US3832481A - High temperature, high pressure oil well cable - Google Patents

High temperature, high pressure oil well cable Download PDF

Info

Publication number
US3832481A
US3832481A US00403579A US40357973A US3832481A US 3832481 A US3832481 A US 3832481A US 00403579 A US00403579 A US 00403579A US 40357973 A US40357973 A US 40357973A US 3832481 A US3832481 A US 3832481A
Authority
US
United States
Prior art keywords
cable
layer
high temperature
multicomponent
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00403579A
Inventor
C Boyd
D Tijunelis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centrilift Hughes Inc
Borg Warner Corp
Baker Hughes Holdings LLC
Original Assignee
Borg Warner Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borg Warner Corp filed Critical Borg Warner Corp
Priority to US00403579A priority Critical patent/US3832481A/en
Priority to JP49030145A priority patent/JPS5064784A/ja
Priority to CA195,740A priority patent/CA1007313A/en
Priority to IT42549/74A priority patent/IT1010830B/en
Priority to NL7404125A priority patent/NL7404125A/en
Priority to FR7410631A priority patent/FR2246946B1/fr
Priority to DE19742415377 priority patent/DE2415377C3/en
Priority to AR253339A priority patent/AR198747A1/en
Application granted granted Critical
Publication of US3832481A publication Critical patent/US3832481A/en
Assigned to CENTRILIFT-HUGHES, INC. reassignment CENTRILIFT-HUGHES, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CENTRILIFT, INC.
Assigned to HUGHES TOOL COMPANY reassignment HUGHES TOOL COMPANY ASSIGNMENT OF A PART OF ASSIGNORS INTEREST Assignors: CEBTRILIFT-HUGHES INC.
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HUGHES TOOL COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • H01B7/046Flexible cables, conductors, or cords, e.g. trailing cables attached to objects sunk in bore holes, e.g. well drilling means, well pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat

Definitions

  • ABSTRACT An electrical conducting cable for submersible'motors [22] Fled: 1973 adapted for use in high temperature high pressure oil [21] 1 N 403 579 wells.
  • the cable includes separatelyinsulated conductors disposed within an epichlorohydrin rubber jacket.
  • the conductors are insulated with a layer of high temperature, high molecular weight, extrudable fluorcarbon, such as 1:1 copolymer of ethylene and chlorotrifluoroethylene, and a layer of high temperature thermosetting rubber, such as ethylene propylene copolymers and terpolymers, either layer being suitable as [52] US. Cl.
  • F C1 110 AR the primary insulation and the other layer as the secondary insulation.
  • the jacketed cable unit is protected [56] References cued by an outer armor formed of a suitable metal.
  • the UNITED STATES PATENTS cable thus formed is flexible, abrasion resistant, 501- 3,110,009 1/1973 Hoeg et al 174/120 SR x vent resistant, liquid impervious, heat insensitive an 3,397,046 8/1968 Greyson... 174/120 R X unaffected by well environment. 3,485,939 12/1969 Brown et al 174/120 R X 3,569,610 3/1971 Garner et a1.
  • This invention relates to electrical cable, and particularly to electrical cable utilized to deliver electrical energy to submersible motors adapted for use in high temperature, high pressure oil wells.
  • Submersible pumps used in oil, mineral and water wells normally include a prime mover in the form of an electric motor directly coupled to the pump and disposed deep within the well. It is necessary to provide an electrical connection between the motor and a source of electrical energy at the surface as by the use of an electrical conducting cable which extends between the source of electrical energy and the motor.
  • the motors operate at relatively high power levels, in some case exceeding 200 horsepower.
  • the motors used are of the threephase type and the associated cable includes three separate electrical conductors.
  • the electrical cable must have adequate current carrying capability and must be of sufficient dielectric strength to prevent electrical losses even under the adverse environmental conditions usually found within the well.
  • the environmental conditions of the well vary generally depending upon geographical location. In some cases the well fluid is highly corrosive and in many instances well temperatures exceed 275F. Most oil well fluids include brines containing dissolved H S gas, carbonates and salts, and large volumes of oil.
  • the fluid pressure in wells may be quite high and in many instances exceeds 4,000 psig. Additionally, the wells are quite deep, averaging 8,000 to 10,000 feet.
  • the electrical cable must possess sufficient physical strength to allow insertion of the motor and cable to these depths and the outer'surface of the cable must resist the abrasion associated with insertion. Since the cable is normally wound upon storage or transportion reels, it must possess the additional property of flexibility, so that it will resist physical damage caused by reelmg. I
  • Typical cable construction presently being utilized includes three conductors of copper separately insulated are helically wound to form a single unit.
  • the conductors are insulated with a material of high dielectric strength such as polyethylene or polypropylene.
  • the helically wound and insulated conductors are sheathed in an extruded jacket of nitrile rubber surrounding the insulated conductors.
  • jacketed cable is covered with an outer armor in the form of a continuous wrapped band of metallic material. This band is lapped as it is wound.
  • the armor provides abrasion resistance.
  • the armor is formed of steel or bronze; however, in many special applications, such as wells which are excessively corrosive, stainless steel or exotic metals such as monel metal must be used.
  • Polyethylene has also been employed to a limited extent as the outer armor, but it has been found that the same does not stand up under severely high temperatures.
  • Rupture of the armor due to swell of the jacket is another example of deformation which occurs in such an environment.
  • Rupture of the total construction also occurs during retraction of the cable from the well as a result of the depressurization of fluids which have permeated the cable.
  • the present invention relates to an improved multicomponent electrical cable for submersible motors adapted for use in high temperature, high pressure oil wells.
  • a cable constructed according to this invention comprises an outer armor of metal, an inner jacket of epichlorohydrin rubber, and high temperature, synthetic, organic insulators surrounding the electrical conductors.
  • the insulators are useful in high temperature, high presure oil wells.
  • One of these insulators is a high temperature, high molecular weight, extrudable thermoplastic fluorocarbon polymer, which is an excellent electrical insulator at elevated temperatures when unaffected by oil and brine. While the thermoplastic fluorocarbon is suitable for use in high temperature and pressure oil wells, it is very expensive and, accordingly, a very thin insulation layer is employed.
  • thermosetting elastomer rubber such as ethylene-propylene copolymers and terpolymers, having the required heat resistance and electrical properties necessary for use as commercially manufactured oil well cable insulation.
  • the epichlorohydrin rubber used for the jacket is compounded for the minimum of oil and water permeability and swell.
  • the epichlorohydrin rubber jacket is oil and water insensitive and impermeable providing a barrier which protects the insulators from any loss of dielectric strength and electrical protection to the conductors. Furthermore, the insulators, being temperature insensitive, will not deform and change electrical insulation thickness.
  • the impermeability of the jacketing further insures that there be no permeating fluids to plasticize or soften the insulators and thus reduce their insensitivity to temperature deformation.
  • FIGS. 1 and 2 of the drawings there is shown a multi-component electrical conducting cable for a submersible motor designed for use in high temperature, high pressure oil wells which is illustrative of the principles of the present invention.
  • FIG. 1 shows a cable section which includes conductors 11, a resilient jacket 13 and an outer armor 15.
  • Each conductor 11 is illustrated as being formed of stranded wire 17 helically wound to prevent separation of strands. These separate strands may be tinned to minimize chemical interaction between the conductor and the insulating material. Solid conductors may be used without departing from the spirit of the invention.
  • each conductor includes seven strands.
  • the number of conductors, the diameter of the conductor and number of wires is, of course, dependent upon the load carrying capabilities required for a particular cable application. It should additionally be noted that any suitable conducting material may be used, such as, for example, copper, alumi num.
  • Each woundset of wire strands forms a single conductor and is separately insulated by an insulation layer 19.
  • the conductor insulation 19 is formed of a high temperature, organic, synthetic material of high dielectricstrength. High temperature, high molecular weight, extrudable fluorocarbon polymers have been found to be satisfactory for this purpose.
  • the thickness of the layer 19 may have a different relationship to the dimensions of the other elements of the cable than what is inferred by the drawing. However, the drawing illustrates the various elements which make up the cable without reference to actual dimensions.
  • a preferred embodiment of a high temperature, high molecular weight, extrudable fluorocarbon polymer is a 1:1 copolymer of ethylene and chlorotrifluoroethylene insulating material, commercially available under the trade name HALAR from Allied'Chemical Co. This material has a formula (CH Cl-l CF CFCl),
  • the extrudable ethylenechlorotrifluoroethylene copolymer is particularly suited for use in cable constructions intended for applications to oil well environments. Despite the fact of being a thermoplastic and therefore capable of melting and flowing under high temperature and pressures, it retains physical strength at elevated temperatures and dielectric strength at temperatures as high at 410F.
  • the resistance of the ethylene-chlorotrifluoroethylene copolymer to high temperature and high pressure fluid environments can also be improved by irradiation and by sheathing in an oil-and-brine resistant jacket.
  • the comparative properties of irradiated and unirradiated films of the ethylene-chlorotrifluoroethylene copolymer are:
  • compositions as DuPonts commercial PFA polymers Teflon 9704 and Teflon 9705, the known FEP polymeric materials, and the commercially available FEP/PE copolymers, such as Duponts Tefzel products and other extrudable fluorocarbon polymers and copolymers which possess the necessary extrusion characteristics are considered to be equivalent materials for this particular purpose, and therefore within the scope of the present invention.
  • thermoplastics are exceptionally qualified for oil well cables in view of their extrudability and resistance to a very high temperature and high pressure fluid environment, they are very expensive and, accordingly, in use must be necessarily restricted to a required minimum quantity to provide economical manufacture of the cables. Therefore, a further protective layer is necessarily present.
  • a layer of an insulating material having the needed heat resistant and electrical properties such as ethylene propylene copolymers and terpolymers, which is suitable for oil well cable insulation is employed to cover the thermoplastic insulation layer 19 as the conductor insulation 21.
  • An example of a suitable class of such an insulating material is heat-stablized ethylene-propylene copolymer rubber, including ethylene-propylene terpolymer rubber.
  • ethylene-propylene copolymer rubber including ethylene-propylene terpolymer rubber.
  • One example of such materials is found described in US. Pat. No. 2,933,480.
  • the flexible jacketing material resist oil and brine under the bottom hole conditions and that the wire insulation be protected to avoid permeation of gases and fluids which would cause rupture on depressurization and to avoid permeation by oil to plasticize or by water to reduce electrical resistance.
  • the wound conductor unit is thus disposed within the jacket 13 which is comprised of a high molecular weight epichlorohydrin rubber compounded for the minimum of oil and water permeability and swell.
  • This jacket may be extruded about the wound conductors and preferably is formed to fill interstices 23 between adjacent conductors.
  • present invention includes three seven-wire stranded copper conductors, each of which is surrounded and covered by a layer of high temperature, high molecular weight, extrudable 1:1 copolymer of ethylene and chlorotrifluoroethylene insulation. 19 having an average thickness of 0.010 inch to 0.080 inch.
  • the insulation layer 19 is covered by a layer of a high temperature thermosetting rubber in the form of an elastomer, such 4 as ethylene propylene copolymers and terpolymers,.
  • the separate conductors are helically wound to form a single unit.
  • the insulated conductors are helically wound to form a single unit.
  • the insulated conductors are jacketed with an epichlorohydrin. rubber.
  • the jacket thickness is 0.040 inch minimum average.
  • the jacket is provided with additional protection by surrounding it with a metal armor which may be wound in a conventional manner.
  • FIGS. 3 and 4 Another and alternate embodiment of the cable, according to this invention, is illustrated in FIGS. 3 and 4.
  • the parts are identified by a suffix A; they are the same as described with reference to FIGS. 1 and 2.
  • the thermosetting rubber or elastomer insulation layer 21A surrounds and covers the three seven-wire stranded.copper conductors 11 and provides the primary insulation cover
  • the fluorocarbon insulation layer 19A surrounds the layer 21A and provides the secondary insulation cover. Because of the cost of the extrudable fluorocarbon, a minimum quantity of the insulation layer 21A is used.
  • the layer 21A is surrounded by the jacketing layer 23A of epichlorohydrin rubber.
  • epichlorohydrin rubber Span Surface active agent comprised of 1.5 Atlas Chemical Industries partial esters of hexitol anhydrides Dyphos XL Di'Basic Lead Phosphite (heat 10.0 National Lead Company stabilizer) N B C Nickel dibutyl dithiocarbamate 1.0 Du Pont (anti-oxidant) Cumate Copper, dimethyl dithiocarbamate 0.125 R. T. Vanderbilt Company (accelerator) Phenothiazine Phenothiazine 1.0 Fisher Scientific Company Vulcan Carbon Black (filler) 30.0 Cabot Corporation Hi Sil 233 Silica (filler) 10.0 P.P.G. Industries TE- Plasticizers 0.5 Technical Processing, Inc. TP- Plasticizers 1.0 Thiokol Chemical Corp. Azelaic Acid Dispersant 4.0 Eastman Organic Chemicals NA-22 2 mercaptothiazoline (accelerator) 1.0 Du Pont resistant, impervious to well fluids, flexible and unaffected by corrosive well environments and high temperature.
  • a typical well cable, constructed according to the tion layer 24A is extruded onto the insulated conductors 11A.
  • the cable construction of the present invention provides an efficient and durable conducting unit for use in the adverse environment associated with high temperature, high pressure oil wells.
  • epichlorohydrin rubber utilized for the jacket 13 and 13A is described as I-IERCLOR I-I (Hercules, Inc), an epichlorohydrin homopolymer [poly (alpha chloropropylene oxide) other homopolymers of epichlorohydrin such as I-IYDRIN (B. F. Goodrich) are suitable for this application. Also epichlorohydrin rubbers prepared from epichlorohydrin and ethylene oxide are suitable for the jacket 13. These copolymers are sold under the trade name HERCLOR C (Hercules, Inc.) and HYDRIN 200 (B. F. Goodrich).
  • the cable is illustrated as being substantially round in section; it should be understood that this invention also comtemplates a flat cable configuration in which the conductors are in side-by-side relationship.
  • a multicomponent electrical cable adapted for use with a submersible motor comprising at least one electrical conductor; primary and secondary layers of insulating material surrounding said conductor, one of said layers being formed of an extrudable fluorcarbon and the other of said layers being formed of a thermosetting rubber; a resilient jacket surrounding said insulators and comprising an epichlorohydrin rubber of high molecular weight; and an outer armor surrounding said resilient jacket.
  • a multicomponent electrical cable adapted for use with a submersible motor comprising at least one electrical conductor; primary and secondary layers of insulating material surrounding said conductor, one of said layers being formed of a high temperature, extruded 1:1 copolymer of ethylene and chlorotrifluoroethylene, and the other layer being formed of a thermosetting rubber; a resilient jacket surrounding said insulators and comprising an epichlorohydrin rubber of high molecular weight; and an outer armor surrounding said resilient jacket.
  • thermosetting rubber is an ethylene propylene copolymer.
  • thermosetting rubber is a terpolymer

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

An electrical conducting cable for submersible motors adapted for use in high temperature high pressure oil wells. The cable includes separately insulated conductors disposed within an epichlorohydrin rubber jacket. The conductors are insulated with a layer of high temperature, high molecular weight, extrudable fluorcarbon, such as 1:1 copolymer of ethylene and chlorotrifluoroethylene, and a layer of high temperature thermosetting rubber, such as ethylene propylene copolymers and terpolymers, either layer being suitable as the primary insulation and the other layer as the secondary insulation. The jacketed cable unit is protected by an outer armor formed of a suitable metal. The cable thus formed is flexible, abrasion resistant, solvent resistant, liquid impervious, heat insensitive and unaffected by well environment.

Description

United States Patent 1191 1 3,832,481
Boyd et al. I Aug. 27, 1974 [54] HIGH TEMPERATURE, HIGH PRESSURE 3,571,490 3/1971 Bunish et a1. 174/120 R X O W CABLE 3,710,007 -1/1973 Hoeg et al 174/120 AR [75] Inventors: Clinton A. Boyd, Tulsa, Okla;
Donatas Tijunelis, Buffalo Grove, Primary Exammer A' Gnmley I11.
Attorney, Agent, or Firm-William S. McCurry [73] Assignee: Borg-Warner Corporation, Chicago, [57] ABSTRACT An electrical conducting cable for submersible'motors [22] Fled: 1973 adapted for use in high temperature high pressure oil [21] 1 N 403 579 wells. The cable includes separatelyinsulated conductors disposed within an epichlorohydrin rubber jacket. The conductors are insulated with a layer of high temperature, high molecular weight, extrudable fluorcarbon, such as 1:1 copolymer of ethylene and chlorotrifluoroethylene, and a layer of high temperature thermosetting rubber, such as ethylene propylene copolymers and terpolymers, either layer being suitable as [52] US. Cl. 174/102 R, 174/110 FC, 174/110 AR, 174/116, 174/120 SR, 174/120 AR [51] Int. Cl H0lb 3/18, HOlb 7/18, HOlb 7/02 [58] Field of Search 174/113 R, 116, 120 AR, 174/120 R, 120 SR, 102 R, 107, 108, 110
, F C1 110 AR the primary insulation and the other layer as the secondary insulation. The jacketed cable unit is protected [56] References cued by an outer armor formed of a suitable metal. The UNITED STATES PATENTS cable thus formed is flexible, abrasion resistant, 501- 3,110,009 1/1973 Hoeg et al 174/120 SR x vent resistant, liquid impervious, heat insensitive an 3,397,046 8/1968 Greyson... 174/120 R X unaffected by well environment. 3,485,939 12/1969 Brown et al 174/120 R X 3,569,610 3/1971 Garner et a1. 174/110 AR 9 Chums, 4 Drawing Flgllres ET H YLE N E I 5 P RO PYLEN E 23 COP-OLYMER E lCHLORoHYDRlN RUBBER OR TERPOLYM t I /HIGH TEMP Y FLOUROPOLYMER HIGH TEMPERATURE, HIGH PRESSURE OIL WELL CABLE BACKGROUND OF THE INVENTION This invention relates to electrical cable, and particularly to electrical cable utilized to deliver electrical energy to submersible motors adapted for use in high temperature, high pressure oil wells.
Submersible pumps used in oil, mineral and water wells normally include a prime mover in the form of an electric motor directly coupled to the pump and disposed deep within the well. It is necessary to provide an electrical connection between the motor and a source of electrical energy at the surface as by the use of an electrical conducting cable which extends between the source of electrical energy and the motor.
In many instances, the motors operate at relatively high power levels, in some case exceeding 200 horsepower. Normally, the motors used are of the threephase type and the associated cable includes three separate electrical conductors.
The electrical cable must have adequate current carrying capability and must be of sufficient dielectric strength to prevent electrical losses even under the adverse environmental conditions usually found within the well. The environmental conditions of the well vary generally depending upon geographical location. In some cases the well fluid is highly corrosive and in many instances well temperatures exceed 275F. Most oil well fluids include brines containing dissolved H S gas, carbonates and salts, and large volumes of oil. The fluid pressure in wells may be quite high and in many instances exceeds 4,000 psig. Additionally, the wells are quite deep, averaging 8,000 to 10,000 feet. The electrical cable must possess sufficient physical strength to allow insertion of the motor and cable to these depths and the outer'surface of the cable must resist the abrasion associated with insertion. Since the cable is normally wound upon storage or transportion reels, it must possess the additional property of flexibility, so that it will resist physical damage caused by reelmg. I
Typical cable construction presently being utilized includes three conductors of copper separately insulated are helically wound to form a single unit. The conductors are insulated with a material of high dielectric strength such as polyethylene or polypropylene. The helically wound and insulated conductors are sheathed in an extruded jacket of nitrile rubber surrounding the insulated conductors.
One common form of jacketed cable is covered with an outer armor in the form of a continuous wrapped band of metallic material. This band is lapped as it is wound. The armor provides abrasion resistance. Usually, the armor is formed of steel or bronze; however, in many special applications, such as wells which are excessively corrosive, stainless steel or exotic metals such as monel metal must be used.
Polyethylene has also been employed to a limited extent as the outer armor, but it has been found that the same does not stand up under severely high temperatures.
Proper material selection for the cable armor has always presented difficulties. Many different armor materials must be utilized depending upon the well conditions and no single cable construction has been found suitable for universal application. This is especially true for the deep, high pressure and high temperature wells.
Electrical power cables constructed as previously described which have been used in high temperature, high pressure oil wells, fail because of temperature distortion of the thermoplastic cable components, corrosion of the armor, or chemicaland solvent attack of the elastomer jacket. Since most oil wells contain dissolved H S gas, carbonates, water, salts and large volumes of oil, no single material has heretofore been found which has the resistance to solvents, heat and pressure to operate for prolonged periods in such an environment.
An additional problem encountered by cable in such an environment is deformation under load. The cables are subject to both compressive and tensile forces and, under high temperatures, there is a marked tendency for the thermoplastic insulation to deform resulting in dislocation of the conductors and phase to phase or phase to ground short circuitry.
Rupture of the armor due to swell of the jacket is another example of deformation which occurs in such an environment. Rupture of the total construction also occurs during retraction of the cable from the well as a result of the depressurization of fluids which have permeated the cable.
These and other associated difficulties have clearly dictated the need for an improved impermeable, environment-insensitive cable construction.
SUMMARY OF THE INVENTION The present invention relates to an improved multicomponent electrical cable for submersible motors adapted for use in high temperature, high pressure oil wells. A cable constructed according to this invention comprises an outer armor of metal, an inner jacket of epichlorohydrin rubber, and high temperature, synthetic, organic insulators surrounding the electrical conductors.
The insulators, according to this invention, are useful in high temperature, high presure oil wells. One of these insulators is a high temperature, high molecular weight, extrudable thermoplastic fluorocarbon polymer, which is an excellent electrical insulator at elevated temperatures when unaffected by oil and brine. While the thermoplastic fluorocarbon is suitable for use in high temperature and pressure oil wells, it is very expensive and, accordingly, a very thin insulation layer is employed. Due to this factor,'it is desirable to provide further insulative protection by using, in combination with the fluorocarbon insulator, another insulation in the form of a high temperature thermosetting elastomer rubber, such as ethylene-propylene copolymers and terpolymers, having the required heat resistance and electrical properties necessary for use as commercially manufactured oil well cable insulation.
The epichlorohydrin rubber used for the jacket is compounded for the minimum of oil and water permeability and swell. The epichlorohydrin rubber jacket is oil and water insensitive and impermeable providing a barrier which protects the insulators from any loss of dielectric strength and electrical protection to the conductors. Furthermore, the insulators, being temperature insensitive, will not deform and change electrical insulation thickness. The impermeability of the jacketing further insures that there be no permeating fluids to plasticize or soften the insulators and thus reduce their insensitivity to temperature deformation.
DESCRIPTION OF THE DRAWINGS DETAILED DESCRIPTION Referring now to the FIGS. 1 and 2 of the drawings, there is shown a multi-component electrical conducting cable for a submersible motor designed for use in high temperature, high pressure oil wells which is illustrative of the principles of the present invention.
FIG. 1 shows a cable section which includes conductors 11, a resilient jacket 13 and an outer armor 15.
Each conductor 11 is illustrated as being formed of stranded wire 17 helically wound to prevent separation of strands. These separate strands may be tinned to minimize chemical interaction between the conductor and the insulating material. Solid conductors may be used without departing from the spirit of the invention.
In the illustrated embodiment each conductor includes seven strands. The number of conductors, the diameter of the conductor and number of wires is, of course, dependent upon the load carrying capabilities required for a particular cable application. It should additionally be noted that any suitable conducting material may be used, such as, for example, copper, alumi num.
Each woundset of wire strands forms a single conductor and is separately insulated by an insulation layer 19. The conductor insulation 19 is formed of a high temperature, organic, synthetic material of high dielectricstrength. High temperature, high molecular weight, extrudable fluorocarbon polymers have been found to be satisfactory for this purpose. The thickness of the layer 19 may have a different relationship to the dimensions of the other elements of the cable than what is inferred by the drawing. However, the drawing illustrates the various elements which make up the cable without reference to actual dimensions.
A preferred embodiment of a high temperature, high molecular weight, extrudable fluorocarbon polymer is a 1:1 copolymer of ethylene and chlorotrifluoroethylene insulating material, commercially available under the trade name HALAR from Allied'Chemical Co. This material has a formula (CH Cl-l CF CFCl),,
and has been found to possess the following physical properties:
Tensile Strength at 23C. 7000 psi at 340F. 400 psi Elongation at 23C. 200% at 340F. 350% Melting Point 460F. Dielectric Strength Initial 18.7 KV Dielectric Strength, 4 days at 410F. l5.0 KV Cut Through, 1000 g.. at l20F. 137 hrs.
It will be apparent that the extrudable ethylenechlorotrifluoroethylene copolymer is particularly suited for use in cable constructions intended for applications to oil well environments. Despite the fact of being a thermoplastic and therefore capable of melting and flowing under high temperature and pressures, it retains physical strength at elevated temperatures and dielectric strength at temperatures as high at 410F. The resistance of the ethylene-chlorotrifluoroethylene copolymer to high temperature and high pressure fluid environments can also be improved by irradiation and by sheathing in an oil-and-brine resistant jacket. The comparative properties of irradiated and unirradiated films of the ethylene-chlorotrifluoroethylene copolymer are:
Solvent Swell High Temperature After Exposure broke first day Exposure to Co" irradiation source. Per cent change in volume It will be apparent that for use under very stringent well conditions, wire insulation 'will be most suited if irradiated, and the irradiated insulation is a preferred embodiment of this invention. It will also be apparent that other extrudable thermoplastic fluorocarbon polymers maybe employed for this purpose. Such compositions as DuPonts commercial PFA polymers Teflon 9704 and Teflon 9705, the known FEP polymeric materials, and the commercially available FEP/PE copolymers, such as Duponts Tefzel products and other extrudable fluorocarbon polymers and copolymers which possess the necessary extrusion characteristics are considered to be equivalent materials for this particular purpose, and therefore within the scope of the present invention.
While the above-described thermoplastics are exceptionally qualified for oil well cables in view of their extrudability and resistance to a very high temperature and high pressure fluid environment, they are very expensive and, accordingly, in use must be necessarily restricted to a required minimum quantity to provide economical manufacture of the cables. Therefore, a further protective layer is necessarily present.
To provide the further protective layer, a layer of an insulating material having the needed heat resistant and electrical properties, such as ethylene propylene copolymers and terpolymers, which is suitable for oil well cable insulation is employed to cover the thermoplastic insulation layer 19 as the conductor insulation 21.
An example of a suitable class of such an insulating material is heat-stablized ethylene-propylene copolymer rubber, including ethylene-propylene terpolymer rubber. One example of such materials is found described in US. Pat. No. 2,933,480.
Further protection at the insulated wire is necessary in order that it be usefully employed over the great lengths necessary to extend to the bottoms of oil wells. In order to minimize entangling, rupture and similar damage while being installed down a well casing together with the pump motor, pump, ancilliary equipment and the production pipe, it is necessary to further jacket the insulated wire with an oil and brine-resistant outer covering. While many materials have been employed in the past for such purposes, including nitrile rubber and neoprene, and they have found general application in shallow, low temperature well environments, they have been generally unsuitable for the high temperature and high pressure deep well environments. For the practice of this invention, it is essential that the flexible jacketing material resist oil and brine under the bottom hole conditions and that the wire insulation be protected to avoid permeation of gases and fluids which would cause rupture on depressurization and to avoid permeation by oil to plasticize or by water to reduce electrical resistance.
The wound conductor unit is thus disposed within the jacket 13 which is comprised of a high molecular weight epichlorohydrin rubber compounded for the minimum of oil and water permeability and swell. This jacket may be extruded about the wound conductors and preferably is formed to fill interstices 23 between adjacent conductors.
One preferred embodiment is a formulation of epichlorohydrin compounded of the materials and in approximately the ratios as follows:
present invention, includes three seven-wire stranded copper conductors, each of which is surrounded and covered by a layer of high temperature, high molecular weight, extrudable 1:1 copolymer of ethylene and chlorotrifluoroethylene insulation. 19 having an average thickness of 0.010 inch to 0.080 inch. The insulation layer 19 is covered by a layer of a high temperature thermosetting rubber in the form of an elastomer, such 4 as ethylene propylene copolymers and terpolymers,.
having needed heat resistance and electrically protective properties, having an average thickness of 0.10 inch to 0.80 inch. The separate conductors are helically wound to form a single unit. The insulated conductors are helically wound to form a single unit. The insulated conductors are jacketed with an epichlorohydrin. rubber. The jacket thickness is 0.040 inch minimum average. The jacket is provided with additional protection by surrounding it with a metal armor which may be wound in a conventional manner.
Another and alternate embodiment of the cable, according to this invention, is illustrated in FIGS. 3 and 4. In this embodiment, the parts are identified by a suffix A; they are the same as described with reference to FIGS. 1 and 2. It will be observed that the thermosetting rubber or elastomer insulation layer 21A surrounds and covers the three seven-wire stranded.copper conductors 11 and provides the primary insulation cover, and the fluorocarbon insulation layer 19A surrounds the layer 21A and provides the secondary insulation cover. Because of the cost of the extrudable fluorocarbon, a minimum quantity of the insulation layer 21A is used. The layer 21A is surrounded by the jacketing layer 23A of epichlorohydrin rubber. The insula- TRADE NAME MATERIAL PARTS/100 PARTS OF RUBBER AVAILABLE FROM Herclor H High molecular weight 100.0 Hercules, Inc.
epichlorohydrin rubber Span Surface active agent comprised of 1.5 Atlas Chemical Industries partial esters of hexitol anhydrides Dyphos XL Di'Basic Lead Phosphite (heat 10.0 National Lead Company stabilizer) N B C Nickel dibutyl dithiocarbamate 1.0 Du Pont (anti-oxidant) Cumate Copper, dimethyl dithiocarbamate 0.125 R. T. Vanderbilt Company (accelerator) Phenothiazine Phenothiazine 1.0 Fisher Scientific Company Vulcan Carbon Black (filler) 30.0 Cabot Corporation Hi Sil 233 Silica (filler) 10.0 P.P.G. Industries TE- Plasticizers 0.5 Technical Processing, Inc. TP- Plasticizers 1.0 Thiokol Chemical Corp. Azelaic Acid Dispersant 4.0 Eastman Organic Chemicals NA-22 2 mercaptothiazoline (accelerator) 1.0 Du Pont resistant, impervious to well fluids, flexible and unaffected by corrosive well environments and high temperature.
A typical well cable, constructed according to the tion layer 24A is extruded onto the insulated conductors 11A.
As can be appreciated, the cable construction of the present invention provides an efficient and durable conducting unit for use in the adverse environment associated with high temperature, high pressure oil wells.
While the epichlorohydrin rubber utilized for the jacket 13 and 13A is described as I-IERCLOR I-I (Hercules, Inc), an epichlorohydrin homopolymer [poly (alpha chloropropylene oxide) other homopolymers of epichlorohydrin such as I-IYDRIN (B. F. Goodrich) are suitable for this application. Also epichlorohydrin rubbers prepared from epichlorohydrin and ethylene oxide are suitable for the jacket 13. These copolymers are sold under the trade name HERCLOR C (Hercules, Inc.) and HYDRIN 200 (B. F. Goodrich).
The cable is illustrated as being substantially round in section; it should be understood that this invention also comtemplates a flat cable configuration in which the conductors are in side-by-side relationship.
What is claimed is:
l. A multicomponent electrical cable adapted for use with a submersible motor comprising at least one electrical conductor; primary and secondary layers of insulating material surrounding said conductor, one of said layers being formed of an extrudable fluorcarbon and the other of said layers being formed of a thermosetting rubber; a resilient jacket surrounding said insulators and comprising an epichlorohydrin rubber of high molecular weight; and an outer armor surrounding said resilient jacket.
2. A multicomponent electrical cable adapted for use with a submersible motor, comprising at least one electrical conductor; primary and secondary layers of insulating material surrounding said conductor, one of said layers being formed of a high temperature, extruded 1:1 copolymer of ethylene and chlorotrifluoroethylene, and the other layer being formed of a thermosetting rubber; a resilient jacket surrounding said insulators and comprising an epichlorohydrin rubber of high molecular weight; and an outer armor surrounding said resilient jacket.
3. A multicomponent cable as in claim 2 wherein said outer armor is metal.
4. A multicomponent cable as in claim 2 wherein said primary layer is formed of said fluorocarbon engaging and covering said conductor, and said secondary layer is formed of said thermosetting rubber covering said primary layer, and said layer of jacketing material surrounds said secondary layer.
5. A multicomponent cable as in claim 4 wherein said outer armor is metal.
6. A multicomponent cable as in claim 4 wherein said primary layer is formed of said thermosetting rubber engaging and covering said conductor, and said secondary layer is formed of said thermosetting rubber covering said primary layer, and said layer of jacketing material surrounds said secondary layer.
7. A multicomponent cable as in claim 6 wherein said outer armor is metal.
8. A multicomponent cable as in claim 1 wherein said thermosetting rubber is an ethylene propylene copolymer.
9. A multicomponent cable as in claim 1 wherein said thermosetting rubber is a terpolymer.

Claims (8)

  1. 2. A multicomponent electrical cable adapted for use with a submersible motor, comprising at least one electrical conductor; primary and secondary layers of insulating material surrounding said conductor, one of said layers being formed of a high temperature, extruded 1:1 copolymer of ethylene and chlorotrifluoroethylene, and the other layer being formed of a thermosetting rubber; a resilient jacket surrounding said insulators and comprising an epichlorohydrin rubber of high molecular weight; and an outer armor surrounding said resilient jacket.
  2. 3. A multicomponent cable as in claim 2 wherein said outer armor is metal.
  3. 4. A multicomponent cable as in claim 2 wherein said primary layer is formed of said fluorocarbon engaging and covering said conductor, and said secondary layer is formed of said thermosetting rubber covering said primary layer, and said layer of jacketing material surrounds said secondary layer.
  4. 5. A multicomponent cable as in claim 4 wherein said outer armor is metal.
  5. 6. A multicomponent cable as in claim 4 wherein said primary layer is formed of said thermosetting rubber engaging and covering said conductor, and said secondary layer is formed of said thermosetting rubber covering said primary layer, and said layer of jacketing material surrounds said secondary layer.
  6. 7. A multicomponent cable as in claim 6 wherein said outer armor is metal.
  7. 8. A multicomponent cable as in claim 1 wherein said thermosetting rubber is an ethylene propylene copolymer.
  8. 9. A multicomponent cable as in claim 1 wherein said thermosetting rubber is a terpolymer.
US00403579A 1973-10-04 1973-10-04 High temperature, high pressure oil well cable Expired - Lifetime US3832481A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00403579A US3832481A (en) 1973-10-04 1973-10-04 High temperature, high pressure oil well cable
JP49030145A JPS5064784A (en) 1973-10-04 1974-03-18
CA195,740A CA1007313A (en) 1973-10-04 1974-03-22 High temperature cable for well bores
IT42549/74A IT1010830B (en) 1973-10-04 1974-03-26 ELECTRICAL CABLE
FR7410631A FR2246946B1 (en) 1973-10-04 1974-03-27
NL7404125A NL7404125A (en) 1973-10-04 1974-03-27 RISK CABLE BUILT FROM SEVERAL COMPONENTS.
DE19742415377 DE2415377C3 (en) 1973-10-04 1974-03-29 Electric cable
AR253339A AR198747A1 (en) 1973-10-04 1974-04-17 MULTIPLE COMPONENT ELECTRIC CABLE ADAPTED TO BE USED WITH A SUBMERSIBLE MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00403579A US3832481A (en) 1973-10-04 1973-10-04 High temperature, high pressure oil well cable

Publications (1)

Publication Number Publication Date
US3832481A true US3832481A (en) 1974-08-27

Family

ID=23596285

Family Applications (1)

Application Number Title Priority Date Filing Date
US00403579A Expired - Lifetime US3832481A (en) 1973-10-04 1973-10-04 High temperature, high pressure oil well cable

Country Status (7)

Country Link
US (1) US3832481A (en)
JP (1) JPS5064784A (en)
AR (1) AR198747A1 (en)
CA (1) CA1007313A (en)
FR (1) FR2246946B1 (en)
IT (1) IT1010830B (en)
NL (1) NL7404125A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878319A (en) * 1974-07-08 1975-04-15 Gen Electric Corona-resistant ethylene-propylene rubber insulated power cable
US4088830A (en) * 1976-08-24 1978-05-09 Borg-Warner Corporation Electrical cable with insulated and braid covered conductors and perforated polyolefin armor
US4096351A (en) * 1976-08-24 1978-06-20 Borg-Warner Corporation Insulated and braid covered electrical conductor for use in gassy oil wells
US4472598A (en) * 1983-04-27 1984-09-18 Hughes Tool Company Braidless perforated cable
US4658089A (en) * 1985-05-28 1987-04-14 Hughes Tool Company Electrical cable with fabric layer
US4675474A (en) * 1985-09-04 1987-06-23 Harvey Hubbell Incorporated Reinforced electrical cable and method of forming the cable
US4716260A (en) * 1986-08-13 1987-12-29 Hubbell Incorporated Pushing and pulling cable
US4780574A (en) * 1987-04-16 1988-10-25 Hubbell Incorporated Lead sheathed power cable
US4791246A (en) * 1987-08-19 1988-12-13 Hubbell Incorporated Power cable useful in seismic testing
US5059483A (en) * 1985-10-11 1991-10-22 Raychem Corporation An electrical conductor insulated with meit-processed, cross-linked fluorocarbon polymers
US5410106A (en) * 1991-04-26 1995-04-25 Fujikura Ltd. Electric feed cable for oil well pump
US5414217A (en) * 1993-09-10 1995-05-09 Baker Hughes Incorporated Hydrogen sulfide resistant ESP cable
EP0670577A1 (en) * 1994-01-18 1995-09-06 Baker Hughes Incorporated Cross-linked polyethylene cable insulation
US5462803A (en) * 1993-05-21 1995-10-31 Comm/Scope Dual layer fire-resistant plenum cable
US5635274A (en) * 1994-06-21 1997-06-03 Gencorp Inc. Molded glass run channel composite
US5750930A (en) * 1994-12-22 1998-05-12 The Whitaker Corporation Electrical cable for use in a medical surgery environment
US6790888B2 (en) * 2001-05-16 2004-09-14 Crompton Corporation Thermoplastic resins in contact with metals or metal salts stabilized by blends of dithiocarbamates and metal deactivators
US20100186990A1 (en) * 2009-01-29 2010-07-29 Baker Hughes Incorporated High Voltage Electric Submersible Pump Cable
WO2012019066A1 (en) 2010-08-06 2012-02-09 1/2E. I. Du Pont De Nemours And Company Downhole well communications cable
EP2581918A1 (en) * 2011-10-14 2013-04-17 TE Wire & Cable LLC Gas blocking cable and method of manufacturing
CN103794289A (en) * 2014-01-18 2014-05-14 安徽华茜电缆科技有限公司 High pressure resistant reinforced insulation motor leading connection soft cable
EP2874156A1 (en) 2013-11-18 2015-05-20 Nexans Cable for down hole pump
US20150221417A9 (en) * 2011-10-14 2015-08-06 Mathew J. Nadakal Gas blocking cable and method of manufacturing
CN107393643A (en) * 2017-07-26 2017-11-24 贵州人民电气集团有限公司 A kind of novel cable
US10354780B2 (en) 2011-10-14 2019-07-16 Te Wire & Cable Llc Gas blocking cable and method of manufacturing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508227A1 (en) * 1981-06-18 1982-12-24 Cables De Lyon Geoffroy Delore ELECTROMECHANICAL CABLE RESISTANT TO HIGH TEMPERATURES AND PRESSURES AND METHOD OF MANUFACTURING THE SAME
JPS60181818U (en) * 1984-05-15 1985-12-03 日立電線株式会社 underwater cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110009A (en) * 1960-08-29 1963-11-05 Gen Signal Corp Ultrasonic vehicle detector system
US3397046A (en) * 1966-06-13 1968-08-13 Tensolite Insulated Wire Co In Red-corrosion-inhibited silver plated copper conductor in contact with a fluorinatedolefin polymer
US3485939A (en) * 1968-04-24 1969-12-23 Okonite Co Electric cable with adhered polymeric insulation
US3569610A (en) * 1969-10-15 1971-03-09 Gen Cable Corp Ethylene-propylene rubber insulated cable with cross-linked polyethylene strand shielding
US3571490A (en) * 1970-01-16 1971-03-16 Anaconda Wire & Cable Co Flame resistant electric cable
US3710007A (en) * 1971-12-16 1973-01-09 Borg Warner Electrical cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110009A (en) * 1960-08-29 1963-11-05 Gen Signal Corp Ultrasonic vehicle detector system
US3397046A (en) * 1966-06-13 1968-08-13 Tensolite Insulated Wire Co In Red-corrosion-inhibited silver plated copper conductor in contact with a fluorinatedolefin polymer
US3485939A (en) * 1968-04-24 1969-12-23 Okonite Co Electric cable with adhered polymeric insulation
US3569610A (en) * 1969-10-15 1971-03-09 Gen Cable Corp Ethylene-propylene rubber insulated cable with cross-linked polyethylene strand shielding
US3571490A (en) * 1970-01-16 1971-03-16 Anaconda Wire & Cable Co Flame resistant electric cable
US3710007A (en) * 1971-12-16 1973-01-09 Borg Warner Electrical cable

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878319A (en) * 1974-07-08 1975-04-15 Gen Electric Corona-resistant ethylene-propylene rubber insulated power cable
US4088830A (en) * 1976-08-24 1978-05-09 Borg-Warner Corporation Electrical cable with insulated and braid covered conductors and perforated polyolefin armor
US4096351A (en) * 1976-08-24 1978-06-20 Borg-Warner Corporation Insulated and braid covered electrical conductor for use in gassy oil wells
US4472598A (en) * 1983-04-27 1984-09-18 Hughes Tool Company Braidless perforated cable
US4658089A (en) * 1985-05-28 1987-04-14 Hughes Tool Company Electrical cable with fabric layer
US4675474A (en) * 1985-09-04 1987-06-23 Harvey Hubbell Incorporated Reinforced electrical cable and method of forming the cable
US5059483A (en) * 1985-10-11 1991-10-22 Raychem Corporation An electrical conductor insulated with meit-processed, cross-linked fluorocarbon polymers
US4716260A (en) * 1986-08-13 1987-12-29 Hubbell Incorporated Pushing and pulling cable
US4780574A (en) * 1987-04-16 1988-10-25 Hubbell Incorporated Lead sheathed power cable
US4791246A (en) * 1987-08-19 1988-12-13 Hubbell Incorporated Power cable useful in seismic testing
US5410106A (en) * 1991-04-26 1995-04-25 Fujikura Ltd. Electric feed cable for oil well pump
US5462803A (en) * 1993-05-21 1995-10-31 Comm/Scope Dual layer fire-resistant plenum cable
US5414217A (en) * 1993-09-10 1995-05-09 Baker Hughes Incorporated Hydrogen sulfide resistant ESP cable
EP0670577A1 (en) * 1994-01-18 1995-09-06 Baker Hughes Incorporated Cross-linked polyethylene cable insulation
US5635274A (en) * 1994-06-21 1997-06-03 Gencorp Inc. Molded glass run channel composite
US5750930A (en) * 1994-12-22 1998-05-12 The Whitaker Corporation Electrical cable for use in a medical surgery environment
US6790888B2 (en) * 2001-05-16 2004-09-14 Crompton Corporation Thermoplastic resins in contact with metals or metal salts stabilized by blends of dithiocarbamates and metal deactivators
US8039747B2 (en) * 2009-01-29 2011-10-18 Baker Hughes Incorporated High voltage electric submersible pump cable
US20100186990A1 (en) * 2009-01-29 2010-07-29 Baker Hughes Incorporated High Voltage Electric Submersible Pump Cable
US8960271B2 (en) 2010-08-06 2015-02-24 E I Du Pont De Nemours And Company Downhole well communications cable
WO2012019066A1 (en) 2010-08-06 2012-02-09 1/2E. I. Du Pont De Nemours And Company Downhole well communications cable
RU2572605C2 (en) * 2010-08-06 2016-01-20 Е.И. Дюпон Де Немур Энд Компани Data cable for downward well
US9837187B2 (en) * 2011-10-14 2017-12-05 Te Wire & Cable Llc Gas blocking cable and method of manufacturing
US20150221417A9 (en) * 2011-10-14 2015-08-06 Mathew J. Nadakal Gas blocking cable and method of manufacturing
EP2581918A1 (en) * 2011-10-14 2013-04-17 TE Wire & Cable LLC Gas blocking cable and method of manufacturing
US20180075947A1 (en) * 2011-10-14 2018-03-15 Te Wire & Cable Llc Gas Blocking Cable and Method of Manufacturing
US10354780B2 (en) 2011-10-14 2019-07-16 Te Wire & Cable Llc Gas blocking cable and method of manufacturing
US10796822B2 (en) 2011-10-14 2020-10-06 Te Wire & Cable Llc Method for making a gas blocking cable
EP2874156A1 (en) 2013-11-18 2015-05-20 Nexans Cable for down hole pump
US9734936B2 (en) 2013-11-18 2017-08-15 Nexans Cable for down hole pump
CN103794289A (en) * 2014-01-18 2014-05-14 安徽华茜电缆科技有限公司 High pressure resistant reinforced insulation motor leading connection soft cable
CN103794289B (en) * 2014-01-18 2016-08-17 安徽华茜电缆科技有限公司 A kind of high pressure resistant reinforced insulation motor leading and connecting flexible cable
CN107393643A (en) * 2017-07-26 2017-11-24 贵州人民电气集团有限公司 A kind of novel cable

Also Published As

Publication number Publication date
CA1007313A (en) 1977-03-22
DE2415377B2 (en) 1976-05-06
NL7404125A (en) 1975-04-08
DE2415377A1 (en) 1975-04-24
FR2246946B1 (en) 1977-12-16
AR198747A1 (en) 1974-07-15
FR2246946A1 (en) 1975-05-02
JPS5064784A (en) 1975-06-02
IT1010830B (en) 1977-01-20

Similar Documents

Publication Publication Date Title
US3832481A (en) High temperature, high pressure oil well cable
US3889049A (en) Submersible cable
US3710007A (en) Electrical cable
US4515993A (en) Low profile submersible electrical cable
US4284841A (en) Cable
US4600805A (en) Flat submersible electrical cable
US8487186B2 (en) Flat power cable
US3710009A (en) Electrical cable
US3589121A (en) Method of making fluid-blocked stranded conductor
US4449013A (en) Oil well cable
US6555752B2 (en) Corrosion-resistant submersible pump electric cable
US4317002A (en) Multi-core power cable
US10606005B1 (en) Optical cables having an inner sheath attached to a metal tube
EP2706539B1 (en) Subsea cables
CA1089044A (en) Insulated and braid covered electrical conductor for use in gassy oil wells
US4088830A (en) Electrical cable with insulated and braid covered conductors and perforated polyolefin armor
US4722589A (en) Pressure resistant optical fiber cable
US20140076597A1 (en) Subterranean Cable
US10043600B1 (en) Reinforced cable used for submersible pump
US4697875A (en) Pressure resistant submarine optical fiber cable
CN112435790A (en) CuNiSi alloy cable sheath
US5527995A (en) Cable for conducting energy
GB2088584A (en) Overhead electric cable
KR102410783B1 (en) Power cable, manufacturing method and use of power cable
Powers The basics of power cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUGHES TOOL COMPANY, P.O. BOX 2539, HOUSTON, TX. 7

Free format text: ASSIGNMENT OF A PART OF ASSIGNORS INTEREST;ASSIGNOR:CEBTRILIFT-HUGHES INC.;REEL/FRAME:004123/0711

Effective date: 19821230

AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HUGHES TOOL COMPANY;REEL/FRAME:005050/0861

Effective date: 19880609