US3857643A - Optical rail system - Google Patents

Optical rail system Download PDF

Info

Publication number
US3857643A
US3857643A US00392218A US39221873A US3857643A US 3857643 A US3857643 A US 3857643A US 00392218 A US00392218 A US 00392218A US 39221873 A US39221873 A US 39221873A US 3857643 A US3857643 A US 3857643A
Authority
US
United States
Prior art keywords
rail
optical
rails
width
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00392218A
Inventor
A Bardocz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3857643A publication Critical patent/US3857643A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/04Optical benches therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32008Plural distinct articulation axes
    • Y10T403/32091Plural translating connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/71Rod side to plate or side
    • Y10T403/7117Flanged or grooved rod
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/71Rod side to plate or side
    • Y10T403/7129Laterally spaced rods
    • Y10T403/7141Plural channels in connector

Definitions

  • ABSTRACT An optical rail system is provided in which the rails have top and bottom bearing surfaces and locating surfaces at about sixty degrees to the horizontal. The rails are clamped together at angles to each other and optical devices are secured to the rails by carriers.
  • the clamping means and carriers have grooves with walls [56] References Cited corres ondin to the bearin and locationn surfaces UNITED STATES PATENTS p g g g 1,149,762 8/1915 Hendrickson 403/53 X 7 Claims, 10 Drawing Figures l ,ll -"ii I 11, 11 4 J "PATENTED EBBI I 14 SHEET 30F 3 This application is a divisional application of copending application Ser. No. 126,562, filed Mar. 22, 1971 by Arpad Bardocz entitled Optical Rail System.
  • each rail possesses a. at least two locating surfaces located symmetrically with respect to a longitudinal section and intersecting on the center line of the cross section plane. which are associated with demountable locking elements of optical carriers set upon the rails, and
  • This invention proposes the creation of an improved arrangement for the rigid, demountable attachment of two rails which cross each other and lie in parallel planes, using a coupling part which joins and fastens to each of the two rails in the same way as the optical rail carriers are fastened to the rails.
  • This is achieved (1) by providing each rail with an approximately X-shaped cross section, with two locating surfaces intersecting 0n the center line of the cross section, in addition to at least one additional bearing surface lying parallel to the usual optical carrier bearing surface, and (2) by providing the coupling part with two grooves, lying on opposite sides and running at an angle (preferably a right angle) to each other, each groove having a demountable locking element.
  • each rail is provided with two parallel bearing surfaces, with each of which is associated a pair of locating surfaces, so that either a coupling part as described in this invention or an optical carrier may be attached to either of two opposing sides of the rail.
  • a coupling part as described in this invention or an optical carrier may be attached to either of two opposing sides of the rail.
  • the rail is oriented with one bearing surface on top and the other on the bottom, with optical carriers or the coupling parts claimed in this invention being placed on the upper bearing surface, and with the lower bearing surface resting in the open groove of the coupling part claimed in this invention and located by the adjacent locating surfaces.
  • this arrangement of the optical rails in which the bearing surfaces lie in horizontal planes, represents only a preferred ap plication. Quite generally, it is possible to orient the rails (withrespect to their cross section) so that the two bearing surfaces make any arbitrary angle with the horizontal or vertical.
  • FIG. 1 shows in cross section a first example of execution of the optical rail claimed as a part of this invention.
  • FIG. 2 shows in cross section a second example of execution of the optical rail claimed as a part of this in-. vention.
  • FIG. 3 shows in cross section a third example of execution of an optical rail claimed as a part of this invention.
  • FIG. 4 shows in cross section a fourth example, in this case in the style of an optical bench with a large cross section, of execution of the optical rail claimed as a part of this invention.
  • FIG. 5 shows in cross section a fifth example, in this case in the stable form of an optical bench, of execution of the optical rail claimed as part of this invention.
  • FIG. 6 shows in perspective a first basic form of the arrangement claimed in this invention for the coupling of two optical rails with a coupling part.
  • FIG. 7 shows in perspective a further example of the arrangement claimed in this invention, in this case a combination of three optical rails of the type shown in FIG. 6, and the associated coupling parts.
  • FIG. 8 shows in cross section a further example of the combination of two optical rails of the type shown in FIG. 1.
  • FIG. 9 shows in cross section a further example of the arrangement claimed in this invention, consisting of two optical rails of the type shown in FIG. 1, and one optical rail with associated coupling parts and carriers.
  • FIG. 10 shows in cross section a second basic form of the arrangement claimed in this invention, consisting of one optical rail of the type shown in FIG. 3 and one optical rail of the type shown in FIG. 5, with the associated coupling part.
  • the optical rail illustrated in FIG. 1 has an approximately X-shaped cross section with two pairs of flat locating surfaces 1, 2 and 3, 4, intersecting at the middle of the vertical dimension of the cross section.
  • the pair 1 and 2 and the pair 3.and 4 form two pairs of associated locating surfaces.
  • Locating surfaces 1 and 2 intersect the flat bearing surface 9 at the edges 5 and 6, and similarly, locating surfaces 3 and 4 intersect the flat bearing surface 10 at edges 7 and 8, and the bearing In the usual application of the rail, which (rail) con surfaces 9 and 10 are parallel to each other.
  • the bearing surfaces 9 and 10 do not intersect the locating surfaces I, 2, 3,4 directly to form sharp edges, the edges 5, 6, 7 and 8 actually being cut off to form short vertical or rounded surfaces.
  • the locating surfaces 1 and 3 and the locating surfaces 2 and 4 do not intersect directly to form an angle with a sharp reentrant edge; instead small grooves are formed at the locations where the surfaces 1, 3 and 2, 4 would intersect.
  • each locating surfaces 1, 2,3, 4 forms an angle of 60 with the horizontal
  • bearing surfaces 9 and 10 are equal in width and that the dimension a of the narrowest part of the cross section between the side grooves is in the range of one third to one fourth of the width of the bearing surfaces 9 and 10.
  • the rail as indicated in the various perspective views, is, of course, of uniform cross-sectional dimension throughout its length.
  • FIGS. 2, 3, 4 The basic proportions of the rail of FIG. 1 are maintained in the various other species shown in FIGS. 2, 3, 4 and with the distinctions noted in the descriptions of those figures and with the added distinction that interior bottom locating surfaces have been omitted in the species of FIGS. 3, 4 and 5.
  • Optical rails of the type shown in FIG. 1 can be joined, as shown in FIG. 6, with a coupling part 11 to form an arrangement claimed in this invention, where at least two optical rails I and II lie at right angles to each other.
  • the coupling part 11 is provided with two grooves 12 and 13, each having two opposing sides (in this case, the grooves run at right angles to each other), and each groove is provided with a locking element, in this case a fastening screw 14.
  • a single fastening screw 14 is illustrated, since the other fastening screw, which locks the rail ll into groove 13, is hidden.
  • the associated optical carriers, eg. the carrier 16 with the locking screw 15, can be placed on either of the rails I, II, at any position along the rail, even directly over the coupling part 11 at the junction of the optical rails I. II.
  • each groove has a flat bottom wall 22 complementary to a bearing surface, a flat side wall 23 complementary to a locating surface and an upstanding wall 24 carrying the fastening screw 14.
  • the beam 17 running'perpe'ndicularly to the bearing surfaces.
  • the thickness of the beam 17 is chosen equal to the width of the bearing surfaces 9a, 10a, so that the rail can be machined out of a single piece.
  • the optical rail shown inFIG. 3 is a double rail having the form of two rails 18, I9 of the type shown in FIG. 1, set side by side. Two opposing inner locating surfaces of the rails 18, 19 are rigidly joined to each other, thus forming a single piece, by the beam 20, which runs parallel to the bearing surfaces 9b, 9b, 10b, 10b.
  • the grooves of the coupling parts and optical carriers used with these rails may have either the width which corresponds to the total width of the rail illus trated in FIG. 3 or the width of one of the bearing surfaces 9b, 9b, 10b, 10b.
  • broad coupling parts and carriers may be used, which extend over two bearing surfaces in a single plane (e.g., 9b and 9b, or 10b and 10b), but which have at least one dovetail groove by which the part attaches to only a single rail (e.g., lb and 2b, or lb and 2b).
  • the optical carrier 16a which is already well known, can be used for this purpose, as shown in FIG. 8.
  • the optical carrier and coupling parts can also be shaped, with respect to their grooves, like the coupling part 21 illustrated in FIG. 8.
  • Such coupling parts can also be used for the rigid, parallel coupling to two optical rails of the type shown in FIG. 1, as illustrated in FIG. 8.
  • optical rails of the type shown in FIG. 2 can be rigidly coupled parallel to each other by this coupling part.
  • the optical rail shown in FIG. 4 is a double rail, built as a parallel combination of two rails of the type shown in FIG. 2.
  • Two vertically separated cross beams 20c, 20c lying parallel to the bearing surfaces 90, 10c, 10c, connect into a single piece the two lower, inner locating surfaces, and the two beams 17c, 17c oriented perpendicular to the bearing surfaces, respectively, thereby forming an optical bench of sufficiently large profile cross section to support heavy loads.
  • the cross beam 206' connecting the beams 17:, in the example illustrated is attached closely adjacent to the opposing inner locating surfaces 10, 10, whereas the corresponding lower locating surfaces are removed by the cross beam 200.
  • the optical rail of FIG. 5 is a modification of the rail shown in FIG. 4, in which the two vertical beams (17c, 17c in FIG. 4) are combined into a single vertical beam 17d, which is symmetrically located with respect to the six locating surfaces 1d, 2d, 1d, 2d, 4d, 4d.
  • This invention includes all of the many stable arrangements which can be built up with any or all of the types of optical rails shown in FIGS. l-5 and the corresponding coupling pants and optical carriers, with wide or narrow mounting grooves, of which it was possible to illustrate only a few examples in this description.
  • an additional rail III of the type shown in FIG. 1 may be mounted upon rail II, so that an optical carrier 16 may be attached to rail III at any vertical position.
  • two optical rails of thetype shown in FIG. 1 can be set parallel to each other in the same plane and rigidly coupled together.
  • two optical rails of the type shown in FIG. 1 can be combined, using special coupling parts, to form complicated arrangements of optical rails.
  • five traveling optical carriers 16a, 16b, 16c, 16d, 162 are arranged to run parallel to each other.
  • FIG. 9 has the special advantage, claimed as part of this invention, that the optical carriers can be attached onto two opposing sides of each rail in this example, the topand bottom sides.
  • the bearing surfaces 4d, 4a" may be set into the mounting groove of a coupling part or-of an optical carrier.
  • FIG. 10 shows a'further arrangement, claimed as part of this invention, in which an optical rail of the type shown in FIG. 3 is rigidly attached at right angles with an optical rail of the type shown in FIG. 5, using a coupling part lla with a broad mounting groove and a fastening screw 14.
  • An optical carrier 16" with a broad mounting groove covers both upper bearing surfaces 9b, 9b of the upper rail, which is of the type shown in FIG. 3
  • the coupling part 11a is provided with similar broad mounting grooves 12a and 13a, which couple with the bearing and locating surfaces of the lower part of the rail of the type shown in FIG. 3 and with the upper part of the rail of the type shown in FIG. 5, respectively.
  • the invention is by no means limited to the illustrated examples of optical rail arrangements; indeed, by using at least two rails, which are not necessarily alike and which may be combined according to the examples of FIGS. l-5, in combination with a large number of coupling parts and optical carriers, a practically unlimited number of arrangements is possible.
  • a rail system comprising, in combination: a plurality of associated optical rails, each said rail having a uniform cross-sectional shape throughout its length, a first longitudinally extending flat bearing surface, a second longitudinally extending flat bearing surface parallel to said first surface and four flat locating surfaces on the sides of the rail, each locating surface extending towards a central plane of the rail perpendicular to the bearing surfaces from a line contiguous to the edge of a said bearing surface at an angle of about sixty degrees to the first bearing surface for cooperation with corresponding surfaces in grooves of couplings and optical carriers, said grooves also having surfaces for cooperating with the bearing surfaces, said rail cross section having a portion in a plane parallel to the bearing surfaces at a point adjacent to where the end of a locating surface is closest to the central plane with a width in the range of one third to one fourth of the width of a said first bearing surface, and wherein the combination further includes a coupling part joining two of said rails so that they are positioned in parallel planes at angles to each other, said
  • each of said bearing surfaces has the same width, and at least one of said rails narrow to a width in the range of one third to one fourth of the width of its said bearing surfaces at two locations spaced from a central plane parallel to its said bearing surfaces and a web extends between said locations which has a thickness about equal to the width of its said bearing surfaces.
  • a fifth and a sixth flat locating surface each extends inwardly and towards an outer side of the rail from a line contiguous to an inner edge of a top bearing surface at an angle of about to the horizontal, said at least one rail narrows to a width in the range of one third to one fourth of the width of a top bearing surface at two locations spaced from a central plane perpendicular to its said bearing surfaces and a horizontal web extends between said locations.

Abstract

An optical rail system is provided in which the rails have top and bottom bearing surfaces and locating surfaces at about sixty degrees to the horizontal. The rails are clamped together at angles to each other and optical devices are secured to the rails by carriers. The clamping means and carriers have grooves with walls corresponding to the bearing and locating surfaces.

Description

United States Patent 1191 Bardocz 1 OPTICAL RAIL SYSTEM [76] Inventor: Arpad Bardocz, Rumannstr. 57,
8000 Munich 40, Germany [22] Filed: Aug. 28, 1973 [21] Appl. No.: 392,218
Related US. Application Data [62] Division of Ser. No. 126,562, March 22, 1971.
[30] Foreign Application Priority Data [58] Field of Search 403/52, 53, 104, 106, 110, 403/63, 188, 205, 217, 391, 400, 231;
52/758 C, 753 D, 760, 753 K, 588; 248/124,
[ Dec. 31, 1974 Primary Examiner-Jordan Franklin Assistant ExaminerWayne L. Shedd Attorney, Agent, or Firm-Edwin E. Greigg 5 7] ABSTRACT An optical rail system is provided in which the rails have top and bottom bearing surfaces and locating surfaces at about sixty degrees to the horizontal. The rails are clamped together at angles to each other and optical devices are secured to the rails by carriers. The clamping means and carriers have grooves with walls [56] References Cited corres ondin to the bearin and locatin surfaces UNITED STATES PATENTS p g g g 1,149,762 8/1915 Hendrickson 403/53 X 7 Claims, 10 Drawing Figures l ,ll -"ii I 11, 11 4 J "PATENTED EBBI I 14 SHEET 30F 3 This application is a divisional application of copending application Ser. No. 126,562, filed Mar. 22, 1971 by Arpad Bardocz entitled Optical Rail System.
The invention concerns an optical rail system, in which each rail possesses a. at least two locating surfaces located symmetrically with respect to a longitudinal section and intersecting on the center line of the cross section plane. which are associated with demountable locking elements of optical carriers set upon the rails, and
b. at least one bearing surface lying in a plane perpendicular to the above-mentioned longitudinal section and symmetrically intersecting the locating surfaces at their extreme limits away from the cross section center;
enabling the application of coupling parts holding two or more rails rigidly together.
Systems of optical rails in which two rails set at an angle to each other but lying in a common plane can be rigidly fastened together by a coupling part are already known for example, the system of I-Iilger, or systems derived from this one. This means that although the rails are set at an angle to each other, they cannot be laid in parallel planes, the one rail crossing over the other, and then rigidly joined by coupling parts which have grooves of the type found on the optical carriers usually mounted onthe rails. The reason for this is that all known optical rails (and in fact not only those of the Hilger system or systems derived from it, but also likewise known triangular rails) can be joined together only along a single direction; they cannot be joined making an angle to each other. Thus, it would be possible to attach existing rails at an angle to each other and in two parallel planes, using special coupling parts; but in this case the coupling parts must be so designed that one of the rails, for example the lower one,'is attached in a groove corresponding to the groove of an optical carrier while the other rail (in this example, the upper one) requires a demountable coupling of another type. This, however, would require a large number of special coupling parts, and'is uneconomical, lacks in flexibility, and results in limited applicability of the whole system.
This invention proposes the creation of an improved arrangement for the rigid, demountable attachment of two rails which cross each other and lie in parallel planes, using a coupling part which joins and fastens to each of the two rails in the same way as the optical rail carriers are fastened to the rails. This is achieved (1) by providing each rail with an approximately X-shaped cross section, with two locating surfaces intersecting 0n the center line of the cross section, in addition to at least one additional bearing surface lying parallel to the usual optical carrier bearing surface, and (2) by providing the coupling part with two grooves, lying on opposite sides and running at an angle (preferably a right angle) to each other, each groove having a demountable locking element.
It is therefore a part of the invention that each rail is provided with two parallel bearing surfaces, with each of which is associated a pair of locating surfaces, so that either a coupling part as described in this invention or an optical carrier may be attached to either of two opposing sides of the rail. Thus two optical rails lying in parallel planes can be rigidly attached together at an angle, using a coupling part as described in this invention, whose grooves are like those of the optical carriers.
stitutes the main part of the arrangement claimed in this invention, the rail is oriented with one bearing surface on top and the other on the bottom, with optical carriers or the coupling parts claimed in this invention being placed on the upper bearing surface, and with the lower bearing surface resting in the open groove of the coupling part claimed in this invention and located by the adjacent locating surfaces. However, this arrangement of the optical rails, in which the bearing surfaces lie in horizontal planes, represents only a preferred ap plication. Quite generally, it is possible to orient the rails (withrespect to their cross section) so that the two bearing surfaces make any arbitrary angle with the horizontal or vertical.
The invention is further described in terms of the accompanying illustrations:
FIG. 1 shows in cross section a first example of execution of the optical rail claimed as a part of this invention.
FIG. 2 shows in cross section a second example of execution of the optical rail claimed as a part of this in-. vention.
FIG. 3 shows in cross section a third example of execution of an optical rail claimed as a part of this invention.
FIG. 4 shows in cross section a fourth example, in this case in the style of an optical bench with a large cross section, of execution of the optical rail claimed as a part of this invention.
FIG. 5 shows in cross section a fifth example, in this case in the stable form of an optical bench, of execution of the optical rail claimed as part of this invention.
FIG. 6 shows in perspective a first basic form of the arrangement claimed in this invention for the coupling of two optical rails with a coupling part.
FIG. 7 shows in perspective a further example of the arrangement claimed in this invention, in this case a combination of three optical rails of the type shown in FIG. 6, and the associated coupling parts.
FIG. 8 shows in cross section a further example of the combination of two optical rails of the type shown in FIG. 1. I
FIG. 9 shows in cross section a further example of the arrangement claimed in this invention, consisting of two optical rails of the type shown in FIG. 1, and one optical rail with associated coupling parts and carriers.
FIG. 10 shows in cross section a second basic form of the arrangement claimed in this invention, consisting of one optical rail of the type shown in FIG. 3 and one optical rail of the type shown in FIG. 5, with the associated coupling part.
In the following figures, parts in different species with the same function are provided with the same reference numbers and are distinguished only by an attached letter with, in some cases, a prime.
The optical rail illustrated in FIG. 1 has an approximately X-shaped cross section with two pairs of flat locating surfaces 1, 2 and 3, 4, intersecting at the middle of the vertical dimension of the cross section. The pair 1 and 2 and the pair 3.and 4 form two pairs of associated locating surfaces. Locating surfaces 1 and 2 intersect the flat bearing surface 9 at the edges 5 and 6, and similarly, locating surfaces 3 and 4 intersect the flat bearing surface 10 at edges 7 and 8, and the bearing In the usual application of the rail, which (rail) con surfaces 9 and 10 are parallel to each other. The bearing surfaces 9 and 10 do not intersect the locating surfaces I, 2, 3,4 directly to form sharp edges, the edges 5, 6, 7 and 8 actually being cut off to form short vertical or rounded surfaces. Similarly, the locating surfaces 1 and 3 and the locating surfaces 2 and 4 do not intersect directly to form an angle with a sharp reentrant edge; instead small grooves are formed at the locations where the surfaces 1, 3 and 2, 4 would intersect.
It will be noted also, as clearly shown in FIG. 1, that each locating surfaces 1, 2,3, 4 forms an angle of 60 with the horizontal, that bearing surfaces 9 and 10 are equal in width and that the dimension a of the narrowest part of the cross section between the side grooves is in the range of one third to one fourth of the width of the bearing surfaces 9 and 10. The rail, as indicated in the various perspective views, is, of course, of uniform cross-sectional dimension throughout its length.
The basic proportions of the rail of FIG. 1 are maintained in the various other species shown in FIGS. 2, 3, 4 and with the distinctions noted in the descriptions of those figures and with the added distinction that interior bottom locating surfaces have been omitted in the species of FIGS. 3, 4 and 5.
Optical rails of the type shown in FIG. 1 can be joined, as shown in FIG. 6, with a coupling part 11 to form an arrangement claimed in this invention, where at least two optical rails I and II lie at right angles to each other. The coupling part 11 is provided with two grooves 12 and 13, each having two opposing sides (in this case, the grooves run at right angles to each other), and each groove is provided with a locking element, in this case a fastening screw 14. In FIG. 6 only a single fastening screw 14 is illustrated, since the other fastening screw, which locks the rail ll into groove 13, is hidden. The associated optical carriers, eg. the carrier 16 with the locking screw 15, can be placed on either of the rails I, II, at any position along the rail, even directly over the coupling part 11 at the junction of the optical rails I. II.
The basic arrangement claimed in this invention, illustrated in FIG. 6, can be expanded in any desired way by using a number'of optical rails of the type I, II and a corresponding number of coupling parts 11. The right angle between the rails I, II in FIG. 6 is only an example; in fact, the rails can be set atany arbitrary angle by the proper choice of the angle between the grooves l2, 13 in the coupling part 11. The specific configuration of the grooves 12, 13 is best shown in other figures. For example, as shown in FIG. 8 each groove has a flat bottom wall 22 complementary to a bearing surface, a flat side wall 23 complementary to a locating surface and an upstanding wall 24 carrying the fastening screw 14. The end of the fastening screw bears against one cating surface and when it is screwed inwardly the wall 22 tightly engages a bearing surface, the wall 23 tightly engages a locating surface and the coupling part is clamped to the rail. As is evident all the coupling parts and carriers have the same groove configuration to clamp to the rails, although as seen by a comparison of FIGS. 8 and 10 in some cases a coupling-or carrier may have a pair of parallel grooves to clamp onto two pairs of locating surfaces or a single groove bearing only on the outer locating surfaces.
In the execution of the optical rail shown in FIG. 2, the bearing surfaces 9a and 10a and their corresponding locating surfaces la, 2a, and 3a, 40, respectively,
are separated by a beam 17 running'perpe'ndicularly to the bearing surfaces. In this example, the thickness of the beam 17 is chosen equal to the width of the bearing surfaces 9a, 10a, so that the rail can be machined out of a single piece.
The optical rail shown inFIG. 3 is a double rail having the form of two rails 18, I9 of the type shown in FIG. 1, set side by side. Two opposing inner locating surfaces of the rails 18, 19 are rigidly joined to each other, thus forming a single piece, by the beam 20, which runs parallel to the bearing surfaces 9b, 9b, 10b, 10b. The grooves of the coupling parts and optical carriers used with these rails may have either the width which corresponds to the total width of the rail illus trated in FIG. 3 or the width of one of the bearing surfaces 9b, 9b, 10b, 10b. In addition, broad coupling parts and carriers may be used, which extend over two bearing surfaces in a single plane (e.g., 9b and 9b, or 10b and 10b), but which have at least one dovetail groove by which the part attaches to only a single rail (e.g., lb and 2b, or lb and 2b). The optical carrier 16a, which is already well known, can be used for this purpose, as shown in FIG. 8. The optical carrier and coupling parts can also be shaped, with respect to their grooves, like the coupling part 21 illustrated in FIG. 8. Such coupling parts can also be used for the rigid, parallel coupling to two optical rails of the type shown in FIG. 1, as illustrated in FIG. 8. Similarly, optical rails of the type shown in FIG. 2 can be rigidly coupled parallel to each other by this coupling part.
The optical rail shown in FIG. 4 is a double rail, built as a parallel combination of two rails of the type shown in FIG. 2. Two vertically separated cross beams 20c, 20c lying parallel to the bearing surfaces 90, 10c, 10c, connect into a single piece the two lower, inner locating surfaces, and the two beams 17c, 17c oriented perpendicular to the bearing surfaces, respectively, thereby forming an optical bench of sufficiently large profile cross section to support heavy loads. The cross beam 206' connecting the beams 17:, in the example illustrated is attached closely adjacent to the opposing inner locating surfaces 10, 10, whereas the corresponding lower locating surfaces are removed by the cross beam 200. I
The optical rail of FIG. 5 is a modification of the rail shown in FIG. 4, in which the two vertical beams (17c, 17c in FIG. 4) are combined into a single vertical beam 17d, which is symmetrically located with respect to the six locating surfaces 1d, 2d, 1d, 2d, 4d, 4d. This invention includes all of the many stable arrangements which can be built up with any or all of the types of optical rails shown in FIGS. l-5 and the corresponding coupling pants and optical carriers, with wide or narrow mounting grooves, of which it was possible to illustrate only a few examples in this description.
For example, it is possible, as shown in FIG. 7, to adapt the arrangement shown in FIG. 6 so that, by using an L-shaped coupling part '21 with mounting grooves and a tightening screw 14 as on the coupling part 11, an additional rail III of the type shown in FIG. 1 may be mounted upon rail II, so that an optical carrier 16 may be attached to rail III at any vertical position.
With the before-mentioned special coupling part 21, as shown in FIG. 8, two optical rails of thetype shown in FIG. 1 can be set parallel to each other in the same plane and rigidly coupled together.
As shown in FIG. 9, two optical rails of the type shown in FIG. 1 can be combined, using special coupling parts, to form complicated arrangements of optical rails. In the example of FIG. 9, for example, five traveling optical carriers 16a, 16b, 16c, 16d, 162 are arranged to run parallel to each other.
The arrangement of FIG. 9 has the special advantage, claimed as part of this invention, that the optical carriers can be attached onto two opposing sides of each rail in this example, the topand bottom sides. In the optical rail shown in FIG. 5, it can be seen that the bearing surfaces 4d, 4a" may be set into the mounting groove of a coupling part or-of an optical carrier. When this possibility is extended to the example of FIG. 9, it is clear that it is possible to realize a very complicated three-dimensional array of optical rails running parallel or at angles to each other.
FIG. 10 shows a'further arrangement, claimed as part of this invention, in which an optical rail of the type shown in FIG. 3 is rigidly attached at right angles with an optical rail of the type shown in FIG. 5, using a coupling part lla with a broad mounting groove and a fastening screw 14. An optical carrier 16" with a broad mounting groove covers both upper bearing surfaces 9b, 9b of the upper rail, which is of the type shown in FIG. 3 The coupling part 11a is provided with similar broad mounting grooves 12a and 13a, which couple with the bearing and locating surfaces of the lower part of the rail of the type shown in FIG. 3 and with the upper part of the rail of the type shown in FIG. 5, respectively.
The invention is by no means limited to the illustrated examples of optical rail arrangements; indeed, by using at least two rails, which are not necessarily alike and which may be combined according to the examples of FIGS. l-5, in combination with a large number of coupling parts and optical carriers, a practically unlimited number of arrangements is possible.
That which is claimed is:
l. A rail system comprising, in combination: a plurality of associated optical rails, each said rail having a uniform cross-sectional shape throughout its length, a first longitudinally extending flat bearing surface, a second longitudinally extending flat bearing surface parallel to said first surface and four flat locating surfaces on the sides of the rail, each locating surface extending towards a central plane of the rail perpendicular to the bearing surfaces from a line contiguous to the edge of a said bearing surface at an angle of about sixty degrees to the first bearing surface for cooperation with corresponding surfaces in grooves of couplings and optical carriers, said grooves also having surfaces for cooperating with the bearing surfaces, said rail cross section having a portion in a plane parallel to the bearing surfaces at a point adjacent to where the end of a locating surface is closest to the central plane with a width in the range of one third to one fourth of the width of a said first bearing surface, and wherein the combination further includes a coupling part joining two of said rails so that they are positioned in parallel planes at angles to each other, said coupling part having an first groove and a second groove identical in shape each receiving a rail portion, each groove having a bottom contacting a bearing surface and each groove having a side surface complemental to and contacting a said locating surface and a set screw urged against a locating surface and cooperating with each groove to 13 secure a said rail to said groove and an optical carrier having a groove identical in shape to the grooves of the coupling part receiving a portion of a rail and a set screw cooperating with said groove to secure said rail to said carrier for carrying an optical instrument.
2. In a combination as claimed in claim 1, further including an L-shaped coupling part for coupling another of said optical rails to one of said angularly related rails and in the same plane, said L-shaped coupling having grooves identical in shape to the grooves of said first mentioned coupling part and a set screw cooperating with each of said grooves, and said optical carrier being coupled to said other rail.
3. A combination asdefined in claim 1, wherein said locating surfaces each extend to a line contiguous to a central plane parallel to the bearing surfaces and each of said bearing surfaces has the same width.
4. A combination as defined in claim I, wherein each of said bearing surfaces has the same width, and at least one of said rails narrow to a width in the range of one third to one fourth of the width of its said bearing surfaces at two locations spaced from a central plane parallel to its said bearing surfaces and a web extends between said locations which has a thickness about equal to the width of its said bearing surfaces.
5. A combination as defined in claim I, wherein for at least one of said rails there are two spaced-apart top bearing surfaces, each of its said surfaces being equal in width and the overall widths of the top and bottom of the rail are equal, a fifth and a sixth flat locating surface each extends inwardly and towards an outer side of the rail from a line contiguous to an inner edge of a top bearing surface at an angle of about to the horizontal, said at least one rail narrows to a width in the range of one third to one fourth of the width of a top bearing surface at two locations spaced from a central plane perpendicular to its said bearing surfaces and a horizontal web extends between said locations.
6. A combination as defined in claim 5, wherein said horizontal web includes spaced bottom flat bearing surfaces and the top of said web is in a horizontal plane contiguous to the middle of said rail.
7. A combination as defined in claim 6, further including a groove of said coupling and of said optical carrier is configured to straddle the entire width of said

Claims (7)

1. A rail system comprising, in combination: a plurality of associated optical rails, each said rail having a uniform crosssectional shape throughout its length, a first longitudinally extending flat bearing surface, a second longitudinally extending flat bearing surface parallel to said first surface and four flat locating surfaces on the sides of the rail, each locating surface extending towards a central plane of the rail perpendicular to the bearing surfaces from a line contiguous to the edge of a said bearing surface at an angle of about sixty degrees to the first bearing surface for cooperation with corresponding surfaces in grooves of couplings and optical carriers, said grooves also having surfaces for cooperating with the bearing surfaces, said rail cross section having a portion in a plane parallel to the bearing surfaces at a point adjacent to where the end of a locating surface is closest to the central plane with a width in the range of one third to one fourth of the width of a said first bearing surface, and wherein the combination further includes a coupling part joining two of said rails so that they are positioned in parallel planes at angles to each other, said coupling part having an first groove and a second groove identical in shape each receiving a rail portion, each groove having a bottom contacting a bearing surface and each groove having a side surface complemental to and contacting a said locating surface and a set screw urged against a locating surface and cooperating with each groove to 13 secure a said rail to said groove and an optical carrier having a groove identical in shape to the grooves of the coupling part receiving a portion of a rail and a set screw cooperating with said groove to secure said rail to said carrier for carrying an optical instrument.
2. In a combination as claimed in claim 1, further including an L-shaped coupling part for coupling another of said optical rails to one of said angularly related rails and in the same plane, said L-shaped coupling having grooves identical in shape to the grooves of said first mentioned coupling part and a set screw cooperating with each of said grooves, and said optical carrier being coupled to said other raiL.
3. A combination as defined in claim 1, wherein said locating surfaces each extend to a line contiguous to a central plane parallel to the bearing surfaces and each of said bearing surfaces has the same width.
4. A combination as defined in claim 1, wherein each of said bearing surfaces has the same width, and at least one of said rails narrow to a width in the range of one third to one fourth of the width of its said bearing surfaces at two locations spaced from a central plane parallel to its said bearing surfaces and a web extends between said locations which has a thickness about equal to the width of its said bearing surfaces.
5. A combination as defined in claim 1, wherein for at least one of said rails there are two spaced-apart top bearing surfaces, each of its said surfaces being equal in width and the overall widths of the top and bottom of the rail are equal, a fifth and a sixth flat locating surface each extends inwardly and towards an outer side of the rail from a line contiguous to an inner edge of a top bearing surface at an angle of about 60* to the horizontal, said at least one rail narrows to a width in the range of one third to one fourth of the width of a top bearing surface at two locations spaced from a central plane perpendicular to its said bearing surfaces and a horizontal web extends between said locations.
6. A combination as defined in claim 5, wherein said horizontal web includes spaced bottom flat bearing surfaces and the top of said web is in a horizontal plane contiguous to the middle of said rail.
7. A combination as defined in claim 6, further including a groove of said coupling and of said optical carrier is configured to straddle the entire width of said rail.
US00392218A 1970-04-03 1973-08-28 Optical rail system Expired - Lifetime US3857643A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702016067 DE2016067B2 (en) 1970-04-03 1970-04-03 MODULAR SYSTEM FOR MOUNTING OPTICAL EQUIPMENT

Publications (1)

Publication Number Publication Date
US3857643A true US3857643A (en) 1974-12-31

Family

ID=5767075

Family Applications (2)

Application Number Title Priority Date Filing Date
US05/126,562 Expired - Lifetime US4033539A (en) 1970-04-03 1971-03-22 Optical rail system
US00392218A Expired - Lifetime US3857643A (en) 1970-04-03 1973-08-28 Optical rail system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US05/126,562 Expired - Lifetime US4033539A (en) 1970-04-03 1971-03-22 Optical rail system

Country Status (4)

Country Link
US (2) US4033539A (en)
DE (1) DE2016067B2 (en)
FR (1) FR2094951A5 (en)
GB (1) GB1352169A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277101A (en) * 1979-01-23 1981-07-07 Ignaz Vogel Vehicle seat support
US4826113A (en) * 1984-11-23 1989-05-02 The Dow Chemical Company Pipe support assembly
US4869378A (en) * 1988-08-29 1989-09-26 Hospital Systems, Inc. Mounting rail for hospital appliances and bracket
US4936655A (en) * 1988-07-07 1990-06-26 Grumman Aerospace Corporation Alignment fixture for an optical instrument
US4993809A (en) * 1988-10-07 1991-02-19 Grumman Aerospace Corporation Mounting fixture for an optical instrument
US5604631A (en) * 1994-04-20 1997-02-18 Bnox, Inc. Sliding binocular body
US5694243A (en) * 1994-04-20 1997-12-02 Bnox, Inc. Sliding binocular body
US6032381A (en) * 1996-12-02 2000-03-07 Miller; Walter R Dovetail accessory for a dial test indicator
US6467743B1 (en) * 2001-03-28 2002-10-22 Sembi Studio Company Limited Tool for displaying commodities
US7507242B2 (en) * 2004-06-02 2009-03-24 Facet Solutions Surgical measurement and resection framework
US7914560B2 (en) 2004-02-17 2011-03-29 Gmedelaware 2 Llc Spinal facet implant with spherical implant apposition surface and bone bed and methods of use
US8206418B2 (en) 2007-01-10 2012-06-26 Gmedelaware 2 Llc System and method for facet joint replacement with detachable coupler
US20140191097A1 (en) * 2013-01-07 2014-07-10 Penn United Technologies, Inc. Support assembly
US8777994B2 (en) 2004-06-02 2014-07-15 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US10288115B2 (en) * 2017-01-28 2019-05-14 Edward Korn Machine structural member with nesting linear slides

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2271636B1 (en) * 1974-01-25 1976-10-08 Delage Jean
FR2402799A1 (en) * 1977-09-09 1979-04-06 Thomson Csf Sliding base for machine component - has spring loaded plungers to take up clearances of dovetail guide
DE3012247A1 (en) * 1979-04-02 1980-10-23 Munt Buenaventura Descals ADJUSTABLE FRAME
JPS5697613A (en) * 1980-07-07 1981-08-06 Masaya Nagashima Fitting metals for shaped steel
DE3330134C2 (en) * 1983-08-20 1986-09-25 Richard Wolf Gmbh, 7134 Knittlingen Measuring device for testing endoscope optics
US4783040A (en) * 1985-06-10 1988-11-08 Aickin Development Corporation Non-metallic strut system
US4907773A (en) * 1988-08-15 1990-03-13 National Gypsum Company Adjustable mounting surface
JPH05187439A (en) * 1992-01-13 1993-07-27 Nippon Seiko Kk Linear guide device having laterally pushing structure
GB9218326D0 (en) * 1992-08-28 1992-10-14 Lindapter Int Plc Beam fixing device
GB9414740D0 (en) * 1994-07-21 1994-09-07 Emhart Glass Mach Invest Deflector mounting
JP2808249B2 (en) * 1994-11-10 1998-10-08 日本コントロール工業株式会社 Camera stand
US6003825A (en) * 1998-05-27 1999-12-21 Abernathy, Jr.; Henry H. Adjustable wall hanging device
US6598275B1 (en) * 2001-03-12 2003-07-29 Steris, Inc. Low shadow radiolucent surgical table, clamp systems, and accessories therefore
CA2353024C (en) * 2001-07-12 2005-12-06 Ibm Canada Limited-Ibm Canada Limitee Anti-vibration and anti-tilt microscope stand
TW544052U (en) * 2002-01-18 2003-07-21 Coretronic Corp Optical engine adjustment device
US8078256B2 (en) * 2002-10-10 2011-12-13 Visualsonics Inc. Integrated multi-rail imaging system
JP4195694B2 (en) * 2005-01-13 2008-12-10 日東工器株式会社 Sliding guide mechanism
DE202005006620U1 (en) * 2005-04-26 2005-06-23 Friedrich, Frank Camera holder for tripod
US7523745B2 (en) * 2005-10-14 2009-04-28 Federal Mogul Worldwide, Inc. Fuel delivery module
US7484715B2 (en) * 2006-04-24 2009-02-03 Daktronics Hoist, Inc. Modular lift assembly having telescoping member
US8225946B2 (en) 2006-06-29 2012-07-24 Simplehuman, Llc Shelving system
CN101583457B (en) * 2006-11-21 2012-07-25 新光机器株式会社 Swing type electrode chip replacing device
US7448507B1 (en) * 2007-04-18 2008-11-11 Abernathy Jr Henry H Adjustable mounting device
US8186283B2 (en) * 2008-05-08 2012-05-29 Michael Goldin Cradle and leg joints for customizable furniture
US20090288588A1 (en) * 2008-05-20 2009-11-26 Brian Robert Nicholas Boat Seat Mounting Assembly
EP2191757A2 (en) * 2008-12-01 2010-06-02 Simplehuman LLC Shelving System
DE102009058937B3 (en) * 2009-12-17 2011-05-19 Schweißtechnik Bräuer GmbH Magazine for electrode caps
USD651838S1 (en) 2010-03-12 2012-01-10 Simplehuman, Llc Shelving system
USD651837S1 (en) 2010-03-12 2012-01-10 Simplehuman, Llc Shelving system
CN102905503B (en) * 2011-07-29 2016-06-01 深圳市丰巨泰科电子有限公司 Fan regulates device
US9568282B1 (en) * 2012-09-13 2017-02-14 Wooden Camera, Inc. Apparatus for securely mounting accessories to a camera or firearm
US20150048224A1 (en) * 2013-08-15 2015-02-19 Emory Patterson Spring tension device for supporting a television
USD726441S1 (en) 2014-03-12 2015-04-14 Simplehuman, Llc Shelving system
USD727060S1 (en) 2014-03-12 2015-04-21 Simplehuman, Llc Shelving system
US9339151B2 (en) 2014-03-13 2016-05-17 Simplehuman, Llc Shelving system with obscurable shelving
USD734956S1 (en) 2014-03-13 2015-07-28 Simplehuman, Llc Shelving system
US9943192B2 (en) 2014-03-13 2018-04-17 Simplehuman, Llc Shelving system with obscurable shelving
US9883742B2 (en) 2014-03-14 2018-02-06 Simplehuman, Llc Shower caddy with shelf adjustably maounted along an elongate support member
USD769641S1 (en) 2015-02-23 2016-10-25 Simplehuman, Llc Shower caddy
USD770197S1 (en) 2015-02-23 2016-11-01 Simplehuman, Llc Shower caddy
USD770198S1 (en) 2015-02-25 2016-11-01 Simplehuman, Llc Shelving system
CA3013445A1 (en) 2016-01-29 2017-08-03 Maytex Mills, Inc. Shower caddies with adjustable baskets
USD824189S1 (en) 2017-02-23 2018-07-31 Simplehuman, Llc Shower caddy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1149762A (en) * 1915-08-10 Frank Frederick Hendrickson Supporting member.
US1285628A (en) * 1917-11-17 1918-11-26 Clarence C Craley Metal-working machine.
US1615668A (en) * 1924-06-05 1927-01-25 Iver A P Anderson Laying-out fixture and drilling jig
US1831798A (en) * 1926-09-27 1931-11-17 Delta Star Electric Co Adjustable i-beam base
US1849305A (en) * 1929-09-27 1932-03-15 Central Scientific Co Optical bench
US1952945A (en) * 1927-08-29 1934-03-27 Sawada Kinnosuke Solar ray therapeutic apparatus
US2124006A (en) * 1934-10-18 1938-07-19 Brown & Sharpe Mfg Dial test indicator
US2363405A (en) * 1943-09-09 1944-11-21 James K Eichelberger Building construction
US2936530A (en) * 1958-10-17 1960-05-17 Hardy J Bowen Industrial building model
US3380205A (en) * 1965-05-07 1968-04-30 Ratchford Tool Corp Foundations for trailer type homes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123353A (en) * 1964-03-03 Adjustable instrument bench
US591620A (en) * 1897-10-12 Metallic door-jamb
US656275A (en) * 1900-03-17 1900-08-21 Herbert A Streeter Metal clip for uniting and spacing beams and bars in steel building construction, &c.
US1077812A (en) * 1911-11-01 1913-11-04 Chambersburg Eng Co Hammer construction.
US1232565A (en) * 1916-10-09 1917-07-10 Vernon O Karn Railroad-tie and rail-fastening means.
US1983670A (en) * 1931-02-05 1934-12-11 Knight Julian Gordon Outlet box support
US2696673A (en) * 1951-03-22 1954-12-14 Kingman Winslow Ames Track aligning telescope and mounting
US2763931A (en) * 1953-03-06 1956-09-25 Brice E Hayes Track lining scope
US3412966A (en) * 1967-06-09 1968-11-26 Carl G. Matson Vibrator mount

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1149762A (en) * 1915-08-10 Frank Frederick Hendrickson Supporting member.
US1285628A (en) * 1917-11-17 1918-11-26 Clarence C Craley Metal-working machine.
US1615668A (en) * 1924-06-05 1927-01-25 Iver A P Anderson Laying-out fixture and drilling jig
US1831798A (en) * 1926-09-27 1931-11-17 Delta Star Electric Co Adjustable i-beam base
US1952945A (en) * 1927-08-29 1934-03-27 Sawada Kinnosuke Solar ray therapeutic apparatus
US1849305A (en) * 1929-09-27 1932-03-15 Central Scientific Co Optical bench
US2124006A (en) * 1934-10-18 1938-07-19 Brown & Sharpe Mfg Dial test indicator
US2363405A (en) * 1943-09-09 1944-11-21 James K Eichelberger Building construction
US2936530A (en) * 1958-10-17 1960-05-17 Hardy J Bowen Industrial building model
US3380205A (en) * 1965-05-07 1968-04-30 Ratchford Tool Corp Foundations for trailer type homes

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277101A (en) * 1979-01-23 1981-07-07 Ignaz Vogel Vehicle seat support
US4826113A (en) * 1984-11-23 1989-05-02 The Dow Chemical Company Pipe support assembly
US4936655A (en) * 1988-07-07 1990-06-26 Grumman Aerospace Corporation Alignment fixture for an optical instrument
US4869378A (en) * 1988-08-29 1989-09-26 Hospital Systems, Inc. Mounting rail for hospital appliances and bracket
US4993809A (en) * 1988-10-07 1991-02-19 Grumman Aerospace Corporation Mounting fixture for an optical instrument
US5604631A (en) * 1994-04-20 1997-02-18 Bnox, Inc. Sliding binocular body
US5694243A (en) * 1994-04-20 1997-12-02 Bnox, Inc. Sliding binocular body
US6032381A (en) * 1996-12-02 2000-03-07 Miller; Walter R Dovetail accessory for a dial test indicator
US6467743B1 (en) * 2001-03-28 2002-10-22 Sembi Studio Company Limited Tool for displaying commodities
US7998178B2 (en) 2004-02-17 2011-08-16 Gmedelaware 2 Llc Linked bilateral spinal facet implants and methods of use
US7998177B2 (en) 2004-02-17 2011-08-16 Gmedelaware 2 Llc Linked bilateral spinal facet implants and methods of use
US7914560B2 (en) 2004-02-17 2011-03-29 Gmedelaware 2 Llc Spinal facet implant with spherical implant apposition surface and bone bed and methods of use
US8906063B2 (en) 2004-02-17 2014-12-09 Gmedelaware 2 Llc Spinal facet joint implant
US8777994B2 (en) 2004-06-02 2014-07-15 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US7815648B2 (en) 2004-06-02 2010-10-19 Facet Solutions, Inc Surgical measurement systems and methods
US7507242B2 (en) * 2004-06-02 2009-03-24 Facet Solutions Surgical measurement and resection framework
US8206418B2 (en) 2007-01-10 2012-06-26 Gmedelaware 2 Llc System and method for facet joint replacement with detachable coupler
US8211147B2 (en) 2007-01-10 2012-07-03 Gmedelaware 2 Llc System and method for facet joint replacement
US8252027B2 (en) 2007-01-10 2012-08-28 Gmedelaware 2 Llc System and method for facet joint replacement
US8702759B2 (en) 2007-04-17 2014-04-22 Gmedelaware 2 Llc System and method for bone anchorage
US9050144B2 (en) 2007-04-17 2015-06-09 Gmedelaware 2 Llc System and method for implant anchorage with anti-rotation features
US20140191097A1 (en) * 2013-01-07 2014-07-10 Penn United Technologies, Inc. Support assembly
US9238299B2 (en) * 2013-01-07 2016-01-19 Penn United Technologies, Inc. Support assembly
US10288115B2 (en) * 2017-01-28 2019-05-14 Edward Korn Machine structural member with nesting linear slides

Also Published As

Publication number Publication date
DE2016067A1 (en) 1971-10-21
DE2016067B2 (en) 1977-05-12
US4033539A (en) 1977-07-05
GB1352169A (en) 1974-05-08
FR2094951A5 (en) 1972-02-04

Similar Documents

Publication Publication Date Title
US3857643A (en) Optical rail system
US4318628A (en) Connecting device for construction panels
US5330821A (en) Decorative device for concealing the top of curtains and certain fixtures
US3972638A (en) System in which a number of structural members are used to form compound structures, particularly structures for furnishings
EP0136657A2 (en) Extendable table
GB1520544A (en) Junction member
ES281263U (en) Cube-corner retroreflective articles having wide angularity in multiple viewing planes.
US3339750A (en) Structural connector
US4712509A (en) Enclosure constructions for fish breeding
US4012880A (en) Partition system
WO2001026078A3 (en) Multi-sided display holder
ATE8918T1 (en) CONNECTION OF SEVERAL WOODEN CARRIER IN A FORM THAT IS STACKED UP ON THE FRONT.
GB2066892A (en) Releasable rigid fastening for beams
US2911242A (en) Corner connector
JPH0343448Y2 (en)
GB835605A (en) Improvements in cleats for securing and supporting cables, pipes and the like
US20020014316A1 (en) Bracing system for canvas stretcher frames
EP0191745A3 (en) Screen arrangement
FI904131A0 (en) Hylla.
GB2288417A (en) Elongate structural elements
DE20003705U1 (en) Connection of two wooden beams that adjoin one another at least approximately at right angles
FI69344C (en) CLAMPING FOR HOUSING CARVIA AV SKIVOR
US3641723A (en) Structural assembly employing resilient clips
KR870008092A (en) Interlocking Building Blocks
US2708613A (en) Convertible utility table