US3860865A - Selective firing indicator and recording - Google Patents

Selective firing indicator and recording Download PDF

Info

Publication number
US3860865A
US3860865A US399310A US39931073A US3860865A US 3860865 A US3860865 A US 3860865A US 399310 A US399310 A US 399310A US 39931073 A US39931073 A US 39931073A US 3860865 A US3860865 A US 3860865A
Authority
US
United States
Prior art keywords
pulses
gun
circuit
polarity
actuated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US399310A
Inventor
Stanley G Stroud
James D Estes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Atlas International Inc
NL Industries Inc
Original Assignee
NL Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NL Industries Inc filed Critical NL Industries Inc
Priority to US399310A priority Critical patent/US3860865A/en
Application granted granted Critical
Publication of US3860865A publication Critical patent/US3860865A/en
Assigned to WESTERN ATLAS INTERNATIONAL, INC. reassignment WESTERN ATLAS INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: NL INDUSTRIES, INC., 3000 NORTH BELT EAST, HOUSTON, TX 77032 A CORP. OF NJ
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • E21B43/11857Ignition systems firing indication systems

Definitions

  • ABSTRACT In a multiple perforating gun wherein each in a series of guns is successively fired, the firing arming the next gun in the series, resistors are provided in series with the gun actuating circuit in such a fashion, and in connection with surface control, readout, and recorder equipment, that the condition of the tool is continu ously displayed and indicated, whereby a tally may be kept as to the exact guns fired, and down-the-hole ir regularities such as shorts or open circuits may be evidenced.
  • This invention relates to the monitoring of an explosive tool for use in a well bore.
  • one of the steps in completing oil and gas wells is perforating the casing to allow entry of the oil or gas.
  • the oil or gas bearing formation is continuous.
  • the casings in these wells are perforated with one or more guns until the entire productive zone is opened.
  • the productive formation is not always continuous in all wells. There may be wells that have non-productive streaks in the oil-bearing zone and it would not be desirable to perforate these intervals. Multiple short gun runs, blanked-off shots of long guns, and spacers between guns have all been used to selectively perforate the productive zones in these wells.
  • a better solution is a multi-gun tool where the operator can selectively fire each gun separately. Selective fired guns have been used for many years and a number of problems have been encountered. The selected gun may fail to fire because of electric circuit failures, including shorts or opens in the wire line or in the down-hole circuit. At times the wrong gun or guns may become armed due to an electrical or mechanical failure. If the wrong gun is fired, the well may be perforatd in the wrong zone and expensive repairs, such as cementing, may be required. These problems have been minimized by improved gun design, but have not been eliminated.
  • the select fire gun consists of several guns connected in series with down-the-hole switches, i.e., switch subs.
  • the circuits in these switch subs are such that the bottom gun is set to fire first.
  • the blast from this first gun switches the first switch sub and the second gun is armed.
  • Consecutive guns are of opposite polarity, eliminating multiple gun firings.
  • the present invention relates to a method and apparatus for measuring the complete electrical impedance of a wire line explosive too], including the wire line, so that from this measurement the condition of the downhole tool may be determined.
  • electrical im pedance as used above is meant to include situations involving non-sinusoidal quantities of non-linear systems.
  • One object of this invention is to provide an arrangement for measuring the electrical impedance of a wire line explosive tool and from this measurement to determine if the explosive tool is armed and ready to fire.
  • Another object is to provide a system to measure the electrical impedance of a wire line tool, including the wire line, and from this measurement to determine if there is a short circuit or an open circuit in the wire line and tool system.
  • Another object is to provide an assembly to measure the electrical impedance of a wire line multi-gun explo sive tool in such a way as to be able to determine which gun is armed and ready to tire.
  • Another object is to provide an arrangement to measure the electrical impedance of a wire line explosive too], including the wire line, continuously while running the tool in a well bore so that from this measurement changes in the operating condition of the wire line and tool system may be determined.
  • FIG. 1 is a drawing partly in cross-section and partly schematic of a down-hole perforating tool and surface recorder and indicator employing one embodiment of the invention.
  • FIG. 2 is a schematic drawing of the down-hole multigun perforating tool circuit.
  • FIG. 3 is a block diagram of the measuring system including the recorder and indicator.
  • FIG. 1 designates a bore hole containing casing 11 to be perforated by a gun assembly 12 which is lowered into the bore hole by a wire line 13.
  • the purpose of the gun assembly is to perforate, as by shaped charges or projectiles, through the casing and cement 14 into preselected portions of the formation IS.
  • the gun assembly 12 comprises a series of vertically spaced guns l6, l7, l8, 19, 20, although of course more or fewer may be used according to circumstances. As many as ten or twenty are commonly used. It will be observed that the first gun 16 is positioned opposite the formation stratum 22.
  • FIG. 2 this shows the five guns, 16-20 inclusive, together with the wiring diagram for each.
  • the cable 13 has a single conductor 21, but it should be noted that a direct current pulse can be applied to the conductor 21 in either of two polarities, positive or negative.
  • the first gun 16 is caused to fire by applying a positive pulse to conductor 21.
  • this first gun 16, 23 designates the electric blasting cap, which is detonated when a current passes through it and which then fires the projectiles of the gun.
  • the diode 24 of gun 16 is arranged to pass the actuating positive pulse. It will be observed that all of the other guns in assembly 12 present an open circuit to a positive or negative pulse by reason of the fact that their switches are in the down or open position, as shown in FIG. 2.
  • Gun 16 having been fired and switch 25 having been closed as already explained, the second gun, 17, is now ready for firing. This may be done when desired by applying a negative firing pulse to conductor 21. It will be observed that diode 26 in gun 17 is arranged with opposite polarity to that of diode 24 in the first gun l6.
  • FIGS. 1 and 2 The arrangement depicted in FIGS. 1 and 2 includes an optional casing collar locator 27, containing a casing collar locator coil 28, all of conventional construction.
  • each gun contains a resistance 29, 30, 31, and 32. These resistors are initially all in series. As each successive gun is fired, and the switch of the gun next above is thrown from the down to the up position, the resistor associated with that switch and that gun is shorted out, as may be seen by noting the switch connections of, for example, switch 25.
  • the impedance from conductor 21 to ground consists of the resistors 29, 30, 31, and 32 in series, together with the effective forward or reverse impedance, depending upon the polarity of the measuring current, of firing diode 24; together with the resistance of the blasting cap device 23, all in series.
  • this total impedance is shunted by coil 28, but the resistance of the latter is so high as to have a negligible effect on the overall resistance measured.
  • Each of the resistors 29, 30, 31, and 32 may optionally be shunted by a pair of diodes 33 and 34 (for the case of resistor 29), in parallel connection with opposing polarities.
  • These resistor-shunting diodes, such as 33 and 34 are of a conventional type that will pass (in a forward direction) the relatively high firing current, typically 0.5 ampere, but on the other hand present an impedance in both forward and reverse directions which is substantially infinite compared to the resistance of the resistor being shunted, for example resistor 29, for the very low voltage drop across them during the measuring pulses, to be described in detail later.
  • the purpose of these optional resistance shunting diodes is to reduce the effective impedance for the firing current, so that they become more useful as the total number of guns in the arrangement increases.
  • a typical value of resistance 29 is ohms.
  • a suitable diode type for both the shunting diodes 33, 34, etc., and for the firing diodes 24, 26, etc., is l N 4004.
  • FIG. 1 is a block diagram which again shows the indicator 37 and recorder 38, and presents the firing and impedance measuring apparatus in separate blocks.
  • Switch 39 is shown in the impedance measuring position in which it is normally except during firing, when it is thrown to the other position.
  • the firing circuits 40 are conventional.
  • the impedance measuring circuit is arranged so as to measure the magnitude of the line and tool resistance as well as to determine the polarity for minimum resistance, in a manner to be described later.
  • the recorder 38 continuously records the resistance measured, and is conveniently of a zero center type, indicating zero resistance at the center and deflections to the right for conditions of positive minimum resistance and deflections to the left for conditions of negative minimum resistance, all as will be clear from an inspection of F IG. 1.
  • the indicator 37 actuates a short light for an abnormally low resistance and an open" light for an abnormally high resistance.
  • a light indicates the condition of the minimum resistance being positive, while a light indicates the condition of the minimum resistance being negative.
  • the indicator panel contains a digital counter which is responsive to the total resistance of line and gun, and is calibrated so that the counter number indicates which gun is armed and ready to fire.
  • a typical arrangement of indicator lights and digital counter is shown in block 37 of FIG. 1.
  • the first or lowest gun is armed and ready to fire, as already explained.
  • the invention makes possible a continuous recording of the resistance so that any change in the condition of the wire line or the tool will be detected.
  • the first gun is wired for positive voltage firing so that the polarity for minimum resistance will be positive; and moreover, the recorder will deflect to the right as seen in FIG. 1, block 38.
  • the temperature of the wire line may increase due to the increase in temperature with depth and the line resistance may increase slightly, again as indicated in FIG. 1.
  • the first gun is fired using the firing circuit.
  • the blast from the explosion in the first gun 16 operates switch 25 in the second gun, thus removing the first gun from the firing circuit and connecting the second gun 17 in turn to the firing circuit.
  • the second gun 17 is wired for negative voltage firing. Accordingly, after switch 25 has been thrown, as just de scribed, the recorder 38 will deflect to the left and the magnitude of the deflection from zero will be slightly less, as shown in FIG. 1, because the total resistance is slightly lowered when the first gun is removed from the circuit.
  • the indicator light 37 will change from to because of the negative circuit in the second gun; and the digital counter in indicator 37 will change from 01 to 02 in response to the lowered total resistance.
  • the blast from the explosion in the second gun will throw the second switch, i.e., that in gun 18, causing the recorder to deflect to the right for a positive third gun, as shown in FIG. 1, block 38.
  • the digital indicator will change from 02 to 03, and the light will be lighted.
  • each gun when positioned and tired, will operate the switch immediately above it, which will arm the next gun up.
  • the polarity indication in indicator 37 will change, and the recording pen will move to the opposite side of the zero center, as the figure shows.
  • the resulting low resistance will light the short light and the recorder deflection will be substantially reduced. If an open circuit occurs, the resulting high resistance will light the open light and the recorder will be deflected off scale. If a wrong gun should become armed due to a mechanical or electrical failure, the digital readout in indicator 37 will show which gun is now armed and the recorder will show a reduction in the total resistance.
  • a pulse of high level positive current at 5 milliamperes is followed by a pulse of the same duration of low level positive current at 1 milliampere, which is followed in turn by a high level nega tive current of 5 milliamperes and then by a low level negative current of l milliampere.
  • Each pulse duration may be about 33 milliseconds, as shown by 42 in FIG. 3.
  • This cycle is then repeated continuously, except during the actual firing when switch 39 is momentarily placed in its firing position.
  • These currents are applied to the line 35 and in consequence to the subsurface tool, i.e., the gun assembly 12.
  • the line voltage is sampled and stored in the sample hold unit 43.
  • the two voltage samples from the positive and negative high current levels are compared and measured. The result of this measurement is sent to the decoder 44.
  • Decoder 44 serves to interpret the above measurement and to energize the appropriate light in indicator panel 37 if the two voltage samples are above a predetermined level. For example, if this predetermined level is 4 volts, then the open light is energized. If the two voltage samples are below a predetermined level, which may be 4 volts for example, the short light is energized. If the positive current sample voltage is above 4 volts and the negative current sample is less than 4 volts, then the sign light is energized. If the negative current sample voltage is above 4 volts and the positive current sample voltage is less than 4 volts, the light is energized.
  • the digital meter readout 45 which is part of the indicator assembly 37 is operated from the current sample voltages. When the light is energized, the low level positive sample voltage is subtracted from the high level of positive sample voltage and the resulting voltage is sent to the digital readout 45. With the proper scale factor and calibration, the digital readout 45 will indicate the gun number assembly which is armed and ready to fire. When the sign light is energized, the high level negative sample voltage is subtracted from the low level sample voltage and the resulting voltage is sent to the digital readout 45 as already described.
  • the recorder 38 is operated from the current sample voltage in the following manner.
  • the high level positiive sample voltage is sent to the recorder in all cases except when the light is energized, in which case the high level negative sample voltage is sent to the recorder 38.
  • one of the advantges of using constant current instead of constant voltage for the measuring operation is that the complication is avoided of unwanted shunting of the measuring resistor, eg 29, by the shunting diodes, e.g., 33 and 34.
  • the measuring resistor 29 is 10 ohms and the maximum measuring current is 5 milliamperes
  • the maximum voltage impressed across the shunting diodes 33 and 34 during the high current measuring pulse is 50 millivolts, which is well below the forward voltage characteristic of diodes 33 and 34 which is several hundred millivolts even at the relatively high subsurface temperatures encountered during the use of the tool.
  • the casing collar locator 27 is optional. When it is included, however, it is helpful to utilize a pair of diodes, 49 and 50, of the same type already described, connected as shown in FIG. 2.
  • the signal developed by the casing collar locator coil 28 is very low level, below the forward breakdown voltage of the diodes, so that all of this low level signal is available for detection through conductor 21, instead of being partially shunted by the impedance of the total circuit below locator 27.
  • the firing diodes 46, 47, and 48 are identical in nature to previously described firing diodes 24 and 26. Likewise similar, and also similar to previously described diodes 33 and 34, are the other resistor shunting diodes 51-56 inclusive.
  • the current source 57 shown in FIG. 3 is of course conventional, and may derive its power from a selfcontained generating unit, a battery array, a power line, or the like, as field conditions dictate.
  • measuring pulses are stepped so as to provide pulses of relatively high and relatively low currents of both polarities, and wherein the differentials between the high pulses and the low pulses of each polarity are caused to operate said indicating display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

In a multiple perforating gun wherein each in a series of guns is successively fired, the firing arming the next gun in the series, resistors are provided in series with the gun actuating circuit in such a fashion, and in connection with surface control, readout, and recorder equipment, that the condition of the tool is continuously displayed and indicated, whereby a tally may be kept as to the exact guns fired, and down-the-hole irregularities such as shorts or open circuits may be evidenced.

Description

United States Patent Stroud et a1.
[4 11 Jan. 14,1975
SELECTIVE FIRING INDICATOR AND RECORDING Inventors: Stanley G. Stroud; James D. Estes,
both of Houston, Tex.
Assignee: N L Industries, New York, NY.
Filed: Sept. 21, 1973 Appl. N0.: 399,310
Related US. Application Data Division of Ser, No. 277,408, Aug. 2, 1972, Pat. No, 3,773,120.
US. Cl. 324/51, 340/256 Int. Cl G01r 31/02 Field of Search 324/51, 57, 52, 133; 340/248 E, 253 B, 253 E, 256, 213, 214,
References Cited UNITED STATES PATENTS 11/1961 Coleman 175/455 4/1966 Bell 175/455 X 4 7h GUN H6 0 2 I70 GUN F/EED 3,246,708 4/1966 Harrigan et al 175/455 3,309,685 3/1967 Manning 340/213 3,380,540 4/1968 Fields 175/455 3,441,929 4/1969 Coffer et al t 340/409 3,448,447 6/1969 Tcthcrow 1 340/409 3,517,757 6/1970 Hart 175/455 Primary Examiner-Gcrard R. Strcckcr Attorney, Agent, or Firm-Dclmar H. Larsen; Roy F. House; Fred Floershcimcr [57] ABSTRACT In a multiple perforating gun wherein each in a series of guns is successively fired, the firing arming the next gun in the series, resistors are provided in series with the gun actuating circuit in such a fashion, and in connection with surface control, readout, and recorder equipment, that the condition of the tool is continu ously displayed and indicated, whereby a tally may be kept as to the exact guns fired, and down-the-hole ir regularities such as shorts or open circuits may be evidenced.
6 Claims, 3 Drawing; Figures OPEN SHORT 3rd GUN F/EGD 57 GUN F1860 SELECTIVE FIRING INDICATOR AND RECORDING This is a continuation, division, of application Ser. No. 277,408, filed Aug. 2, 1972 now US. Pat. No. 3,773,120, issued Nov. 20, 1973.
BACKGROUND OFINVENTION This invention relates to the monitoring of an explosive tool for use in a well bore.
In performing completion operations in a well, it is often necessary to selectively activate electrically detonated explosive devices, so that a number of completion operations at separate well depths may be performed with a single trip into a well.
For example, one of the steps in completing oil and gas wells is perforating the casing to allow entry of the oil or gas. In some wells the oil or gas bearing formation is continuous. The casings in these wells are perforated with one or more guns until the entire productive zone is opened.
The productive formation is not always continuous in all wells. There may be wells that have non-productive streaks in the oil-bearing zone and it would not be desirable to perforate these intervals. Multiple short gun runs, blanked-off shots of long guns, and spacers between guns have all been used to selectively perforate the productive zones in these wells. A better solution is a multi-gun tool where the operator can selectively fire each gun separately. Selective fired guns have been used for many years and a number of problems have been encountered. The selected gun may fail to fire because of electric circuit failures, including shorts or opens in the wire line or in the down-hole circuit. At times the wrong gun or guns may become armed due to an electrical or mechanical failure. If the wrong gun is fired, the well may be perforatd in the wrong zone and expensive repairs, such as cementing, may be required. These problems have been minimized by improved gun design, but have not been eliminated.
The select fire gun consists of several guns connected in series with down-the-hole switches, i.e., switch subs. The circuits in these switch subs are such that the bottom gun is set to fire first. The blast from this first gun switches the first switch sub and the second gun is armed. Consecutive guns are of opposite polarity, eliminating multiple gun firings.
Each time a switch sub switches, a resistor is dropped from the circuit, the next gun is armed, and its diode is of opposite polarity.
SUMMARY OF THE INVENTION The present invention relates to a method and apparatus for measuring the complete electrical impedance of a wire line explosive too], including the wire line, so that from this measurement the condition of the downhole tool may be determined. The term electrical im pedance as used above is meant to include situations involving non-sinusoidal quantities of non-linear systems.
One object of this invention is to provide an arrangement for measuring the electrical impedance of a wire line explosive tool and from this measurement to determine if the explosive tool is armed and ready to fire.
Another object is to provide a system to measure the electrical impedance of a wire line tool, including the wire line, and from this measurement to determine if there is a short circuit or an open circuit in the wire line and tool system.
Another object is to provide an assembly to measure the electrical impedance of a wire line multi-gun explo sive tool in such a way as to be able to determine which gun is armed and ready to tire.
Another object is to provide an arrangement to measure the electrical impedance of a wire line explosive too], including the wire line, continuously while running the tool in a well bore so that from this measurement changes in the operating condition of the wire line and tool system may be determined.
Other objects of the invention will appear the de scription thereof proceeds.
DESCRIPTION OF DRAWINGS FIG. 1 is a drawing partly in cross-section and partly schematic of a down-hole perforating tool and surface recorder and indicator employing one embodiment of the invention.
FIG. 2 is a schematic drawing of the down-hole multigun perforating tool circuit.
FIG. 3 is a block diagram of the measuring system including the recorder and indicator.
DETAILED DESCRIPTION OF THE INVENTION Referring now to FIG. 1, 10 designates a bore hole containing casing 11 to be perforated by a gun assembly 12 which is lowered into the bore hole by a wire line 13. As is well known in the art, the purpose of the gun assembly is to perforate, as by shaped charges or projectiles, through the casing and cement 14 into preselected portions of the formation IS.
The gun assembly 12 comprises a series of vertically spaced guns l6, l7, l8, 19, 20, although of course more or fewer may be used according to circumstances. As many as ten or twenty are commonly used. It will be observed that the first gun 16 is positioned opposite the formation stratum 22.
Referring to FIG. 2; this shows the five guns, 16-20 inclusive, together with the wiring diagram for each. It will be noted that the cable 13 has a single conductor 21, but it should be noted that a direct current pulse can be applied to the conductor 21 in either of two polarities, positive or negative.
The first gun 16 is caused to fire by applying a positive pulse to conductor 21. In this first gun 16, 23 designates the electric blasting cap, which is detonated when a current passes through it and which then fires the projectiles of the gun. The diode 24 of gun 16 is arranged to pass the actuating positive pulse. It will be observed that all of the other guns in assembly 12 present an open circuit to a positive or negative pulse by reason of the fact that their switches are in the down or open position, as shown in FIG. 2.
The firing of gun 16 by mechanical action throws switch 25 of gun 17 to the up position. This action has already been explained, and need not be detailed here since this overall arrangement is well known to those skilled in the art.
Gun 16 having been fired and switch 25 having been closed as already explained, the second gun, 17, is now ready for firing. This may be done when desired by applying a negative firing pulse to conductor 21. It will be observed that diode 26 in gun 17 is arranged with opposite polarity to that of diode 24 in the first gun l6.
This sequence is repeated; each time a gun is fired, it throws the switch on the gun immediately above, so that that gun is putinto position for firing. For the latter, a pulse of polarity opposite to that used for the previous gun is'employed.
The arrangement depicted in FIGS. 1 and 2 includes an optional casing collar locator 27, containing a casing collar locator coil 28, all of conventional construction.
It will be seen that each gun contains a resistance 29, 30, 31, and 32. These resistors are initially all in series. As each successive gun is fired, and the switch of the gun next above is thrown from the down to the up position, the resistor associated with that switch and that gun is shorted out, as may be seen by noting the switch connections of, for example, switch 25.
Tracing the circuit path from the top of FIG. 2 to the bottom, it may be seen that the impedance from conductor 21 to ground, before any of the guns are fired, consists of the resistors 29, 30, 31, and 32 in series, together with the effective forward or reverse impedance, depending upon the polarity of the measuring current, of firing diode 24; together with the resistance of the blasting cap device 23, all in series. When the casing collar locator 27 is included in the arrangement, this total impedance is shunted by coil 28, but the resistance of the latter is so high as to have a negligible effect on the overall resistance measured. Each of the resistors 29, 30, 31, and 32 may optionally be shunted by a pair of diodes 33 and 34 (for the case of resistor 29), in parallel connection with opposing polarities. These resistor-shunting diodes, such as 33 and 34, are of a conventional type that will pass (in a forward direction) the relatively high firing current, typically 0.5 ampere, but on the other hand present an impedance in both forward and reverse directions which is substantially infinite compared to the resistance of the resistor being shunted, for example resistor 29, for the very low voltage drop across them during the measuring pulses, to be described in detail later. The purpose of these optional resistance shunting diodes is to reduce the effective impedance for the firing current, so that they become more useful as the total number of guns in the arrangement increases.
A typical value of resistance 29 is ohms. A suitable diode type for both the shunting diodes 33, 34, etc., and for the firing diodes 24, 26, etc., is l N 4004.
Turning now to FIG. 1, it will be seen that the aboveground end 35 of conductor 21 is connected with the above-ground control, indicating, and recording apparatus, which is shown for the sake of clarity in block diagrams, 36 indicating the circuitry handling the firing of the guns as well as the impedance measurement; 37 being the visual readout, and 38 being the recorder, with a typical recording shown in the block. The actual circuit and apparatus details of this surface equipment, including that shown in FIG. 3, is conventional and details need not be set forth to those skilled in the art. FIG. 3 is a block diagram which again shows the indicator 37 and recorder 38, and presents the firing and impedance measuring apparatus in separate blocks. Switch 39 is shown in the impedance measuring position in which it is normally except during firing, when it is thrown to the other position. The firing circuits 40 are conventional.
Turning now to the impedance measuring circuit, this is arranged so as to measure the magnitude of the line and tool resistance as well as to determine the polarity for minimum resistance, in a manner to be described later. The recorder 38 continuously records the resistance measured, and is conveniently of a zero center type, indicating zero resistance at the center and deflections to the right for conditions of positive minimum resistance and deflections to the left for conditions of negative minimum resistance, all as will be clear from an inspection of F IG. 1.
The indicator 37 actuates a short light for an abnormally low resistance and an open" light for an abnormally high resistance. A light indicates the condition of the minimum resistance being positive, while a light indicates the condition of the minimum resistance being negative. In addition, the indicator panel contains a digital counter which is responsive to the total resistance of line and gun, and is calibrated so that the counter number indicates which gun is armed and ready to fire. A typical arrangement of indicator lights and digital counter is shown in block 37 of FIG. 1.
While the tool, i.e., the multiple gun, is being run into the hole, the first or lowest gun is armed and ready to fire, as already explained. The invention makes possible a continuous recording of the resistance so that any change in the condition of the wire line or the tool will be detected. Normally, as already explained, the first gun is wired for positive voltage firing so that the polarity for minimum resistance will be positive; and moreover, the recorder will deflect to the right as seen in FIG. 1, block 38. While running the gun in the hole, the temperature of the wire line may increase due to the increase in temperature with depth and the line resistance may increase slightly, again as indicated in FIG. 1.
As already described, after the gun is properly positioned, the first gun is fired using the firing circuit. The blast from the explosion in the first gun 16 operates switch 25 in the second gun, thus removing the first gun from the firing circuit and connecting the second gun 17 in turn to the firing circuit. As already noted, the second gun 17 is wired for negative voltage firing. Accordingly, after switch 25 has been thrown, as just de scribed, the recorder 38 will deflect to the left and the magnitude of the deflection from zero will be slightly less, as shown in FIG. 1, because the total resistance is slightly lowered when the first gun is removed from the circuit. The indicator light 37 will change from to because of the negative circuit in the second gun; and the digital counter in indicator 37 will change from 01 to 02 in response to the lowered total resistance.
In a like manner, after the second gun 17 is positioned opposite the second zone to be perforated and has been fired, the blast from the explosion in the second gun will throw the second switch, i.e., that in gun 18, causing the recorder to deflect to the right for a positive third gun, as shown in FIG. 1, block 38. At the same time, the digital indicator will change from 02 to 03, and the light will be lighted.
In a continuing and successive manner, each gun, when positioned and tired, will operate the switch immediately above it, which will arm the next gun up. Each time this happens, the polarity indication in indicator 37 will change, and the recording pen will move to the opposite side of the zero center, as the figure shows.
If a fault such as a short circuit occurs in the line or tool while running into the hole or during the firing sequence, the resulting low resistance will light the short light and the recorder deflection will be substantially reduced. If an open circuit occurs, the resulting high resistance will light the open light and the recorder will be deflected off scale. If a wrong gun should become armed due to a mechanical or electrical failure, the digital readout in indicator 37 will show which gun is now armed and the recorder will show a reduction in the total resistance.
Turning now to FIG. 3, this shows the arrangements of the components of the surface control, indicating and recording assembly. The impedance from line 35 to ground may be measured in a number of fashions. For example, it is possible to apply a constant voltage and measure the current. We find it more convenient and we prefer to apply a constant current, following impedance changes by noting the change in voltage required. Because of the non-linear circuits involved, resulting from the operating charcteristics of the diodes, we find it convenient to use a current source having four levels, two positive and two negative, and to generate clock pulses which cause the current source to generate four levels of current in sequence, as shown by wave form diagram 42 in FIG. 3, which shows current as ordinates and time as abscissae. Conveniently, as shown by wave form 42, a pulse of high level positive current at 5 milliamperes is followed by a pulse of the same duration of low level positive current at 1 milliampere, which is followed in turn by a high level nega tive current of 5 milliamperes and then by a low level negative current of l milliampere. Each pulse duration may be about 33 milliseconds, as shown by 42 in FIG. 3. This cycle is then repeated continuously, except during the actual firing when switch 39 is momentarily placed in its firing position. These currents are applied to the line 35 and in consequence to the subsurface tool, i.e., the gun assembly 12. At each of the four current levels just described, and illustrated at 42, the line voltage is sampled and stored in the sample hold unit 43. The two voltage samples from the positive and negative high current levels are compared and measured. The result of this measurement is sent to the decoder 44.
Decoder 44 serves to interpret the above measurement and to energize the appropriate light in indicator panel 37 if the two voltage samples are above a predetermined level. For example, if this predetermined level is 4 volts, then the open light is energized. If the two voltage samples are below a predetermined level, which may be 4 volts for example, the short light is energized. If the positive current sample voltage is above 4 volts and the negative current sample is less than 4 volts, then the sign light is energized. If the negative current sample voltage is above 4 volts and the positive current sample voltage is less than 4 volts, the light is energized.
The digital meter readout 45 which is part of the indicator assembly 37 is operated from the current sample voltages. When the light is energized, the low level positive sample voltage is subtracted from the high level of positive sample voltage and the resulting voltage is sent to the digital readout 45. With the proper scale factor and calibration, the digital readout 45 will indicate the gun number assembly which is armed and ready to fire. When the sign light is energized, the high level negative sample voltage is subtracted from the low level sample voltage and the resulting voltage is sent to the digital readout 45 as already described.
The recorder 38 is operated from the current sample voltage in the following manner. The high level positiive sample voltage is sent to the recorder in all cases except when the light is energized, in which case the high level negative sample voltage is sent to the recorder 38.
It will be observed that one of the advantges of using constant current instead of constant voltage for the measuring operation is that the complication is avoided of unwanted shunting of the measuring resistor, eg 29, by the shunting diodes, e.g., 33 and 34. Thus, if the measuring resistor 29 is 10 ohms and the maximum measuring current is 5 milliamperes, then the maximum voltage impressed across the shunting diodes 33 and 34 during the high current measuring pulse is 50 millivolts, which is well below the forward voltage characteristic of diodes 33 and 34 which is several hundred millivolts even at the relatively high subsurface temperatures encountered during the use of the tool.
As mentioned, the casing collar locator 27 is optional. When it is included, however, it is helpful to utilize a pair of diodes, 49 and 50, of the same type already described, connected as shown in FIG. 2. The signal developed by the casing collar locator coil 28 is very low level, below the forward breakdown voltage of the diodes, so that all of this low level signal is available for detection through conductor 21, instead of being partially shunted by the impedance of the total circuit below locator 27.
The firing diodes 46, 47, and 48 are identical in nature to previously described firing diodes 24 and 26. Likewise similar, and also similar to previously described diodes 33 and 34, are the other resistor shunting diodes 51-56 inclusive.
The current source 57 shown in FIG. 3 is of course conventional, and may derive its power from a selfcontained generating unit, a battery array, a power line, or the like, as field conditions dictate.
In describing our invention, we have of course given detailed descriptions of apparatus and procedural details. By way of summarizing the procedure in somewhat more general terms, it may be helpful to note that we provide a method of determining the condition of a down-the-hole electrical circuit which contains a series of actuatable elements, each of which is capable of being terminally actuated (that is, actuated once so that thereafter it cannot be further actuated) by successive electrical pulses of relatively high intensity and of alternating polarity and in which the actuating pulse bypasses the elements which have not yet been actuated through the means of bypassing resistors, each of which is switched out of the circuit only as its corresponding element becomes actuated, i.e., terminally, and so as to reach the next element in line to be actuated, and in which we pass a series of measuring pulses through the circuit of intensity insufficient to actuate the elements and of alternating polarity; and we then cause the impedances measured by these measuring pulses of alternating polarity to operate an indicating display which is responsive both to the impedance and the polarity of the measuring pulses which have been used to determine the impedance. We further pass the measuring pulses to a recorder so that we may display the results of the impedance measurements as a function of polarity, all of which as explained in detail above gives an instantaneous picture of the down-thehole condition of the circuit and as explained not only indicates how many elements have already been actuated, but indicates the next in line to be actuated and also reveals the absence or presence of open circuits and short circuits.
It will be seen that the invention accomplishes its objects, with the important feature of the unambiguous character of the indications and readouts which has been described. While we have described the invention with the aid of a detailed illustrative example, we wish it to be understood that we do not desire to be limited to the exact details of construction shown and described, for obvious modifications will occur to a person skilled in the art.
' "Having described the invention,"we"claim:'
l. The method of determining the condition of a down-the-hole electrical circuit containing a series of actuatable elements capable of being terminally actuated by successive electrical pulses of relatively high intensity and of alternating polarity and in which said actuating pulse bypasses the not yet actuated elements through bypassing resistors each of which is switched out of said circuit only as its corresponding element becomes actuated and so as to reach the next element in line to be actuated and said series of actuatable elements and bypassing resistors presenting an impedance of said circuit which comprises passing a series of measuring pulses through said circuit of alternating polarity at times other than during said actuating pulses, and causing the impedances measured by said measuring pulses of alternating polarity to operate an indicating display responsive both to impedance and polarity, said measuring pulses having an intensity insufficient to actuate said actuatable elements.
2. The method in accordance with claim 1 wherein said measuring pulses are passed to a recorder which displays the results of the impedance measurements as a function of polarity.
3. The method in accordance with claim 1 wherein said measuring pulses are stepped so as to provide pulses of relatively high and relatively low currents of both polarities, and wherein the differentials between the high pulses and the low pulses of each polarity are caused to operate said indicating display.
4. The method in accordance with claim 2 wherein 7 said measuring pulses are stepped so as to provide pulses of relatively high and relatively low currents of both polarities, and wherein the differentials between the high pulses and the low pulses of each polarity are caused to operate said indicating display and said recorder.
5. The method in accordance with claim 1 wherein said measuring pulses are passed through said circuit continuously except during the periods in which said actuatable elements are actuated by said actuating pulses.
6. The method in accordance with claim 4 wherein said measuring pulses are passed through said circuit continuously except during the periods in which said actuatable elements are actuated by said actuating pulses.

Claims (6)

1. The method of determining the condition of a down-the-hole electrical circuit containing a series of actuatable elements capable of being terminally actuated by successive electrical pulses of relatively high intensity and of alternating polarity and in which said actuating pulse bypasses the not yet actuated elements through bypassing resistors each of which is switched out of said circuit only as its corresponding element becomes actuated and so as to reach the next element in line to be actuated and said series of actuatable elements and bypassing resistors presenting an impedance of said circuit which comprises passing a series of measuring pulses through said circuit of alternating polarity at times other than during said actuating pulses, and causing the impedances measured by said measuring pulses of alternating polarity to operate an indicating display responsive both to impedance and polarity, said measuring pulses having an intensity insufficient to actuate said actuatable elements.
2. The method in accordance with claim 1 wherein said measuring pulses are passed to a recorder which displays the results of the impedance measurements As a function of polarity.
3. The method in accordance with claim 1 wherein said measuring pulses are stepped so as to provide pulses of relatively high and relatively low currents of both polarities, and wherein the differentials between the high pulses and the low pulses of each polarity are caused to operate said indicating display.
4. The method in accordance with claim 2 wherein said measuring pulses are stepped so as to provide pulses of relatively high and relatively low currents of both polarities, and wherein the differentials between the high pulses and the low pulses of each polarity are caused to operate said indicating display and said recorder.
5. The method in accordance with claim 1 wherein said measuring pulses are passed through said circuit continuously except during the periods in which said actuatable elements are actuated by said actuating pulses.
6. The method in accordance with claim 4 wherein said measuring pulses are passed through said circuit continuously except during the periods in which said actuatable elements are actuated by said actuating pulses.
US399310A 1972-08-02 1973-09-21 Selective firing indicator and recording Expired - Lifetime US3860865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US399310A US3860865A (en) 1972-08-02 1973-09-21 Selective firing indicator and recording

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27740872A 1972-08-02 1972-08-02
US399310A US3860865A (en) 1972-08-02 1973-09-21 Selective firing indicator and recording

Publications (1)

Publication Number Publication Date
US3860865A true US3860865A (en) 1975-01-14

Family

ID=26958464

Family Applications (1)

Application Number Title Priority Date Filing Date
US399310A Expired - Lifetime US3860865A (en) 1972-08-02 1973-09-21 Selective firing indicator and recording

Country Status (1)

Country Link
US (1) US3860865A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142148A (en) * 1977-05-11 1979-02-27 Bourns, Inc. Remote transducer monitoring system
US4208966A (en) * 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
EP0114103A2 (en) * 1983-01-20 1984-07-25 Halliburton Company Positive fire indicator perforating system for wells
US4635734A (en) * 1985-06-11 1987-01-13 Baker Oil Tools, Inc. Boosterless perforating gun and method of assembly
US4649822A (en) * 1985-04-29 1987-03-17 Schlumberger Technology Corporation Method and apparatus for deactivating a partially flooded perforating gun assembly
US4657089A (en) * 1985-06-11 1987-04-14 Baker Oil Tools, Inc. Method and apparatus for initiating subterranean well perforating gun firing from bottom to top
US4852494A (en) * 1987-11-16 1989-08-01 Williams Robert A Explosively actuated switch
FR2641860A1 (en) * 1988-12-30 1990-07-20 France Etat Armement Automatic controller for pyrotechnic circuit
US5088413A (en) * 1990-09-24 1992-02-18 Schlumberger Technology Corporation Method and apparatus for safe transport handling arming and firing of perforating guns using a bubble activated detonator
US5571986A (en) * 1994-08-04 1996-11-05 Marathon Oil Company Method and apparatus for activating an electric wireline firing system
US5756926A (en) * 1995-04-03 1998-05-26 Hughes Electronics EFI detonator initiation system and method
US20090071361A1 (en) * 2007-09-17 2009-03-19 Baker Hughes Incorporated Injection molded shaped charge liner
US20120006217A1 (en) * 2010-07-07 2012-01-12 Anderson Otis R Electronic blast control system for multiple downhole operations
US20120199352A1 (en) * 2011-02-03 2012-08-09 Baker Hughes Incorporated Connection cartridge for downhole string
US20130042780A1 (en) * 2011-08-20 2013-02-21 James E. Brooks High voltage explosive assembly for downhole detonations
US20130255950A1 (en) * 2010-06-11 2013-10-03 Expro North Sea Limited Perforating Gun and Method of Perforating a Well
US20150027302A1 (en) * 2013-07-25 2015-01-29 SageRider Incorporated Perforating gun assembly
US8960288B2 (en) 2011-05-26 2015-02-24 Baker Hughes Incorporated Select fire stackable gun system
CN109441409A (en) * 2019-01-07 2019-03-08 中曼石油天然气集团股份有限公司 A kind of perforation publishes switch with multi-stage ignition electronics
US10490054B2 (en) * 2013-12-26 2019-11-26 Halliburton Energy Services, Inc. In-line integrity checker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010396A (en) * 1957-12-31 1961-11-28 Western Co Of North America Selective firing apparatus
US3246707A (en) * 1964-02-17 1966-04-19 Schlumberger Well Surv Corp Selective firing system
US3246708A (en) * 1964-02-17 1966-04-19 Schlumberger Well Surv Corp Arming switch for selective firing systems
US3309685A (en) * 1964-06-16 1967-03-14 Standard Electric Time Co Supervisory circuit
US3380540A (en) * 1966-05-09 1968-04-30 Schlumberger Technology Corp Selective firing apparatus
US3441929A (en) * 1965-12-30 1969-04-29 Ref Con Corp Remote reporting system
US3448447A (en) * 1965-06-28 1969-06-03 Notifier Co Polarized d.c. signaling system and means for supervising same
US3517757A (en) * 1968-09-23 1970-06-30 Schlumberger Technology Corp Switching apparatus for selectively actuating explosive well-completion devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010396A (en) * 1957-12-31 1961-11-28 Western Co Of North America Selective firing apparatus
US3246707A (en) * 1964-02-17 1966-04-19 Schlumberger Well Surv Corp Selective firing system
US3246708A (en) * 1964-02-17 1966-04-19 Schlumberger Well Surv Corp Arming switch for selective firing systems
US3309685A (en) * 1964-06-16 1967-03-14 Standard Electric Time Co Supervisory circuit
US3448447A (en) * 1965-06-28 1969-06-03 Notifier Co Polarized d.c. signaling system and means for supervising same
US3441929A (en) * 1965-12-30 1969-04-29 Ref Con Corp Remote reporting system
US3380540A (en) * 1966-05-09 1968-04-30 Schlumberger Technology Corp Selective firing apparatus
US3517757A (en) * 1968-09-23 1970-06-30 Schlumberger Technology Corp Switching apparatus for selectively actuating explosive well-completion devices

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142148A (en) * 1977-05-11 1979-02-27 Bourns, Inc. Remote transducer monitoring system
US4208966A (en) * 1978-02-21 1980-06-24 Schlumberger Technology Corporation Methods and apparatus for selectively operating multi-charge well bore guns
EP0114103A2 (en) * 1983-01-20 1984-07-25 Halliburton Company Positive fire indicator perforating system for wells
US4478294A (en) * 1983-01-20 1984-10-23 Halliburton Company Positive fire indicator system
EP0114103A3 (en) * 1983-01-20 1985-10-23 Halliburton Company Positive fire indicator perforating system for wells
US4649822A (en) * 1985-04-29 1987-03-17 Schlumberger Technology Corporation Method and apparatus for deactivating a partially flooded perforating gun assembly
US4635734A (en) * 1985-06-11 1987-01-13 Baker Oil Tools, Inc. Boosterless perforating gun and method of assembly
US4657089A (en) * 1985-06-11 1987-04-14 Baker Oil Tools, Inc. Method and apparatus for initiating subterranean well perforating gun firing from bottom to top
US4852494A (en) * 1987-11-16 1989-08-01 Williams Robert A Explosively actuated switch
FR2641860A1 (en) * 1988-12-30 1990-07-20 France Etat Armement Automatic controller for pyrotechnic circuit
US5088413A (en) * 1990-09-24 1992-02-18 Schlumberger Technology Corporation Method and apparatus for safe transport handling arming and firing of perforating guns using a bubble activated detonator
US5571986A (en) * 1994-08-04 1996-11-05 Marathon Oil Company Method and apparatus for activating an electric wireline firing system
US5756926A (en) * 1995-04-03 1998-05-26 Hughes Electronics EFI detonator initiation system and method
US20090071361A1 (en) * 2007-09-17 2009-03-19 Baker Hughes Incorporated Injection molded shaped charge liner
US7721649B2 (en) * 2007-09-17 2010-05-25 Baker Hughes Incorporated Injection molded shaped charge liner
US20130255950A1 (en) * 2010-06-11 2013-10-03 Expro North Sea Limited Perforating Gun and Method of Perforating a Well
US20120006217A1 (en) * 2010-07-07 2012-01-12 Anderson Otis R Electronic blast control system for multiple downhole operations
US20120199352A1 (en) * 2011-02-03 2012-08-09 Baker Hughes Incorporated Connection cartridge for downhole string
US9080433B2 (en) * 2011-02-03 2015-07-14 Baker Hughes Incorporated Connection cartridge for downhole string
US8960288B2 (en) 2011-05-26 2015-02-24 Baker Hughes Incorporated Select fire stackable gun system
US20130042780A1 (en) * 2011-08-20 2013-02-21 James E. Brooks High voltage explosive assembly for downhole detonations
US8931389B2 (en) * 2011-08-20 2015-01-13 James E. Brooks High voltage explosive assembly for downhole detonations
US20150027302A1 (en) * 2013-07-25 2015-01-29 SageRider Incorporated Perforating gun assembly
US10490054B2 (en) * 2013-12-26 2019-11-26 Halliburton Energy Services, Inc. In-line integrity checker
CN109441409A (en) * 2019-01-07 2019-03-08 中曼石油天然气集团股份有限公司 A kind of perforation publishes switch with multi-stage ignition electronics

Similar Documents

Publication Publication Date Title
US3860865A (en) Selective firing indicator and recording
CA1100033A (en) Methods and apparatus for selectively operating multi- charge well bore guns
US3773120A (en) Selective firing indicator and recorder
US7565927B2 (en) Monitoring an explosive device
US3010396A (en) Selective firing apparatus
US3186222A (en) Well signaling system
US3512407A (en) Acoustic and radioactivity logging method and apparatus
US4074756A (en) Apparatus and method for well repair operations
US3396786A (en) Depth control methods and apparatus
US2768684A (en) Well perforating and logging methods and apparatus
US2309835A (en) Well logging apparatus and method thereof
US2428034A (en) Electrical prospecting apparatus
US4636715A (en) Digital display ohmmeter
US2404622A (en) Well logging apparatus
US4454814A (en) Select-fire systems and methods for perforating guns
US3175608A (en) Method and apparatus for directional tubing perforation
US3776323A (en) System for operating an electrical device and a selectively fired perforator utilizing a common transmission channel
US2755432A (en) Logging while drilling
US3007134A (en) Remote telemetering and recording system
US4066994A (en) Well data telemetry by explosions
US2884589A (en) Well logging recording apparatus
US3304538A (en) Acoustic well logging downhole control system
US3342275A (en) Apparatus for directional tubing perforation
US2275747A (en) Well survey method and apparatus
US4991684A (en) Method and apparatus for detonation of distributed charges

Legal Events

Date Code Title Description
AS Assignment

Owner name: WESTERN ATLAS INTERNATIONAL, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NL INDUSTRIES, INC., 3000 NORTH BELT EAST, HOUSTON, TX 77032 A CORP. OF NJ;REEL/FRAME:005178/0176

Effective date: 19871230