US3869385A - Process for containing oil spills - Google Patents

Process for containing oil spills Download PDF

Info

Publication number
US3869385A
US3869385A US190320A US19032071A US3869385A US 3869385 A US3869385 A US 3869385A US 190320 A US190320 A US 190320A US 19032071 A US19032071 A US 19032071A US 3869385 A US3869385 A US 3869385A
Authority
US
United States
Prior art keywords
oil
polyamine
polyisocyanate
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US190320A
Inventor
William L Stanley
Allen G Pittman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US190320A priority Critical patent/US3869385A/en
Application granted granted Critical
Publication of US3869385A publication Critical patent/US3869385A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/682Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of chemical compounds for dispersing an oily layer on water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/922Oil spill cleanup, e.g. bacterial
    • Y10S210/925Oil spill cleanup, e.g. bacterial using chemical agent

Definitions

  • the invention relates to and has among its objects the provision of novel processes for containing oil spills on bodies of water. Further objects of the invention will be evidentfrom the following description wherein parts and percentages are tied.
  • the present invention provides a means for obviating the problems outlined above. More particularly, the invention enables oil spills to be contained, that is, kept within a limited area so that the oil can be collected ef ficiently and economically. On the other hand, where.
  • the process of the invention is applicable-for the containment of oil spills on bodies of water by weight unless otherwise speciof all kinds, including those containing fresh, brackish,
  • oil may be any liquid petroleum material, including crude oil,,residual fuel oils, and distilled products such as fuel oils, kerosene, diesel oils, etc.
  • the expression oil spill"' is employed herein to designate a pool or mass of oil floating on a body of water, and without distinction as to the source of the oil or the manner by which it was released.
  • the process of the invention involves applying a polyisocyanate and a polyamine to the oil spill.
  • the said reagents react, yielding a polymer'which entraps the oil, forming a rubbery gelled mass, and thereby preventing dispersion of the oil.
  • the reagents may be applied to the entire area of the oil spill or, more preferably, to selected parts thereof-for example,.to the outer periphery thereof.
  • the reagents are applied'to the outer periphery of the body of oil which constitutes the spill.
  • the application can be accomplished by means of a boat or other vessel which circles the oil spill and concomitantly deposits the reagents on the edge of the oil.
  • the reagents can be applied to the perimeter of the oil spill by low-flying aircraft.
  • the reagents may be employed in the form of solutions in kerosene or other inert solvent. Soon after the reagents are applied, a rubber-like gel is formed and this barrier or.
  • the formation of a peripheral dam may not be sufficient to contain the spill.
  • the reagents may be additionally applied over interior surface portions of the spill. The resulting'increase in viscosity of the entire body of oil will then tend to resist the wave/wind action and hold the body together as a coherent entity.
  • the reagents can be applied to the liquid as it leaves the source.
  • the resulting increase in viscosity due to formation of the polymer will cause the resultingspill to take the form of a coherent coagulated mass which can be c'ollected readily by conventional equipment such as skimmers or the like.
  • the polyisocyanate and polyamine reagents may be applied simultaneously. Alternatively, they may be applied successively. In the latter case it is preferred that the polyisocyanate be applied first.
  • the two reagents are preferably used in such. proportion as to furnish free isocyanate groups in approximately equimolar proportion to amino groups. This proportion, however, need not be vigorously applied as the polymer will be formed properly with an excess ofeither of the reactive moieties. It is obvious, nonetheless, that where equimo- I lar proportions offree isocyanate and amino groups are used, the reagents will be most efficiently utilized.
  • the oil within the soformed dam can be removed by conventional mechaniv .cal means and re-used directly or after treatment to separate any occluded water.
  • the polyisocyanate and polyamine are appliedto considerable surface areas of the spill or actually mixed with an outflow of oil, the recovered mass of oil will require more extensive purification.
  • distillationcan be employed to segregate the volatile oil fraction from the essentially non-volatile polymeric material.
  • An advantage of the invention is that it does not dematerials. Generally, these materials must be used in large excess because the amount of oil-absorbed by these is relatively small.
  • the process of the invention is notbased on absorbancebut on "the principle of containingthe oil by a thickening or coagulating effect, with the result that relatively small proportions of the reagents are effective. For example, in many. cases the use of about I to 3 partsofpolyisocyanate plus polyamine per 100 parts of oil is sufficient to attain the dedam prevents dispersion of the oil. Conventional means such as pumps or skimmers can then be used to harvest sired containment effect.
  • the second criterion is also easily fulfilled.
  • the'suitability of a candidate compound can be determined by simple solubility tests or by reference to the usual chemical handbooks.
  • a small pan is partly filled with 5% salt water. Then, crude oil is placed on top of the-water where it remains as a coherent film. A few drops of the candidate compound are .placed on the oil film and the system observed. If the addition of the compound causes the film to be dispersed, that is, to move away from the locus of the applieddroplet, this compound is not a preferred one. If, on the other hand, the oil film remains in place as a coherent film, the compound is one which does not cause oil dispersion and is a preferred reagent for use in accordance with the invention.
  • the desired property is displayed by those polyamines wherein the hydrophilic properties imparted by the amine groups are balanced by alkyl groups which contain 4 or more carbon atoms or by other organic groups which impart oleophilic properties.
  • Typical preferred polyamines are those wherein each amine group is secondary, for example, contain-- ing an N-alkyl substituent having at least 4 carbon atoms.
  • vention are the compounds produced by. the polymerization of an acidcids, followed by conversion to diisocyanates. Such compounds are disclosed in US. Pat. No. 3,462,295, and may be represented by the formula R cn nco 1,
  • R is the hydrocarbon group of polymeric fat acids R(COOH),, said polymeric fat acids having been prepared by polymerizing fat acids of 824 carbon atoms.
  • DDl diisocyanate a compound of the aforesaid class which is commerciallyavailable from General Mills, Inc. under thenam'e of DDl diisocyanate, and which is derived from dimer acid pro prised by the polymerization of C fat acids.
  • the compound has the structure taining 18 carbon atoms.
  • Some of the properties ofDDl diisocyanate are: a low viscosity liquid, specific gravity 0.924, NCO content 14%, soluble in benzene, hexane, and other common organic solvents.
  • the compound is reported ,to have lower animal toxicity than various other diisocyanates such as hexamethylene diisocyanate and 2,4-toluene diisocyanate.
  • polyurethanes which contain free isocyanate groups. These compounds may be prepared, as well kno'wn'in the art, by reacting a polyol with a polyisoc'yanate,'using an excess of the latter to ensure provision offree isocyanate groups in the product.
  • a typical, but by no means limiting, example is illustrated below:
  • m represents the number of tetramethyleneether repeating units. This may range, for
  • the polyurethanes may be
  • the initiator being a polyhydric'alcohol such as ethylene glycol.
  • the reaction is usually carried out'in the presence of either an acidic or-basic catalyst.
  • alkylene oxides which may be employed in the syn thesis include ethylene oxide, propylene oxide, any of the isomeric butylene oxides, and mixtures of two or more different alkylene oxides such as mixtures of ethylene and propylene oxides.
  • the resulting polymers contain a.polyether backbone and are terminated by hydroxyl groups. The number of hydroxyl groups per polymer molecule is determined by the functionality of the active hydrogen initiator.
  • a difunctional alcohol such as ethylene glycol'(as the active hydrogen initiator) leads to polyether chains in which there are two hydroxyl groups per polymer molecule.
  • the resulting polyether molecules contain an average of three hydroxyl groups per molecule.
  • any of the above-listed polyhydric alcohols and phenols may be reacted with alkylene oxides toproduce useful polyether polyols.
  • polyester-polyols which may be employed as precursors for the polyurethanes are mostreadily prepared by condensation polymerization of a polybasic acid with a polyhydric alcohol or phenols. These reactantsare used in such proportion that essentially all the acid groupsare esterified and the resulting chain of ester units is terminated by hydroxyl groups.
  • polybasic acids are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, ,pimelic acid,.suberic acid, azelaic acid, sebacic acid, bra ssylic acid, thapsic acid, maleic acid, fumaric acid, glutaconic acid, oz-hydromuconic acid, ,B-hydromuconic acid, a-butyl-a-ethylglutaric acid, a,B--diethylsuccinic acid, o-phthalic acid, isophthalic acid, terephthalic acid,
  • polyhydroxy compounds for reaction with the polybasic acids includes ethylene glycol, 1,3-propylene glycol, 1,2-
  • esters of ricinoleic acid with eth-' ylene glycol, propylene glycol, glycerol, pentacrythritol, diglycerol, dipentaerythritol, polyalkyleneether glycols, and the like.
  • polyester polyols is castor oil which is composed mainly ofthe tri-glyceride of ricinoleic acid.
  • the Polyamines With regard to the polyamine reagent required for a practice of the invention, one can use any of the aro- 'matic, aliphati'c,'or heterocyclic compounds which merization offatacids', followed by conversion to polyamines. Such compounds are disclosed in US. Pat. No..
  • R may be represented by' the formula R [wring-W211 wherein y is an integer selected fromO and l, x is an integer of 2 to about 4, and R is the hydrocarbon group of polymeric fat acids R(COOH),, said polymeric fat acids having been prepared by polymerizing fat acids of 8-24 carbon atoms.
  • polyamines are free from oil-dispersing characteristics and thus particularly useful in the process of the invention.
  • These polyamines are copolymers prepared by copolymerizing the follow ing monomers:
  • lauryl methacrylate about 1 to 5 moles
  • t-butylaminoethyl methacrylate (lmole) is copolymerized with t-butylaminoethyl methacrylate (lmole) by applying conventional polymerization techniques-heating to about 80-l00 C. in the presence of an initiator such as a,a'-azobisisobutyronitrile.
  • the polyisocyanate used in Examples-2 and 3 was DDldiisocyanate, a product derived from dimer acid produced by dimerization of C fat acids, and described hereinabove.
  • EXAMPLE 2 A small enamel pan approximately 7 inches X 12 inches); was filled to adepth of about 2 inches with 5% brine. Approximately 10 gfof Alaska crude oil was poured on the surface of the water. The outer edge of the resulting oil slic'k was treated with about 0.3 g. of DDI'(applied dropwise), followed immediately by 0.6 g. of the kerosene solution of the polyamine (also applied dropwise). The polymer gel formed rapidly, thus containing the oil within arubber-like ring.
  • EXAMPLE 3 An oil spill was prepared as described in Example 1. About 0.3 g. of DDI was added to the center of the. oil. After approximately 1 minute, 0.6 g.'of the polyamine solution was added in the same place. In'a matter of" minutes the entire oil spill was converted to a gel-likev coherent mass which was easily removed from the surface of the water.
  • a process for containing an oil spill on a body of water which comprises applying to the oil spill a polyisocyanate and a polyamine, in such amounts as to furnish free isocyanate groups in approximately equimolar proportion to amino groups, and wherein both the polyisocyanate and the polyamine have a density less than that of the water in said body and are at least partially miscible with oil but essentially immiscible with water. 2.
  • the process of claim 1 wherein polyisocyanate and polyamine are applied simultaneously.
  • the polyisocyanate has the structure I wherein y is an integer selected from to l, x is an integer of 2 to about 4, and R is thehydrocarbon group of polymeric fat acids R(COOH),, said polymeric fat acids having been prepared by polymerizing fat acids of 8-24 carbon atoms 7.
  • the polyamine is a copolymer of a. an alkyl ester of the structure alts-W0 0 m 0H wherein alk represents an alkyl group containing 8 to peripheral portion of I 10 20 carbon atoms and X represents H or CH and b. an aminoalkyl ester of the structure wherein R represents an alkyl group containing 1 to 20 carbon atoms, and X represents H or CH;,.
  • a process for limiting the dispersion of an oil spill on a body of water which comprises entrapping selected portions of the oil in a polymer tially miscible in oil but immiscible in water, and donot exhibit a dispersion effect on oil films.

Abstract

Oil spills on bodies of water are contained by applying a polyisocyanate and a polyamine thereto.

Description

11111140 tats 'atet 1 1 Stanley et a1.
[ 1 PR CESS 012 CONTAINING OIL SPILLS [75] Inventors: William 1.. Stanley, Richmond;
Allen G. Pittman, El Cerrito, both of Calif.
[22] Filed: Oct. 18, 1971 [21] Appl. No.: 190,320
[52 11.5. (31.; 210/53, 210/54, 210 1210. 21 [51 Int. Cl C02b 9/02 [58 Field 01 Search 210/40, 42, 59, DIG. 21, 210/43, 47, 52, 53
[56 References Cited UNITED STATES PATENTS 3,415,745 12/1968 lsaacson et a1. 210/54 3,462,295 8/1969 Elmquist et a1. .1 117/143 R 2/1970- Roth 210/40 X 1 1 Mar. 4, 1975 3,536,616 10/1970 Kordoh et a1 210/40 3,591,524 7/1971 Eriksen 210/40 X 3,657,125 4/1972 Strick'man 210/40 3,755,189 8/1973 Gilchrist 210/42 X 3,810,835 5/1974 Perm. 210/59 FORElGN ATENTS 0R APPLICATIONS 979,978 1/1965 Great Britain 210/1310. 21
OTHER PUBLICATIONS Firms Seek Ways to Control; Disperse Oil Slicks,
Chemical & Engineering News, July, 1,1968, pp.
Primary E.\-aminer-Thonias G. WySe Takacs 57 ABSTRACT Oil Spills on bodies of water are contained by applying PROCESS FOR CONTAINING OIL SPILLS A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
DESCRIPTION OF .THE INVENTION The invention relates to and has among its objects the provision of novel processes for containing oil spills on bodies of water. Further objects of the invention will be evidentfrom the following description wherein parts and percentages are tied.
Oil spilled from tankers transporting the same .or leaked-from offshore wells is becoming an increasing threat to the environment. It was reported recently that the mid-Atlantic Ocean has become fouled with asphalt-Iike lumps and other gunk presumably from oil. Spills and leaks are creating havoc with-the wildlife that inhabit oceans, bays, and the surrounding areas. Numerous birds have died because their bodies have been drenched with thick crude oil. Fish, seals, and the like have also felt the effects of mans upset of their environment. Asthe demand for petroleum products rises, the chances of a spill or leak are considerably enhanced.
The present invention provides a means for obviating the problems outlined above. More particularly, the invention enables oil spills to be contained, that is, kept within a limited area so that the oil can be collected ef ficiently and economically. On the other hand, where.
the spill is not'contained, the oil'is dispersed'by wind or wave action over a wide area, with the result that its collection is rendered difficult and even impossible in extreme cases. The process of the invention is applicable-for the containment of oil spills on bodies of water by weight unless otherwise speciof all kinds, including those containing fresh, brackish,
or salt (sea) water, and the oil may be any liquid petroleum material, including crude oil,,residual fuel oils, and distilled products such as fuel oils, kerosene, diesel oils, etc. The expression oil spill"'is employed herein to designate a pool or mass of oil floating on a body of water, and without distinction as to the source of the oil or the manner by which it was released.
Basically, the process of the invention involves applying a polyisocyanate and a polyamine to the oil spill. The said reagents react, yielding a polymer'which entraps the oil, forming a rubbery gelled mass, and thereby preventing dispersion of the oil. The reagents may be applied to the entire area of the oil spill or, more preferably, to selected parts thereof-for example,.to the outer periphery thereof.
In a typical practice ofthe invention, the reagents are applied'to the outer periphery of the body of oil which constitutes the spill. The applicationcan be accomplished by means of a boat or other vessel which circles the oil spill and concomitantly deposits the reagents on the edge of the oil. Alternatively, the reagents can be applied to the perimeter of the oil spill by low-flying aircraft. To facilitate their application, the reagents may be employed in the form of solutions in kerosene or other inert solvent. Soon after the reagents are applied, a rubber-like gel is formed and this barrier or.
In cases where there is severe wind or wave action,
the formation of a peripheral dam may not be sufficient to contain the spill. In such case, the reagents may be additionally applied over interior surface portions of the spill. The resulting'increase in viscosity of the entire body of oil will then tend to resist the wave/wind action and hold the body together as a coherent entity.
In situations where the oil is emerging from some source which can be reached-such as a break in the sides of a tanker-the reagents can be applied to the liquid as it leaves the source. The resulting increase in viscosity due to formation of the polymer will cause the resultingspill to take the form of a coherent coagulated mass which can be c'ollected readily by conventional equipment such as skimmers or the like.
In apractice of the invention, the polyisocyanate and polyamine reagents may be applied simultaneously. Alternatively, they may be applied successively. In the latter case it is preferred that the polyisocyanate be applied first. With any mode of application, the two reagents are preferably used in such. proportion as to furnish free isocyanate groups in approximately equimolar proportion to amino groups. This proportion, however, need not be vigorously applied as the polymer will be formed properly with an excess ofeither of the reactive moieties. It is obvious, nonetheless, that where equimo- I lar proportions offree isocyanate and amino groups are used, the reagents will be most efficiently utilized.
In'cases where the spill is contained by forming a polymer dam about its perimeter, the oil within the soformed dam can be removed by conventional mechaniv .cal means and re-used directly or after treatment to separate any occluded water. In cases where the polyisocyanate and polyamine are appliedto considerable surface areas of the spill or actually mixed with an outflow of oil, the recovered mass of oil will require more extensive purification. For example, distillationcan be employed to segregate the volatile oil fraction from the essentially non-volatile polymeric material.
' An advantage of the invention is that it does not dematerials. Generally, these materials must be used in large excess because the amount of oil-absorbed by these is relatively small. The process of the invention is notbased on absorbancebut on "the principle of containingthe oil by a thickening or coagulating effect, with the result that relatively small proportions of the reagents are effective. For example, in many. cases the use of about I to 3 partsofpolyisocyanate plus polyamine per 100 parts of oil is sufficient to attain the dedam prevents dispersion of the oil. Conventional means such as pumps or skimmers can then be used to harvest sired containment effect.
I The Reagents (General) 2. They should be at lcast partially miscible with oil and essentially immiscible with water;
With regard to Item I, it is important that the rea- I gents float on the water rather than sink or cause the oil to sink. The requirement is'easy. to fulfill as most organic compoundsunless they contain heavy atoms such less than that of the as bromine, iodine, etc. have a density less than that of fresh or salt water.
The second criterion is also easily fulfilled. One can readily select those compounds which contain enough carbon chains, rings, or other oleophilic constituents to provide the desired oil-miscibility combined with watcr-immiscibility. In any particular case, the'suitability of a candidate compound can be determined by simple solubility tests or by reference to the usual chemical handbooks.
An additional itemis that best results are obtained when both thepolyisocyanate and polyamine do not exert a dispersing effect on oil films. In the case of the polyisocyanates this condition is readily met because these compounds in general do not exert any oil dispersion effect. In the case of the polyamines a greater degree of selection is required because many polyamines-particularly those which'contain primary amine groups-will disperse oil films. A candidate compound can be tested for this property as follows:
A small pan is partly filled with 5% salt water. Then, crude oil is placed on top of the-water where it remains as a coherent film. A few drops of the candidate compound are .placed on the oil film and the system observed. If the addition of the compound causes the film to be dispersed, that is, to move away from the locus of the applieddroplet, this compound is not a preferred one. If, on the other hand, the oil film remains in place as a coherent film, the compound is one which does not cause oil dispersion and is a preferred reagent for use in accordance with the invention.
' Ingeneral, wehave observed that the desired property (no dispersion effect on oil films) is displayed by those polyamines wherein the hydrophilic properties imparted by the amine groups are balanced by alkyl groups which contain 4 or more carbon atoms or by other organic groups which impart oleophilic properties. Typical preferred polyamines are those wherein each amine group is secondary, for example, contain-- ing an N-alkyl substituent having at least 4 carbon atoms. a
The Polyisocyanates of toluene-2,4-and 2,6-
vention are the compounds produced by. the polymerization of fatacids, followed by conversion to diisocyanates. Such compounds are disclosed in US. Pat. No. 3,462,295, and may be represented by the formula R cn nco 1,
wherein is an integer selectedfrom 0 to l,.\' is an integer of 2 to about 4, and R is the hydrocarbon group of polymeric fat acids R(COOH),, said polymeric fat acids having been prepared by polymerizing fat acids of 824 carbon atoms.
Coming into special consideration is the compound of the aforesaid class which is commerciallyavailable from General Mills, Inc. under thenam'e of DDl diisocyanate, and which is derived from dimer acid pro duced by the polymerization of C fat acids. The compound has the structure taining 18 carbon atoms. Some of the properties ofDDl diisocyanate are: a low viscosity liquid, specific gravity 0.924, NCO content 14%, soluble in benzene, hexane, and other common organic solvents. The compound is reported ,to have lower animal toxicity than various other diisocyanates such as hexamethylene diisocyanate and 2,4-toluene diisocyanate.
Also useful in a practice of the invention are polyurethanes which contain free isocyanate groups. These compounds may be prepared, as well kno'wn'in the art, by reacting a polyol with a polyisoc'yanate,'using an excess of the latter to ensure provision offree isocyanate groups in the product. A typical, but by no means limiting, example is illustrated below:
H0 Z- Z- Z 'C Z-Q H .Polyether polyol Polyisocyanate (In the above formulas, m represents the number of tetramethyleneether repeating units. This may range, for
example, about from to 50.)
ethylene glycol glycerol pentaerythritol dipentaerythritol propylene glycol trimethylene glycol 1,2-butylene glycol 1,3-butanediol l,4-butanediol l,5-pentanediol l,2hexylene glycol 1-,10-decanediol 1,2-cycloheXanediol 2-butene-l, diol 3-cyclohexene-l,l-dimethanol 4-methyl-3-cyclohexenel ,l-dimethanol 3methylene-l ,S-pentanediol diethylene glycol (2-hydroxyethoxy)-l-propanol 4-(2-hydroxyethoxy)-l-butanol S-(Z-hydroxypropoxyJ-l-pentanol l-(Z-hydroxymethoxy)'-2-hexanol l-(Z-hydroxypropoxy)-2-oxtanol 3-allyloxyl ,S-pentanediol 2-allyloxymethyl-Z-methyl-l ,3-propanediol [(4-pentyloxy)methyl]-'l ,3-propanediol 3-(o-propenylphenoxy)-l,2-propanediol thiodiglycol 2,2-[thiobis(ethyleneoxy)ldiethanol I polyethyleneether glycol (molecular weight about 2,2'--isopropylidenebis(p-phenyleneoxy)diethanol 1,2,6-hexanetriol 7 1,1 ,l-trimethylolpropane 3-( 2-hydroxyethoxy)-l ,2'-propanediol 3-( 2-hydroxypropoxy )-l ,2-propanediol 2,4-dimethyl-2-(Z-hydroxyethoxy)methylpentanedh ol-l,5
1,1,l-tris [(2-hydroxyetl1oxy)methyl]ethane l,l,l-tris[(Z-hydroxypropoxy)methyl]propane triethanolaminetriisopropanolamine resorcinol pyrogallol phloroglucinol Roommate-terminated polyether polyurethane hydroquinone 4,6-di-teriarybutyl catecho catechol orcinol methylphoroglucinol hexylresorcinol 3-hydroxy-2-naphthol 2-hydroxyl -naphthol 2,5-dihydroxy-l-naphthol bis-phenols such as 2,2-bis-(p-hydro xyphenyl) propane and bis-(p-hydroxyphenyl)-methane l,l2-tris-(hydroxyphenyl)-ethane 1 l,l,3-tris-(hydroxyphenyl)-propane Hereinabove it has been noted that the polyurethanes may be derived from polyether polyols. Among the polyether polyols which may be so used are those prepared by reaction of an alkylene oxide with an initiator containing active hydrogen groups, a typical example,
of the initiator being a polyhydric'alcohol such as ethylene glycol. The reaction is usually carried out'in the presence of either an acidic or-basic catalyst. Examples ofalkylene oxides which may be employed in the syn thesis include ethylene oxide, propylene oxide, any of the isomeric butylene oxides, and mixtures of two or more different alkylene oxides such as mixtures of ethylene and propylene oxides. The resulting polymers contain a.polyether backbone and are terminated by hydroxyl groups. The number of hydroxyl groups per polymer molecule is determined by the functionality of the active hydrogen initiator. For example, a difunctional alcohol such as ethylene glycol'(as the active hydrogen initiator) leads to polyether chains in which there are two hydroxyl groups per polymer molecule. When polymerization of the oxide is carried'out in the presence ofglycerol, a trifunctional alcohol, the resulting polyether molecules contain an average of three hydroxyl groups per molecule. Even higher funcv tionality-more hydroxyl groups-is obtained when the oxide is polymerized in the presence of such polyols as pentaerythritol, dipentaerythritol, and the like. In similar manner, any of the above-listed polyhydric alcohols and phenols "may be reacted with alkylene oxides toproduce useful polyether polyols. p
The polyester-polyols which may be employed as precursors for the polyurethanes are mostreadily prepared by condensation polymerization of a polybasic acid with a polyhydric alcohol or phenols. These reactantsare used in such proportion that essentially all the acid groupsare esterified and the resulting chain of ester units is terminated by hydroxyl groups. Representative examples of polybasic acids are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, ,pimelic acid,.suberic acid, azelaic acid, sebacic acid, bra ssylic acid, thapsic acid, maleic acid, fumaric acid, glutaconic acid, oz-hydromuconic acid, ,B-hydromuconic acid, a-butyl-a-ethylglutaric acid, a,B--diethylsuccinic acid, o-phthalic acid, isophthalic acid, terephthalic acid,
, 7 hemimellitic acid, trimelliticacid, trimesic acid, mellophanic acid, prehnitic acid, pyromellitic acid, citric acid, benzenepentacarboxylic acid, 1,4- cyclohexanedicarboxylic acid, diglycollic acid, thiodiglycollic acid, dimerized oleic acid, dimerized linoleic acid, and the like. Representative examples of polyhydroxy compounds for reaction with the polybasic acids includes ethylene glycol, 1,3-propylene glycol, 1,2-
, propylene glycol, l',4-butylene glycol, 1,3-butylene glycol, 1,2-buty'lene glycol, butene-l,4-diol, l,5-pentane diol, l,4pentane diol, 1,3-pentane diol, 1,6-hexane diol, hexene-l,6-diol, 1,7-heptane diol, diethylene glycol, glycerine, trimethylol propane, 1,3,6-hexanetriol, triethanolamine, pentaerythritol, and any of the other polyhydric alcohols or phenols listed hereinabove in connection with the preparation of polyether polyols. Estersof the hydroxyl-containing acid, ricinoleic acid, form another category of useful polyester polyols.
Typically, one can use esters of ricinoleic acid with eth-' ylene glycol, propylene glycol, glycerol, pentacrythritol, diglycerol, dipentaerythritol, polyalkyleneether glycols, and the like. Representative of this category of polyester polyols is castor oil which is composed mainly ofthe tri-glyceride of ricinoleic acid.
'. The Polyamines With regard to the polyamine reagent required for a practice of the invention, one can use any of the aro- 'matic, aliphati'c,'or heterocyclic compounds which merization offatacids', followed by conversion to polyamines. Such compounds are disclosed in US. Pat. No..
3,462,295, and may be represented by' the formula R [wring-W211 wherein y is an integer selected fromO and l, x is an integer of 2 to about 4, and R is the hydrocarbon group of polymeric fat acids R(COOH),, said polymeric fat acids having been prepared by polymerizing fat acids of 8-24 carbon atoms. I
We have found that certain polyamines are free from oil-dispersing characteristics and thus particularly useful in the process of the invention. These polyamines are copolymers prepared by copolymerizing the follow ing monomers:
A. an alkyl ester of the structure Allcms-G- G a fca wherein Alk represents an alkyl group containing 8 to carbon atoms and X represents H or CH and B. An aminoalkyl ester of the structure n mi-ca -ca -o-c-c 011 wherein R represents an alkyl group containing 1 to 20 carbon atoms and X represents H or CH In a typical example, lauryl methacrylate (about 1 to 5 moles) is copolymerized with t-butylaminoethyl methacrylate (lmole) by applying conventional polymerization techniques-heating to about 80-l00 C. in the presence of an initiator such as a,a'-azobisisobutyronitrile.
EXAMPLES The invention is further demonstrated by the follow-- ing illustrative'examples.
The polyisocyanate used in Examples-2 and 3 was DDldiisocyanate, a product derived from dimer acid produced by dimerization of C fat acids, and described hereinabove.
The polyamine used inExamples 2 and'3'was prepared as described in Example 1.
EXAMPLE 1 Lauryl methacrylate (10' parts) was mixed with t-butyl-2-aminoethyl methacrylate 01,0: -azobisisobutyronitrile (0.] part). The mixture was heated at about C on a steam bath for 2 hours, The solid copolymer so formed was dissolved in an equal amount of kerosene and the resulting solution em ployed in the following examples.
EXAMPLE 2 A small enamel pan approximately 7 inches X 12 inches); was filled to adepth of about 2 inches with 5% brine. Approximately 10 gfof Alaska crude oil was poured on the surface of the water. The outer edge of the resulting oil slic'k was treated with about 0.3 g. of DDI'(applied dropwise), followed immediately by 0.6 g. of the kerosene solution of the polyamine (also applied dropwise). The polymer gel formed rapidly, thus containing the oil within arubber-like ring.
EXAMPLE 3 An oil spill was prepared as described in Example 1. About 0.3 g. of DDI was added to the center of the. oil. After approximately 1 minute, 0.6 g.'of the polyamine solution was added in the same place. In'a matter of" minutes the entire oil spill was converted to a gel-likev coherent mass which was easily removed from the surface of the water.
Having thus described our invention, we claim: l. A process for containing an oil spill on a body of water, which comprises applying to the oil spill a polyisocyanate and a polyamine, in such amounts as to furnish free isocyanate groups in approximately equimolar proportion to amino groups, and wherein both the polyisocyanate and the polyamine have a density less than that of the water in said body and are at least partially miscible with oil but essentially immiscible with water. 2. The process of claim 1 wherein polyisocyanate and polyamine are applied simultaneously. 1
3. The process of claim 1 wherein the polyisocyanate I and polyamine are applied successively.
2 parts) I and 4. The process of claim 1 wherein the polyisocyanate and polyamine are applied to the the oil spill.
5. The process of claim 1 wherein both the polyisocyanate and the polyamine do not exhibit a dispersion effect on oil films. v
6. The process of claim 1 wherein the polyisocyanate has the structure I wherein y is an integer selected from to l, x is an integer of 2 to about 4, and R is thehydrocarbon group of polymeric fat acids R(COOH),, said polymeric fat acids having been prepared by polymerizing fat acids of 8-24 carbon atoms 7. The process of claim 1 wherein the polyamine is a copolymer of a. an alkyl ester of the structure alts-W0 0 m 0H wherein alk represents an alkyl group containing 8 to peripheral portion of I 10 20 carbon atoms and X represents H or CH and b. an aminoalkyl ester of the structure wherein R represents an alkyl group containing 1 to 20 carbon atoms, and X represents H or CH;,.
8. A process for limiting the dispersion of an oil spill on a body of water, which comprises entrapping selected portions of the oil in a polymer tially miscible in oil but immiscible in water, and donot exhibit a dispersion effect on oil films.

Claims (8)

1. A PROCESS FOR CONTAINING AN OIL SPILL ON A BODY OF WATER, WHICH COMPRISES APPLYING TO THE OIL SPILL A POLYISOCYANATE AND A POLYAMINE, IN SUCH AMOUNTS AS TO FURNISH FREE ISOCYANATE GROUPS IN APPROXIMATELY EQUIMOLAR PROPORTION TO AMINO GROUPS, AND WHEREIN BOTH THE POLYISOCYANATE AND THE POLYAMINE HAVE A DENSITY LESS THAN THAT OF THE WATER IN SAID BODY AND ARE AT LEAST PARTIALLY MISCIBLE WITH OIL BUT ESSENTIALLY IMMISCIBLE WITH WATER.
2. The process of claim 1 wherein polyisocyanate and polyamine are applied simultaneously.
3. The process of claim 1 wherein the polyisocyanate and polyamine are applied successively.
4. The process of claim 1 wherein the polyisocyanate and polyamine are applied to the peripheral portion of the oil spill.
5. The process of claim 1 wherein both the polyisocyanate and the polyamine do not exhibit a dispersion effect on oil films.
6. The process of claim 1 wherein the polyisocyanate has the structure R-(CH2)y-NCO)x wherein y is an integer selected from 0 to 1, x is an integer of 2 to about 4, and R is the hydrocarbon group of polymeric fat acids R(COOH)x, said polymeric fat acids having been prepared by polymerizing fat acids of 8-24 carbon atoms.
7. The process of claim 1 wherein the polyamine is a copolymer of a. an alkyl ester of the structure
8. A process for limiting the dispersion of an oil spill on a body of water, which comprises entrapping selected portions of the oil in a polymer matrix, the polymer being formed in situ by reaction of a polyisocyanate and a polyamine, applied to the oil in such amounts as to furnish free isocyanate groups in approximately equimolar proportion to amino groups, and wherein both of said reactants have a density less than that of the water in said body, are at least partially miscible in oil but immiscible in water, and do not exhibit a dispersion effect on oil films.
US190320A 1971-10-18 1971-10-18 Process for containing oil spills Expired - Lifetime US3869385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US190320A US3869385A (en) 1971-10-18 1971-10-18 Process for containing oil spills

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US190320A US3869385A (en) 1971-10-18 1971-10-18 Process for containing oil spills

Publications (1)

Publication Number Publication Date
US3869385A true US3869385A (en) 1975-03-04

Family

ID=22700854

Family Applications (1)

Application Number Title Priority Date Filing Date
US190320A Expired - Lifetime US3869385A (en) 1971-10-18 1971-10-18 Process for containing oil spills

Country Status (1)

Country Link
US (1) US3869385A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023084A1 (en) * 1979-06-26 1981-01-28 The British Petroleum Company p.l.c. Cross-linked polymer compositions and production thereof
US4507411A (en) * 1980-09-26 1985-03-26 The British Petroleum Company Limited Cross-linked polymer compositions and production thereof
US4812242A (en) * 1984-05-31 1989-03-14 The British Petroleum Company P.L.C. Method of encapsulating organic material
US4980072A (en) * 1988-11-24 1990-12-25 Bayer Aktiengesellschaft Process for the removal of surface-distributed hydrocarbons, in particular oil residues
US5215595A (en) * 1991-08-08 1993-06-01 Popino James P Oil removal from animals, fish and birds using viscoelasticity
US5730880A (en) * 1995-06-27 1998-03-24 Imperial Chemical Industries Plc Process for removing unwanted material from wanted material
US20060199944A1 (en) * 2005-03-03 2006-09-07 Polyfoam Products, Inc. Composition and process for recovery of spilled hydrocarbons from aqueous environments

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415745A (en) * 1966-11-07 1968-12-10 Sinclair Research Inc Method of flocculating a water-borne oil slick
US3462295A (en) * 1966-02-17 1969-08-19 Gen Mills Inc Process for rendering cellulosic and fibrous materials oil - water - repellent and product therefrom
US3497450A (en) * 1968-10-31 1970-02-24 Allied Chem Removal of liquid contaminants from the surface of water
US3536616A (en) * 1967-06-24 1970-10-27 Agency Ind Science Techn Method for removal of oils floating on surface of water
US3591524A (en) * 1967-11-29 1971-07-06 Mo Och Domsjoe Ab Oil absorbent
US3657125A (en) * 1970-07-15 1972-04-18 Strickman Ind Inc Collection of oils
US3755189A (en) * 1971-09-24 1973-08-28 Tenneco Oil Co Composition for the control of oils floating on water
US3810835A (en) * 1971-02-25 1974-05-14 Chevron Res Process for treating oil slicks using chemical agents

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462295A (en) * 1966-02-17 1969-08-19 Gen Mills Inc Process for rendering cellulosic and fibrous materials oil - water - repellent and product therefrom
US3415745A (en) * 1966-11-07 1968-12-10 Sinclair Research Inc Method of flocculating a water-borne oil slick
US3536616A (en) * 1967-06-24 1970-10-27 Agency Ind Science Techn Method for removal of oils floating on surface of water
US3591524A (en) * 1967-11-29 1971-07-06 Mo Och Domsjoe Ab Oil absorbent
US3497450A (en) * 1968-10-31 1970-02-24 Allied Chem Removal of liquid contaminants from the surface of water
US3657125A (en) * 1970-07-15 1972-04-18 Strickman Ind Inc Collection of oils
US3810835A (en) * 1971-02-25 1974-05-14 Chevron Res Process for treating oil slicks using chemical agents
US3755189A (en) * 1971-09-24 1973-08-28 Tenneco Oil Co Composition for the control of oils floating on water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023084A1 (en) * 1979-06-26 1981-01-28 The British Petroleum Company p.l.c. Cross-linked polymer compositions and production thereof
US4497663A (en) * 1979-06-26 1985-02-05 The British Petroleum Company Limited Method of encapsulating a polluting liquid
US4507411A (en) * 1980-09-26 1985-03-26 The British Petroleum Company Limited Cross-linked polymer compositions and production thereof
US4812242A (en) * 1984-05-31 1989-03-14 The British Petroleum Company P.L.C. Method of encapsulating organic material
US4980072A (en) * 1988-11-24 1990-12-25 Bayer Aktiengesellschaft Process for the removal of surface-distributed hydrocarbons, in particular oil residues
US5215595A (en) * 1991-08-08 1993-06-01 Popino James P Oil removal from animals, fish and birds using viscoelasticity
US5730880A (en) * 1995-06-27 1998-03-24 Imperial Chemical Industries Plc Process for removing unwanted material from wanted material
US20060199944A1 (en) * 2005-03-03 2006-09-07 Polyfoam Products, Inc. Composition and process for recovery of spilled hydrocarbons from aqueous environments
US7459488B2 (en) 2005-03-03 2008-12-02 Polyfoam Products, Inc. Composition and process for recovery of spilled hydrocarbons from aqueous environments

Similar Documents

Publication Publication Date Title
US3869385A (en) Process for containing oil spills
CA1105182A (en) High ethylene oxide content polyols and polymer/polyols and polyurethanes made therefrom
US3957843A (en) Non-isomerizable olefinic polyoxyalkylene polymers and siloxane-polyoxyalkylene copolymer derivatives thereof
EP1911781A1 (en) Oil absorbing foam
US4575518A (en) Homogeneous storage stable salt-containing mixture
FR2563228A1 (en) COMPOSITION OF OIL-BASED INVERSE-TYPE DRILLING FLUIDS
Cowan Dimer acids
US3810835A (en) Process for treating oil slicks using chemical agents
US3591520A (en) Quaternary adducts of polyepihalohydrin and use thereof
US3557017A (en) Use of ultra high molecular weight polymers as demulsifiers
US3594393A (en) Use of polyurethanes as demulsifiers
US2950299A (en) Surface active substances of ether ester class
US6022401A (en) Biodegradable modified polyaspartic polymers for corrosion and scale control
AU684636B2 (en) Process for removing polluting material from water or wet solid matter
US3966630A (en) Use of polyquaternary ammonium methylene phosphonates in chelating or scale inhibition
US3531514A (en) Phosphonium compounds and/or ethylene glycol - bis-(trialkylphosphonium acetates)
US3358005A (en) Polyurethanes and polyureas from diisocyanates
US3251882A (en) Epichlorohydrin polyalkylene polyamine polycondensates
US3431063A (en) Process and composition for retarding water evaporation
US3738807A (en) Methods of reducing water evaporation
US3450646A (en) Heterocyclic polymers
US4117236A (en) Phosphonium compounds
US3669612A (en) Use of cyclic amidine polymers as corrosion inhibitors
US3244770A (en) Surface active agents derived from polycarboxylic acids esterified with oxyalkylated phenolics and polyoxy-alkylene glycol
EP0429892A2 (en) Amine modified polyalkylene oxides, reticulated, their preparation and their use as a demulsifier