US3834265A - Ceramic cutting instruments - Google Patents

Ceramic cutting instruments Download PDF

Info

Publication number
US3834265A
US3834265A US00332914A US33291473A US3834265A US 3834265 A US3834265 A US 3834265A US 00332914 A US00332914 A US 00332914A US 33291473 A US33291473 A US 33291473A US 3834265 A US3834265 A US 3834265A
Authority
US
United States
Prior art keywords
sapphire
edge
cutting edge
cutting
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00332914A
Inventor
B Tafapolsky
F Flaherty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gillette Co LLC
Original Assignee
Gillette Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gillette Co LLC filed Critical Gillette Co LLC
Priority to US00332914A priority Critical patent/US3834265A/en
Application granted granted Critical
Publication of US3834265A publication Critical patent/US3834265A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • A61B17/3211Surgical scalpels, knives; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B21/00Razors of the open or knife type; Safety razors or other shaving implements of the planing type; Hair-trimming devices involving a razor-blade; Equipment therefor
    • B26B21/54Razor-blades
    • B26B21/58Razor-blades characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/06Devices for withdrawing samples in the solid state, e.g. by cutting providing a thin slice, e.g. microtome
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/06Devices for withdrawing samples in the solid state, e.g. by cutting providing a thin slice, e.g. microtome
    • G01N2001/061Blade details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S76/00Metal tools and implements, making
    • Y10S76/12Diamond tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support

Definitions

  • the cutting instruments disclosed herein are characterized by having their cutting edges within 30 and preferably parallel to the C-axis (optical axis) of the sapphire.
  • the process for preparing such cutting edges comprises forming the cutting edge blank from the sapphire in a manner such that the C-axis thereof will be parallel or at least within 30 of being parallel to the cutting edge which is to be formed and thereafter forming the cutting edges by a combination of mechanical and one or more chemical sharpening steps.
  • Sapphire is a single-crystal alpha A1 refractory oxide having high strength, hardness, and corrosion resistance. Because of these properties, and the fact that it can be made synthetically and economically, it has been recognized that it would make an excellent material for forming cutting edges such as razor blades and mircotome knives. To date, howver, considerable difficulties have been encountered in producing such cutting edges. In attempting to form such edges using mechanical sharpening methods it has been found extremely difficult, if not impossible to form such edges with low-edge radii. Further it has been found that the sapphire in the edge areas undergoes considerable deformation which makes it prone to possible fracture. The present invention is concerned with novel processes for producing sapphire cutting edges having the desired geometry and which are substantially free of any traces of deformation and the defects resulting therefrom.
  • One object of the present invention is to provide novel cutting edges formed from sapphire.
  • Another oject of the present invention is to provide novel processes for producing such cutting edges.
  • FIG. 1 is a persepctive view of a 90 boule of synthetic sapphire from which the blades; of this invention may be formed;
  • FIG. 2 is a perspective view of a cylindrical crosssection sliced from the boule of FIG. 1;
  • FIG. 2A is a perspective view of a blade blank in spaced-apart relationship from the cylindrical crosssection of FIG. 2 from which it was cut;
  • FIG. 3 is a diagrammatic representation of a sapphire blade within the scope of the invention positioned relative to a three-dimentional rectangular coordinate;
  • FIG. 4 is a schematic representation illustrating the alignments in which the cutting edge will lie within at least 30 of being parallel to the C axis of the sapphire;
  • FIGS. 5A through 5D are enlarged cross-sectional views showing the cutting edge of a razor blade in various stages of formation as it is prepared by processes within the scope of the present invention.
  • FIGS. 6A through 6D are enlarged cross-sectional views showing the cutting edge of a microtome knife in various stages of formation as it is prepared by process within the scope of the present invention.
  • the cutting instruments within the scope of the present invention are prepared by first forming a blank in a manner such that the cutting edge which is to be formed therein will lie within 30 and preferably within of being parallel to the C or optical axis of the sapphire and thereafter forming the cutting edge as hereinafter described.
  • the blank will be so formed that the cutting edge will be substantially parallel to the C axis.
  • the method of forming of such a blank will, of course, depend upon the initial configuration of the sapphire from which it is formed.
  • the blade blank can be formed from sapphire in any other form such as strips which are commercially available; pro vided the sapphire can be cut in a manner such that the cutting edge which is to be formed will lie within at least 30 of being parallel to the C axis of said sapphire.
  • FIG. I there is shown a Verneuil synthetic sapphire boule 2 which can be used to form the blades of the present invention.
  • the C or optical axis is prependicular to the growth axis and such'a boule is generally referred to as a boule.
  • the processes for making such boules 2 are well known and form no part of this invention.
  • the boule 2 is sliced parallel to the C or optical axis and perpendicular to the growth axis to provide a plurality of disks 4 such as shown in FIG. 2.
  • the height or thickness of the disk 4 will be governed by the width which is desired for the blade.
  • the cuttings may be made quite readily using a diamond saw and a suitable lubricant such as mineral oil.
  • the disks 4 are then formed into blade blanks 8 by making a plurality of downwardly extending cuts parallel to both the C-axis and the growth axis.
  • FIG. 2A wherein a blade blank 8 is shown in spaced-apart relationship from the disk 4 from which it was cut.
  • the edge 10 along which the cutting edge is to be formed lies parallel to the C axis of the sapphire.
  • edge radius may be defined as the estimated radius of the largest circle which can be accommodated at the ultimate edge of a cutting instrument when viewed under an electronmicroscope.
  • such chemical sharpening comprises suspending the edge upon which the cutting edge is to be formed into a suitable solvent for the sapphire for a sufficient time to form the desired cutting edge.
  • a suitable solvent for sapphire mention may be made of hot orthophosphoric acid.
  • orthophosphoric acid it is heated to a temperature between about 400 F and 550 F. At such temperatures the orthophosphoric acid is believed to be converted to methaphosphoric acid, (HPO which does the actual sharpening. It has been found that if temperatures much above 550 F are employed, it will result in a chemical reaction between the sapphire and the acid and result in poor edges.
  • temperatures lower than 400 F may be employed, e.g. 300 F, but the process will be less efficient. Especially good results have been obtained by heating the acid to about 480 F.
  • FIG. 3 there is shown a sapphire blade 8 which is positioned relative to the well-known OX-OY- OZ three-dimentional rectangular coordinate. As can be noted, the blade is positioned so that its length lies along the OZ axis, its width along the OX axis, and its thickness along the OY axis.
  • the optical axis of the sapphire corresponds to the OZ axis or is within 30 of being parallel to said OZ axis, cutting edges having very low-edge radii may be produced, e.g. 250 A or less. If, however, the optical axis is perpendicular to the edge so as to be parallel to the OY axis, the cutting edges produced by the chemical sharpening will have substantially larger edge radii. Further, if the optical axis of the sapphire is perpendicular to the cutting edge in a manner such that it will be parallel to the OX axis, chemical sharpening will result only in a rounding of the edge. In FIG.
  • FIG. 4 there is shown a schematic representation which further illustrates the alignments in which the cutting edge 12 may lie to be within 30 of being parallel to the C axis of the sapphire.
  • a cutting edge 12 has been revolved around point D on the optical axis, of the sapphire at an angle of 30 to form cones E and F which lie in an apex to apex relationship with one another.
  • the-cutting edge will be said to lie .within 30 of being parallel to the C axis if it lies within the boundaries of said cones E and F.
  • the razor blades produced by the processes of this invention have been found useful for shaving, their shaving properties can be appreciably enhanced by applying a coating of a polymeric material which has been found useful to enhance the shave properties of steel blades.
  • a coating of a polymeric material which has been found useful to enhance the shave properties of steel blades.
  • organosiloxane gels set forth in U.S. Pat. No. 2,937,976 to Leon E. Granahan, Meyer J. Shnitzler and Edward M.
  • polymeric coatings such as polytetrafluoroethylene have been found useful in enhancing the shaving properties of the blades of this invention, their adherence to the sapphire leaves something to be desired and often such coatings are removed from the cutting edge by the shaving action long before the uselife of the sapphire blade is exhausted.
  • metallic subcoats have been found particularly useful.
  • metallic coatings may be selected from metals and alloys such for example as ferritic and martensitic stainless steels, chromium, alloys of chromium and platinum, and alloys of chromium and palladium.
  • a subcoat which has been found especially useful comprises a combination of chromium and platinum.
  • metallic subcoatings may be applied by processes such as disclosed in U.S. Pat. Application No. 47,664, filed June 19, 1970, in the names of I. W. Fischbein, B. H. Alexander and AS. Sastri, now U.S. Pat. No. 3,725,238.
  • the metallic subcoats will have thicknesses between 50 to 800 angstroms.
  • a sapphire boule such as shown in FIG. I was cut parallel to the C axis and perpendicular to the growth axis with a diamond saw using mineral oil as a lubricant to provide a plurality of disks, having a thickness of inch.
  • the disks were gang-sawed, six at a time, parallel to both the C and growth axis to provide blade blanks which were 0.020 inches thick and inch wide. The length varied up to about l-Vz inches.
  • one edge of the blank was ground with a diamond grinding wheel to provide a cutting edge having an included angle of 14 and a flat of 0.003 inch.
  • the edge was then ground with a diamond rougher wheel until it had an inclined angle of about 20 and a flat of about 0.0005 inch as shown in FIG. 5B and threafter it was sharpened with a diamond finishing wheel until it had an included angle of about 26 and an edge radius of about 1,000 A as shown in FIG. 5C.
  • the resulting edge was suspended for three days into orthophosphoric acid which was maintained at a temperature of about 480 F in a polytetrafluoroethylene beaker. Subsequent to the chemical sharpening step, the cutting edge was substantially free of deformed sapphire, has an included angle of 23 and an edge radius of about 250 A as shown in FIG. 5D.
  • EXAMPLE II A blade blank which was made in a manner similar to that of Example I was ground using a nickel-coated diamond grinding wheel until it had an included angle of 25 and a flat of 500 microinches. The resulting edge as then chemically sharpened in orthophosphoric acid at about 480 F for a 2-week period. The orthosphosphoric acid was replaced every 3 days. At the end of the chemical sharpening step, the edge had an included angle of 25 and a tip radius of about 50 microinches. Each bevel of the edge was then polished for a period of 30 seconds using a 0 to 2 micron diamond powder embedded corfam lap and the edge was further chemically sharpened in orthophosphoric acid at 480 F for three days. The resulting edge was substantially free of deformation and had an included angle of 23 and a tip radius of 150 A.
  • a razor blade produced in the above Example II was cleaned for about minutes using R. F. energy and then coated with a 250 A thick coating of Platinum- Chromium using methods similar to those mentioned in the above mentioned US. Application 47,664.
  • a coating of polytetrafluoroethylene such as taught in US. Pat. No. 3,071,856 was applied to the cutting edge and the blade was shave tested. The blade had a substantially longer life than any steel blade heretofore tested.
  • a microtome knife was prepared from a blank such as employed in Example I by first grinding it with a diamond grinding wheel until the edge had an included angle of about 14 and a flat of 0.003 inches, as shown in FIG. 6A, and thereafter rough grinding the edge with a diamond roughing wheel until it had an included angle of and a flat of 0.0005 inches as shown in FIG. 6B.
  • the edge was then finished by first polishing it with a 0-2 micron diamond powder embedded corfam lap until it had an included angle of 40 and an edge radius of 1,000 A as shown in FIG. 6C and thereafter chemically sharpening it for three days in orthophosphoric acid at 480 until it had an included angle of 40 and an edge radius of 250 A as shown in FIG. 6D.
  • a process for forming a sapphire cutting edge comprising forming a blank from sapphire in a manner such that the edge which is to be sharpened will lie within at least 30 of being parallel to the optical axis of said sapphire and forming the cutting edge thereon by a combination of mechanical and chemical sharpening, said chemicalsharpening being carried out at least subsequent to any mechanical sharpening step which causes significant deformation of the sapphire in the cutting edge.
  • edge which is to be sharpened is at least within 25 of being parallel to the optical axis of the sapphire.
  • a process as defined in claim I wherein the edge whicn is to be sharpened is substantially parallel to the optical axis of the sapphire.
  • a sapphire cutting instrument having its cutting edge within at least 30 of being parallel to the optical axis of the sapphire and said cutting edge being formed by a combination of mechanical and chemical sharpening steps, said chemical sharpening being carried out at least subsequent to any mechanical sharpening step which causes significant deformation of the sapphire in the cutting edge.
  • a sapphire cutting instrument as defined in claim 11 which is a razor blade.

Abstract

The present invention is concerned with novel cutting edges and especially razor blades and microtome knives formed from sapphire and with novel processes for making cutting edges. The cutting instruments disclosed herein are characterized by having their cutting edges within 30* and preferably parallel to the C-axis (optical axis) of the sapphire. The process for preparing such cutting edges comprises forming the cutting edge blank from the sapphire in a manner such that the C-axis thereof will be parallel or at least within 30* of being parallel to the cutting edge which is to be formed and thereafter forming the cutting edges by a combination of mechanical and one or more chemical sharpening steps.

Description

United States Patent Tafapolsky et al.
CERAMIC CUTTING INSTRUMENTS Inventors: Bernard Tafapolsky, Newton;
Francis Edward Flaherty, Canton, both of Mass.
The Gillette Company, Boston, Mass.
Filed: Feb. 16, 1973 Appl. No.: 332,914
Assignee:
References Cited UNITED STATES PATENTS 8/1944 LeVan 125/30 R 8/1951 Verheyen 125/30 R X 11/1958 Hanson 125/30 R C AXIS [451 Sept. 10, 1974 3,027,952 4/1962 Brooks 125/39X 3,731,861 5/1973 Busch 125/30 R X Primary Examiner-Frank T. Yost Attorney, Agent, or Firm-William M. Anderson 57] ABSTRACT The present invention is concerned with novel cutting edges and especially razor blades and microtome knives formed from sapphire and with novel processes for making cutting edges. The cutting instruments disclosed herein are characterized by having their cutting edges within 30 and preferably parallel to the C-axis (optical axis) of the sapphire. The process for preparing such cutting edges comprises forming the cutting edge blank from the sapphire in a manner such that the C-axis thereof will be parallel or at least within 30 of being parallel to the cutting edge which is to be formed and thereafter forming the cutting edges by a combination of mechanical and one or more chemical sharpening steps.
13 Claims, 13 Drawing Figures mum/mu l:
m maosmomn v 358 34.266
sum 2 BF 2 EDGE RADIUS t EDGE RADIUS Fig. 6a Tig. 6C
t H EDGE RADIUS .0005 25OA CERAMIC CUTTING INSTRUMENTS Sapphire is a single-crystal alpha A1 refractory oxide having high strength, hardness, and corrosion resistance. Because of these properties, and the fact that it can be made synthetically and economically, it has been recognized that it would make an excellent material for forming cutting edges such as razor blades and mircotome knives. To date, howver, considerable difficulties have been encountered in producing such cutting edges. In attempting to form such edges using mechanical sharpening methods it has been found extremely difficult, if not impossible to form such edges with low-edge radii. Further it has been found that the sapphire in the edge areas undergoes considerable deformation which makes it prone to possible fracture. The present invention is concerned with novel processes for producing sapphire cutting edges having the desired geometry and which are substantially free of any traces of deformation and the defects resulting therefrom.
One object of the present invention is to provide novel cutting edges formed from sapphire.
Another oject of the present invention is to provide novel processes for producing such cutting edges.
Other objects will be apparent from the following description taken together with the drawings wherein:
FIG. 1 is a persepctive view of a 90 boule of synthetic sapphire from which the blades; of this invention may be formed;
FIG. 2 is a perspective view of a cylindrical crosssection sliced from the boule of FIG. 1;
FIG. 2A is a perspective view of a blade blank in spaced-apart relationship from the cylindrical crosssection of FIG. 2 from which it was cut;
FIG. 3 is a diagrammatic representation of a sapphire blade within the scope of the invention positioned relative to a three-dimentional rectangular coordinate;
FIG. 4 is a schematic representation illustrating the alignments in which the cutting edge will lie within at least 30 of being parallel to the C axis of the sapphire;
FIGS. 5A through 5D are enlarged cross-sectional views showing the cutting edge of a razor blade in various stages of formation as it is prepared by processes within the scope of the present invention; and
FIGS. 6A through 6D are enlarged cross-sectional views showing the cutting edge of a microtome knife in various stages of formation as it is prepared by process within the scope of the present invention.
Generally the cutting instruments within the scope of the present invention are prepared by first forming a blank in a manner such that the cutting edge which is to be formed therein will lie within 30 and preferably within of being parallel to the C or optical axis of the sapphire and thereafter forming the cutting edge as hereinafter described. In especially preferred embodiments, the blank will be so formed that the cutting edge will be substantially parallel to the C axis. The method of forming of such a blank will, of course, depend upon the initial configuration of the sapphire from which it is formed. Although the invention is described herein in terms of forming the blade blank from a Verneuil boule, it is to be understood that the blade blank can be formed from sapphire in any other form such as strips which are commercially available; pro vided the sapphire can be cut in a manner such that the cutting edge which is to be formed will lie within at least 30 of being parallel to the C axis of said sapphire.
Referring to FIG. I there is shown a Verneuil synthetic sapphire boule 2 which can be used to form the blades of the present invention. The C or optical axis is prependicular to the growth axis and such'a boule is generally referred to as a boule. The processes for making such boules 2 are well known and form no part of this invention.
In a preferred mode of making blade blanks from a boule 2 such as shown in FIG. 1, the boule 2 is sliced parallel to the C or optical axis and perpendicular to the growth axis to provide a plurality of disks 4 such as shown in FIG. 2. Generally, the height or thickness of the disk 4 will be governed by the width which is desired for the blade. Usually the cuttings may be made quite readily using a diamond saw and a suitable lubricant such as mineral oil. The disks 4 are then formed into blade blanks 8 by making a plurality of downwardly extending cuts parallel to both the C-axis and the growth axis. The mode of making this cutting is illustrated in FIG. 2A wherein a blade blank 8 is shown in spaced-apart relationship from the disk 4 from which it was cut. As can be noted, the edge 10 along which the cutting edge is to be formed lies parallel to the C axis of the sapphire.
As pointed out above when mechanical sharpening techniques are used in forming the cutting edge on the sapphire blanks, it results in considerable deformation of the sapphire which makes the edge prone to possible fracture. In the processes described herein such deformation is substantially removed by subjecting the cutting edge to a chemical sharpening step. Generally such chemical sharpening is carried out at least subsequent to the final mechanical sharpening step which causes significant deformation of the sapphire edge. Although in carrying out the processes disclosed herein, the chemical sharpening is performed at least subsequent to the final mechanical sharpening step which causes deformation, it should be understood that, when desired, such chemical sharpening can be used in place of one or more of the mechanical sharpening steps. It has been found that such chemical sharpening, in addition to removing the deformation, also makes it possible to produce cutting edges having extremely low-edge radii, e.g. 250 A or less. (The edge radius may be defined as the estimated radius of the largest circle which can be accommodated at the ultimate edge of a cutting instrument when viewed under an electronmicroscope.) Up to now, using mechanical sharpening alone, it has not been found possible to produce such edges on sapphire.
Generally such chemical sharpening comprises suspending the edge upon which the cutting edge is to be formed into a suitable solvent for the sapphire for a sufficient time to form the desired cutting edge. As an example of a suitable solvent for sapphire, mention may be made of hot orthophosphoric acid. Generally in using orthophosphoric acid, it is heated to a temperature between about 400 F and 550 F. At such temperatures the orthophosphoric acid is believed to be converted to methaphosphoric acid, (HPO which does the actual sharpening. It has been found that if temperatures much above 550 F are employed, it will result in a chemical reaction between the sapphire and the acid and result in poor edges. Generally temperatures lower than 400 F may be employed, e.g. 300 F, but the process will be less efficient. Especially good results have been obtained by heating the acid to about 480 F.
In carrying out the chemical sharpening step, it has been found that there is a critical relationship between the orientation of the edge which is to be formed and the optical axis of the sapphire. Generally such criticality can best be illustrated by reference to FIG. 3 and FIG. 4. In FIG. 3, there is shown a sapphire blade 8 which is positioned relative to the well-known OX-OY- OZ three-dimentional rectangular coordinate. As can be noted, the blade is positioned so that its length lies along the OZ axis, its width along the OX axis, and its thickness along the OY axis. It has been found that if the optical axis of the sapphire corresponds to the OZ axis or is within 30 of being parallel to said OZ axis, cutting edges having very low-edge radii may be produced, e.g. 250 A or less. If, however, the optical axis is perpendicular to the edge so as to be parallel to the OY axis, the cutting edges produced by the chemical sharpening will have substantially larger edge radii. Further, if the optical axis of the sapphire is perpendicular to the cutting edge in a manner such that it will be parallel to the OX axis, chemical sharpening will result only in a rounding of the edge. In FIG. 4, there is shown a schematic representation which further illustrates the alignments in which the cutting edge 12 may lie to be within 30 of being parallel to the C axis of the sapphire. As shown in FIG. 4, a cutting edge 12 has been revolved around point D on the optical axis, of the sapphire at an angle of 30 to form cones E and F which lie in an apex to apex relationship with one another. For the purposes of this invention, the-cutting edge will be said to lie .within 30 of being parallel to the C axis if it lies within the boundaries of said cones E and F.
Due to the hardness of the sapphire, grinding, roughing, and finishing wheels comprising diamond abrasives or their equivalents are used in the mechanical sharpening steps. Wheels of this nature are commercially available. Generally the angle to which the cutting edge will be ground will depend on the nature of the cutting instrument which is being formed. The processes of the present invention have been found to be particularly useful in making razor blades and microtome knives. In the making of the former, it has been found best to grind the edge in a manner such that the finished cutting edge will have an edge angle between 15 to 35 and preferably between and and with the latter, it has been found best to grind the cutting edge so that it will have an edge angle between 30 to 40 and preferably between and Although the razor blades produced by the processes of this invention have been found useful for shaving, their shaving properties can be appreciably enhanced by applying a coating of a polymeric material which has been found useful to enhance the shave properties of steel blades. As examples of such materials, mention may be made of the organosiloxane gels set forth in U.S. Pat. No. 2,937,976 to Leon E. Granahan, Meyer J. Shnitzler and Edward M. Tuckerrnan; the polymeric hydrocarbons, e.g. polyethylene set forth in U.S. Pat. No. 3,071,858 to Harvey Alter and the polymeric fluorocarbons, e.g. polytetrafluoroethylene, set forth in U.S. Pat. No. 3,071,856 to Irwin W. Fischbein. Especially good results have been obtained with polytetrafluoroethylene.
Although polymeric coatings such as polytetrafluoroethylene have been found useful in enhancing the shaving properties of the blades of this invention, their adherence to the sapphire leaves something to be desired and often such coatings are removed from the cutting edge by the shaving action long before the uselife of the sapphire blade is exhausted. Generally the adherence of such coatings to the sapphire cutting edge can be enhanced by the use of a sub-coating between the polymeric coating and the sapphire cutting edge. In this regard, metallic subcoats have been found particularly useful. Generally such metallic coatings may be selected from metals and alloys such for example as ferritic and martensitic stainless steels, chromium, alloys of chromium and platinum, and alloys of chromium and palladium. A subcoat which has been found especially useful comprises a combination of chromium and platinum. Generally such metallic subcoatings may be applied by processes such as disclosed in U.S. Pat. Application No. 47,664, filed June 19, 1970, in the names of I. W. Fischbein, B. H. Alexander and AS. Sastri, now U.S. Pat. No. 3,725,238. Usually the metallic subcoats will have thicknesses between 50 to 800 angstroms.
The following non-limiting examples illustrate the processes of the present invention.
EXAMPLE I A sapphire boule such as shown in FIG. I was cut parallel to the C axis and perpendicular to the growth axis with a diamond saw using mineral oil as a lubricant to provide a plurality of disks, having a thickness of inch. The disks were gang-sawed, six at a time, parallel to both the C and growth axis to provide blade blanks which were 0.020 inches thick and inch wide. The length varied up to about l-Vz inches. As shown in FIG. 5A, one edge of the blank was ground with a diamond grinding wheel to provide a cutting edge having an included angle of 14 and a flat of 0.003 inch. The edge was then ground with a diamond rougher wheel until it had an inclined angle of about 20 and a flat of about 0.0005 inch as shown in FIG. 5B and threafter it was sharpened with a diamond finishing wheel until it had an included angle of about 26 and an edge radius of about 1,000 A as shown in FIG. 5C. The resulting edge was suspended for three days into orthophosphoric acid which was maintained at a temperature of about 480 F in a polytetrafluoroethylene beaker. Subsequent to the chemical sharpening step, the cutting edge was substantially free of deformed sapphire, has an included angle of 23 and an edge radius of about 250 A as shown in FIG. 5D.
EXAMPLE II A blade blank which was made in a manner similar to that of Example I was ground using a nickel-coated diamond grinding wheel until it had an included angle of 25 and a flat of 500 microinches. The resulting edge as then chemically sharpened in orthophosphoric acid at about 480 F for a 2-week period. The orthosphosphoric acid was replaced every 3 days. At the end of the chemical sharpening step, the edge had an included angle of 25 and a tip radius of about 50 microinches. Each bevel of the edge was then polished for a period of 30 seconds using a 0 to 2 micron diamond powder embedded corfam lap and the edge was further chemically sharpened in orthophosphoric acid at 480 F for three days. The resulting edge was substantially free of deformation and had an included angle of 23 and a tip radius of 150 A.
A razor blade produced in the above Example II was cleaned for about minutes using R. F. energy and then coated with a 250 A thick coating of Platinum- Chromium using methods similar to those mentioned in the above mentioned US. Application 47,664. A coating of polytetrafluoroethylene such as taught in US. Pat. No. 3,071,856 was applied to the cutting edge and the blade was shave tested. The blade had a substantially longer life than any steel blade heretofore tested.
EXAMPLE III A microtome knife was prepared from a blank such as employed in Example I by first grinding it with a diamond grinding wheel until the edge had an included angle of about 14 and a flat of 0.003 inches, as shown in FIG. 6A, and thereafter rough grinding the edge with a diamond roughing wheel until it had an included angle of and a flat of 0.0005 inches as shown in FIG. 6B. The edge was then finished by first polishing it with a 0-2 micron diamond powder embedded corfam lap until it had an included angle of 40 and an edge radius of 1,000 A as shown in FIG. 6C and thereafter chemically sharpening it for three days in orthophosphoric acid at 480 until it had an included angle of 40 and an edge radius of 250 A as shown in FIG. 6D.
Having thus described our invention, what is claimed 1. A process for forming a sapphire cutting edge, said process comprising forming a blank from sapphire in a manner such that the edge which is to be sharpened will lie within at least 30 of being parallel to the optical axis of said sapphire and forming the cutting edge thereon by a combination of mechanical and chemical sharpening, said chemicalsharpening being carried out at least subsequent to any mechanical sharpening step which causes significant deformation of the sapphire in the cutting edge.
2. A process as defined in claim 1 wherein the edge which is to be sharpened is at least within 25 of being parallel to the optical axis of the sapphire.
3. A process as defined in claim I wherein the edge whicn is to be sharpened is substantially parallel to the optical axis of the sapphire.
4. A process as defined in claim 1 wherein said chemical sharpening is carried out in hot orthophosphoric acid.
5. A process as defined in claim 4 wherein said orthophosphoric acid is heated to a temperature between about 300 F to 550 F.
6. A process as defined in claim 4 wherein said orthophosphoric acid is heated to a temperature between about 400 F to 550 F.
7. A process as defined in claim 1 wherein said cutting edge is that of a razor blade.
8. A process as defined in claim 1 wherein a metallic subcoat is applied to said cutting edge subsequent to its formation.
9. A process as defined in claim 1 wherein a polytetrafluoroethylene coating is applied to the cutting edge subsequent to its formation.
10. A process as defined in claim 8 wherein a polytetrafluoroethylene coating is applied to the metallic subcoat.
ll. A sapphire cutting instrument having its cutting edge within at least 30 of being parallel to the optical axis of the sapphire and said cutting edge being formed by a combination of mechanical and chemical sharpening steps, said chemical sharpening being carried out at least subsequent to any mechanical sharpening step which causes significant deformation of the sapphire in the cutting edge.
12. A sapphire cutting instrument as defined in claim 11 which is a razor blade.
13. A cutting instrument as defined in claim 11 wherein said cutting edge is substantially parallel to the optical axis of the sapphire.

Claims (13)

1. A process for forming a sapphire cutting edge, said process comprising forming a blank from sapphire in a manner such that the edge which is to be sharpened will lie within at least 30* of being parallel to the optical axis of said sapphire and forming the cutting edge thereon by a combination of mechanical and chemical sharpening, said chemical sharpening being carried out at least subsequent to any mechanical sharpening step which causes significant deformation of the sapphire in the cutting edge.
2. A process as defined in claim 1 wherein the edge which is to be sharpened is at least within 25* of being parallel to the optical axis of the sapphire.
3. A process as defined in claim 1 wherein the edge whicn is to be sharpened is substantially parallel to the optical axis of the sapphire.
4. A process as defined in claim 1 wherein said chemical sharpening is carried out in hot orthophosphoric acid.
5. A process as defined in claim 4 wherein said orthophosphoric acid is heated to a temperature between about 300* F to 550* F.
6. A process as defined in claim 4 wherein said orthophosphoric acid is heated to a temperature between about 400* F to 550* F.
7. A process as defined in claim 1 wherein said cutting edge is that of a razor blade.
8. A process as defined in claim 1 wherein a metallic subcoat is applied to said cutting edge subsequent to its formation.
9. A process as defined in claim 1 wherein a polytetrafluoroethylene coating is applied to the cutting edge subsequent to its formation.
10. A process as defined in claim 8 wherein a polytetrafluoroethylene coating is applied to the metallic subcoat.
11. A sapphire cutting instrument having its cutting edge within at least 30* of being parallel to the optical axis of the sapphire and said cutting edge being formed by a combination of mechanical and chemical sharpening steps, said chemical sharpening being carried out at least subsequent to any mechanical sharpening step which causes significant deformation of the sapphire in the cutting edge.
12. A sapphire cutting instrument as defined in claim 11 which is a razor blade.
13. A cutting instrument as defined in claim 11 wherein said cutting edge is substantially parallel to the optical axis of the sapphire.
US00332914A 1973-02-16 1973-02-16 Ceramic cutting instruments Expired - Lifetime US3834265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00332914A US3834265A (en) 1973-02-16 1973-02-16 Ceramic cutting instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00332914A US3834265A (en) 1973-02-16 1973-02-16 Ceramic cutting instruments

Publications (1)

Publication Number Publication Date
US3834265A true US3834265A (en) 1974-09-10

Family

ID=23300409

Family Applications (1)

Application Number Title Priority Date Filing Date
US00332914A Expired - Lifetime US3834265A (en) 1973-02-16 1973-02-16 Ceramic cutting instruments

Country Status (1)

Country Link
US (1) US3834265A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114226A (en) * 1977-03-01 1978-09-19 Union Carbide Corporation Wear resistant alpha alumina article useful to clean magnetic tape and the process of producing said
JPS55131745A (en) * 1979-04-02 1980-10-13 Shinkosha:Kk Knife for use in supermicrotome
JPS5746141A (en) * 1980-09-03 1982-03-16 Shinkosha:Kk Knife for ultramicrotome formed of alpha-alumina single crystal and manufacture thereof
EP0139169A2 (en) * 1983-08-26 1985-05-02 Donald W. Henderson Cutting implement and method of making same
US4581969A (en) * 1984-07-05 1986-04-15 Kim George A Ultramicrotome diamond knife
US4643161A (en) * 1984-07-05 1987-02-17 Kim George A Method of machining hard and brittle material
US4662801A (en) * 1984-12-07 1987-05-05 Hitachi, Ltd. Cutting tool
US4697489A (en) * 1984-07-05 1987-10-06 Kim George A Ultramicrotome tool
US5048191A (en) * 1990-06-08 1991-09-17 The Gillette Company Razor blade technology
US5056227A (en) * 1990-03-19 1991-10-15 The Gillette Company Razor blade technology
US5121660A (en) * 1990-03-19 1992-06-16 The Gillette Company Razor blade technology
US6003419A (en) * 1997-02-28 1999-12-21 Nikon Corporation Microcutting device and incising method
WO2000061517A1 (en) * 1999-04-11 2000-10-19 Ceramtec Ag Medical instruments
US6260280B1 (en) * 2000-02-11 2001-07-17 Keith Rapisardi Knife with ceramic blade
US20030199165A1 (en) * 2002-03-11 2003-10-23 Becton, Dickinson And Company System and method for the manufacture of surgical blades
US20040181927A1 (en) * 2003-03-17 2004-09-23 Smith Norman Frank Multi-fixture assembly of cutting tools
US20040186498A1 (en) * 2003-03-17 2004-09-23 Barnes Stephen Matthew Microkeratome blade with blade separation notch
US20040186494A1 (en) * 2003-03-17 2004-09-23 Mcwhorter Paul Jackson Microkeratome cutting head assembly with reduced contact between cutting blade and eye flap
US20040181928A1 (en) * 2003-03-17 2004-09-23 Smith Norman Frank Mounting a blade handle on a microkeratome blade
US20040186493A1 (en) * 2003-03-17 2004-09-23 Mcwhorter Paul Jackson Microkeratome cutting head assembly with single bevel cutting blade
US20040204726A1 (en) * 2003-03-17 2004-10-14 Memx, Inc. Separating a microkeratome blade from a wafer
WO2004108369A1 (en) * 2003-06-06 2004-12-16 Luca Freudiger Blade for razors used for cosmetic and hygiene/sanitary purposes
US20050155955A1 (en) * 2003-03-10 2005-07-21 Daskal Vadim M. Method for reducing glare and creating matte finish of controlled density on a silicon surface
EP1023581B1 (en) * 1997-10-13 2005-08-31 Microm International GmbH Microtome with knife holder and knife
US20050188548A1 (en) * 2002-03-11 2005-09-01 Daskal Vadim M. Silicon blades for surgical and non-surgical use
US20050266680A1 (en) * 2004-04-30 2005-12-01 Daskal Vadim M Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries
US20070157475A1 (en) * 2001-04-17 2007-07-12 King Rodney L Ceramic blade and production method therefor
US20070187874A1 (en) * 2003-09-17 2007-08-16 Daskal Vadim M System and method for creating linear and non-linear trenches in silicon and other crystalline materials with a router
US20090007436A1 (en) * 2003-03-10 2009-01-08 Daskal Vadim M Silicon blades for surgical and non-surgical use
CN106457585A (en) * 2014-06-17 2017-02-22 吉列有限公司 Methods of manufacturing silicon blades for shaving razors
US20180333872A1 (en) * 2009-11-06 2018-11-22 Richard W. Thorin Blade with rounded contact surface
US10869715B2 (en) * 2014-04-29 2020-12-22 Covidien Lp Double bevel blade tip profile for use in cutting of tissue
US11230025B2 (en) * 2015-11-13 2022-01-25 The Gillette Company Llc Razor blade
USD963431S1 (en) 2010-10-25 2022-09-13 Richard W. Thorin Cheese slicer
US11654588B2 (en) 2016-08-15 2023-05-23 The Gillette Company Llc Razor blades

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355877A (en) * 1942-08-18 1944-08-15 Hamilton Watch Co Processing crystalline structures
US2564136A (en) * 1943-03-04 1951-08-14 Hartford Nat Bank & Trust Co Corundum crystal recording or reproducing member
US2858730A (en) * 1955-12-30 1958-11-04 Ibm Germanium crystallographic orientation
US3027952A (en) * 1958-07-30 1962-04-03 Socony Mobil Oil Co Inc Drill bit
US3731861A (en) * 1971-10-28 1973-05-08 Rca Corp Method for dicing materials having a hexagonal crystal structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355877A (en) * 1942-08-18 1944-08-15 Hamilton Watch Co Processing crystalline structures
US2564136A (en) * 1943-03-04 1951-08-14 Hartford Nat Bank & Trust Co Corundum crystal recording or reproducing member
US2858730A (en) * 1955-12-30 1958-11-04 Ibm Germanium crystallographic orientation
US3027952A (en) * 1958-07-30 1962-04-03 Socony Mobil Oil Co Inc Drill bit
US3731861A (en) * 1971-10-28 1973-05-08 Rca Corp Method for dicing materials having a hexagonal crystal structure

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114226A (en) * 1977-03-01 1978-09-19 Union Carbide Corporation Wear resistant alpha alumina article useful to clean magnetic tape and the process of producing said
JPS55131745A (en) * 1979-04-02 1980-10-13 Shinkosha:Kk Knife for use in supermicrotome
JPS6154169B2 (en) * 1980-09-03 1986-11-21 Shinkosha Kk
JPS5746141A (en) * 1980-09-03 1982-03-16 Shinkosha:Kk Knife for ultramicrotome formed of alpha-alumina single crystal and manufacture thereof
WO1982000890A1 (en) * 1980-09-03 1982-03-18 Kasai H Ultramicrotome knife of alpha-alumina single crystal
EP0139169A3 (en) * 1983-08-26 1986-08-06 Donald W. Henderson Cutting implement and method of making same
EP0139169A2 (en) * 1983-08-26 1985-05-02 Donald W. Henderson Cutting implement and method of making same
US4581969A (en) * 1984-07-05 1986-04-15 Kim George A Ultramicrotome diamond knife
US4643161A (en) * 1984-07-05 1987-02-17 Kim George A Method of machining hard and brittle material
US4697489A (en) * 1984-07-05 1987-10-06 Kim George A Ultramicrotome tool
US4662801A (en) * 1984-12-07 1987-05-05 Hitachi, Ltd. Cutting tool
US5121660A (en) * 1990-03-19 1992-06-16 The Gillette Company Razor blade technology
US5056227A (en) * 1990-03-19 1991-10-15 The Gillette Company Razor blade technology
EP0532501A1 (en) * 1990-06-08 1993-03-24 Gillette Co Razor blade technology.
US5048191A (en) * 1990-06-08 1991-09-17 The Gillette Company Razor blade technology
EP0532501A4 (en) * 1990-06-08 1993-08-25 The Gillette Company Razor blade technology
US6003419A (en) * 1997-02-28 1999-12-21 Nikon Corporation Microcutting device and incising method
EP1023581B1 (en) * 1997-10-13 2005-08-31 Microm International GmbH Microtome with knife holder and knife
WO2000061517A1 (en) * 1999-04-11 2000-10-19 Ceramtec Ag Medical instruments
US6260280B1 (en) * 2000-02-11 2001-07-17 Keith Rapisardi Knife with ceramic blade
US7587829B2 (en) 2001-04-17 2009-09-15 Lazorblades, Inc. Ceramic blade and production method therefor
US20070157475A1 (en) * 2001-04-17 2007-07-12 King Rodney L Ceramic blade and production method therefor
US8409462B2 (en) 2002-03-11 2013-04-02 Beaver-Visitec International (Us), Inc. System and method for the manufacture of surgical blades
US7906437B2 (en) 2002-03-11 2011-03-15 Beaver-Visitec International (Us), Inc. System and method for the manufacture of surgical blades
US7387742B2 (en) 2002-03-11 2008-06-17 Becton, Dickinson And Company Silicon blades for surgical and non-surgical use
US20030199165A1 (en) * 2002-03-11 2003-10-23 Becton, Dickinson And Company System and method for the manufacture of surgical blades
US7105103B2 (en) 2002-03-11 2006-09-12 Becton, Dickinson And Company System and method for the manufacture of surgical blades
US20050188548A1 (en) * 2002-03-11 2005-09-01 Daskal Vadim M. Silicon blades for surgical and non-surgical use
US20090007436A1 (en) * 2003-03-10 2009-01-08 Daskal Vadim M Silicon blades for surgical and non-surgical use
US20050155955A1 (en) * 2003-03-10 2005-07-21 Daskal Vadim M. Method for reducing glare and creating matte finish of controlled density on a silicon surface
US20040186493A1 (en) * 2003-03-17 2004-09-23 Mcwhorter Paul Jackson Microkeratome cutting head assembly with single bevel cutting blade
US20040186494A1 (en) * 2003-03-17 2004-09-23 Mcwhorter Paul Jackson Microkeratome cutting head assembly with reduced contact between cutting blade and eye flap
US20040204726A1 (en) * 2003-03-17 2004-10-14 Memx, Inc. Separating a microkeratome blade from a wafer
US20040181927A1 (en) * 2003-03-17 2004-09-23 Smith Norman Frank Multi-fixture assembly of cutting tools
US6993818B2 (en) 2003-03-17 2006-02-07 Memx, Inc. Multi-fixture assembly of cutting tools
US7060081B2 (en) 2003-03-17 2006-06-13 Mcwhorter Paul Jackson Microkeratome blade with arbitrary blade angle
US20040182823A1 (en) * 2003-03-17 2004-09-23 Rodgers Murray Steven Fabrication of microkeratome blade with alignment features
US20040181950A1 (en) * 2003-03-17 2004-09-23 Rodgers Murray Steven Alignment of microkeratome blade to blade handle
US20040186498A1 (en) * 2003-03-17 2004-09-23 Barnes Stephen Matthew Microkeratome blade with blade separation notch
US20040181928A1 (en) * 2003-03-17 2004-09-23 Smith Norman Frank Mounting a blade handle on a microkeratome blade
US20040186497A1 (en) * 2003-03-17 2004-09-23 Mcwhorter Paul Jackson Microkeratome blade with arbitrary blade angle
WO2004108369A1 (en) * 2003-06-06 2004-12-16 Luca Freudiger Blade for razors used for cosmetic and hygiene/sanitary purposes
US7785485B2 (en) 2003-09-17 2010-08-31 Becton, Dickinson And Company System and method for creating linear and non-linear trenches in silicon and other crystalline materials with a router
US20070187874A1 (en) * 2003-09-17 2007-08-16 Daskal Vadim M System and method for creating linear and non-linear trenches in silicon and other crystalline materials with a router
US7396484B2 (en) 2004-04-30 2008-07-08 Becton, Dickinson And Company Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries
US20050266680A1 (en) * 2004-04-30 2005-12-01 Daskal Vadim M Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries
US20180333872A1 (en) * 2009-11-06 2018-11-22 Richard W. Thorin Blade with rounded contact surface
USD963431S1 (en) 2010-10-25 2022-09-13 Richard W. Thorin Cheese slicer
US10869715B2 (en) * 2014-04-29 2020-12-22 Covidien Lp Double bevel blade tip profile for use in cutting of tissue
CN106457585A (en) * 2014-06-17 2017-02-22 吉列有限公司 Methods of manufacturing silicon blades for shaving razors
US11230025B2 (en) * 2015-11-13 2022-01-25 The Gillette Company Llc Razor blade
US11654588B2 (en) 2016-08-15 2023-05-23 The Gillette Company Llc Razor blades

Similar Documents

Publication Publication Date Title
US3834265A (en) Ceramic cutting instruments
US4534827A (en) Cutting implement and method of making same
EP0532501B1 (en) Razor blade technology
US4720918A (en) Razor blades
US3831466A (en) Glass blade and glass blade blank
CA1283601C (en) Knife blade and method for making same
US4697489A (en) Ultramicrotome tool
US4581969A (en) Ultramicrotome diamond knife
US2408790A (en) Razor blade and other cutting tools
Ramesh Babu et al. Investigations on laser dressing of grinding wheels—part I: preliminary study
US4265055A (en) Method and apparatus for forming a razor blade edge
JP2000515818A (en) Manufacturing method of cutting tool insert
US4122602A (en) Processes for treating cutting edges
US4122603A (en) Processes for treating cutting edges
US4608782A (en) Method and apparatus for sharpening razor blades
EP0126128B1 (en) Razor blades
PL93747B1 (en)
JPS62181836A (en) Manufacturing method for cutting edge formed with ultra-hard film
US4643161A (en) Method of machining hard and brittle material
US10994379B2 (en) Laser deposition process for a self sharpening knife cutting edge
US2805695A (en) Power operated, end thrust finishing cutter
US1770157A (en) Cutting implement
JP3343316B2 (en) Manufacturing method of cutting tool
Keen Some observations on the wear of diamond tools used in piston machining
US1814182A (en) Manufacture of detachable blades