72 m 12 52 M F: 4?
  • This invention relates generally to improvements in apparatus for moving assemblies between predetermined positions and, more particularly, but not by way of limitation, to a method and an apparatus for finishing concrete surfaces or the like wherein a pair of surface finishers are movable transversely across the surface to be finished.
  • finishing machines of the type referred to above have included a drive mechanism to move the carriage over the surface to be finished.
  • the drive mechanism has consisted of a plurality of motor driven wheels, the wheels being drivingly supported on a portion of the finishing apparatus.
  • An object of the invention is to increase the efficiency of a surface finishing apparatus for finishing concrete surfaces or the like.
  • Another object of the invention is to provide a surface finishing apparatus wherein the surface to be finished is finishingly engaged by a surface finisher apparatus across substantially the entire transverse width of the surface.
  • a further object of the invention is to provide a more efficient means for moving a surface finisher apparatus between predetermined positions generally transversely over a surface to be finished.
  • a still further object of the invention is to provide a more efficient and economical apparatus for drivingly moving apparatus between predetermined positions.
  • Another object of the invention is to provide a finishing apparatus having more than one surface finisher, wherein each surface finisher sequentially engages the surface to be finished in a manner assuring that substantially the entire transverse width of the surface is finishingly engaged by a finisher member.
  • One other object of the invention is to provide a finishing apparatus capable of finishingly engaging the edges of a surface to be finished in a manner assuring the structural integrity of the finished surface.
  • a still further object of the invention is to provide an improved finishing apparatus wherein the operator controls the various finishing apparatus from a position wherein the surface being finished is operatorobservable.
  • One other object of the invention is to provide an improved control of the surface material of the surface being finished.
  • Yet another object of the invention is to provide a finishing apparatus which is economical in construction and operation.
  • Another object of the invention is to provide a more efficient and economical method for finishing concrete surfaces or the like wherein the surface is finishingly engaged across substantially the entire transverse width thereof.
  • FIG. I is a top elevational view of a finishing apparatus constructed in accordance with the present inventron.
  • FIG. 2 is a side elevational view of the finishing apparatus of FIG. 1.
  • FIG. 3 is an enlarged partially fragmentary, side elevational view of the finisher assembly of the finishing apparatus of FIG. 1, having portions thereof cut away to show the driving connection between the hydraulic motors and the surface finishers and to show the movable connection between the finisher assembly and the transverse frame assembly.
  • FIG. 4 is an enlarged, end elevational view of the fin isher assembly of FIG. 3, showing the end of the finisher assembly generally opposite the end thereof shown in FIG. 3, and having a portion thereof cut away to show the disposition of some of the apparatus supported on the finisher assembly.
  • FIG. 5 is a sectional view of the finisher assembly of FIGS. 3 and 4, showing the gearing connection between the chain and the finisher assembly, and the connection of the chain to the finisher assembly to pivot the finisher assembly to a first pivot position and to a second pivot position.
  • FIG. 6 is a partial diagrammatic, partial schematic view showing the connection between the chain and the hydraulic pump to provide power fluid to drive the various hydraulic motors on the finisher assembly and the connection of the control sensors to the chain drive to controllingly move the finisher assembly of the finishing apparatus of FIG. 1 between predetermined positions.
  • FIG. 7 is a partial sectional, partial schematic view showing the control connections between the chain drive, the power fluid supply and the control sensors of the finishing apparatus of FIG. 1 to control the movement of the finisher assembly between the predetermined positions.
  • FIG. 8 is a diagrammatic-schematic view showing the operational sequence of the surface finishers of the finishing'apparatus of FIG. 1.
  • FIG. 9 is a top elevational view of a modified finisher assembly, constructed similar to the finisher assembly of the finishing apparatus of FIG. 1, but having vibrators secured thereon and diagrammatically showing one preferred connection between the power supply and the vibrators.
  • FIG. 10 is an enlarged, end elevational view, similar to FIG. 4, but showing another modified finisher assembly.
  • FIG. 11 is a diagrammatical, top elevational view of the surface finishers and augers of the modified finisher assembly of FIG. 10.
  • FIG. 12 is an enlarged, partial end elevational view of yet another modified finisher assembly, similar to the modified finisher assembly of FIG. 10, but showing a pair of vibrators and vibrator support assembly, the surface finishers not being shown for the purpose of clarity.
  • FIG. 13 is an enlarged, partial top elevational view of a modified finishing apparatus, similar to the finishing apparatus of FIG. 1, but showing a final finish assembly attachable to the finishing apparatus of FIG. 1.
  • FIG. 14 is an enlarged, partial side elevational view of the modified finishing apparatus of FIG. 13.
  • FIG. 15 is a partial, enlarged perspective view of a modified slip form support for utilization with the finishing apparatus of FIG. 1.
  • FIG. 16 is a partial, enlarged side elevational view of the finishing apparatus of FIG. 1 showing a removable surface finisher member positioning assembly.
  • FIG. 17 is an enlarged, diagrammatical side elevational view showing a modified surface finisher disposition.
  • FIG. 18 is a diagrammatical, schematic view of a remote controller for utilization with the finishing apparatus of the present invention and, more particularly, the finishing apparatus of FIGS. 10, 11 and 12.
  • a finishing apparatus which generally includes a finisher assembly 12 movably supported on a transverse frame assembly 14, having a power end portion 16 and an adjustable end portion 18, such that the finisher assembly 12 is movable across the transverse frame assembly 14 in a first transverse direction 20, generally toward the adjustable end portion 18 of the transverse frame assembly 14, and in a second transverse direction 22 generally toward the power end portion 16 of the transverse frame assembly 14.
  • the finisher assembly 12 generally includes a first surface finisher 24, a second finisher 26 and an auger member 28, each of which are rotatingly 3 supported on a portion of the finisher assembly 12, in
  • the finishing apparatus 10 also includes four support assemblies 30, the support assemblies 30 being disposed generally at fourcorner supporting positions about the transverse frame assembly 14.
  • the support assemblies 30 are constructed and connected to the transverse frame assembly 14 to adjustably support the transverse frame assembly 14 in a predetermined horizontal plane in such a manner that the transverse frame assembly 14 extends generally transversely over a surface to be finished (the surface to be finished being shown in FIG. 2 and designated therein by the general reference numeral 32).
  • Two of the four support assemblies 30 are also connected on one end thereof to an endless track member 34 and the other two support assemblies 30 are connected to one other endless track member 36, for reasons to be made more apparent below.
  • the endless track member 36 is drivingly connected to a power unit 38, which is supported generally between the two adjacent support assemblies 30 near the power end portion 16 of the transverse frame assembly 14.
  • the power unit 38 is sized to provide the primary operating power for the finishing assembly 10, and is drivingly connected to the endless track member 36 to controllingly and rotatingly drive the endless track member 36 in a forward direction. and a reverse direction.
  • the power unit 38 thus provides the driving impetus to move the finishing apparatus 10 in a forward direction and in a reverse direction along the roadway.
  • the power unit 38 may be of a conventional design such as, for example, a diesel powered engine, and the construction and operation of such a power unit, and the various interconnecting components and operation thereof to drivingly connect the power unit 38 to the endless track member 36 are well-known in the art and a detailed description thereof is not required herein.
  • a first sensor assembly 40 is secured to one of the support assemblies 30, generally near the adjustable end portion 18 of the transverse frame assembly 14, and a second sensor assembly 42 is connected to one of the support assemblies 30, generally near the power end portion 16 of the transverse frame assembly 14.
  • the first sensor assembly 40 has a portion thereof which is disposed to sense a portion of the finisher assembly 12 and to actuatingly control the movement of the finisher assembly 12 in the first transverse direction
  • the second sensor assembly 42 has a portion thereof which is disposed to sense a portion of the finisher assembly 12 and to actuatingly control the movement of the finisher assembly 12 in the second transverse direction 22.
  • the first sensor assembly 40 and the second sensor assembly 42 define predetermined positions, the finisher assembly 12 being controllingly moved therebetween in a manner which will be described in detail below.
  • the finishing apparatus 10 also includes a first slip form 44 and a second slip form 46.
  • the first slip form 44 and the second slip form 46 are each adjustably secured to two of the support assemblies 30 via an adjustable member 48 which is reciprocatingly disposed in a stationary member 50.
  • the horizontal disposition of each slip form 44 and 46 is ad justably controlled via a hand crank 52 such that by turning the hand cranks 52 the operator can cause the first slip form 44 and the second slip form 46 connected thereto to be moved in a vertically downwardly and in a vertically upwardly direction.
  • Each slip form 44 and 46 is constructed to form one of the edges of the roadway being finished and to retain the surface material therebetween during the surface finishing operation, which will be described in greater detail below.
  • the finishing apparatus 10 which has been generally described above, and which will be described in greater detail below, is constructed to finishingly engage the surface to be finished 32 and to finish that surface to a predetermined specification.
  • the apparatus of the present invention will be described below, more particularly with respect to a finishing apparatus, it should be particularly noted that, in one aspect, the present invention contemplates an apparatus for moving hydraulically operated components between predetermined positions and providing operating power fluid therefor in a more efficient and more economical manner, as will become more apparent below.
  • a direction or a position referred to above and below as being vertically upwardly and vertically downwardly refers to a direction or a position in a plane generally perpendicular to the surface to be finished 32, for example.
  • a direction and a position referred to above and below as forward refers, more particularly, to a direction or a position moving generally from a finished portion of the surface toward an unfinished surface
  • a reverse direction or a position refers, more particularly, to a direction or a position generally opposite that described above with respect to a forward direction or a position.
  • the term lengthwise along the roadway will be used below to generally designate a movement or a direction generally along the length of the surface to be finished 32.
  • the term transversely is used above and below to designate a direction of movement or a position generally transverse to the length of the roadway or, in other words, a movementor a direction generally across the width of the roadway or the surface to be finished 32 generally between the edges thereof.
  • the finishing apparatus is utilized to finish surfaces of a roadway constructed of a concrete material in a faster, more efficient, and more positive manner.
  • the concrete is initially poured generally between the first slip form 44 and the second slip form 46, in a manner well-known in the art.
  • the finisher assembly 12 is actuated to sequentially move in a first transverse direction and in a second transverse direction 22 generally across the transverse width of the surface to be finished 32.
  • the auger member 28 will engage a portion of the unfinished surface material and provide an initial, rough finishing or smoothing prior to that portion being finishingly engaged by the first surface finisher 24 and the second surface face finisher 26 to provide a final, predetermined surface finish thereto.
  • the finisher assembly 12 is moved in a first transverse direction 20 and a second transverse direction 22 across the surface to be finished 32, the first surface finisher 24 and the second surface finisher 26 are sequentially pivoted into finishing engagement with the surface to be finished 32 in a controlled, predetermined manner so that the entire transverse width of the surface to be finished 32 generally between the first slip form 44 and the second slip form 46 is finishingly engaged, in a manner which will be described in greater detail below.
  • the transverse frame assembly 14 has a forward side 54 and a rearward side 56, as shown in FIG. 1 and 2.
  • the forward side 54 and the rearward side 56 each include a stationary structural member 58, one end of each stationary structural member 58 being securedly connected to one of the support assemblies 30, generally near the power end portion of the transverse assembly 14.
  • each stationary structural member 58 opposite the end thereof secured to one of the support assemblies 30, has a flange adaptor 60 secured thereto, as shown in FIG. 1 and 2.
  • Each flange adaptor 60 is constructed to cooperatingly provide the interconnection between each of the stationary structural members 58 and a movable structural member 62.
  • a flange adaptor 64 is securedly connected to one end of each movable structural member 62 and, in an assembled position as shown in FIGS. 1 and 2, each flange adaptor 60 is boltingly connected to the flange adaptor 64 of one of the movable structural members 62.
  • each side of the transverse frame assembly 14 is basically constructed utilizing a pair of boltingly connected structural members, as described above, the length of the transverse frame assembly 14, generally between the power end portion 16 and the adjustable end portion 18 thereof, can be easily, quickly and efficiently increased by adding like intermediate structural sections to the forward side 54 and the rearward side 56, generally between eact stationary structural member 58 and the adjoining movable structural member 62.
  • the only substantial modification required when increasing the length of the transverse frame assembly 14, as described above, would be to lengthen the chain utilized to drivingly and pivotingly move the finisher assembly 12.
  • Each support assembly 30 includes a housing 66 and a leg 68 which is reciprocatingly disposed therein. More particularly, one end of each leg 68 is connected to the endless track member 34 or 36 via a support structure 70, and each leg is hydraulically disposed in one of the housing 66.
  • each housing 66 and the respective leg 68 thereof basically comprises a hydraulic cylinder arrangement connected and controlled such that each leg 68 can be controllingly moved in a vertically outwardly or vertically inwardly direction with respect to the housing 66 connected thereto.
  • Each support assembly 30 is thus constructed to be of an independently variable length, such that the horizontal disposition of the transverse frame assembly 14 with respect to the endless track members 34 and 36 and with respect to the surface to be finished 32 is controllable via the four support assemblies 30.
  • each support assembly 30 or, in an alternate form, some of the support assemblies 30 can be controllingly connected to control sensor arms which are adapted to sense the position of the finishing apparatus 10 relative to a string-line, and automatically adjust the horizontal disposition of the transverse frame assembly 14 relative thereto. In this manner, the engagement of the finisher assembly 12 with the surface to be finished 32 is controllingly adjusted to maintain a predetermined grade and slope.
  • Control sensing arms and the cooperation and the interconnection thereof with the hydraulically actuated type support assemblies, such as the support assemblies 30, has been described in detail in US. Pat. No. 3,423,859, which is assigned to the assignee of the present invention, and therefore a detailed description of the interconnection and operation thereof is not required herein.
  • the first sensor assembly 40 and the second sensor 42 are each, more particularly, secured to one of the stationary members 50 via a support extension 72.
  • a first trip switch 74 and a second trip switch 76 are secured to each support extension 72.
  • Each support extension 72 is shaped and constructed to support one of the first trip switches 74 and one of the second trip switches 76 in a predetermined vertical plane and in a predetermined horizontal plane so that, in the assembled position of the finishing apparatus 10, as shown in FIGS.
  • the first trip switches 74 and the second trip switches 76 are each disposed to engage an actuating boss 78 formed on one end of the finisher assembly 12, when the finisher assembly 12 is moved to predetermined positions on the surface to be finished 32, for reasons and in a manner to be made more apparent below.
  • first trip switch 74 and the second trip switch 76 are disposed on the first sensor assembly 40 such that the actuating boss 78 of the finisher assembly 12 will initially, actuatingly engage a portion of the first trip switch 74 as the finisher assembly 12 is moved in a first transverse direction across the surface to be finished 32.
  • the first trip switch 74 and the second trip switch 76 are disposed on the second sensor assembly 42 such that the actuating boss 78 of the finisher assembly 12 will actuatingly, initially engage a portion of the first trip switch 74 of the second sensor assembly 42 as the finisher assembly 12 is moved in a second transverse direction 22 across the surface to be finished 32.
  • the first trip switch 74 of the first sensor assembly 40 and the first trip switch 74 of the second sensor assembly 42 are each connected to a control circuit to actuatingly slow the rate of travel of the finisher assembly 12 in the first transverse direction 20 and in the second transverse direction 22, and the second trip switch 76 ofthe first sensor assembly 40 and the second trip switch 76 of the second sensor assembly 42 are each connected to a control circuit to actuatingly reverse the direction of travel of the finisher assembly 12, for reasons and in a manner to be described in greater detail below.
  • Each support assembly disposed generally near the adjustable end portion 18 of the transverse frame assembly 14 is, more particularly, securedly and movably connected to an adjacent portion of the transverse frame assembly 14 via a frame connector portion 80.
  • one frame connector 80 is secured to one of the support assemblies 30, and one frame connector 80 is secured to the one other support assembly 30.
  • each frame connector 80 is generally U-shaped and constructed to supportingly receive an adjacent portion of the transverse frame assembly 14 (only the top portion of each frame connector 80 is shown in FIG. 1).
  • Each frame connector 80 is adjustably connected to a portion of the transverse frame assembly 14 via a plurality of rollers 82, each roller 82 being rollingly supported on one of the frame connectors 80, and each roller 82 havingv a portion thereof in rolling engagement with an adjacent portion of the transverse frame assembly 14 (only the top two rollers being shown in FIG. 1).
  • the forward side 54 of the transverse frame assembly 14 can be rollingly moved in the first transverse direction 20 and in the second transverse direction 22 relative to the support assembly 30 connected thereto, and the rearward side 56 of the transverse frame assembly 14 can also be rollingly moved in the first transverse direction 20 and the second transverse direction 22 relative to the support assembly 30 connected thereto.
  • the transverse width of the finishing apparatus 10 generally between the endless track member 34 and the endless track member 36 can be increased and decreased, respectively.
  • first slip form 44, the second slip form 46, the first sensor assembly 40 and the second sensor assembly 42 are each secured in a stationary position with respect to the support as sembly 30 connected thereto, the relative positions of the first sensor assembly 40, the second sensor assembly 42, the first slip form 44, and the second slip form 46 are maintained constant as the transverse width of the finishing apparatus 10 is adjustingly increased and decreased, in a manner as described above.
  • the finishing apparatus 10 can thus be quickly and easily adjusted to be utilized to finish roadways having varying transverse widths in a manner which substantially eliminates having to adjust any of the control apparatus associated with the finishing apparatus 10.
  • a platform 84 and a step platform 86 are securedly supported on a portion of the transverse frame assembly 14, generally near the power end portion 16 thereof.
  • the step platform 86 is positioned to assist the operator in gaining access to the platform 84 and in gaining access to an operator control seat 88 which is securedly connected to one of the support assemblies 30 and disposed generally near an operator control unit 90.
  • the operator control unit 90 contains the control actuating elements for the'finishing apparatus 10, and is constructed and adapted such that the operator can easily control, for example, the forward and reverse movement of the finishing apparatus 10, and the operation of the finisher assembly 12, in a manner which will become more apparent below.
  • a chain 92 is drivingly supported on a portion of the transverse frame assembly 14, and extends generally between the power end portion 16 and the adjustable end portion 18 thereof. More particularly, the chain 92 is drivingly supported on the transverse frame assembly 14 via a pair of gears (shown in FIG. 6), one gear being disposed generally near the adjustable end portion 18 and one gear being disposed generally near the power end portion 16, for reasons and in a manner to be described in greater detail below.
  • the chain 92 has a portion thereof which is connected to the finisher assembly 12 to move the finisher assembly 12 generally between predetermined positions on the transverse frame assembly 14 in a controlled manner and in a manner sequentially pivoting the first surface finisher 24 and the second surface finisher 26 into finishing engagement with the surface to be finished 32.
  • a portion of the chain 92 also engages a portion of the finisher assembly 12 to provide the driving impetus for a power fluid supply to rotatingly drive the first surface finisher 24 and the second surface finisher 26, in a manner which will be described in detail below.
  • the finisher assembly 12 is movably supported on the transverse frame assembly 14 to be moved generally back and forth between the power end portion 16 and the adjustable end portion 18 or, more particularly, between two predetermined positions as the first surface finisher 24 and the second surface finisher 26 sequentially and finishingly engage the surface to be finished 32.
  • the finisher assembly 12 includes a support frame 94 which is moveably connected to the transverse frame assembly 14 via a plurality of grooved wheels 96, each grooved wheel 96 being rollingly and bearingly supported on a portion of the support frame 94, as shown more clearly in FIGS. 1, 2 and 3.
  • a retaining wheel 98 is also rollingly and bearingly supported on a portion of the support frame 94, one retaining wheel 98 being disposed generally near each of the grooved wheels 96, and in a horizontal plane generally below the respective grooved wheel 96 (two of the grooved wheels 96 and the two respective retaining wheels 98 associated therewith which are disposed on one side of the support frame 94 are shown more clearly in FIGS. 4 and Each retaining wheel 98 has a resilient liner 100 bonded thereto and extending about the outer periphery thereof, for reasons which will be made more apparent below.
  • the two grooved wheels 96 on one side of the support frame 94 rollingly, supportingly, and retainingly engage a rail 102, which is secured to and extends generally along the rearward side 56 of the transverse frame assembly 14 generally between the power end portion 16 and the adjustable end portion 18 thereof.
  • the two grooved wheels 96 on the opposite side of the support frame 94 rollingly, supportingly, and retainingly engage a rail 104, which is secured to and extends generally along the forward side 54 of the transverse frame assembly 14 generally between the power end portion 16 and the adjustable end portion 18 thereof.
  • Each rail 102 and 104 thus extends transversely across substantially the entire width of the transverse frame assembly 14, and the rails 102 and 104 cooperate to provide a guide path for the finisher assembly 12 as the finisher assembly 12 is moved in the first transverse direction and the second transverse direction 22, during the operation of the finishing apparatus 10, as will be described in greater detail below.
  • Each rail 1102 and 104 is, more particularly, secured to one side of the transverse frame assembly 14 via a plurality of L-shaped brackets 108, as shown more clearly in FIG. 1.
  • a portion of each rail 102 and 104 is disposed generally within the grooved portion of the adjacent grooved wheels 96, and the outer periphery of each retaining wheel 98, formed by the resilient liners 100, retainingly engages a portion of one of the L- shaped brackets 108, as shown more clearly in FIG. 3.
  • the retaining wheels 98 thus engage a portion of the L-shaped brackets 108 to resiliently limit movement of the finisher assembly 12 in a vertically upwardly direction, during the operation of the finishing apparatus 10, as will be described in detail below.
  • first surface finisher 24 and the second surface finisher 26 are each bearingly and rotatingly supported on a portion of a rocker support arm 110 via a pair of support plates 112 and 114.
  • One end of each of the support plates 112 and 114 is secured to a portion of the rocker support arm 110, and the opposite end of each of the support plates 112 and 114 is constructed to bearingly and supportingly receive a portion of one of the shafts (not shown) extending through the first surface finisher 24 and the second surface finisher 26, respectively.
  • first surface finisher 24 and the second surface finisher 26 are each generally cylindrically shaped and have an outer periphery shaped to finishingly engage the surface to be finished 32.
  • the rocker support arm 110 is rotatingly and pivotally secured to the support frame 94 via shaft 115, and includes a base 116, having a first angled portion 118 and a second angled portion 120.
  • the first surface finisher 24 is, more particularly, rotatingly and bearingly secured to the first angle portion 118 of the base 116
  • the second surface finisher 26 is, more particularly, secured to the second angle portion of the base 116, for reasons which will be made more apparent below.
  • the base 116 of the rocker support arm 110 is, constructed such that, in the first pivot position of the finisher assembly 12 or, more particularly, the rocker support arm 110, the first angled portion 118 of the base 116 is disposed a distance vertically above the surface to be finished 32 and in a horizontal plane substantially coplanar with the surface to be finished 32. ln the first pivot position of the finisher assembly 12, as shown in FIG. 2, 3, 4 and 5, the second angled portion 120 is angularly oriented with respect to the surface to be finished 32, and extends generally angularly from the first angled portion 118 in a direction generally above or away from the surface to be finished 32.
  • the rocker support arm 110 is also constructed such that, in the second pivot position of the finisher assembly 12, the second angled portion 120 is disposed a distance vertically above the surface to be finished 32 and in a horizontal plane substantially coplanar with the surface to be finished 32. In the second pivot position of the finisher assembly 12, the first angled portion 118 is angularly disposed with respect to the surface to be finished 32 and extends generally angularly from the second angled portion 120 in a direction generally above or away from the surface to be finished 32.
  • the first angled portion 118 and the second angled portion 120 are thus, more particularly, constructed and disposed on the finisher assembly 12 such that, in the first pivot position of the finisher assembly 12, the first surface finisher 24 is disposed in finishing engagement with the surface to be finished 32 and the second surface finisher 26 is disposed in a horizontal plane a distance generally vertically above the surface to be finished 32. In the second pivot position of the finisher assembly 12, the second surface finisher 26 is disposed in finishing engagementwith the surface to be finished 32 and the first surface finisher 24 is disposed in a horizontal plane a distance generally vertically above the surface to be finished 32.
  • the auger member 28 is, more particularly, adjustably, rotatingly and bearingly supported on an auger frame 122.
  • An upper portion 124 of the auger frame 122 is secured to a lower portion of the support frame 94, as shown more clearly in FIG. 4, and an adjustable portion 126 of the auger frame 122 is adjustably secured to the upper portion 124 via a hand wheel 128.
  • the hand wheel 128 is connected to the adjustable portion 126 to move the auger member 128 in a vertically upwardly and vertically downwardly direction by rotating the hand wheel 128.
  • the depth of engagement of the auger member 28 with respect to the surface to be finished 32 can be controllingly adjusted, which may be desirable when finishing surfaces constructed of different materials or materials of differing constituencies.
  • the first surface finisher 24 and the second surface finisher 26 are rotatingly driven via a first finisher drive 130 and a second finisher drive 132, respectively, as shown in FIG. 1.
  • the first finisher drive 130 and the second finisher drive 132 are, in a preferred form, hydraulic motors, and the first finisher drive 130 and the second finisher drive 132 are each securedly mounted on one end portion of the rocker support arm 110, generally near one of the support plates 114, as shown more clearly in FIG. 3.
  • the first finisher drive 130 and the second finisher drive 132 are each gearingly connected to the first surface finisher 24 and the second surface finisher 26, respectively, to rotatingly drive the surface finisher 24 or 26 connected thereto, and, as shown in FIG. 3, the first finisher drive 130 has been removed from the finisher assembly 12 to more clearly indicate the driving connection between each finisher drive 130 and 132 and one of the surface finishers 24 and 26 connected thereto.
  • the second finisher drive I 132 has been removed from the. finisher assembly 12, for the purpose of clarity of description, it being under- :stood that the first finisher drive 130 is driving connected to the first surface finisher 24 in a manner similar to that shown in FIG. 3 with respect to the second finisher drive 132 and the second surface finisher 26.
  • the first finisher drive 130 and the second finisher drive 132 are each drivingly connected to the first surface finisher 24 or the second, surface finisher 26, respectively via a pair of gears 134 and 136, the gears 134 and 136 being gearingly interconnected via an endless chain 138, as shown in FIG. 3, with respect to the second surface finisher 26 and the second finisher drive 132.
  • the first finisher drive 130 is connected to the first surface finisher 24 to drivingly rotate the first surface finisher 24 in a rotational direction 140
  • the second finisher drive 132 is connected to the second surface finisher 26 to drivingly rotate the second surface finisher 26 in a rotational direction 142, as shown more clearly in FIGS. 2 and 3.
  • the direction of rotation 140 of the first surface finisher 24 is generally opposed to the direction of transverse movement of the finisher assembly 12 (the first transverse direction 20), during that portion of the operation of the finishing apparatus when the first surface finisher 24 is in finishing engagement with the surface to be finished 32.
  • the direction of rotation 142 of the second surface finisher 26 is generally opposed to the direction of transverse movement of the finisher assembly 12 (the second transverse direction 22), during that portion of the operation of the finishing apparatus 10 when the second surface finisher 26 is in finishing engagement with the surface to be finished 32.
  • each jaw assembly 144 and 146 includes a base member 148 and a jaw member 150, each jaw member 150 being pivotally secured to one of the base member 148 via a connecting pin 152.
  • Each jaw member 150 is constructed and connected to one of the base members 148, such that each jaw member 150 can be pivoted in a release direction 154 to releasingly position each jaw member 150 with respect to the base member 148 connected thereto, and such that each jaw member 150 can be pivoted in a lock direction 156 to securedly and lockingly position each jaw member 150 with respect to the base member 148 connected thereto.
  • each jaw member 150 has been pivoted in the lock direction 156 to a locking position, that is a position wherein each jaw member 150 lockingly engages the base member 148 pivotally connected thereto to securedly position a portion of the chain 92 therebetween.
  • each jaw member 150 will be positioned with respect to the base member 148 pivotally connected thereto such that a portion of the chain 92, generally near one end thereof, can be inserted generally between the base member 148 and the jaw member 150 or removed therefrom.
  • Each base member 148 is pivotally connected to a flange 158 via a connecting pin 160.
  • Each flange 158 is secured to a portion of the support frame 94 of the finisher assembly 12, such that the first jaw assembly 144 and the second jaw assembly 146 are each pivotable in a finisher engaging direction 162 and in a finisher disengaging direction 164, for reasons and in a manner which will be made more apparent below.
  • the first jaw assembly 144 and the second jaw assembly 146 are each connected to a portion of the rocker support arm via an adjustable connector 166. More particularly, one end of one of the adjustable connectors 166 is pivotally secured to one end of the base member 148 of the first jaw assembly 144 via a connecting pin 168, and the opposite end of that adjustable connector 166 is pivotally secured to the first angled portion 118 of the rocker support arm 110 via a connecting pin 170.
  • One end of the other adjustable connector 166 is pivotally secured to one end portion of the base member 148 of the second jaw assembly 146 via a connecting pin 172, and the opposite end of that adjustable connector 166 is pivotally secured to the second angled portion of the rocker support arm 118 via a connecting pin 174.
  • the first jaw assembly 144 and the second jaw assembly 146 and the adjustable connectors 166 pivotally connected thereto will sometimes be referred to below as a first pivot linkage 176 and a second pivot linkage 178, respectively, for the purpose ofclarity of description.
  • the chain 92 is disposed on the transverse frame assembly 14 and connected to the finisher assembly 12 or, more particularly, the first pivot linkage 176 and the second pivot linkage 178, and the first pivot linkage 176 and the second pivot linkage 178 are each connected to the rocker support arm 110 such that, as the chain 92 is driven in a first rotating direction 180, the second jaw assembly 146 is pullingly pivoted by the chain 92 in the finisher disengaging direction 164, thereby pivoting the rocker support arm 110 in a first pivot direction 184 via the pivoting interconnection between the second jaw assembly 146 and the rocker support arm 110 provided by the adjustable connector 166 therebetween.
  • the firstjaw assembly 144 will be pullingly pivoted in the finisher engaging direction 162 via the interconnection between the first jaw assembly 144 and the rocker support arm 110 provided by the adjustable connector 166 therebetween.
  • the first surface finisher 24 is pivotingly moved into finishing engagement with the surface to be finished 32 via the pivoting connection between the chain 94 and the rocker support arm 110 provided by the first pivot linkage 176 and the second pivot linkage 178.
  • This position of the finisher assembly 12, when the chain 92 is being driven in the first direction 180 is referred to generally above and below as the first pivot position of the finisher assembly 12, for the purpose of clarity of description.
  • the first pivot linkage 176 and the second pivot linkage 178 are also connected to the support frame 94 and to the rocker support arm 110, such that, as the chain 92 is driven in a second rotating direction 182, the rocker support arm 110 will be pivoted in a second pivot direction 186 to a position wherein the second surface finisher 26 finishingly engages the surface to be finished 32. More particularly, as the chain 92 is driven in the second rotating direction 182, the chain 92 will pullingly pivot the first jaw assembly 144 in the finisher disengaging direction 164, thereby pivoting the rocker support arm 110 in the second pivot direction 186 via the pivoting interconnection between the first jaw assembly 144 and the rocker support arm 110 provided by the adjustable connector 166 therebetween.
  • the pivoting of the rocker support arm 110 in the second pivot direction 186 will pullingly pivot the second jaw assembly 144 in the finisher engaging direction 164 via the pivoting interconnection between the second jaw assembly 146 and the rocker support arm 110 provided by the adjustable connector 166 therebetween.
  • the driving of the chain 92 in the second rotating direction 182 will thus cause the second surface finisher 26 to be pivotally moved into finishing engagement with the surface to be finished 32, and will pivotingly move the first surface finisher 24 to a position wherein the first surface finisher 25 is disposed in a horizontal plane a distance generally vertically above the surface to be finished 32.
  • This position of the finisher assembly 12, when the chain 92 is driven in the second rotating direction 182, is referred to generally above and below as the second pivot position of the finisher assembly 12, for the purpose of clarity of description.
  • a stop flange 188 having a first stop surface 190 and a second stop surface 192, is secured to a portion of the rocker support arm 110.
  • the stop flange 188 extends a distance generally vertically upwardly from the rocker support arm 116, and an upper portion of the stop flange 188 is disposed in a pivot aperture 194 formed in a portion of the support frame 94 of the finisher assembly 12.
  • a first stop pad 196 is secured to the support frame 94, generally near one end portion of the pivot aperture 194, and
  • a second stop pad 198 is secured to a portion of the support frame 94, generally near the end of the pivot aperture 194 opposite the end thereof having the first stop pad 196 secured thereto.
  • the stop flange 188, the pivot aperture 194 and the first and the second stop pad 196 and 198 comprise what is sometimes referred to below as a pivot positioning assembly 200."
  • the pivot positioning assembly 200 is thus constructed and disposed on the finisher assembly 12 such that, as the rocker support arm is pivoted in the first pivot direction 184, the first stop surface of the stop flange 188 will engage the first stop pad 196 to limit the pivotal movement of the rocker support arm 110 and positively position the rocker support arm 110 in the first pivot position thereof.
  • the pivot position assembly 200 is also constructed and disposed on the finisher assembly 12 such that, as the rocker support arm 110 is pivoted in the second pivot direction 186, the second stop surface 192 of the stop flange 188 will engage the second stop pad 198 to limit the pivoting movement of the rocker support arm 110 and positively position the rocker support arm 110 in the second pivot position thereof.
  • the pivot positioning assembly 200 thus provides a positive means of assuring that, in the first pivot position of the finisher assembly 12, the first surface finisher 24 is positively positioned in a predetermined horizontal plane to finishingly engage the surface to be finished 32 and a positive means of assuring that, in the second pivot position of the finisher assembly 12, the second surface finisher 26 is positively positioned in a predetermined horizontal plane to finishingly engage the surface to be finished 32.
  • a gear support frame 202 is centrally disposed in an upper portion of the finisher assembly 12 and is secured to a portion of the support frame 94.
  • An idler drive gear 204 is rotatingly and bearingly supported in a portion of the gear support frame 202, as shown more clearly in FIG. 5, and a pair of idler gears 206 and 208 are also bearingly and rotatingly supported in a portion of the gear support frame 204 via bearing supports 210 (the bearing supports 210 disposed on one side of the gear support frame 202 being shown more clearly in FIG. 4).
  • the idler gears 206 and 208 are disposed on opposite sides of the idler drive gear 204, and each idler gear 206 and 208 is disposed in a horizontal plane a distance generally vertically above the idler drive gear 204.
  • the idler gears 206 and 208 and the idler drive gear 204 are each constructed to gearingly engage a portion of the chain 92, during the operation of the finishing apparatus 10. More particularly, a portion of the chain 92 is in gearing engagement with an upper portion of each of the idler gears 206 and 208, and a portion of the chain 92 is in gearing engagement with a lower portion of the idler drive gear 204, as shown in FIG. 5.
  • the two idler gears 206 and 208 are thus disposed with respect to the idler drive gear 204 to maintain the gearing engagement between the chain 92 and the idler drive gear 204 during the operation of the finishing apparatus 10, as will be described in greater detail below.
  • the idler drive gear 204 is drivingly connected to a gear 212 via a shaft 214, the shaft 214 being bearingly and rotatingly supported in a portion of the gear support frame 202.
  • the gear 212 is drivingly connected to a reversible hydraulic pump 216 via an endless chain belt 218 which connects the gear 212 to a pump input shaft 220 through a gear 222.
  • the driving impetus for the reversible hydraulic pump 216 is provided by the driving rotational movement of the idler drive gear 204 which is connected to the pump input shaft 220 via the interconnecting gear arrangement of the gears 212 and 222 and the endless chain belt 218 therebetween.
  • both sides of the reversible hydraulic pump 216 are connected to a power fluid reservoir 224 via a pair of inlet conduits 226 and 228.
  • a check valve 230 is disposed in each of the inlet conduits 226 and 228, generally between the power fluid reservoir 224 and the reversible hydraulic pump 216, and oriented therein to allow the flow of fluid generally from the reservoir 224 toward the reversible pump 216 and to check the flow of fluid generally from the reversible pump 216 toward the reservoir 224, for reasons which will become more apparent below.
  • both sides of the reversible hydraulic pump 216 are also connected to the inlet of the second finisher drive 132 via a pair of outlet conduits 232 and 234.
  • a check valve 236 is disposed in each of the outlet conduits 232 and 234, and each check valve 236 is oriented in the respective outlet conduit 232 and 234 to allow the flow of power fluid generally from the reversible hydraulic pump 216 toward the second finisher drive 132 and to check the flow of power fluid generally in the opposite direction, for reasons which will be made more apparent below.
  • the outlet or discharge side of the second finisher drive 132 is fluidically connected to the inlet side of the first finisher drive 130 via an interconnecting conduit 237, and the outlet of the first finisher drive 130 is fluidically connected to the inlet of the auger hydraulic motor 238 via an interconnecting conduit 240.
  • the first finisher drive 130, the second finisher drive 132 and the auger hydraulic motor 238 are thus connected in fluidic series, and the outlet of the auger hydraulic motor 238 is fluidically connected to the reservoir 224 via a conduit 242.
  • first finisher drive 130 and the second finisher drive 132 are each, in a preferred form, hydraulic motors
  • first finisher drive 130 is shown in FIG. 6 and sometimes designated below as the first finisher hydraulic motor 130
  • second finisher drive 132 is shown in FIG. 6 and sometimes designated below as the second finisher hydraulic motor 132, for the purpose of clarity of description.
  • the conduit 242 is fluidically connected to the inlet of the second finisher drive 132 via a bypass conduit 244.
  • a check valve 246 is interposed in the bypass condult 244, and is oriented therein to bypass the flow of power fluid in a direction generally from the auger hydraulic motor 238 to the inlet of the second finisher drive 132, for reasons which will be made more apparent below.
  • the chain 92 is, more particularly, rotatingly supported and driven via a pair of gears 248 and 250.
  • the gear 248 is rotatingly and bearingly supported on a portion of the transverse frame assembly 14, genrally near the adjustable end portion 18 thereof
  • the gear 250 is rotatingly supported on a portion of the transverse frame assembly 14, generally near the power end portion 16 thereof.
  • the gear 250 is connected to a chain drive 252 via a shaft 254.
  • the chain drive 252 is constructed to rotatingly drive the gear 250, in a controlled manner, to drive the chain 92 in the first direction and in the second direction 182, as will be described in greater detail below.
  • the first sensor assembly 450 and the second sensor assembly 42 are each connected to the chain drive 252, such that the first trip switches 74 and the second trip switches 76, of the first sensor assembly 40 and the second sensor assembly 42, each provide an actuating signal to control the chain drive 252 or, in other words, to control the direction of movemnt of the chain 92, in a manner which will be described in greater detail below.
  • the hydraulic and electric control circuit which controlling interconnects the chain drive 252, the first sensor assembly 40, and the second sensor assembly 42 is schematically and diagramatically shown in greater detail in FIG. 7. As shown in FIG.
  • control components of the finishing apparatus 10 basically comprise a hydraulic motor 256, which is drivingly connected to the shaft 254 to rotatingly drive the chain 92; a pump 258, which is fluidically connected to the hydraulic motor 256; and a relief valve 260, a variable resistance valve 262 and a spring centered, threeposition, four-way solenoid valve 264, each of which are interpsoed generally between the pump 258 and the hydraulic motor 256.
  • One side of the pump 258 is connected to a fluid reservoir 268 via a conduit 270, and the other side of the pump 258 is connected to a port 272 of the relief valve 260 via a pair of conduits 274 and 276.
  • the conduits 274 and 276 are each connected to a port 278 in the variable resistance valve 262 via a commonly connected conduit 280.
  • one side of the pump 258 is connected to the relief valve 260 and to the variable resistance valve 262 via the conduits 274, 276, and 280, for reasons which will become more apparent below.
  • a port 282 in the relief valve 260 is connected'to the solenoid valve 264 via a pair of conduits 284 and 286, and a port 288 in the variable resistance valve 262 is connected to the conduits 284 and 286 via a conduit 290.
  • the port 282 of the relief valve 260 and the port 288 of the variable resistance valve 262 are thus each connected to the solenoid 264, for reasons which will be made apparent below.
  • the solenoid valve 264 has a deenergized position 292, a first energized position 294 and a second energized position 296.
  • the conduit 286 is connected to the fluid reservoir 268 through the solenoid valve 262 via a conduit 298.
  • the solenoid valve 264 is connected to one side of the hydraulic 'motor 256 via a conduit 300, and the solenoid valve 264 is connected to the other side of the hydraulic motor 256 via a conduit 302. Thus, in the first energized position 294 of the solenoid valve 264,
  • conduits 286 and 300 are in fluidic communication and, in the second energized position 296 of the solenoid valve 264, the conduits 286 and 302 are in fluidic communication, for reasons to be made apparent below.
  • One coil in the solenoid valve 264 is connected to an energizing power source 304 via a pair of conductors 306 and 308.
  • the second trip switch 76 of the first sensor assembly 40 is interposed between the conductors 306 and 308 and, in the open position of the second trip switch 76, as shown in FIG. 7, the electrical continuity is interrupted between the power source 304 and the one coil of the solenoid valve 264.
  • the other coil of the solenoid valve 264 is connected to the energizing power source 304 via a pair of conductors 310 and 312.
  • the second trip switch 76 of the second sensor assembly 42 is interposed between the conductors 310 and 312 and, in the open position of the second trip switch 76, as shown in FIG. 7, the electrical continuity is interrupted between the power source 304 and the one coil of the solenoid valve 264.
  • a latching relay network 313 is connected in electrical parallel with the second trip switch 76 of the first sensor assembly 40 and in electrical parallel with the second trip switch 76 of the second sensor assembly 42.
  • the latching relay network 313 comprises a predetermined number of relays and holding coils constructed and connected such that when the second trip switch 76 of the first sensor assembly 40 or the second sensor assembly 42 is actuated to the closed position, thereby energizing one of the coils of the solenoid valve 264, the latching relay network 313 holds the electrical continuity thus established between the power source 304 and the energized coil of the solenoid valve 264 until the second trip switch 76 of the first sensor assembly 40 or the second sensor assembly 42 is subsequently actuatingly closed.
  • the latching relay network 313 maintains the solenoid 264 in the first energized position 284 until such time as the second trip switch 76 of the second sensor assembly 42 is closed.
  • the latching rellay network 313 maintains the solenoid valve 264 in the second energized postion 296 until such time as the second trip switch 76 of the first sensor assembly 40 is once again actuated, during the operation of the finishing apparatus 10, for reasons which will be made apparent below.
  • Relay networks of the type functionally described above are well known in the art and detailed description of the various components and the interconnections therebetween is not required herein.
  • a charge pump 314 is connected to a port 316 of the variable resistance valve 262 via a conduit 318.
  • the suction or inlet side of the charge pump 314 is connected to a power fluid supply (not shown).
  • An orifice 320 and a solenoid valve 322 are each interposed in the conduit 318 generally between the charge pump 314 and the port 316 ofthe variable resistance valve 262. As shown in FIG. 7, the solenoid valve 322 is in a de-energized position and, in that position, the port 316 is connected to the reservoir 268 through the solenoid valve 322.
  • the coil in the solenoid valve 322 is connected to the energizing power source 304 via a conductor 324.
  • the first trip switch 74 of the first sensor assembly 40 and the second sensor assembly 42 are each interposed in the conductor 324, generally between the solenoid valve 322 and the energizing power source 304, the first trip switch 74 of the first sensor assembly 40 and the second sensor assembly 42 being disposed in electrical parallel, as shown in FIG. 7.
  • a port 326 formed in the relief valve 260 is connected to the fluid reservior 268 via a conduit 328, and a port 330 formed in the variable resistance valve 262 is connected to the fluid reservoir 268 via a conduit 332.
  • the relief valve 260 includes a valve member 334 which is slidingly disposed in a chamber 336 of a valve body 338.
  • a bias spring 340 is disposed in a portion of the chamber 336 in biasing engagement with a portion of the valve member 334 of the relief valve 260 to bias the valve member 334 to a spring biased position as shown in FIG. 7.
  • the valve member 344 is disposed therein such that the ports 272 and 362 are not in fluidic communication.
  • An opening 342 is formed in a portion of the valve member 334.
  • a portion of the opening 342 communicates with the port 272, the opening 342 being shaped such that fluid entering the relief valve 260 via the port 272 will bias the valve member 334 in a direction generally opposed to the biasing force of the bias spring 340.
  • a portion of the opening 342 generally adjacent to the outer periphery of the valve member 334 is shaped to provide fluidic communication between the port 272 and the port 326 when the relief valve has been biased to a predetermined position by the pressure of the fluid entering the port 272.
  • valve member 334 when the pressure of the fluid entering the relief valve 260 via the port 272 reaches a predetermined actuating pressure level, the valve member 334 is biased by the fluid to a relief position wherein the port 272 and the port 326 are in fluidic communication via a portion of the opening 342, thereby establishing fluidic communication between the conduit 276 and the fluid reservoir 268, for reasons and in a manner to made more apparent below.
  • the variable resistance valve 262 includes a valve member 344 which is slidingly disposed in a chamber 346 formed in a valve body 348.
  • a bias spring 350 is disposed in a portion of the chamber 346 of the variable resistance valve 262, and a portion of the bias spring 350 biasingly engages the valve member 344 to a spring biased position, as shown in FIG. 7.
  • An opening 352 is formed in a portion of the valve member 344, the opening 352 being shaped to provide fluidic communication between the port 278 and the port 288 of the variable resistance valve 262 in the spring biased position of the variable resistance valve 262.
  • variable resistance valve 262 and, more particularly, the valve member 344 disposed therein, is constructed such that fluid entering the variable resistance valve 262 via the port 316 will bias the valve member 344 in a direction generally opposed to the biasing force of the bias spring 350.
  • the opening 352 formed through the valve member 344 is shaped such that as the valve member 344 is biased in a direction generally opposed to bias spring 350, fluidic communication between the ports 278 and 288 will become increasingly restricted, thereby increasing the pressure drop across the variable resistance valve 262 generally between the conduit 280 and the conduit 290, for reasons which will be made more apparent below.
  • the chain drive 252, the first sensor assembly 40 and the second assembly 42 are each connected to the finishing apparatus to control the movement of the finisher assembly 12 in the first transverse direction and in the second transverse direction 22 and the controllingly pivot the finisher assembly 12 to the first pivot position when the finisher assembly 12 reaches one predetermined position and the pivot the finisher assembly 12 to the second pivot position when the finisher assembly 12 reaches one other predetermined position.
  • the predetermined positions are, more particularly, defined by the first slip form 44 and the second slip form 46, and the control functions mentioned above are thus particularly adapted to move the finisher assembly 12 in the first transverse direction 20 and in the second transverse direction 22 and to controllingly pivot the finisher assembly 12 to the first pivot position and the second pivot position in such a manner that the first surface finisher 24 and the second surface finisher 26 each cooperate to finishingly engage the surface to be finished 32 across substantially the entire transverse width thereof.
  • FIG. 8 A preferred arrangement of the control functions, mentioned above, is diagrammatically shown in FIG. 8 and, for the purpose of clarity of description, the various control positions of the finisher assembly 12 during the operation of the finisher apparatus 10 are described below with reference to the center lines of the first surface finisher 24 and the second surface finisher 26, the center lines being disposed in a horizontal plane generally coplanar with the surface to be finished' 32. It should also be noted that, as diagrammatically shown in FIG. 8, the finishing apparatus 10 is moving in a forward direction 354, and finishingly engaging the surface to be finished 32 generally between the first slip form 44 and the second slip form 46.
  • the finisher assembly 12 When the finisher assembly 12 is being moved in a first transverse direction 20, the first surface finisher 24 is finishingly engaging the surface to be finished 32, and the second surface finisher 26 is disposed a distance generally vertically above the surface to be finished 32.
  • the first sensor assembly 40 is disposed with respect to the finisher assembly 12, such that when the first surface finisher 24 has been moved to a transition actuating position, generally-designated in FIG. 8 by the reference numeral 356, the actuating boss 78 of the finisher assembly 12 will actuatingly enage the first trip switch 74, thereby causing the rate at which the chain 92 is being driven in a first rotating direction 180 to linearly decrease.
  • the function of the various control components connected to the first trip switch 74 to lin- 7 early decrease the rate at which the chain 92 is driven will be described in greater detail below.
  • the finisher assembly 12 will continue to move in the first transverse direction 20 through the transition actuating position 356, to a position wherein the first surface finisher 24 is disposed in a reverse actuating position, designated in FIG. 8 by the general reference numeral 358.
  • the first sensor assembly 40 is disposed with respect to the finisher assembly 12 such that, when the first surface finisher 24 is moved to the reverse actuating position 358, the actuating boss 78 of the finisher assembly 12 will actuatingly engage the second trip switch 78 of the first sensor assembly 40.
  • the second trip switch 76 is connected to the chain drive 252 in such a manner that, when the second trip switch 76 is actuatingly engaged by the actuating boss 78, the driving impetus provided by the chain drive 252 will be reversed, thereby driving the chain 92 in the second rotating direction 182.
  • the reversing of the driving impetus by the chain drive 252 will cause the finisher assembly 12 to be pivoted to the second pivot position and will drivingly move the finisher assembly 12 in the second transverse direction 22 across the surface to be finished 32.
  • the first surface finisher 24 is disposed a predetermined transverse distance from the first slip form 44 when the first surface finisher 24 is disposed in the reverse actuating position 358.
  • the second surface finisher 26 is disposed on the finisher assembly 12 such that, when the first surface finisher 24 is moved to the reverse actuating position 358, the second surface finisher 26 is disposed in a predetermined horizontal plane g'e neralIy above the first slip form 44. More particularly, the second surface finisher 26 is disposed on the finisher assembly 12 such that, when the finisher assembly 12 is pivoted to the second pivot position, the second surface finisher 26 is moved into an initial surface engaging position, designated in FIG.
  • the second surface finisher 26 is disposed such that the center lines generally therethrough intersect at a position generally over the first slip form 44, for reasons which will be made more apparent below.
  • the finisher assembly 12 After the finisher assembly 12 has been pivoted to the second pivot position and the finisher assembly begins to move in the second transverse direction 22, the actuating boss 78 will be moved from engagement with the first trip switch 74 and the second trip switch 76 of the first sensor assembly 40.
  • the finishing apparatus 10

Abstract

A method and apparatus for finishing concrete surfaces or the like having a first and a second surface finisher transversely movable between predetermined positions across the surface to be finished, pivotally movable into sequential engagement with the surface to be finished, and a pair of augers having a portion rotatingly supported between the first and the second surface finishers, the surface finishers angularly oriented in a vertical plane such that the forward ends thereof are disposed slightly below the horizontal plane of the finished surface. Vibrators are disposed near the slip forms, and a vibrator is angularly and pivotally disposed in the surface to be finished near each surface finisher. A remote controller is positioned such that the operator controls the transverse, pivotal and rotational movement of surface finishers and augers from a remote position wherein the finishing operation is observable via the operator. A drive apparatus moving the surface finishers between the predetermined positions is connected to pivot the surface finishers and provide the driving impetus for rotatingly driving the surfaces finishers.

Description

O United States Patent 1191 1111 3,870,427
Allen Mar. 11, 1975 SURFACE FINISHING METHOD AND APPARATUS Primary Examiner-Nile C. Byers, Jr. [75] Inventor: Thomas E. Allen, Mustank, Okla. Attorney Agent or FlrmDunlap & Coddmg [73] Assignee: CMI Corporation, Oklahoma City, [57] ABSTRACT Okla. A method and apparatus for finishing concrete sur- Flledl y 1972 faces or the like having a first and a second surface [211 APPL NC: 275,232 finisher transversely movable between predetermined POSlIlOl'lS across the surface to be finished, prvotally movable into sequential engagement with the surface U-S. CI. to be finished and a pair of angers having a e -[ion Cl. rotatingly upported between the first and the econd Field of Search 404/96, 1 1 101, surface finishers, the surface finishers angularly ori- 404/105, 118, 119, 120, 2 ented in a vertical plane such that the forward ends thereof are disposed slightly below the horizontal References Cited plane of the finished surface. Vibrators are disposed UNITED STATES PATENTS near the slip forms, and a vibrator is angularly and piv- 9 1.467,243 9/1923 Fitzgerald 404/98 Otally disposed in the surface to be finished ff- 1,987,398 l/1935 Gardiner 404/101 surface finisher. A remote controller is positioned 2,084,068 6/1937 Vinton 404/119 such that the operator controls the transverse, pivotal 2.138,l03 l1/1938 lorgensen 404/118 X and rotational movement of surface finishers and au- 2,334,7l7 Long gers from a remote position wherein the finishing 2543966 3/1951 404/119 eration is observable via the operator. A drive apparafn tus moving the surface finishers between the predeterl ir mined positions is connected to pivot the surface fin- 3,094,048 6/1963 Hudrs 404/96 h d h d f 1 3,251,281 5/1966 lannetti 404/120 F 6 t rotatmgy 3,270,634 9/1966 Borges 404/122 dflvmg the Surfaces finlshefs- 3,528,348 9/1970 Rowe 404/120 r 3,541,931 11/1970 Godberson 404/122 28 Clams 18 Draw F'gures x //0 I 50 30 4e 1 72 m 12 52 M F: 4? M 44 78 I52 54 74 40 55 2 94 m /02 I08 52 40- M 1 l E. 84 I i 54 i i i 92 34 i l 1 I I08 1 194 w 104 so 104 52 5a 42 192 I? 2 as 54 a0 8 23 52" 66 4 378 are FATENTEU 1 I 5 SHEET 2 [If 9 PATENTED NARI 1 I975 SHEET 5 BF 9 ml h 3 NQN T w Q mm 36 n r r QM Q g ,r QN a? 9% PATENTEB NARI 1 I975 sum 6 0f 9 PATENTEDHARI 1 I975 1870,42?
SHEET 7 0F 9 JP /0a HF m1 PATENTEDHARI 1197s 7 Y 3.870.427
sum 8 or 9 SURFACE FINISHING METHOD AND APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to improvements in apparatus for moving assemblies between predetermined positions and, more particularly, but not by way of limitation, to a method and an apparatus for finishing concrete surfaces or the like wherein a pair of surface finishers are movable transversely across the surface to be finished.
2. Description of the Prior Art In the past there have been various types of apparatus constructed to effect a predetermined surface finish to roadways constructed of a concrete material or the like. The concrete has been generally poured between two slip forms, and the apparatus has then been moved into finishing engagement with the concrete.
There have been constructed, inthe past, some finishing machines having a carriage member transversely movable across the surface wherein a rotating finishing member was secured to a portion of the carriage member. In one instance, the axis of rotation of the finishing member was angularly oriented with respect to the longitudinal axis of the slab or, in other words, with respect to the direction of travel of the machine. A surface finisher of this type was disclosed in the U.S. Pat. No. 3,541,93l, issued to Godbersen, this patent disclosing a pair of finishing members, in one embodiment. The U.S. Pat. No. 3,450,011, issued to Godbersen, disclosed a similar type of surface finishing apparatus.
Some of the finishing machines of the type referred to above have included a drive mechanism to move the carriage over the surface to be finished. In some instances, the drive mechanism has consisted of a plurality of motor driven wheels, the wheels being drivingly supported on a portion of the finishing apparatus.
Some ofthe salient problems which have existed with respect to apparatus constructed to finish concrete surfaces or the like have been to construct a finishing apparatus capable of finishing substantially the entire transverse width of the surface generally between the two slip forms, and to control and monitor the surface finish being effected.
SUMMARY OF THE INVENTION An object of the invention is to increase the efficiency of a surface finishing apparatus for finishing concrete surfaces or the like.
Another object of the invention is to provide a surface finishing apparatus wherein the surface to be finished is finishingly engaged by a surface finisher apparatus across substantially the entire transverse width of the surface.
A further object of the invention is to provide a more efficient means for moving a surface finisher apparatus between predetermined positions generally transversely over a surface to be finished.
A still further object of the invention is to provide a more efficient and economical apparatus for drivingly moving apparatus between predetermined positions.
Another object of the invention is to provide a finishing apparatus having more than one surface finisher, wherein each surface finisher sequentially engages the surface to be finished in a manner assuring that substantially the entire transverse width of the surface is finishingly engaged by a finisher member.
One other object of the invention is to provide a finishing apparatus capable of finishingly engaging the edges of a surface to be finished in a manner assuring the structural integrity of the finished surface.
A still further object of the invention is to provide an improved finishing apparatus wherein the operator controls the various finishing apparatus from a position wherein the surface being finished is operatorobservable.
One other object of the invention is to provide an improved control of the surface material of the surface being finished.
Yet another object of the invention is to provide a finishing apparatus which is economical in construction and operation.
Another object of the invention is to provide a more efficient and economical method for finishing concrete surfaces or the like wherein the surface is finishingly engaged across substantially the entire transverse width thereof.
Other objects and advantages of the invention will be evident from the following detailed description when read in conjunction with the accompanying drawings which illustrate the various embodiments of the inventron.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a top elevational view ofa finishing apparatus constructed in accordance with the present inventron.
FIG. 2 is a side elevational view of the finishing apparatus of FIG. 1.
FIG. 3 is an enlarged partially fragmentary, side elevational view of the finisher assembly of the finishing apparatus of FIG. 1, having portions thereof cut away to show the driving connection between the hydraulic motors and the surface finishers and to show the movable connection between the finisher assembly and the transverse frame assembly.
FIG. 4 is an enlarged, end elevational view of the fin isher assembly of FIG. 3, showing the end of the finisher assembly generally opposite the end thereof shown in FIG. 3, and having a portion thereof cut away to show the disposition of some of the apparatus supported on the finisher assembly.
FIG. 5 is a sectional view of the finisher assembly of FIGS. 3 and 4, showing the gearing connection between the chain and the finisher assembly, and the connection of the chain to the finisher assembly to pivot the finisher assembly to a first pivot position and to a second pivot position.
FIG. 6 is a partial diagrammatic, partial schematic view showing the connection between the chain and the hydraulic pump to provide power fluid to drive the various hydraulic motors on the finisher assembly and the connection of the control sensors to the chain drive to controllingly move the finisher assembly of the finishing apparatus of FIG. 1 between predetermined positions.
FIG. 7. is a partial sectional, partial schematic view showing the control connections between the chain drive, the power fluid supply and the control sensors of the finishing apparatus of FIG. 1 to control the movement of the finisher assembly between the predetermined positions.
FIG. 8 is a diagrammatic-schematic view showing the operational sequence of the surface finishers of the finishing'apparatus of FIG. 1.
FIG. 9 is a top elevational view of a modified finisher assembly, constructed similar to the finisher assembly of the finishing apparatus of FIG. 1, but having vibrators secured thereon and diagrammatically showing one preferred connection between the power supply and the vibrators.
FIG. 10 is an enlarged, end elevational view, similar to FIG. 4, but showing another modified finisher assembly.
FIG. 11 is a diagrammatical, top elevational view of the surface finishers and augers of the modified finisher assembly of FIG. 10.
FIG. 12 is an enlarged, partial end elevational view of yet another modified finisher assembly, similar to the modified finisher assembly of FIG. 10, but showing a pair of vibrators and vibrator support assembly, the surface finishers not being shown for the purpose of clarity.
FIG. 13 is an enlarged, partial top elevational view of a modified finishing apparatus, similar to the finishing apparatus of FIG. 1, but showing a final finish assembly attachable to the finishing apparatus of FIG. 1.
FIG. 14 is an enlarged, partial side elevational view of the modified finishing apparatus of FIG. 13.
FIG. 15 is a partial, enlarged perspective view of a modified slip form support for utilization with the finishing apparatus of FIG. 1.
FIG. 16 is a partial, enlarged side elevational view of the finishing apparatus of FIG. 1 showing a removable surface finisher member positioning assembly.
FIG. 17 is an enlarged, diagrammatical side elevational view showing a modified surface finisher disposition.
FIG. 18 is a diagrammatical, schematic view of a remote controller for utilization with the finishing apparatus of the present invention and, more particularly, the finishing apparatus of FIGS. 10, 11 and 12.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings in general, and the FIGS. 1 and 2, in particular, shown therein and designated by the general reference character 10 is a finishing apparatus which generally includes a finisher assembly 12 movably supported on a transverse frame assembly 14, having a power end portion 16 and an adjustable end portion 18, such that the finisher assembly 12 is movable across the transverse frame assembly 14 in a first transverse direction 20, generally toward the adjustable end portion 18 of the transverse frame assembly 14, and in a second transverse direction 22 generally toward the power end portion 16 of the transverse frame assembly 14. The finisher assembly 12 generally includes a first surface finisher 24, a second finisher 26 and an auger member 28, each of which are rotatingly 3 supported on a portion of the finisher assembly 12, in
a manner to be described in greater detail below.
As shown more clearly in FIG. 1, the finishing apparatus 10 also includes four support assemblies 30, the support assemblies 30 being disposed generally at fourcorner supporting positions about the transverse frame assembly 14. The support assemblies 30 are constructed and connected to the transverse frame assembly 14 to adjustably support the transverse frame assembly 14 in a predetermined horizontal plane in such a manner that the transverse frame assembly 14 extends generally transversely over a surface to be finished (the surface to be finished being shown in FIG. 2 and designated therein by the general reference numeral 32). Two of the four support assemblies 30 are also connected on one end thereof to an endless track member 34 and the other two support assemblies 30 are connected to one other endless track member 36, for reasons to be made more apparent below.
The endless track member 36 is drivingly connected to a power unit 38, which is supported generally between the two adjacent support assemblies 30 near the power end portion 16 of the transverse frame assembly 14. The power unit 38 is sized to provide the primary operating power for the finishing assembly 10, and is drivingly connected to the endless track member 36 to controllingly and rotatingly drive the endless track member 36 in a forward direction. and a reverse direction. The power unit 38 thus provides the driving impetus to move the finishing apparatus 10 in a forward direction and in a reverse direction along the roadway. The power unit 38 may be of a conventional design such as, for example, a diesel powered engine, and the construction and operation of such a power unit, and the various interconnecting components and operation thereof to drivingly connect the power unit 38 to the endless track member 36 are well-known in the art and a detailed description thereof is not required herein.
A first sensor assembly 40 is secured to one of the support assemblies 30, generally near the adjustable end portion 18 of the transverse frame assembly 14, and a second sensor assembly 42 is connected to one of the support assemblies 30, generally near the power end portion 16 of the transverse frame assembly 14. The first sensor assembly 40 has a portion thereof which is disposed to sense a portion of the finisher assembly 12 and to actuatingly control the movement of the finisher assembly 12 in the first transverse direction 20, and the second sensor assembly 42 has a portion thereof which is disposed to sense a portion of the finisher assembly 12 and to actuatingly control the movement of the finisher assembly 12 in the second transverse direction 22. In one sense, the first sensor assembly 40 and the second sensor assembly 42 define predetermined positions, the finisher assembly 12 being controllingly moved therebetween in a manner which will be described in detail below.
As shown in FIG. 1 and 2, the finishing apparatus 10 also includes a first slip form 44 and a second slip form 46. The first slip form 44 and the second slip form 46 are each adjustably secured to two of the support assemblies 30 via an adjustable member 48 which is reciprocatingly disposed in a stationary member 50. The horizontal disposition of each slip form 44 and 46 is ad justably controlled via a hand crank 52 such that by turning the hand cranks 52 the operator can cause the first slip form 44 and the second slip form 46 connected thereto to be moved in a vertically downwardly and in a vertically upwardly direction. Each slip form 44 and 46 is constructed to form one of the edges of the roadway being finished and to retain the surface material therebetween during the surface finishing operation, which will be described in greater detail below.
The finishing apparatus 10 which has been generally described above, and which will be described in greater detail below, is constructed to finishingly engage the surface to be finished 32 and to finish that surface to a predetermined specification. Although the apparatus of the present invention will be described below, more particularly with respect to a finishing apparatus, it should be particularly noted that, in one aspect, the present invention contemplates an apparatus for moving hydraulically operated components between predetermined positions and providing operating power fluid therefor in a more efficient and more economical manner, as will become more apparent below.
It should be initially noted that the various directions of movement and the relative positions of the various components and assemblies of the finishing apparatus 10, as generally described above and as will be described in greater detail below, are, more particularly, described with reference to a horizontal plane formed by the surface to be finished 32. Thus, a direction or a position referred to above and below as being vertically upwardly" and vertically downwardly refers to a direction or a position in a plane generally perpendicular to the surface to be finished 32, for example. A direction and a position referred to above and below as forward" refers, more particularly, to a direction or a position moving generally from a finished portion of the surface toward an unfinished surface, and a reverse direction or a position refers, more particularly, to a direction or a position generally opposite that described above with respect to a forward direction or a position. The term lengthwise along the roadway will be used below to generally designate a movement or a direction generally along the length of the surface to be finished 32. The term transversely is used above and below to designate a direction of movement or a position generally transverse to the length of the roadway or, in other words, a movementor a direction generally across the width of the roadway or the surface to be finished 32 generally between the edges thereof.
Broadly speaking, the finishing apparatus is utilized to finish surfaces of a roadway constructed of a concrete material in a faster, more efficient, and more positive manner. In the operation of the finishing apparatus 10, which will be described in greater detail below, the concrete is initially poured generally between the first slip form 44 and the second slip form 46, in a manner well-known in the art. After the concrete has been poured, the finisher assembly 12 is actuated to sequentially move in a first transverse direction and in a second transverse direction 22 generally across the transverse width of the surface to be finished 32.
During the operation of the finishing apparatus 10, the auger member 28 will engage a portion of the unfinished surface material and provide an initial, rough finishing or smoothing prior to that portion being finishingly engaged by the first surface finisher 24 and the second surface face finisher 26 to provide a final, predetermined surface finish thereto. As the finisher assembly 12 is moved in a first transverse direction 20 and a second transverse direction 22 across the surface to be finished 32, the first surface finisher 24 and the second surface finisher 26 are sequentially pivoted into finishing engagement with the surface to be finished 32 in a controlled, predetermined manner so that the entire transverse width of the surface to be finished 32 generally between the first slip form 44 and the second slip form 46 is finishingly engaged, in a manner which will be described in greater detail below.
Referring more particularly to the details of construction of the finishing apparatus 10, described generally above, the transverse frame assembly 14 has a forward side 54 and a rearward side 56, as shown in FIG. 1 and 2. The forward side 54 and the rearward side 56 each include a stationary structural member 58, one end of each stationary structural member 58 being securedly connected to one of the support assemblies 30, generally near the power end portion of the transverse assembly 14.
The end of each stationary structural member 58, opposite the end thereof secured to one of the support assemblies 30, has a flange adaptor 60 secured thereto, as shown in FIG. 1 and 2. Each flange adaptor 60 is constructed to cooperatingly provide the interconnection between each of the stationary structural members 58 and a movable structural member 62. A flange adaptor 64 is securedly connected to one end of each movable structural member 62 and, in an assembled position as shown in FIGS. 1 and 2, each flange adaptor 60 is boltingly connected to the flange adaptor 64 of one of the movable structural members 62.
Since each side of the transverse frame assembly 14 is basically constructed utilizing a pair of boltingly connected structural members, as described above, the length of the transverse frame assembly 14, generally between the power end portion 16 and the adjustable end portion 18 thereof, can be easily, quickly and efficiently increased by adding like intermediate structural sections to the forward side 54 and the rearward side 56, generally between eact stationary structural member 58 and the adjoining movable structural member 62. As will become more apparent below, the only substantial modification required when increasing the length of the transverse frame assembly 14, as described above, would be to lengthen the chain utilized to drivingly and pivotingly move the finisher assembly 12.
Each support assembly 30 includes a housing 66 and a leg 68 which is reciprocatingly disposed therein. More particularly, one end of each leg 68 is connected to the endless track member 34 or 36 via a support structure 70, and each leg is hydraulically disposed in one of the housing 66. Thus, each housing 66 and the respective leg 68 thereof basically comprises a hydraulic cylinder arrangement connected and controlled such that each leg 68 can be controllingly moved in a vertically outwardly or vertically inwardly direction with respect to the housing 66 connected thereto. Each support assembly 30 is thus constructed to be of an independently variable length, such that the horizontal disposition of the transverse frame assembly 14 with respect to the endless track members 34 and 36 and with respect to the surface to be finished 32 is controllable via the four support assemblies 30.
In one form each support assembly 30 or, in an alternate form, some of the support assemblies 30 can be controllingly connected to control sensor arms which are adapted to sense the position of the finishing apparatus 10 relative to a string-line, and automatically adjust the horizontal disposition of the transverse frame assembly 14 relative thereto. In this manner, the engagement of the finisher assembly 12 with the surface to be finished 32 is controllingly adjusted to maintain a predetermined grade and slope. Control sensing arms and the cooperation and the interconnection thereof with the hydraulically actuated type support assemblies, such as the support assemblies 30, has been described in detail in US. Pat. No. 3,423,859, which is assigned to the assignee of the present invention, and therefore a detailed description of the interconnection and operation thereof is not required herein.
As shown in FIGS. 1 and 2, the first sensor assembly 40 and the second sensor 42 are each, more particularly, secured to one of the stationary members 50 via a support extension 72. A first trip switch 74 and a second trip switch 76 are secured to each support extension 72. Each support extension 72 is shaped and constructed to support one of the first trip switches 74 and one of the second trip switches 76 in a predetermined vertical plane and in a predetermined horizontal plane so that, in the assembled position of the finishing apparatus 10, as shown in FIGS. 1 and 2, the first trip switches 74 and the second trip switches 76 are each disposed to engage an actuating boss 78 formed on one end of the finisher assembly 12, when the finisher assembly 12 is moved to predetermined positions on the surface to be finished 32, for reasons and in a manner to be made more apparent below.
It should also be noted that the first trip switch 74 and the second trip switch 76 are disposed on the first sensor assembly 40 such that the actuating boss 78 of the finisher assembly 12 will initially, actuatingly engage a portion of the first trip switch 74 as the finisher assembly 12 is moved in a first transverse direction across the surface to be finished 32. The first trip switch 74 and the second trip switch 76 are disposed on the second sensor assembly 42 such that the actuating boss 78 of the finisher assembly 12 will actuatingly, initially engage a portion of the first trip switch 74 of the second sensor assembly 42 as the finisher assembly 12 is moved in a second transverse direction 22 across the surface to be finished 32. The first trip switch 74 of the first sensor assembly 40 and the first trip switch 74 of the second sensor assembly 42 are each connected to a control circuit to actuatingly slow the rate of travel of the finisher assembly 12 in the first transverse direction 20 and in the second transverse direction 22, and the second trip switch 76 ofthe first sensor assembly 40 and the second trip switch 76 of the second sensor assembly 42 are each connected to a control circuit to actuatingly reverse the direction of travel of the finisher assembly 12, for reasons and in a manner to be described in greater detail below.
Each support assembly disposed generally near the adjustable end portion 18 of the transverse frame assembly 14 is, more particularly, securedly and movably connected to an adjacent portion of the transverse frame assembly 14 via a frame connector portion 80. As shown more clearly in FIG. 2, one frame connector 80 is secured to one of the support assemblies 30, and one frame connector 80 is secured to the one other support assembly 30. More particularly, each frame connector 80 is generally U-shaped and constructed to supportingly receive an adjacent portion of the transverse frame assembly 14 (only the top portion of each frame connector 80 is shown in FIG. 1). Each frame connector 80 is adjustably connected to a portion of the transverse frame assembly 14 via a plurality of rollers 82, each roller 82 being rollingly supported on one of the frame connectors 80, and each roller 82 havingv a portion thereof in rolling engagement with an adjacent portion of the transverse frame assembly 14 (only the top two rollers being shown in FIG. 1).
It will be apparent in those skilled in the art from the foregoing, that the forward side 54 of the transverse frame assembly 14 can be rollingly moved in the first transverse direction 20 and in the second transverse direction 22 relative to the support assembly 30 connected thereto, and the rearward side 56 of the transverse frame assembly 14 can also be rollingly moved in the first transverse direction 20 and the second transverse direction 22 relative to the support assembly 30 connected thereto. Thus, by rollingly moving the transverse frame assembly 14 in a first transverse direction 20 and in a second transverse direction 22 relative to the support assemblies 30 rollingly connected thereto. the transverse width of the finishing apparatus 10, generally between the endless track member 34 and the endless track member 36 can be increased and decreased, respectively. Further, since the first slip form 44, the second slip form 46, the first sensor assembly 40 and the second sensor assembly 42 are each secured in a stationary position with respect to the support as sembly 30 connected thereto, the relative positions of the first sensor assembly 40, the second sensor assembly 42, the first slip form 44, and the second slip form 46 are maintained constant as the transverse width of the finishing apparatus 10 is adjustingly increased and decreased, in a manner as described above. The finishing apparatus 10 can thus be quickly and easily adjusted to be utilized to finish roadways having varying transverse widths in a manner which substantially eliminates having to adjust any of the control apparatus associated with the finishing apparatus 10.
As shown more clearly in FIG. 1, a platform 84 and a step platform 86 are securedly supported on a portion of the transverse frame assembly 14, generally near the power end portion 16 thereof. The step platform 86 is positioned to assist the operator in gaining access to the platform 84 and in gaining access to an operator control seat 88 which is securedly connected to one of the support assemblies 30 and disposed generally near an operator control unit 90. The operator control unit 90 contains the control actuating elements for the'finishing apparatus 10, and is constructed and adapted such that the operator can easily control, for example, the forward and reverse movement of the finishing apparatus 10, and the operation of the finisher assembly 12, in a manner which will become more apparent below.
As shown more clearly in FIG. 1, a chain 92 is drivingly supported on a portion of the transverse frame assembly 14, and extends generally between the power end portion 16 and the adjustable end portion 18 thereof. More particularly, the chain 92 is drivingly supported on the transverse frame assembly 14 via a pair of gears (shown in FIG. 6), one gear being disposed generally near the adjustable end portion 18 and one gear being disposed generally near the power end portion 16, for reasons and in a manner to be described in greater detail below.
The chain 92 has a portion thereof which is connected to the finisher assembly 12 to move the finisher assembly 12 generally between predetermined positions on the transverse frame assembly 14 in a controlled manner and in a manner sequentially pivoting the first surface finisher 24 and the second surface finisher 26 into finishing engagement with the surface to be finished 32. A portion of the chain 92 also engages a portion of the finisher assembly 12 to provide the driving impetus for a power fluid supply to rotatingly drive the first surface finisher 24 and the second surface finisher 26, in a manner which will be described in detail below.
As mentioned before, the finisher assembly 12 is movably supported on the transverse frame assembly 14 to be moved generally back and forth between the power end portion 16 and the adjustable end portion 18 or, more particularly, between two predetermined positions as the first surface finisher 24 and the second surface finisher 26 sequentially and finishingly engage the surface to be finished 32. As shown more clearly in FIGS. 3, 4 and 5, the finisher assembly 12, includes a support frame 94 which is moveably connected to the transverse frame assembly 14 via a plurality of grooved wheels 96, each grooved wheel 96 being rollingly and bearingly supported on a portion of the support frame 94, as shown more clearly in FIGS. 1, 2 and 3. A retaining wheel 98 is also rollingly and bearingly supported on a portion of the support frame 94, one retaining wheel 98 being disposed generally near each of the grooved wheels 96, and in a horizontal plane generally below the respective grooved wheel 96 (two of the grooved wheels 96 and the two respective retaining wheels 98 associated therewith which are disposed on one side of the support frame 94 are shown more clearly in FIGS. 4 and Each retaining wheel 98 has a resilient liner 100 bonded thereto and extending about the outer periphery thereof, for reasons which will be made more apparent below.
As shown more clearly in FIG. 3, the two grooved wheels 96 on one side of the support frame 94 rollingly, supportingly, and retainingly engage a rail 102, which is secured to and extends generally along the rearward side 56 of the transverse frame assembly 14 generally between the power end portion 16 and the adjustable end portion 18 thereof. The two grooved wheels 96 on the opposite side of the support frame 94 rollingly, supportingly, and retainingly engage a rail 104, which is secured to and extends generally along the forward side 54 of the transverse frame assembly 14 generally between the power end portion 16 and the adjustable end portion 18 thereof.
Each rail 102 and 104 thus extends transversely across substantially the entire width of the transverse frame assembly 14, and the rails 102 and 104 cooperate to provide a guide path for the finisher assembly 12 as the finisher assembly 12 is moved in the first transverse direction and the second transverse direction 22, during the operation of the finishing apparatus 10, as will be described in greater detail below.
Each rail 1102 and 104 is, more particularly, secured to one side of the transverse frame assembly 14 via a plurality of L-shaped brackets 108, as shown more clearly in FIG. 1. In an assembled position of the finisher assembly 12, a portion of each rail 102 and 104 is disposed generally within the grooved portion of the adjacent grooved wheels 96, and the outer periphery of each retaining wheel 98, formed by the resilient liners 100, retainingly engages a portion of one of the L- shaped brackets 108, as shown more clearly in FIG. 3. The retaining wheels 98 thus engage a portion of the L-shaped brackets 108 to resiliently limit movement of the finisher assembly 12 in a vertically upwardly direction, during the operation of the finishing apparatus 10, as will be described in detail below.
As shown more clearly in FIGS. 3, 4 and 5, the first surface finisher 24 and the second surface finisher 26 are each bearingly and rotatingly supported on a portion of a rocker support arm 110 via a pair of support plates 112 and 114. One end of each of the support plates 112 and 114 is secured to a portion of the rocker support arm 110, and the opposite end of each of the support plates 112 and 114 is constructed to bearingly and supportingly receive a portion of one of the shafts (not shown) extending through the first surface finisher 24 and the second surface finisher 26, respectively. It should be noted that the first surface finisher 24 and the second surface finisher 26 are each generally cylindrically shaped and have an outer periphery shaped to finishingly engage the surface to be finished 32.
As shown more clearly in FIG. 3, 4, and 5, the rocker support arm 110 is rotatingly and pivotally secured to the support frame 94 via shaft 115, and includes a base 116, having a first angled portion 118 and a second angled portion 120. In the assembled position of the finisher assembly 12, the first surface finisher 24 is, more particularly, rotatingly and bearingly secured to the first angle portion 118 of the base 116, and the second surface finisher 26 is, more particularly, secured to the second angle portion of the base 116, for reasons which will be made more apparent below.
The base 116 of the rocker support arm 110 is, constructed such that, in the first pivot position of the finisher assembly 12 or, more particularly, the rocker support arm 110, the first angled portion 118 of the base 116 is disposed a distance vertically above the surface to be finished 32 and in a horizontal plane substantially coplanar with the surface to be finished 32. ln the first pivot position of the finisher assembly 12, as shown in FIG. 2, 3, 4 and 5, the second angled portion 120 is angularly oriented with respect to the surface to be finished 32, and extends generally angularly from the first angled portion 118 in a direction generally above or away from the surface to be finished 32.
The rocker support arm 110 is also constructed such that, in the second pivot position of the finisher assembly 12, the second angled portion 120 is disposed a distance vertically above the surface to be finished 32 and in a horizontal plane substantially coplanar with the surface to be finished 32. In the second pivot position of the finisher assembly 12, the first angled portion 118 is angularly disposed with respect to the surface to be finished 32 and extends generally angularly from the second angled portion 120 in a direction generally above or away from the surface to be finished 32.
The first angled portion 118 and the second angled portion 120 are thus, more particularly, constructed and disposed on the finisher assembly 12 such that, in the first pivot position of the finisher assembly 12, the first surface finisher 24 is disposed in finishing engagement with the surface to be finished 32 and the second surface finisher 26 is disposed in a horizontal plane a distance generally vertically above the surface to be finished 32. In the second pivot position of the finisher assembly 12, the second surface finisher 26 is disposed in finishing engagementwith the surface to be finished 32 and the first surface finisher 24 is disposed in a horizontal plane a distance generally vertically above the surface to be finished 32.
As shown more clearly in FIGS. 3 and 4, the auger member 28 is, more particularly, adjustably, rotatingly and bearingly supported on an auger frame 122. An upper portion 124 of the auger frame 122 is secured to a lower portion of the support frame 94, as shown more clearly in FIG. 4, and an adjustable portion 126 of the auger frame 122 is adjustably secured to the upper portion 124 via a hand wheel 128. More particularly, the hand wheel 128 is connected to the adjustable portion 126 to move the auger member 128 in a vertically upwardly and vertically downwardly direction by rotating the hand wheel 128. It will be apparent to those skilled in the art from the foregoing, that by adjusting the auger member 28 in a vertically upwardly and vertically downwardly direction, the depth of engagement of the auger member 28 with respect to the surface to be finished 32 can be controllingly adjusted, which may be desirable when finishing surfaces constructed of different materials or materials of differing constituencies.
The first surface finisher 24 and the second surface finisher 26 are rotatingly driven via a first finisher drive 130 and a second finisher drive 132, respectively, as shown in FIG. 1. The first finisher drive 130 and the second finisher drive 132 are, in a preferred form, hydraulic motors, and the first finisher drive 130 and the second finisher drive 132 are each securedly mounted on one end portion of the rocker support arm 110, generally near one of the support plates 114, as shown more clearly in FIG. 3. I
The first finisher drive 130 and the second finisher drive 132 are each gearingly connected to the first surface finisher 24 and the second surface finisher 26, respectively, to rotatingly drive the surface finisher 24 or 26 connected thereto, and, as shown in FIG. 3, the first finisher drive 130 has been removed from the finisher assembly 12 to more clearly indicate the driving connection between each finisher drive 130 and 132 and one of the surface finishers 24 and 26 connected thereto. As shown in FIG. 3, the second finisher drive I 132 has been removed from the. finisher assembly 12, for the purpose of clarity of description, it being under- :stood that the first finisher drive 130 is driving connected to the first surface finisher 24 in a manner similar to that shown in FIG. 3 with respect to the second finisher drive 132 and the second surface finisher 26.
The first finisher drive 130 and the second finisher drive 132 are each drivingly connected to the first surface finisher 24 or the second, surface finisher 26, respectively via a pair of gears 134 and 136, the gears 134 and 136 being gearingly interconnected via an endless chain 138, as shown in FIG. 3, with respect to the second surface finisher 26 and the second finisher drive 132. The first finisher drive 130 is connected to the first surface finisher 24 to drivingly rotate the first surface finisher 24 in a rotational direction 140, and the second finisher drive 132 is connected to the second surface finisher 26 to drivingly rotate the second surface finisher 26 in a rotational direction 142, as shown more clearly in FIGS. 2 and 3.
The direction of rotation 140 of the first surface finisher 24 is generally opposed to the direction of transverse movement of the finisher assembly 12 (the first transverse direction 20), during that portion of the operation of the finishing apparatus when the first surface finisher 24 is in finishing engagement with the surface to be finished 32. The direction of rotation 142 of the second surface finisher 26 is generally opposed to the direction of transverse movement of the finisher assembly 12 (the second transverse direction 22), during that portion of the operation of the finishing apparatus 10 when the second surface finisher 26 is in finishing engagement with the surface to be finished 32.
As shown more clearly in FIG. 5, one end portion of the chain 92 is secured to the support frame 94 via a first pivoting jaw assembly 144, and the opposite end portion of the chain 92 is secured to the support frame 94 via a second pivoting jaw assembly 146. Each jaw assembly 144 and 146 includes a base member 148 and a jaw member 150, each jaw member 150 being pivotally secured to one of the base member 148 via a connecting pin 152.
Each jaw member 150 is constructed and connected to one of the base members 148, such that each jaw member 150 can be pivoted in a release direction 154 to releasingly position each jaw member 150 with respect to the base member 148 connected thereto, and such that each jaw member 150 can be pivoted in a lock direction 156 to securedly and lockingly position each jaw member 150 with respect to the base member 148 connected thereto. As shown in FIG. 5, each jaw member 150 has been pivoted in the lock direction 156 to a locking position, that is a position wherein each jaw member 150 lockingly engages the base member 148 pivotally connected thereto to securedly position a portion of the chain 92 therebetween. It will be apparent to those skilled in the art from the foregoing, that by pivoting each jaw member 150 in a release direction 154 to a releasing position, each jaw member 150 will be positioned with respect to the base member 148 pivotally connected thereto such that a portion of the chain 92, generally near one end thereof, can be inserted generally between the base member 148 and the jaw member 150 or removed therefrom.
Each base member 148 is pivotally connected to a flange 158 via a connecting pin 160. Each flange 158 is secured to a portion of the support frame 94 of the finisher assembly 12, such that the first jaw assembly 144 and the second jaw assembly 146 are each pivotable in a finisher engaging direction 162 and in a finisher disengaging direction 164, for reasons and in a manner which will be made more apparent below.
As shown more clearly in FIG. 5, the first jaw assembly 144 and the second jaw assembly 146 are each connected to a portion of the rocker support arm via an adjustable connector 166. More particularly, one end of one of the adjustable connectors 166 is pivotally secured to one end of the base member 148 of the first jaw assembly 144 via a connecting pin 168, and the opposite end of that adjustable connector 166 is pivotally secured to the first angled portion 118 of the rocker support arm 110 via a connecting pin 170. One end of the other adjustable connector 166, more particularly, is pivotally secured to one end portion of the base member 148 of the second jaw assembly 146 via a connecting pin 172, and the opposite end of that adjustable connector 166 is pivotally secured to the second angled portion of the rocker support arm 118 via a connecting pin 174. The first jaw assembly 144 and the second jaw assembly 146 and the adjustable connectors 166 pivotally connected thereto will sometimes be referred to below as a first pivot linkage 176 and a second pivot linkage 178, respectively, for the purpose ofclarity of description.
The chain 92 is disposed on the transverse frame assembly 14 and connected to the finisher assembly 12 or, more particularly, the first pivot linkage 176 and the second pivot linkage 178, and the first pivot linkage 176 and the second pivot linkage 178 are each connected to the rocker support arm 110 such that, as the chain 92 is driven in a first rotating direction 180, the second jaw assembly 146 is pullingly pivoted by the chain 92 in the finisher disengaging direction 164, thereby pivoting the rocker support arm 110 in a first pivot direction 184 via the pivoting interconnection between the second jaw assembly 146 and the rocker support arm 110 provided by the adjustable connector 166 therebetween. As the rocker support arm 110 is pivoted in the first pivot direction 184, the firstjaw assembly 144 will be pullingly pivoted in the finisher engaging direction 162 via the interconnection between the first jaw assembly 144 and the rocker support arm 110 provided by the adjustable connector 166 therebetween. Thus, as the chain 94 is driven in the first rotating direction 180, the first surface finisher 24 is pivotingly moved into finishing engagement with the surface to be finished 32 via the pivoting connection between the chain 94 and the rocker support arm 110 provided by the first pivot linkage 176 and the second pivot linkage 178. This position of the finisher assembly 12, when the chain 92 is being driven in the first direction 180, is referred to generally above and below as the first pivot position of the finisher assembly 12, for the purpose of clarity of description.
The first pivot linkage 176 and the second pivot linkage 178 are also connected to the support frame 94 and to the rocker support arm 110, such that, as the chain 92 is driven in a second rotating direction 182, the rocker support arm 110 will be pivoted in a second pivot direction 186 to a position wherein the second surface finisher 26 finishingly engages the surface to be finished 32. More particularly, as the chain 92 is driven in the second rotating direction 182, the chain 92 will pullingly pivot the first jaw assembly 144 in the finisher disengaging direction 164, thereby pivoting the rocker support arm 110 in the second pivot direction 186 via the pivoting interconnection between the first jaw assembly 144 and the rocker support arm 110 provided by the adjustable connector 166 therebetween. The pivoting of the rocker support arm 110 in the second pivot direction 186 will pullingly pivot the second jaw assembly 144 in the finisher engaging direction 164 via the pivoting interconnection between the second jaw assembly 146 and the rocker support arm 110 provided by the adjustable connector 166 therebetween. The driving of the chain 92 in the second rotating direction 182 will thus cause the second surface finisher 26 to be pivotally moved into finishing engagement with the surface to be finished 32, and will pivotingly move the first surface finisher 24 to a position wherein the first surface finisher 25 is disposed in a horizontal plane a distance generally vertically above the surface to be finished 32. This position of the finisher assembly 12, when the chain 92 is driven in the second rotating direction 182, is referred to generally above and below as the second pivot position of the finisher assembly 12, for the purpose of clarity of description.
As shown more clearly in FIG. 5, a stop flange 188, having a first stop surface 190 and a second stop surface 192, is secured to a portion of the rocker support arm 110. The stop flange 188 extends a distance generally vertically upwardly from the rocker support arm 116, and an upper portion of the stop flange 188 is disposed in a pivot aperture 194 formed in a portion of the support frame 94 of the finisher assembly 12. A first stop pad 196 is secured to the support frame 94, generally near one end portion of the pivot aperture 194, and
a second stop pad 198 is secured to a portion of the support frame 94, generally near the end of the pivot aperture 194 opposite the end thereof having the first stop pad 196 secured thereto.
The stop flange 188, the pivot aperture 194 and the first and the second stop pad 196 and 198 comprise what is sometimes referred to below as a pivot positioning assembly 200." The pivot positioning assembly 200 is thus constructed and disposed on the finisher assembly 12 such that, as the rocker support arm is pivoted in the first pivot direction 184, the first stop surface of the stop flange 188 will engage the first stop pad 196 to limit the pivotal movement of the rocker support arm 110 and positively position the rocker support arm 110 in the first pivot position thereof. The pivot position assembly 200 is also constructed and disposed on the finisher assembly 12 such that, as the rocker support arm 110 is pivoted in the second pivot direction 186, the second stop surface 192 of the stop flange 188 will engage the second stop pad 198 to limit the pivoting movement of the rocker support arm 110 and positively position the rocker support arm 110 in the second pivot position thereof. It will be apparent from the foregoing to those skilled in the art, that the pivot positioning assembly 200 thus provides a positive means of assuring that, in the first pivot position of the finisher assembly 12, the first surface finisher 24 is positively positioned in a predetermined horizontal plane to finishingly engage the surface to be finished 32 and a positive means of assuring that, in the second pivot position of the finisher assembly 12, the second surface finisher 26 is positively positioned in a predetermined horizontal plane to finishingly engage the surface to be finished 32.
As shown more clearly in FIG. 4 and 5, a gear support frame 202 is centrally disposed in an upper portion of the finisher assembly 12 and is secured to a portion of the support frame 94. An idler drive gear 204 is rotatingly and bearingly supported in a portion of the gear support frame 202, as shown more clearly in FIG. 5, and a pair of idler gears 206 and 208 are also bearingly and rotatingly supported in a portion of the gear support frame 204 via bearing supports 210 (the bearing supports 210 disposed on one side of the gear support frame 202 being shown more clearly in FIG. 4). As shown more clearly in FIG. 5, the idler gears 206 and 208 are disposed on opposite sides of the idler drive gear 204, and each idler gear 206 and 208 is disposed in a horizontal plane a distance generally vertically above the idler drive gear 204.
The idler gears 206 and 208 and the idler drive gear 204 are each constructed to gearingly engage a portion of the chain 92, during the operation of the finishing apparatus 10. More particularly, a portion of the chain 92 is in gearing engagement with an upper portion of each of the idler gears 206 and 208, and a portion of the chain 92 is in gearing engagement with a lower portion of the idler drive gear 204, as shown in FIG. 5. The two idler gears 206 and 208 are thus disposed with respect to the idler drive gear 204 to maintain the gearing engagement between the chain 92 and the idler drive gear 204 during the operation of the finishing apparatus 10, as will be described in greater detail below.
The idler drive gear 204 is drivingly connected to a gear 212 via a shaft 214, the shaft 214 being bearingly and rotatingly supported in a portion of the gear support frame 202. The gear 212 is drivingly connected to a reversible hydraulic pump 216 via an endless chain belt 218 which connects the gear 212 to a pump input shaft 220 through a gear 222. Thus, the driving impetus for the reversible hydraulic pump 216 is provided by the driving rotational movement of the idler drive gear 204 which is connected to the pump input shaft 220 via the interconnecting gear arrangement of the gears 212 and 222 and the endless chain belt 218 therebetween. Since the idler drive 204 is in driving engagement with the chain 92, as described above, it will be apparent to those skilled in the art that the reversible hydraulic pump 216 will be driven to pump power fluid therefrom by the driving movement to the chain 92 in the first rotating direction 180 and in the second rotating direction 182, in a manner and for reasons which will become more apparent below.
As diagramatically shown in FIG. 6, both sides of the reversible hydraulic pump 216 are connected to a power fluid reservoir 224 via a pair of inlet conduits 226 and 228. A check valve 230 is disposed in each of the inlet conduits 226 and 228, generally between the power fluid reservoir 224 and the reversible hydraulic pump 216, and oriented therein to allow the flow of fluid generally from the reservoir 224 toward the reversible pump 216 and to check the flow of fluid generally from the reversible pump 216 toward the reservoir 224, for reasons which will become more apparent below.
As diagramatically shown in FIG. 6, both sides of the reversible hydraulic pump 216 are also connected to the inlet of the second finisher drive 132 via a pair of outlet conduits 232 and 234. A check valve 236 is disposed in each of the outlet conduits 232 and 234, and each check valve 236 is oriented in the respective outlet conduit 232 and 234 to allow the flow of power fluid generally from the reversible hydraulic pump 216 toward the second finisher drive 132 and to check the flow of power fluid generally in the opposite direction, for reasons which will be made more apparent below.
The outlet or discharge side of the second finisher drive 132 is fluidically connected to the inlet side of the first finisher drive 130 via an interconnecting conduit 237, and the outlet of the first finisher drive 130 is fluidically connected to the inlet of the auger hydraulic motor 238 via an interconnecting conduit 240. The first finisher drive 130, the second finisher drive 132 and the auger hydraulic motor 238 are thus connected in fluidic series, and the outlet of the auger hydraulic motor 238 is fluidically connected to the reservoir 224 via a conduit 242.
It should be noted that, since the first finisher drive 130 and the second finisher drive 132 are each, in a preferred form, hydraulic motors, the first finisher drive 130 is shown in FIG. 6 and sometimes designated below as the first finisher hydraulic motor 130, and the second finisher drive 132 is shown in FIG. 6 and sometimes designated below as the second finisher hydraulic motor 132, for the purpose of clarity of description.
The conduit 242 is fluidically connected to the inlet of the second finisher drive 132 via a bypass conduit 244. A check valve 246 is interposed in the bypass condult 244, and is oriented therein to bypass the flow of power fluid in a direction generally from the auger hydraulic motor 238 to the inlet of the second finisher drive 132, for reasons which will be made more apparent below.
As diagramtically shown in FIG. 6, the chain 92 is, more particularly, rotatingly supported and driven via a pair of gears 248 and 250. In a preferred form, the gear 248 is rotatingly and bearingly supported on a portion of the transverse frame assembly 14, genrally near the adjustable end portion 18 thereof, and the gear 250 is rotatingly supported on a portion of the transverse frame assembly 14, generally near the power end portion 16 thereof. The gear 250 is connected to a chain drive 252 via a shaft 254. The chain drive 252 is constructed to rotatingly drive the gear 250, in a controlled manner, to drive the chain 92 in the first direction and in the second direction 182, as will be described in greater detail below.
As schematically shown in FIG. 6, the first sensor assembly 450 and the second sensor assembly 42 are each connected to the chain drive 252, such that the first trip switches 74 and the second trip switches 76, of the first sensor assembly 40 and the second sensor assembly 42, each provide an actuating signal to control the chain drive 252 or, in other words, to control the direction of movemnt of the chain 92, in a manner which will be described in greater detail below. The hydraulic and electric control circuit which controlling interconnects the chain drive 252, the first sensor assembly 40, and the second sensor assembly 42 is schematically and diagramatically shown in greater detail in FIG. 7. As shown in FIG. 7, and in a preferred form, the control components of the finishing apparatus 10 basically comprise a hydraulic motor 256, which is drivingly connected to the shaft 254 to rotatingly drive the chain 92; a pump 258, which is fluidically connected to the hydraulic motor 256; and a relief valve 260, a variable resistance valve 262 and a spring centered, threeposition, four-way solenoid valve 264, each of which are interpsoed generally between the pump 258 and the hydraulic motor 256.
One side of the pump 258 is connected to a fluid reservoir 268 via a conduit 270, and the other side of the pump 258 is connected to a port 272 of the relief valve 260 via a pair of conduits 274 and 276. The conduits 274 and 276 are each connected to a port 278 in the variable resistance valve 262 via a commonly connected conduit 280. Thus, one side of the pump 258 is connected to the relief valve 260 and to the variable resistance valve 262 via the conduits 274, 276, and 280, for reasons which will become more apparent below.
A port 282 in the relief valve 260 is connected'to the solenoid valve 264 via a pair of conduits 284 and 286, and a port 288 in the variable resistance valve 262 is connected to the conduits 284 and 286 via a conduit 290. The port 282 of the relief valve 260 and the port 288 of the variable resistance valve 262 are thus each connected to the solenoid 264, for reasons which will be made apparent below.
As shown in FIG. 7, the solenoid valve 264 has a deenergized position 292, a first energized position 294 and a second energized position 296. In the deenergized position 292 of the solenoid valve 264, as shown in FIG. 7, the conduit 286 is connected to the fluid reservoir 268 through the solenoid valve 262 via a conduit 298.
The solenoid valve 264 is connected to one side of the hydraulic 'motor 256 via a conduit 300, and the solenoid valve 264 is connected to the other side of the hydraulic motor 256 via a conduit 302. Thus, in the first energized position 294 of the solenoid valve 264,
the conduits 286 and 300 are in fluidic communication and, in the second energized position 296 of the solenoid valve 264, the conduits 286 and 302 are in fluidic communication, for reasons to be made apparent below.
One coil in the solenoid valve 264 is connected to an energizing power source 304 via a pair of conductors 306 and 308. As shown in FIG. 7, the second trip switch 76 of the first sensor assembly 40 is interposed between the conductors 306 and 308 and, in the open position of the second trip switch 76, as shown in FIG. 7, the electrical continuity is interrupted between the power source 304 and the one coil of the solenoid valve 264.
The other coil of the solenoid valve 264 is connected to the energizing power source 304 via a pair of conductors 310 and 312. The second trip switch 76 of the second sensor assembly 42 is interposed between the conductors 310 and 312 and, in the open position of the second trip switch 76, as shown in FIG. 7, the electrical continuity is interrupted between the power source 304 and the one coil of the solenoid valve 264.
It will be apparent to those skilled in the art from the foregoing, and as schematically indicated in FIG. 7, that the closing of the second trip switch 76 of the first sensor assembly 40 will energize one of the coils of the solenoid valve 264 to position the solenoid valve 264 in the first energized position 294 thereof. The closing of the second trip switch 76 of the second sensor as sembly 42 will energize the other coil of the solenoid valve 264 to position the solenoid valve 264 in the second energized position 296, in a manner and for reasons which will be made more apparent below.
As shown in FIG. 7, a latching relay network 313 is connected in electrical parallel with the second trip switch 76 of the first sensor assembly 40 and in electrical parallel with the second trip switch 76 of the second sensor assembly 42. The latching relay network 313 comprises a predetermined number of relays and holding coils constructed and connected such that when the second trip switch 76 of the first sensor assembly 40 or the second sensor assembly 42 is actuated to the closed position, thereby energizing one of the coils of the solenoid valve 264, the latching relay network 313 holds the electrical continuity thus established between the power source 304 and the energized coil of the solenoid valve 264 until the second trip switch 76 of the first sensor assembly 40 or the second sensor assembly 42 is subsequently actuatingly closed. Thus, when the second trip switch 76 of the first sensor assembly 40 is actuatingly closed, thereby energizing the solenoid valve 264 to the first energized position 294, the latching relay network 313 maintains the solenoid 264 in the first energized position 284 until such time as the second trip switch 76 of the second sensor assembly 42 is closed. When the second trip switch 76 of the second sensor assembly 42 is actuatingly closed, thereby energizing the solenoid 264 to the second energized position 296, the latching rellay network 313 maintains the solenoid valve 264 in the second energized postion 296 until such time as the second trip switch 76 of the first sensor assembly 40 is once again actuated, during the operation of the finishing apparatus 10, for reasons which will be made apparent below. Relay networks of the type functionally described above are well known in the art and detailed description of the various components and the interconnections therebetween is not required herein.
As shown in FIG. 7, a charge pump 314 is connected to a port 316 of the variable resistance valve 262 via a conduit 318. The suction or inlet side of the charge pump 314 is connected to a power fluid supply (not shown).
An orifice 320 and a solenoid valve 322 are each interposed in the conduit 318 generally between the charge pump 314 and the port 316 ofthe variable resistance valve 262. As shown in FIG. 7, the solenoid valve 322 is in a de-energized position and, in that position, the port 316 is connected to the reservoir 268 through the solenoid valve 322.
The coil in the solenoid valve 322 is connected to the energizing power source 304 via a conductor 324. The first trip switch 74 of the first sensor assembly 40 and the second sensor assembly 42 are each interposed in the conductor 324, generally between the solenoid valve 322 and the energizing power source 304, the first trip switch 74 of the first sensor assembly 40 and the second sensor assembly 42 being disposed in electrical parallel, as shown in FIG. 7. It will be apparent to those skilled in the art from the foregoing, that the actuating or closing of the first trip switch 74 of the first sensor assembly or the first trip switch 74 of the second sensor assembly 42 will establish electrical continuity between the coil of the solenoid valve 322 and the energizing power source 304, thereby energizing the solenoid valve 322. In the energized position of the solenoid valve 322, the charge pump 314 is in fluidic communication with the port 316 of the variable resistance valve 262 via the solenoid valve 322, for reasons which will be made more apparent below.
As shown in FIG. 7, a port 326 formed in the relief valve 260 is connected to the fluid reservior 268 via a conduit 328, and a port 330 formed in the variable resistance valve 262 is connected to the fluid reservoir 268 via a conduit 332.
The relief valve 260 includes a valve member 334 which is slidingly disposed in a chamber 336 of a valve body 338. A bias spring 340 is disposed in a portion of the chamber 336 in biasing engagement with a portion of the valve member 334 of the relief valve 260 to bias the valve member 334 to a spring biased position as shown in FIG. 7. In the spring biased position ofthe relief valve 260, the valve member 344 is disposed therein such that the ports 272 and 362 are not in fluidic communication.
An opening 342 is formed in a portion of the valve member 334. A portion of the opening 342 communicates with the port 272, the opening 342 being shaped such that fluid entering the relief valve 260 via the port 272 will bias the valve member 334 in a direction generally opposed to the biasing force of the bias spring 340. A portion of the opening 342 generally adjacent to the outer periphery of the valve member 334 is shaped to provide fluidic communication between the port 272 and the port 326 when the relief valve has been biased to a predetermined position by the pressure of the fluid entering the port 272. In other words, when the pressure of the fluid entering the relief valve 260 via the port 272 reaches a predetermined actuating pressure level, the valve member 334 is biased by the fluid to a relief position wherein the port 272 and the port 326 are in fluidic communication via a portion of the opening 342, thereby establishing fluidic communication between the conduit 276 and the fluid reservoir 268, for reasons and in a manner to made more apparent below.
The variable resistance valve 262, as shown in FIG. 7, includes a valve member 344 which is slidingly disposed in a chamber 346 formed in a valve body 348. A bias spring 350 is disposed in a portion of the chamber 346 of the variable resistance valve 262, and a portion of the bias spring 350 biasingly engages the valve member 344 to a spring biased position, as shown in FIG. 7. An opening 352 is formed in a portion of the valve member 344, the opening 352 being shaped to provide fluidic communication between the port 278 and the port 288 of the variable resistance valve 262 in the spring biased position of the variable resistance valve 262.
The variable resistance valve 262 and, more particularly, the valve member 344 disposed therein, is constructed such that fluid entering the variable resistance valve 262 via the port 316 will bias the valve member 344 in a direction generally opposed to the biasing force of the bias spring 350. The opening 352 formed through the valve member 344 is shaped such that as the valve member 344 is biased in a direction generally opposed to bias spring 350, fluidic communication between the ports 278 and 288 will become increasingly restricted, thereby increasing the pressure drop across the variable resistance valve 262 generally between the conduit 280 and the conduit 290, for reasons which will be made more apparent below.
As generally mentioned above, the chain drive 252, the first sensor assembly 40 and the second assembly 42 are each connected to the finishing apparatus to control the movement of the finisher assembly 12 in the first transverse direction and in the second transverse direction 22 and the controllingly pivot the finisher assembly 12 to the first pivot position when the finisher assembly 12 reaches one predetermined position and the pivot the finisher assembly 12 to the second pivot position when the finisher assembly 12 reaches one other predetermined position. In the finishing apparatus 10, the predetermined positions are, more particularly, defined by the first slip form 44 and the second slip form 46, and the control functions mentioned above are thus particularly adapted to move the finisher assembly 12 in the first transverse direction 20 and in the second transverse direction 22 and to controllingly pivot the finisher assembly 12 to the first pivot position and the second pivot position in such a manner that the first surface finisher 24 and the second surface finisher 26 each cooperate to finishingly engage the surface to be finished 32 across substantially the entire transverse width thereof.
A preferred arrangement of the control functions, mentioned above, is diagrammatically shown in FIG. 8 and, for the purpose of clarity of description, the various control positions of the finisher assembly 12 during the operation of the finisher apparatus 10 are described below with reference to the center lines of the first surface finisher 24 and the second surface finisher 26, the center lines being disposed in a horizontal plane generally coplanar with the surface to be finished' 32. It should also be noted that, as diagrammatically shown in FIG. 8, the finishing apparatus 10 is moving in a forward direction 354, and finishingly engaging the surface to be finished 32 generally between the first slip form 44 and the second slip form 46.
When the finisher assembly 12 is being moved in a first transverse direction 20, the first surface finisher 24 is finishingly engaging the surface to be finished 32, and the second surface finisher 26 is disposed a distance generally vertically above the surface to be finished 32. The first sensor assembly 40 is disposed with respect to the finisher assembly 12, such that when the first surface finisher 24 has been moved to a transition actuating position, generally-designated in FIG. 8 by the reference numeral 356, the actuating boss 78 of the finisher assembly 12 will actuatingly enage the first trip switch 74, thereby causing the rate at which the chain 92 is being driven in a first rotating direction 180 to linearly decrease. The function of the various control components connected to the first trip switch 74 to lin- 7 early decrease the rate at which the chain 92 is driven will be described in greater detail below.
The finisher assembly 12 will continue to move in the first transverse direction 20 through the transition actuating position 356, to a position wherein the first surface finisher 24 is disposed in a reverse actuating position, designated in FIG. 8 by the general reference numeral 358. The first sensor assembly 40 is disposed with respect to the finisher assembly 12 such that, when the first surface finisher 24 is moved to the reverse actuating position 358, the actuating boss 78 of the finisher assembly 12 will actuatingly engage the second trip switch 78 of the first sensor assembly 40.
The second trip switch 76 is connected to the chain drive 252 in such a manner that, when the second trip switch 76 is actuatingly engaged by the actuating boss 78, the driving impetus provided by the chain drive 252 will be reversed, thereby driving the chain 92 in the second rotating direction 182. The reversing of the driving impetus by the chain drive 252 will cause the finisher assembly 12 to be pivoted to the second pivot position and will drivingly move the finisher assembly 12 in the second transverse direction 22 across the surface to be finished 32.
As shown in FIG. 8, the first surface finisher 24 is disposed a predetermined transverse distance from the first slip form 44 when the first surface finisher 24 is disposed in the reverse actuating position 358. In the preferred form, the second surface finisher 26 is disposed on the finisher assembly 12 such that, when the first surface finisher 24 is moved to the reverse actuating position 358, the second surface finisher 26 is disposed in a predetermined horizontal plane g'e neralIy above the first slip form 44. More particularly, the second surface finisher 26 is disposed on the finisher assembly 12 such that, when the finisher assembly 12 is pivoted to the second pivot position, the second surface finisher 26 is moved into an initial surface engaging position, designated in FIG. 8 by the general reference numeral 360, generally over a portion of the first slip form 44. In the initial surface engaging position 360 of the second surface finished 26 and, in a preferred form, the second surface finisher 26 is disposed such that the center lines generally therethrough intersect at a position generally over the first slip form 44, for reasons which will be made more apparent below.
After the finisher assembly 12 has been pivoted to the second pivot position and the finisher assembly begins to move in the second transverse direction 22, the actuating boss 78 will be moved from engagement with the first trip switch 74 and the second trip switch 76 of the first sensor assembly 40. The finishing apparatus 10

Claims (28)

1. Apparatus for moving hydraulically operated apparatus between predetermined positions and providing operating power fluid therefore, comprising: a frame assembly extending generally between the predetermined positions; a support frame for supporting the hydraulically operated apparatus, the support frame moveably supported on the frame assembly; chain means, having opposite ends, drivingly supported on the frame assembly generally between the predetermined positions, the chain means being rotatable in a first rotating direction and in a second rotating direction, in a driven position of the chain means, one end of the chain means connected to one portion of the support frame and the opposite end of the chain means connected to one other portion of the support frame to move the support frame in one direction along the frame assembly in the first rotating direction of the chain means and to move the support frame in one other direction in the second rotating direction of the chaIn means; chain drive means drivingly connected to a portion of the chain means to drive the chain means in the first rotating direction and in the second rotating direction; hydraulic pump means responsive to the chain means and supported on a portion of the support frame to provide power fluid to the hydraulically operated apparatus supported thereon, in a driven position of the hydraulic pump means; and gear means in gearing engagement with the chain means and having a portion thereof drivingly connected to the hydraulic pump means to drive the hydraulic pump means in a driven position of the chain means in the first rotating direction and the second rotating direction thereof.
1. Apparatus for moving hydraulically operated apparatus between predetermined positions and providing operating power fluid therefore, comprising: a frame assembly extending generally between the predetermined positions; a support frame for supporting the hydraulically operated apparatus, the support frame moveably supported on the frame assembly; chain means, having opposite ends, drivingly supported on the frame assembly generally between the predetermined positions, the chain means being rotatable in a first rotating direction and in a second rotating direction, in a driven position of the chain means, one end of the chain means connected to one portion of the support frame and the opposite end of the chain means connected to one other portion of the support frame to move the support frame in one direction along the frame assembly in the first rotating direction of the chain means and to move the support frame in one other direction in the second rotating direction of the chaIn means; chain drive means drivingly connected to a portion of the chain means to drive the chain means in the first rotating direction and in the second rotating direction; hydraulic pump means responsive to the chain means and supported on a portion of the support frame to provide power fluid to the hydraulically operated apparatus supported thereon, in a driven position of the hydraulic pump means; and gear means in gearing engagement with the chain means and having a portion thereof drivingly connected to the hydraulic pump means to drive the hydraulic pump means in a driven position of the chain means in the first rotating direction and the second rotating direction thereof.
2. The apparatus of claim 1 wherein the gear means is defined further to include: an idler drive gear rotatingly supported on a portion of the support frame and in gearing engagement with the chain means, the chain means drivingly rotating the idler drive gear in a driven position of the chain means in the first rotating direction and the second rotating direction; and means connecting the idler drive gear to the hydraulic pump means, the rotation of the idler drive gear driving the hydraulic pump means; and idler gear means rotatingly supported on a portion of the support frame, the idler gear means in gearing engagement with the chain means and being positioned on the support frame with respect to the idler drive gear to maintain the gearing engagement between the chain means and idler drive gear during the operation of the finishing apparatus.
3. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly a distance above the surface to be finished; a finisher assembly supported on a portion of the transverse frame assembly, comprising: a support frame movably supported on the transverse frame assembly; a surface finisher means rotatingly supported on a portion of the support frame, the surface finisher means finishingly engaging the surface to be finished, in one position thereof; and a finisher drive means connected to the surface finisher means to rotatingly drive the surface finisher means; chain means, having opposite ends, drivingly supported on the transverse frame assembly generally between the opposite ends thereof, the chain means being rotatable in a first rotating direction and in a second rotating direction, in a driven position of the chain means, one end of the chain means connected to one portion of the support frame and the opposite end of the chain means connected to one other portion of the support frame to move the support frame in one direction along the transverse frame assembly in the first rotating direction of the chain means and to move the support frame in one other direction in the second rotating direction of the chain means; chain drive means drivingly connected to a portion of the chain means to drive the chain means in the first rotating direction and in the second rotating direction; and means connecting the chain means to the finisher drive means to drive the finisher drive means in a driven position of the chain means in the first rotating direction and the second rotating direction thereof.
4. The finishing apparatus of claim 3 wherein the means connecting the chain means to the finisher drive means is supported on a portion of the support frame and is further defined to include: an idler drive gear rotatingly supported on a portion of the support frame and in gearing engagement with the chain means, the chain means drivingly rotating the idler drive gear in a driven position of the chain means in the first rotating direction and the second rotating direction; and means connecting the idler drive gear to the finisher drive means, the rotation of the idler drive gear driviNg the finisher drive means; and idler gear means rotatingly supported on a portion of the support frame, the idler gear means in gearing engagement with the chain means and being positioned on the support frame with respect to the idler drive gear to maintain the gearing engagement between the chain means and idler drive gear during the operation of the finishing apparatus.
5. The finishing apparatus of claim 3 wherein the finisher assembly is defined further to include: a rocker support arm pivotally secured to a portion of the support frame, the rocker support arm being pivotable to a first pivot position and a second pivot position; and wherein the surface finisher means is defined further to include: a first surface finisher rotatingly supported on one portion of the rocker support arm, the first surface finisher finishingly engaging the surface to be finished in the first pivot position of the rocker support arm; and a second surface finisher rotatingly supported on one other portion of the rocker support arm, the second surface finisher finishingly engaging the surface to be finished in the second pivot position of the rocker support arm; and means to sequentially pivot the rocker support arm to the first pivot position and to the second pivot position, so that the first surface finisher and the second surface finisher cooperate to finishingly engage the surface to be finished across substantially an entire transverse width thereof.
6. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly supporting the transverse frame assembly generally above the surface to be finished; a finisher assembly movably supported on a portion of the transverse frame, having a portion thereof pivotable to a first pivot position and to a second pivot position, comprising: a first surface finisher rotatingly supported on a portion of the finisher assembly, the first surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the first pivot position of the finisher assembly; a second surface finisher rotatingly supported on a portion of the finisher assembly, the second surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the second pivot position of the finisher assembly; and means to pivot the finisher assembly to the first pivot position and to the second pivot position, the first finisher assembly and the second finisher assembly cooperating to finishingly engage the surface to be finished across substantially the entire transverse width thereof; chain means drivingly supported on the transverse frame generally between the opposite ends thereof, the chain means being connected to the finisher assembly and rotatable in a first rotating direction to move the finisher assembly in a first transverse direction and being rotatable in a second rotating direction to move the finisher assembly in a second transverse direction, the finisher assembly being moved in the first and the second transverse directions generally transversely over the surface to be finished; chain drive means drivingly connected to the chain means to drive the chain means in the first rotating direction in one position thereof and in the second rotating direction in one other position thereof, comprising: a hydraulic motor connected to the chain means to drive the chain means in the first rotating direction and the second rotating direction; pump means connected to the hydraulic motor to provide power fluid therefor; solenoid valve means interposed between the hydraulic motor and the pump means having a de-energized position, a first energized position, and a second energized position, the pump means providing power fluid via the solenoid valve means to the hydraulic motor To drive the chain means in the second rotating direction in the first energized position of the solenoid valve means, and the pump means providing power fluid via the solenoid valve means to the hydraulic motor to drive the chain means in the first rotating direction in the second energized position of the solenoid valve means; and a power source connected to the solenoid valve means; first sensor means having a portion sensing the position of the finisher assembly moving in the first transverse direction in a reverse actuating position of the first surface finisher, comprising: a first trip switch interposed between the power source and the solenoid valve means, the first trip switch being closed in the reverse actuating position of the first surface finisher energizing the solenoid valve means to the first energized position thereof; and second sensor means having a portion sensing the position of the finisher assembly moving in the second transverse direction in a reverse actuating position of the second surface finisher, comprising: a second trip switch interposed between the power source and the solenoid valve means, the second trip switch being closed in the reverse actuating position of the second surface finisher energizing the solenoid valve means to the second energized position thereof, the chain drive means driving the chain means in the second transverse direction when the first sensor means senses the finisher assembly in a reverse actuating position of the first surface finisher and driving the chain means in the first transverse direction when the second sensor means senses the finisher assembly in a reverse actuating position of the second surface finisher.
7. The finishing apparatus of claim 6 wherein the first sensor means is defined further to sense the position of the finisher assembly moving in the first transverse direction in a transition actuating position of the first surface finisher prior to the finisher assembly being moved to the reverse actuating position of the first surface finisher; and wherein the second sensor means is defined further to sense the position of the finisher assembly moving in the second transverse direction in a transition actuating position of the second surface finisher prior to the finisher assembly being moved to the reverse actuating position of the second surface finisher; and wherein the chain drive means is defined further to decrease the rate of travel of the finisher assembly in the transition actuating position of the first surface finisher, and to decrease the rate of travel of the finisher assembly in the transition actuating position of the second surface finisher.
8. The finishing apparatus of claim 7 wherein the chain drive means is defined further to include: variable resistance valve means interposed between the solenoid valve means and the pump means, the variable resistance valve means providing a virtually unrestricted flow path therethrough in one position thereof and an increasingly restricted flow path therethrough in one other position thereof, thereby linearly increasing the pressure drop thereacross; relief valve means interposed between the solenoid valve means and the pump means, the relief valve means connected to the variable resistance valve means to increasingly relieve power fluid therethrough as the pressure drop across the variable resistance valve means linearly increases, the relief valve means and the variable resistance valve means thereby cooperating to linearly decrease the flow of power fluid from the pump means to the hydraulic motor; and means connected to the variable resistance valve means to position the variable resistance valve means to increasingly restrict the flow path therethrough.
9. The finishing apparatus of claim 8 wherein the variable resistance valve means is defined further to include: a valve member having an opening formed therethrough defining the flow path through the variable resistance Valve means; and bias spring means disposed in the variable resistance valve means in biasing engagement with the valve member to bias the valve member to a spring biased position wherein the flow path through the variable resistance valve means provides a virtually unrestricted flow path therethrough; and wherein the means to increasingly restrict the flow path through the variable resistance valve means is defined further to include: charge pump means connected to the variable resistance valve means to provide power fluid to a portion thereof, to biasingly move the valve member therein generally against the biasing force of the bias spring, the flow path through the variable resistance valve means becoming increasingly restricted as the valve member moves against the biasing force of the bias spring, in a position wherein the charge pump means fluidically communicates with the variable resistance valve means; and means connected to the first sensor means and the second sensor means interposed between the charge pump means and the variable resistance valve means to establish fluidic communication therebetween in the transition actuating position of the first surface finisher and the second surface finisher.
10. The finishing apparatus of claim 9 wherein the means to increasingly restrict the flow path through the variable resistance valve means is defined further to include: orifice means interposed between the means to establish fluidic communication between the charge pump means and the variable resistance valve means, to control the rate at which the charge pump means provides power fluid to the variable resistance valve means, thereby controllingly decreasing the rate of travel of the finisher assembly.
11. The finishing apparatus of claim 10 wherein the means to establish fluidic communication between the charge pump means and the variable resistance valve means is defined further to include: a fluid reservoir; solenoid valve means having an energized position and a de-energized position, the solenoid valve means establishing fluidic communication between the charge pump means and the variable resistance valve means in the energized position thereof, and establishing fluidic communication between the variable resistance valve means and the fluid reservoir to drain the power fluid from the variable resistance valve means in the de-energized position of the solenoid valve means, thereby returning the variable resistance valve means to the spring biased position; and a power source connected to the solenoid valve means.
12. The finishing apparatus of claim 11 wherein the orifice means is defined further as being interposed between the variable resistance valve means and the solenoid valve means to control the rate at which the power fluid in the variable resistance valve means drains to the reservoir thereby controlling the increasing of the rate of travel of the finisher assembly.
13. The finishing apparatus of claim 12 wherein the first sensor means is defined further to include: a first trip switch interposed between the power source and the solenoid valve means, the first trip switch being closed in the transition actuating position of the first surface finisher to energize the solenoid valve means; and wherein the second sensor means is defined further to include: a first trip switch interposed between the power source and the solenoid valve means, the first trip switch being closed in the transition actuating position of the second surface finisher to energize the solenoid valve means.
14. The finishing apparatus of claim 6 wherein the chain drive means is further defined to include: a latching relay network connected in electrical parallel with the second trip switch of the first sensor means and in electrical parallel with the second trip switch of the second sensor means, to maintain electrical continuity between the power source and the solenoid valve means in an open position Of the second trip switch of the first sensor means subsequent to the second trip switch of the second sensor means being closed, and to maintain electrical continuity between the power source and the solenoid valve means in an open position of the second trip switch of the second sensor means subsequent to the second trip switch of the first sensor means being closed.
15. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; and a finisher assembly movably supported on a portion of the transverse frame assembly, having a portion thereof pivotable to a first pivot position and to a second pivot position, comprising: a support frame movably supported on a portion of the transverse frame assembly; a rocker support arm pivotally secured to a portion of the support frame and pivotally movable to a first pivot position and to a second pivot position; a first surface finisher rotatingly supported on a portion of the rocker support arm, the first surface finisher being positioned via the rocker support arm to finishingly engage the surface to be finished in the first pivot position of the rocker support arm; a second surface finisher rotatingly supported on a portion of the rocker support arm, the second surface finisher being positioned via the rocker support arm to finishingly engage the surface to be finished in the second pivot position of the rocker support arm; means to rotatingly drive the first surface finisher and the second surface finisher; and means to pivot the rocker support arm to the first pivot position in a reverse actuating position of the second surface finisher and to pivot the rocker support arm to the second pivot position in a reverse actuating position of the first surface finisher, the first surface finisher and the second surface finisher cooperating to finishingly engage the surface to be finished across substantially the entire width thereof.
16. The finishing apparatus of claim 15 wherein the chain means is defined further as having opposite ends; and wherein the first pivot linkage and the second pivot linkage are each defined further to include: jaw means having a portion thereof pivotally secured to a portion of the support frame, a portion of the jaw means removably secured to one end portion of the chain means; and an adjustable connector having opposite ends, one end thereof being pivotally secured to a portion of the jaw means and the other end thereof being pivotally secured to a portion of the rocker support arm.
17. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; a finisher assembly movably supported on a portion of the transverse frame assembly, having a portion thereof pivotable to a first pivot position and to a second pivot position, comprising: a first surface finisher rotatingly supported on a portion of the finisher assembly, the first surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the first pivot position of the finisher assembly; a second surface finisher rotatingly supported on a portion of the finisher assembly, the second surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the second pivot position of the finisher assembly; and means to rotatingly drive the first surface finisher and the second surface finisher; and means to pivot the finisher assembly to the first pivot position and to the second pivot position, the first surFace finisher and the second surface finisher cooperating to finishingly engage the surface to be finished across substantially the entire width thereof; vibrator means connected to a portion of the finisher assembly to vibratingly engage the surface to be finished in the first pivot position and in the second pivot position of the finisher assembly; means connected to the vibrator means to vibratingly drive the vibrator means, comprising: a power source disposed on a portion of the transverse frame; reel means rotatingly supported on a portion of the transverse frame assembly, the reel means being rotatable in one direction and in one other direction; and cable means connected to the power source and to the vibrator means, the power source providing operating power to the vibrator means via the cable means, a portion of the cable means being reeled about a portion of the reel means, a predetermined length of the cable means being released from the reel means in one rotating position of the reel means and a predetermined length of the cable means being retrieved about the reel means in the other rotating position of the reel means; and means to move the finisher assembly in a first transverse direction and in a second transverse direction generally transversely over the surface to be finished, having a portion connected to the means to rotate the reel means to maintain a predetermined length of the cable means between the reel means and the finisher assembly in the driven position of the finisher assembly in the first transverse direction and in the second transverse direction.
18. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; a finisher assembly movably supported on a portion of the transverse frame assembly, having a portion thereof pivotable to a first pivot position and to a second pivot position, comprising: a first surface finisher rotatingly supported on a portion of the finisher assembly, the first surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the first pivot position of the finisher assembly; a second surface finisher rotatingly supported on a portion of the finisher assembly, the second surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the second pivot position of the finisher assembly; and means to rotatingly drive the first surface finisher and the second surface finisher; means to pivot the finisher assembly to the first pivot position and to the second pivot position, the first surface finisher and the second surface finisher cooperating to finishingly engage the surface to be finished across substantially the entire transverse width thereof; first auger means, having a left-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished; second auger means, having a right-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished; a bearing support connected to the finisher assembly and to the first auger means bearingly supporting the first auger means, the bearing connection between the bearing support and the first auger means interposed within the auger flight of the first auger means; and a bearing support connected to the finisher assembly and to a portion of the second auger means bearingly supporting the second auger means, the bearing connection between the bearing support and the second auger means interposed within the auger flight of the second auger means and offset with respect to the bearing connection between the bearing suPport and the first auger means, the outer periphery formed by the second auger means disposed in close proximity with the outer periphery formed by the auger flight of the second auger means.
19. The finishing apparatus of claim 18 wherein the first and the second auger means are each disposed generally between the first and the second surface finishers, the first auger means extending generally parallel to the second auger means.
20. The finishing apparatus of claim 19 wherein a portion of the auger flight of each of the first and the second auger means extends a distance generally between the first and the second surface finishers, and another portion of the auger flight of each of the first and the second auger means extends a distance generally beyond one end of the first and the second surface finishers.
21. The finishing apparatus of claim 20 defined further to include: means moving the first and the second surface finishers to finishing engaging positions; means rotating the first auger means in one position thereof; means rotating the second auger means in one position thereof; means rotating the first and the second surface finishers in one position thereof; and remote controller means, having a portion connected to the means rotating the first auger means for selectively positioning the means to rotate the first auger means, one portion connected to the means rotating the second auger means for selectively positioning the means to rotate the second auger means, one portion connected to the means rotating the first and the second surface finishers for selectively positioning the means to rotate the first and the second surface finishers, and one portion connected to the means moving the first and the second surface finishers to finishing engaging positions for selectively positioning the first and the second surface finishers in finishing engaging positions, the remote controller means providing an operator control controllable from a position wherein the operator observes the finishing of the surface via the finishing apparatus.
22. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; a finisher assembly movably supported on a portion of the transverse frame assembly, having a portion thereof pivotable to a first pivot position and to a second pivot position, comprising: a first surface finisher rotatingly supported on a portion of the finisher assembly, the first surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the first pivot position of the finisher assembly; a second surface finisher rotatingly supported on a portion of the finisher assembly, the second surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the second pivot position of the finisher assembly; and means to rotatingly drive the first surface finisher and the second surface finisher; means to pivot the finisher assembly to the first pivot position and to the second pivot position, the first surface finisher and the second surface finisher cooperating to finishingly engage the surface to be finished across substantially the entire transverse width thereof; first auger means, having a left-hand auger flight, rotatingly supported by a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished; second auger means, having a right-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished; a pair of vibrators, each vibrator supported from a portion of the finisher assembly disposed within a portion of the surface material Vibratingly engaging the surface material, one of the vibrators having a portion disposed generally below the first auger means and the other vibrator having a portion disposed generally below the second auger means; a pair of rods, each rod having one end pivotally connected to the finisher assembly and the opposite end connected to one of the vibrator means, each rod pivotable in one pivot direction moving the vibrator connected thereto in a direction generally into vibrating engagement with the surface material and pivotable in one other direction moving the vibrator connected thereto in a direction generally from vibrating engagement with the surface material; and a pair of chains, one end of each chain connected to the finisher assembly and the opposite end of the chain connected to one of the rods limiting the pivotal movement of the rods in a pivot direction moving the vibrators into vibrating engagement with the surface material.
23. The finishing apparatus of claim 22 defined further to include: pair of spring means, each spring means interposed between one of the vibrators and the rod connected thereto, providing limited movement of each rod and vibrator connected thereto generally in the one pivot direction and in the one other pivot direction.
24. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; a finisher assembly movably supported on a portion of the transverse frame assembly, having a portion thereof pivotable to a first pivot position and to a second pivot position, comprising: a first surface finisher rotatingly supported on a portion of the finisher assembly, the first surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the first pivot position of the finisher assembly; a second surface finisher rotatingly supported on a portion of the finisher assembly, the second surface finisher being positioned on the finisher assembly to finishingly engage the surface to be finished in the second pivot position of the finisher assembly; and means to rotatingly drive the first surface finisher and the second surface finisher; means to pivot the finisher assembly to the first pivot position and to the second pivot position, the first surface finisher and the second surface finisher cooperating to finishingly engage the surface to be finished across substantially the entire transverse width thereof; a pointer rod having one end connected to the finisher assembly and extending a distance therefrom terminating with a pointer end; and a scale, having indicia marks, connected to the transverse frame assembly and supported in close proximity to the pointer end of the pointer rod, the position of the pointer end of the pointer rod relative to the scale indicating the position of the first and the second surface finishers relative to the transverse frame assembly.
25. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; a finisher assembly supported on a portion of the transverse frame assembly movable in transverse direction across the surface to be finished generally between the opposite ends of the transverse frame assembly; surface finisher means rotatingly supported via a portion of the finisher assembly finishingly engaging the surface to be finished; first auger means, having a left-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished; second auger means, Having a right-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished; a bearing support connected to the finisher assembly and to a portion of the first auger means bearingly supporting the first auger means, the bearing connection between the bearing support and the first auger means interposed within the auger flight of the first auger means; and a bearing support connected to the finisher assembly and to a portion of the second auger means bearingly supporting the second auger means, the bearing connection between the bearing support and the second auger means interposed within the auger flight of the second auger means and offset with respect to the bearing connection between the bearing support and the first auger means, the outer periphery formed by the second auger means disposed in close proximity with the outer periphery formed by the auger flight of the second auger means.
26. A finishing apparatus for finishing concrete surfaces or the like, comprising: a transverse frame assembly, having opposite ends; support means connected to a portion of the transverse frame assembly to support the transverse frame assembly generally above the surface to be finished; a finisher assembly supported on a portion of the transverse frame assembly movable in transverse directions across the surface to be finished generally between the opposite ends of the transverse frame assembly; surface finisher means rotatingly supported via a portion of the finisher assembly finishingly engaging the surface to be finished, the surface finisher means comprising: a first surface finisher rotatingly supported via a portion of the finisher assembly finishingly engaging the surface to be finished in one position; a second surface finisher rotatingly supported via a portion of the finisher assembly finishingly engaging the surface to be finished in one other position; and means moving the first and the second surface finishers to finishing engaging positions; first auger means, having a left-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished, the first auger means disposed generally between the first and the second surface finishers; and second auger means, having a right-hand auger flight, rotatingly supported via a portion of the finisher assembly, a portion of the auger flight engaging the surface to be finished, the second auger means being disposed generally between the first and the second surface finishers and the second auger means extending generally parallel to the first auger means.
27. The finishing apparatus of claim 26 wherein a portion of the auger flight of each of the first and the second auger means extends a distance generally between the first and the second surface finishers, and another portion of the auger flight of each of the first and the second auger means extends a distance generally beyond one end of the first and the second surface finishers.
US275232A 1972-07-26 1972-07-26 Surface finishing method and apparatus Expired - Lifetime US3870427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US275232A US3870427A (en) 1972-07-26 1972-07-26 Surface finishing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US275232A US3870427A (en) 1972-07-26 1972-07-26 Surface finishing method and apparatus

Publications (1)

Publication Number Publication Date
US3870427A true US3870427A (en) 1975-03-11

Family

ID=23051420

Family Applications (1)

Application Number Title Priority Date Filing Date
US275232A Expired - Lifetime US3870427A (en) 1972-07-26 1972-07-26 Surface finishing method and apparatus

Country Status (1)

Country Link
US (1) US3870427A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411554A (en) * 1981-10-21 1983-10-25 Gratzfeld Edward P Material spreader and bridge
US4775262A (en) * 1987-07-21 1988-10-04 Cmi Corporation Concrete finishing machine with vibrating compactor unit
EP0376692A2 (en) * 1988-12-29 1990-07-04 David W. Somero Improved screeding apparatus and method
US5088855A (en) * 1990-05-07 1992-02-18 Electronic Tug Inernational, Inc. Vehicle for compacting surfaces
US5265975A (en) * 1991-06-13 1993-11-30 Scott Norman L Gravel scarifying and levelling device
US5791815A (en) * 1996-06-21 1998-08-11 Cmi Corporation Vibrating compactor assembly for use with a concrete finishing machine
US6129481A (en) * 1998-03-31 2000-10-10 Delaware Capital Formation, Inc. Screed assembly and oscillating member kit therefor
US6129480A (en) * 1999-03-26 2000-10-10 Terramite Corporation Bi-directional concrete finishing machine
US6227761B1 (en) 1998-10-27 2001-05-08 Delaware Capital Formation, Inc. Apparatus and method for three-dimensional contouring
US6241420B1 (en) * 1999-08-31 2001-06-05 Caterpillar Paving Products Inc. Control system for a vibratory compactor
US20030161684A1 (en) * 2002-02-27 2003-08-28 Quenzi Philip J. Apparatus and method for subgrade preparation
US6695532B2 (en) 2001-06-13 2004-02-24 Delaware Capital Formation, Inc. Concrete finishing apparatus
US20040190991A1 (en) * 2003-03-25 2004-09-30 Quenzi Philip J. Apparatus and method for improving the control of a concrete screed head assembly
US6860676B2 (en) 2000-02-07 2005-03-01 Conrado Pont Feixes Machine for leveling materials on the ground
US20050163565A1 (en) * 2004-01-27 2005-07-28 Quenzi Philip J. Concrete-chute strike-off device
US20050265785A1 (en) * 1998-10-27 2005-12-01 Delaware Capital Formation, Inc. Apparatus and method for three-dimensional contouring
US20060008323A1 (en) * 2004-07-06 2006-01-12 Torvinen Jeffrey W Apparatus and method for subgrade preparation
US20060018715A1 (en) * 2004-07-26 2006-01-26 Halonen Philip D Powered strike-off plow
US20070090203A1 (en) * 2005-10-25 2007-04-26 Quenzi Philip J Wheeled concrete supply hose moving device
US20100196096A1 (en) * 2009-02-02 2010-08-05 Somero Enterprises, Inc. Apparatus and method for improving the control of a concrete screeding machine
US9234318B2 (en) 2013-06-06 2016-01-12 Somero Enterprises, Inc. Roller plow assembly for concrete screeding machine
US9835610B2 (en) 2014-04-28 2017-12-05 Somero Enterprises, Inc. Concrete screeding system with floor quality feedback/control
US9909267B1 (en) * 2014-03-05 2018-03-06 Ligchine International Corporation Paver head assembly
US10233658B1 (en) 2016-10-14 2019-03-19 Ligchine International Corporation Multi-rotational concrete screed apparatus for screeding concrete
US10443251B2 (en) 2016-10-19 2019-10-15 Somero Enterprises, Inc. Wheeled concrete supply hose moving device
US10895045B2 (en) 2017-12-18 2021-01-19 Somero Enterprises, Inc. Concrete screeding machine with column block control using gyro sensor
US11162232B2 (en) 2018-10-08 2021-11-02 Ligchine International Corporation Drive system for screeding concrete
US11560727B2 (en) 2018-10-08 2023-01-24 Ligchine International Corporation Apparatus for screeding concrete
US11946208B2 (en) 2021-02-23 2024-04-02 Ligchine International Corporation Swing boom concrete screeding apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1467243A (en) * 1920-08-30 1923-09-04 William J Fitzgerald Road-making machine
US1987398A (en) * 1932-01-25 1935-01-08 Jaeger Machine Co Road finishing apparatus
US2084068A (en) * 1934-03-17 1937-06-15 William U Vinton Road finishing machine
US2138103A (en) * 1937-08-09 1938-11-29 Viber Company Road paving machine
US2334717A (en) * 1940-08-23 1943-11-23 Blaw Knox Co Scraper or like device and mechanism for operating the same
US2543966A (en) * 1946-03-06 1951-03-06 Francis O Heltzel Road surface checking and grooving machine
US2583108A (en) * 1945-06-18 1952-01-22 Standard Steel Corp Concrete spreader
US2603132A (en) * 1945-08-20 1952-07-15 Chain Belt Co Finishing machine for concrete slabs
US3094048A (en) * 1959-04-13 1963-06-18 Chain Belt Co Pavement surface finishing apparatus
US3251281A (en) * 1961-04-20 1966-05-17 Cleveland Formgrader Company Machine for forming and finishing concrete surfaces
US3270634A (en) * 1962-12-31 1966-09-06 Henry Walder Finishing machine
US3528348A (en) * 1968-11-07 1970-09-15 K & R Ind Inc Concrete finishing machines
US3541931A (en) * 1968-08-29 1970-11-24 Harold W Godbersen Cement finishing mechanism having adjustable rotating drum

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1467243A (en) * 1920-08-30 1923-09-04 William J Fitzgerald Road-making machine
US1987398A (en) * 1932-01-25 1935-01-08 Jaeger Machine Co Road finishing apparatus
US2084068A (en) * 1934-03-17 1937-06-15 William U Vinton Road finishing machine
US2138103A (en) * 1937-08-09 1938-11-29 Viber Company Road paving machine
US2334717A (en) * 1940-08-23 1943-11-23 Blaw Knox Co Scraper or like device and mechanism for operating the same
US2583108A (en) * 1945-06-18 1952-01-22 Standard Steel Corp Concrete spreader
US2603132A (en) * 1945-08-20 1952-07-15 Chain Belt Co Finishing machine for concrete slabs
US2543966A (en) * 1946-03-06 1951-03-06 Francis O Heltzel Road surface checking and grooving machine
US3094048A (en) * 1959-04-13 1963-06-18 Chain Belt Co Pavement surface finishing apparatus
US3251281A (en) * 1961-04-20 1966-05-17 Cleveland Formgrader Company Machine for forming and finishing concrete surfaces
US3270634A (en) * 1962-12-31 1966-09-06 Henry Walder Finishing machine
US3541931A (en) * 1968-08-29 1970-11-24 Harold W Godbersen Cement finishing mechanism having adjustable rotating drum
US3528348A (en) * 1968-11-07 1970-09-15 K & R Ind Inc Concrete finishing machines

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411554A (en) * 1981-10-21 1983-10-25 Gratzfeld Edward P Material spreader and bridge
US4775262A (en) * 1987-07-21 1988-10-04 Cmi Corporation Concrete finishing machine with vibrating compactor unit
EP0376692A2 (en) * 1988-12-29 1990-07-04 David W. Somero Improved screeding apparatus and method
EP0376692A3 (en) * 1988-12-29 1991-07-17 David W. Somero Improved screeding apparatus and method
US5088855A (en) * 1990-05-07 1992-02-18 Electronic Tug Inernational, Inc. Vehicle for compacting surfaces
US5265975A (en) * 1991-06-13 1993-11-30 Scott Norman L Gravel scarifying and levelling device
US5791815A (en) * 1996-06-21 1998-08-11 Cmi Corporation Vibrating compactor assembly for use with a concrete finishing machine
US6183160B1 (en) 1998-03-31 2001-02-06 Delaware Capital Formation, Inc. Screeding apparatus and method incorporating oscillating attachment
US6129481A (en) * 1998-03-31 2000-10-10 Delaware Capital Formation, Inc. Screed assembly and oscillating member kit therefor
US6152647A (en) * 1998-03-31 2000-11-28 Delaware Capital Formation, Inc. Screeding method incorporating oscillating member
US7399139B2 (en) 1998-10-27 2008-07-15 Somero Enterprises, Inc. Apparatus and method for three-dimensional contouring
US6227761B1 (en) 1998-10-27 2001-05-08 Delaware Capital Formation, Inc. Apparatus and method for three-dimensional contouring
USRE39834E1 (en) 1998-10-27 2007-09-11 Michigan Technological University Apparatus and method for three-dimensional contouring
US20050147467A1 (en) * 1998-10-27 2005-07-07 Delaware Capital Formation, Inc., a corporation of the State of Delaware Apparatus and method for three-dimensional contouring
US7144191B2 (en) 1998-10-27 2006-12-05 Somero Enterprises, Inc. Apparatus and method for three-dimensional contouring
US20050265785A1 (en) * 1998-10-27 2005-12-01 Delaware Capital Formation, Inc. Apparatus and method for three-dimensional contouring
US6929420B2 (en) 1998-10-27 2005-08-16 Delaware Capital Formation, Inc. Apparatus and method for three-dimensional contouring
US6129480A (en) * 1999-03-26 2000-10-10 Terramite Corporation Bi-directional concrete finishing machine
US6241420B1 (en) * 1999-08-31 2001-06-05 Caterpillar Paving Products Inc. Control system for a vibratory compactor
US6860676B2 (en) 2000-02-07 2005-03-01 Conrado Pont Feixes Machine for leveling materials on the ground
US6695532B2 (en) 2001-06-13 2004-02-24 Delaware Capital Formation, Inc. Concrete finishing apparatus
US20030161684A1 (en) * 2002-02-27 2003-08-28 Quenzi Philip J. Apparatus and method for subgrade preparation
US8038365B2 (en) 2003-03-25 2011-10-18 Somero Enterprises, Inc. Apparatus and method for improving the control of a concrete screed head assembly
US7044681B2 (en) 2003-03-25 2006-05-16 Somero Enterprises, Inc. Apparatus and method for improving the control of a concrete screed head assembly
US7175363B2 (en) 2003-03-25 2007-02-13 Somero Enterprises, Inc. Apparatus and method for improving the control of a concrete screed head assembly
US20100172695A1 (en) * 2003-03-25 2010-07-08 Somero Enterprises, Inc. Apparatus and method for improving the conrol of a concrete screed head assembly
US7677834B2 (en) 2003-03-25 2010-03-16 Somero Enterprises, Inc. Apparatus and method for improving control of a concrete screed head assembly
US20070140792A1 (en) * 2003-03-25 2007-06-21 Somero Enterprises, Inc. Apparatus and method for improving the control of a concrete screed head assembly
US20040190991A1 (en) * 2003-03-25 2004-09-30 Quenzi Philip J. Apparatus and method for improving the control of a concrete screed head assembly
US7396186B2 (en) 2003-03-25 2008-07-08 Somero Enterprises, Inc. Apparatus for improving the control of a concrete screed head assembly
US20080267708A1 (en) * 2003-03-25 2008-10-30 Somero Enterprises, Inc. Apparatus and method for improving control of a concrete screed head assembly
US20050163565A1 (en) * 2004-01-27 2005-07-28 Quenzi Philip J. Concrete-chute strike-off device
US20060008323A1 (en) * 2004-07-06 2006-01-12 Torvinen Jeffrey W Apparatus and method for subgrade preparation
US7311466B2 (en) 2004-07-06 2007-12-25 Somero Enterprises, Inc. Apparatus and method for subgrade preparation
US20070127985A1 (en) * 2004-07-26 2007-06-07 Somero Enterprises, Inc. Powered strike-off plow
US7407339B2 (en) 2004-07-26 2008-08-05 Somero Enterprises, Inc. Powered strike-off plow
US20090028641A1 (en) * 2004-07-26 2009-01-29 Somero Enterprises, Inc. Method of establishing a desired grade of an uncured concrete surface
US7195423B2 (en) 2004-07-26 2007-03-27 Somero Enterprises, Inc. Powered strike-off plow
US7854565B2 (en) 2004-07-26 2010-12-21 Somero Enterprises, Inc. Method of establishing a desired grade of an uncured concrete surface
US20110064518A1 (en) * 2004-07-26 2011-03-17 Somero Enterprises, Inc. Wheeled concrete screeding device
US8038366B2 (en) 2004-07-26 2011-10-18 Somero Enterprises, Inc. Wheeled concrete screeding device
US20060018715A1 (en) * 2004-07-26 2006-01-26 Halonen Philip D Powered strike-off plow
US20070090203A1 (en) * 2005-10-25 2007-04-26 Quenzi Philip J Wheeled concrete supply hose moving device
US20100196096A1 (en) * 2009-02-02 2010-08-05 Somero Enterprises, Inc. Apparatus and method for improving the control of a concrete screeding machine
US9353490B2 (en) 2013-06-06 2016-05-31 Somero Enterprises, Inc. Roller plow assembly for concrete screeding machine
US9234318B2 (en) 2013-06-06 2016-01-12 Somero Enterprises, Inc. Roller plow assembly for concrete screeding machine
US9909267B1 (en) * 2014-03-05 2018-03-06 Ligchine International Corporation Paver head assembly
US9835610B2 (en) 2014-04-28 2017-12-05 Somero Enterprises, Inc. Concrete screeding system with floor quality feedback/control
US10060900B2 (en) 2014-04-28 2018-08-28 Somero Enterprises, Inc. Concrete screeding system with floor quality feedback/control
US10233658B1 (en) 2016-10-14 2019-03-19 Ligchine International Corporation Multi-rotational concrete screed apparatus for screeding concrete
US10961728B2 (en) 2016-10-19 2021-03-30 Somero Enterprises, Inc. Wheeled concrete supply hose moving device
US10443251B2 (en) 2016-10-19 2019-10-15 Somero Enterprises, Inc. Wheeled concrete supply hose moving device
US10895045B2 (en) 2017-12-18 2021-01-19 Somero Enterprises, Inc. Concrete screeding machine with column block control using gyro sensor
US11162232B2 (en) 2018-10-08 2021-11-02 Ligchine International Corporation Drive system for screeding concrete
US11560727B2 (en) 2018-10-08 2023-01-24 Ligchine International Corporation Apparatus for screeding concrete
US11788304B2 (en) 2018-10-08 2023-10-17 Ligchine International Corporation Electronically actuated leveling system for screeding concrete
US11885078B2 (en) 2018-10-08 2024-01-30 Ligchine International Corporation Drive system for screeding concrete
US11946208B2 (en) 2021-02-23 2024-04-02 Ligchine International Corporation Swing boom concrete screeding apparatus

Similar Documents

Publication Publication Date Title
US3870427A (en) Surface finishing method and apparatus
US2864452A (en) Supporting and level control mechanism for concrete slab laying machines
US5070632A (en) Trenching machine with laterally adjustable chain-type digging implement
US3779662A (en) Curb slip form apparatus
US3908292A (en) Articulated vehicle with trench filler and tamper
US2589257A (en) Road-finishing machine
US1662257A (en) Adjustable widening attachment for concrete-road finishers
US4068970A (en) Concrete finishing machines
US3292511A (en) Vehicle supported concrete moulding machine
US4320987A (en) Concrete vibrator machine
US4516808A (en) Pavement grinding apparatus
US5116162A (en) Pavement maintenance machine and method
US5492432A (en) Concrete vibrating machine
US3738763A (en) Concrete finishing machines
EP0756654A1 (en) Machine for levelling concrete
US3015257A (en) Hydraulically operated pavement finishing machine
US2650525A (en) Concrete pavement finishing machine
US3508476A (en) Method and apparatus for towing and suspending a compactor from a paver
US3253368A (en) Surface conditioning grinding machine
US3683763A (en) Ground or road surface compacting machine
US3547492A (en) Pavement cutting apparatus
US2308842A (en) Apparatus for grinding billets or slabs
US2261659A (en) Concrete paving machine
US3697135A (en) Concrete pavement cutting machine
US3605581A (en) Concrete forming machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: HIBERNIA NATIONAL BANK IN NEW ORLEANS THE

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: FEDERAL DEPOSIT INSURANCE CORPORATION AS RECEIVER

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: REPUBLICBANK DALLAS,N.A.

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPA

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: MERCATILE NATIONAL BANK AT DALLAS COMMERCE BANK,

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: FIDELITY BANK N A.

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: MANUFACTURERS HANOVER TRUST COMPANY

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: BANK OF PENNSYLVAIA

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: FIRST NATIONAL BANK OF CHICAGO, THE

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: COMMERCIAL BANK,N.A.

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: NORTHERN TRUST COMPANY, THE

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

Owner name: FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA

Free format text: MORTGAGE;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMI OIL CORPORATION;AND OTHERS;REEL/FRAME:004036/0894

Effective date: 19820910

AS Assignment

Owner name: FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA

Free format text: SECURITY INTEREST;ASSIGNORS:CMI INTERNATIONAL CORPORATION;CMI CORPORATION;CIMOIL CORPORATION;AND OTHERS;REEL/FRAME:004280/0861

Effective date: 19840301

AS Assignment

Owner name: CONTINENTAL ILLINOIS NATIONAL BANK AND TRUST COMPA

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: MERCANTILE NATIONAL BANK AT DALLAS

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: COMMERCE BANK

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: NORTHERN TRUST COMPANY, THE

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: BANK OF PENNSYLVANIA

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: FIDELITY BANK N.A.

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: FIRST NATIONAL BANK AND TRUST COMPANY OF OKLAHOMA

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: MANUFACTURERS HANOVER TRUST COMPANY

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: REPUBLICBANK DALLAS, N.A.

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: COMMERCIAL BANK, N.A.

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: FIRST NATIONAL BANK OF CHICAGO

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: ;ASSIGNORS:CMI CORPORATION;CMI INTERNATIONAL CORPORATION;CMIOIL CORPORATION;AND OTHERS;REEL/FRAME:004281/0001

Effective date: 19840301

AS Assignment

Owner name: FIRST INTERSTATE BANK OF OKLAHOMA, N.A., 120 NORTH

Free format text: SECURITY INTEREST;ASSIGNOR:CMI CORPORATION, A CORP. OF OK;REEL/FRAME:004946/0363

Effective date: 19880607

Owner name: FIRST INTERSTATE BANK OF OKLAHOMA, N.A., OKLAHOMA

Free format text: SECURITY INTEREST;ASSIGNOR:CMI CORPORATION, A CORP. OF OK;REEL/FRAME:004946/0363

Effective date: 19880607

AS Assignment

Owner name: CONGRESS FINANCIAL CORPORATION (SOUTHWEST) A COR

Free format text: SECURITY INTEREST;ASSIGNOR:CMI CORPORATION A CORP. OF OKLAHOMA;REEL/FRAME:005984/0346

Effective date: 19911205

Owner name: CMI CORPORATION A CORP. OF OKLAHOMA, OKLAHOMA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BOATMEN S FIRST NATIONAL BANK OF OKLAHOMA;REEL/FRAME:005984/0364

Effective date: 19911213

Owner name: CONGRESS FINANCIAL CORPORATION (SOUTHWEST), TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:CMI CORPORATION;REEL/FRAME:005984/0346

Effective date: 19911205