US3824342A - Omnidirectional sound field reproducing system - Google Patents

Omnidirectional sound field reproducing system Download PDF

Info

Publication number
US3824342A
US3824342A US25174272A US3824342A US 3824342 A US3824342 A US 3824342A US 25174272 A US25174272 A US 25174272A US 3824342 A US3824342 A US 3824342A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
signals
sound
microphones
signal
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
R Christensen
J Gibson
Roy A Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Licensing Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other

Abstract

Systems for producing a sound field in a region surrounding a listener wherein three information channels are utilized for conveying a first signal representative of total sound pressure (A) at a point in space, and two additional signals, A cos theta and A sin theta , for describing the directional characteristics of the sound field. An array of microphones having, for example, equal cardioidal response characteristics are arranged in the original sound field for detecting sound information. Linear, additive signal combining networks are coupled to the microphones for producing the three signals. A plurality of loudspeakers (e.g., four) are coupled to the three information channels by additional linear signal combining networks for reproduction of the sound field. Systems for synthesizing the three signals by electronic devices are also described.

Description

United States Patent [191 Christensen et al.

[ OMNIDIRECTIONAL SOUND FIELD REPRODUCING SYSTEM [75] Inventors: Roy Martin Christensen, Titusville;

James John Gibson, Lambertville; Allen Le Roy Limberg, Princeton,

. all of NJ.

[73] Assignee: RCA Corporation, New York, NY.

22 Filed: May 9, .1972

21 Appl. No.: 251,742

[52] US. Cl 179/1 GQ, l79/100.4 ST, w V l79/l00.l TD, 179/15 QT [51] Int. Cl H041 5/00 [58] Field of Search.. 179/1 GO, 1 G, 1 GP, 15 BT, l79/l00.4 ST, 100.1 TD

[56] References Cited UNITED STATES PATENTS 3 ,746,792 7/1973 Scheiber. 179/1 GQ OTHER PUBLICATIONS Multichannel Stereo Matrix Systems: An Overview by Eargle, Journal ABS, July/August 1971. Multi-Channel Matrix Encoding by Cooper, Presented 10/7/7 l, AES Convention. Discrete-Matrix Multichannel Stereo, Cooper & Shiga, Journal of Audio Engr. Society, Presented [i 3,324,342 'July 16, 1974 10/7/71. I I Analysing Phase Amplitude Matrices, Scheiber, AES Preprint, 10/71.

Four Channels and Compatibility, 10/70, Scheiber, AES Preprint.

Primary Examiner-Kathleen H. Claffy Assistant Examiner-Thomas DAmico Attorney, Agent, or Firm-Eugene M. Whitacre 57 BsTnAcr ysterns for producing a sound field in a region surrounding a listener wherein three information channels are utilized for conveying a first signal representative of total sound pressure (A) at a point in space, and two additional signals, A cos 9 and A sin 6, for describing the directional characteristics of the sound field. 'An array of microphones having, for example, equal cardioidal response characteristics are arranged in the original sound field for detecting sound infor- -mation. Linear, additive signal combining networks ,6 Claims, 3 Drawing Figures I 2e 22 42 Z Li TRANSMISSION IN .MATRIX 48 MATRIX 50 4 2 CHANNEL y y AcosH 32 34 ug l2 R, 20 5 46 0 & u; H2 A TRANSMISSION 38 36 r R MATRIX MATRIX 24 l 54 I 52 44 T J5 TRANSMISSION IN CHANNEL 1 OMNIDIRECTIONAL SOUND FIEL REPRODUCING SYSTEM This invention relates to systems for producing a sound field in a region surrounding a listener and, in particular, to systems for transmitting and/or storing, in three information channels, signals representative of surround stereophonic sound field information.

In a concurrently filed U.S. Pat. application Ser. No. 251,836 of Roy Martin Christensen, three-channel systems for surround stereophonic sound reproduction are described in which the three channels carry, respectively, an audio sum (total sound pressure) signal, a first audio difference signal (e.g., front minus back) and a second orthogonal audio difference signal (e.g., left minus right). Such signals conveniently may be derived from four discrete sound sources (of the type, for example, used in recording surround stereophonic sound on a four track magnetic tape).

The present invention relates to systems for producing a surround stereophonic sound field which may include an arbitrary number of sound sources disposed at various azimuthal locations around a listening point in space. The invention to be described contemplates describing the sound field at that point in terms of threequantities, the total sound pressure A at that point and a pair of quantities A sin and A -cos 0 indicative of the gradients (i.e., direction) of the sound pres sure at that point with respect to a reference direction.

In accordance with one aspect of the present invention, the three quantities described above are produced by means of an array of, for example, four microphones located at a virtual central point in a sound field, the microphones facing outwardly from the point and being displaced from each other by equal angular increments. Linear signal'combining means are coupled to the microphones for combining the outputs thereof to produce first, second and third audio frequency signals proportional to A, A cos 0 and A sin 6 representative of the total sound pressure and sound pressure gra client at the point in space. Three signal transmission channels are provided for coupling the three signals to a further linear signal combining means wherein signals proportional to A, A cos 0 and A sin 0 are recombined with predetermined relative amplitudes to produce a plurality of audio frequency signals suitable for driving a like number of loudspeakers so as to recreate a surround stereophonic sound field at a listening position.

In accordance with a preferred embodiment of the invention, the three signals A, A cos 6 and A sin 6 are formed by linear, additive combinations of outputs provided by four closely spaced microphones having like cardioidal response characteristics, the microphones being directed along orthogonal axes.

In accordance with a further aspect of the invention, a surroundstereophonic sound field is synthesized by linearly, additively combining a plurality of signals representative of individual sound sources to form a total sum signal A. Means are provided for multiplying the quantity A by factors proportional to cos 0 and sin 0 to form second and third directional signals A cos 0 and A sin 0.

For a more complete understanding of the present invention, reference should be made to the following detailed description, in conjunction with the accompanying drawing, in which:

. phone array l0, l2, 14, 16 produce electrical signal FIG. 1 is a schematic, block diagram of a system constructed in accordance with the present invention which utilizes three signal transmission channels for recreating a sound field surrounding a listener;

FIG. 2 is a diagram of the cardioidal characteristics of two microphones shown in FIG. 1; and

FIG. 3 is a schematic, block diagram of a portion of a system constructed in accordance with the present invention for synthesizing three signals suitable for recreating a sound field surrounding a listener.

Referring to FIG. 1, four microphones 10, 12, 14 and 16 are mounted at a virtual point 18 in a sound field, the microphones 10 and 14 being disposed along a first axis and are directed towards the left front (I and right rear (R respectively. The microphones l2 and 16 are disposed along a second axis orthogonal to the first and are directed towards the right front (R,) and left rear (L respectively. The microphones 10, l2, 14, 16 have predetermined directional response characteristics which, in the illustrated embodiment, preferably are all equal and are of a cardioidal pattern. Two such response patterns are shown in FIG. 2 directed along the axis associated with microphones 10 and 14. The patterns associated with microphones l2 and 16, as noted above, preferably are similar in shape but are directed along their associated axis.

Sound waves which are intercepted by the microoutputs from one or more of the microphones depending upon sound direction and amplitude. The direction of a sound source with respect to the microphone array may be specified in terms of an angle 0 measured from a reference line passing through the point 18. In the discussion which follows, 0 will be specified as 0 for a frontward direction (i.e., midway between L; and R,) and increasing counterclockwise.

In that case, a sound source located at a point distant from the central point 18 and producing a sound pressure of amplitude A at point 18 will produce the following responses in microphones l0, l2, l4 and 16, respectively:

to produce an output signal A, proportional to total sound pressure sensed at point 18 and defined by the expression:

The quantity A will hereafter also be referred to as M (a main channel signal) and, as specified in equation (5) is proportional to the sum of the responses of the four microphones 10, 12, 14 and 16 asdefined by equations (1) (4) above.

Summing amplifier 22, arranged to provide a relative gain of 2 2, produces an output signalA cos which is defined by the expression:'

i A 'cos e= filz L,+ R, R,. L,

' The expression A cos 0 is seen to be proportional to the difference between the response of the front (L;,

The expression A sin Ois thus seen to be proportional to the difference between the response of left side (L;, L,) microphones 10, 16 and the response of right side (R;, R,) microphones 12 and 14. The signal A sin 9 is therefore sometimes referred to hereinafter as Y, or a left minus right signal.

The three signals A, A cos 9 and A sin 0 (or M, X and Y) are coupled via appropriate separate transmission channels 26, 28 and '30 to reproducing means. The transmission channels 26, 28 and 30 may, for example, include a storage medium such as magnetic tape on which the three signals are recorded in separate tracks for subsequent recovery in a well known manner. Alternatively, the transmission channels may be included in an FM surround stereophonic radio system of the type described in the above-referenced Christensen patent application. 4 A

The outputs of transmission channels 26, 28 and 30 are coupled to linear, additive signal combining means for application to an appropriate array of loudspeakers 32, 34, 36 and 38 in a listening location 40. The loudspeakers 32, 34, 36 and 38 are illustrated as arranged in a square pattern. That is, each loudspeaker is in a separate comer of a square room. Such an arrange ment is suitable for producing left front (Lf), right front (R right rear (11,) and left rear (L,') audio signals. i

' To this end, the additive signal combining means are illustrated as comprising first and second inverting amplifiers 42 and 44 supplied, respectively with A cosO and A sin 0 information, an amplifier 46 exhibiting a gain of it: and coupled to the A signal transmission channel 26 and fourlinear matrixing amplifiers 48, 50, 52 and 54 coupled, respectively, to loudspeakers 32, 34, 36 and 38.

4 The output of amplifier 46 (in the A channel) is coupled to each of matrix amplifiers 48, 50, 52 and 54 so as to provide equal signals representative of total sound pressure to allsuch amplifiers. The outputs of inverters 42 and 44 and the remaining outputs of transmission channels 28 and 30 are coupled to matrix amplifiers 48, 50, 52 and 54 so as to satisfy the following relationships:

Substituting previous expressions for the quantities M, X and Y and applying trigonometric identities to the resulting expressions, it can be shown that the outputs of matrix amplifiers 48, 50, 52 and 54 can be expressed, respectively, as: I

L, A/2 [1+ sin (6+ 1r/4)] R; A/2 1 cos 0 11/ 1) R, A /2 1 5 sin 0 1r/4)] Comparison of equations (12) (15) with previously stated equations l) (4) demonstrates that the reproduced sound field components correspond to the measured components in the original sound field.

The illustrated arrangement for three channel transmission of surround stereophonic information also may be characterized as a uniform system. That is, regardless of the azimuthal orientation of a sound source in the original sound field, the reproduced sound source will appear to the centrally located listener in the listening room 40 asappearing from the same azimuthal orientation as the original. Furthermore, a constant amplitude sound source moving around the horizon of the original sound field will be reproduced without fluctuations in power in the listening room 40 where four like loudspeakers 48, 50, 52 and 54 are employed.

The sound field components produced by each of the speakers 32, 34, 36 and 38 for a given location (6) of a sound source in the original sound field may be calculated by means of the equations set forth above. Thus, for example, where a sound source of detected amplitude A is located to the left in the original sound field (i.e., at 6 1r/2), the loudspeakers 32, 34, 36 and 38 will provide relative outputs of 0.85A, 0.15A, 0.15A and 0.85A, respectively. The equal outputs of loudspeakers 32 and 38 will produce a virtual sound source midway between such loudspeakers. A standing wave (non-directional) sound component of 0.15A radiated by all four loudspeakers may be considered to be superimposed upon the traveling wave component (e.g., 0.7A) appearing to come from a phantom source midway between loudspeakers 32 and 38. It should be noted that standing wave information is carried by the M signal channel.

By similar substitution to that employed above, it can be shown that a sound source along one of the axes (e.g., Ly) associated with microphones 10, 12, 14 and 16 produces response in the principal speaker (e. g., I equal to that of the original sound source and one-half that response in the flanking speakers (e.g., L,- and R;). Directionality of the sound source is therefore maintained in the reproduced sound field.

Similar results will be obtained for location of sound source in others of the four spatial quadrants. That is, as stated above, the system provides a uniform response. The effect of multiple sound sources at different locations also may be evaluated by applying superposition principles.

It should also be noted that different speaker arrangements may be excited by proper matrixing of the M, X and Y signals. For example, a diamond arrangement (front, back, left and right) of speakers may be so excited.

Referring to FIG. 3 of the drawing, apparatus is shown whereby M, X and Y signals representative of a desired sound field may be formulated utilizing a different microphone technique than that shown in FlG. 1. Specifically, a series of separate magnetic recording tracks 100, 102, 104, etc., each representing the sound contribution of a single musical instrument are shown. Such multi-track recordings are conventionally used in commercial sound recording studios. The information on each track 100, 102, 104 of the tape is converted by means of a conventional magnetic pickup head 106, 108, 110 to electrical audio frequency signals for application to an amplifier 112, 114, 116. Variable attenuators (gain controls) 118, 120, 122 are provided in each signal path for control by the sound engineer. The outputs of each of attenuators 118, 120, 122 are coupled to a first summing amplifier 124 to produce an audio sum signal (M) as defined in connection with FIG. 1. Furthermore, apparatus is provided in each signal path for selectively placing each sound source in a particular spatial position. To this end, sine-cosine potentiometers 126, 128 and 130 of the type, for example, commonly employed as phase resolvers in the servomechanism art, are included in each signal path. Adjustment of the shaft position of the potentiometers 126, 128, 130 will determine the relative angular spatial orientations of the several sound sources in the resulting sound field. The cosine outputs of all potentiometers are added together in a second summing amplifier 132 while the sine outputs thereof are added together in a third summing amplifier 134. In this manner, signals proportional to X and Y components defined previously are provided.

What is claimed is:

1. Apparatus for producing signals representative of a sound field in a spatial region comprising:

a plurality of transducers responsive to audio information signals for converting said information signals into a corresponding plurality of electrical signals,

first means for additively combining said plurality of electrical signals to produce a signal A proportional to the sum thereof,

seconds means for additively combining said plurality of electrical signals to produce a signal proportional to A cos 6, wherein 0 is the angular disposition of a sound source with respect to a reference direction in said spatial region, and

third means for additively combining said plurality of electrical signals to produce a signal proportional to A sin 0.

2. Apparatus according to claim 1 wherein:

said plurality of transducers comprise four like microphones disposed about a point in a sound field, said microphones being equally angularly spaced around said point and each exhibiting a cardioidal response characteristic.

3. Apparatus according to claim 2 wherein:

said first additive combining means comprises a summing circuit providing a relative gain of one-half for each of signals supplied by said four microphones,

said second and third additive combining means providing relative gains of 2 /2 for each of said signals from. said four microphones,

said second combining means further providing inversion of signals fromtwo adjacent ones of said microphones and said third combining means providing inversion of signals from one of said two adjacent ones of said microphones and of signals from a third one of said microphones adjacent to said one.

4. Apparatus according to claim 1 wherein:

said transducers comprise a plurality of magnetic pickup devices, each associated with a corresponding magnetic sound recording track, said apparatus further comprising a like plurality of sine-cosine potentiometers coupled in circuit between each said pickup device and said second and third combining means. v

5. In a system for reproducing a sound field surrounding a listener wherein said sound field is represented by three signals A, A cosine 0, and A sine 0, the quantity A being representative of total sound pressure at a point in space and the parameter 6 being representative of a spatial orientation of a sound source with respect to a reference direction, a sound reproducing system comprising:

first, second and third audio signal transmission channels for said three signals;

four sound reproducing means; and

first, second, third and fourth linear additive signal combining means for coupling said transmission channels to said sound reproducing means to pro- .duce, by means of said three signals, four output signals representative of a sound field surrounding a spatial region suitable for reproduction by synthesis of said four signals from said three signals in additive and subtractive combinations.

6. A sound reproducing system according to claim 5 wherein:

signal A, proportional to total sound pressure, is defined by the expression: A K(L, R R,- L,)

wherein L,-, Rf, R, and L, correspond respectively signal A sine 6 is proportional to the difference be- Sound Sources disposed at left from, right from, tween the left side and right side sound sources deright rear and left rear locations in a sound field; fined by the expression: A Sine 6 K(Lr Rf signal A cosine 0 is porportional to the difference be tween the front and rear sound sources defined by 5 the quanmy K representing a numerical the expression: A cosine 6 V7 K(L;+ R; R, Constantr); and

Patent No. 3,524,342 Dated July 16 1974 en. et al.

inventor (5)5 It is certified that error appears in the above-identified. patent and that said Letters Patent are hereby corrected as shown below:

g n THE CLAIMS 3 Column 6, Line 54 after "for" insert transmitting Signed and sealed this 5th day of November 1974.

(SEAL) Attest:

McCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents FORM Po-wso (IO-69) uscoMwDc 603mm US. GOVERNMENT HUNTING OFFICE 2 I969 0-566-334

Claims (6)

1. Apparatus for producing signals representative of a sound field in a spatial region comprising: a plurality of transducers responsive to audio information signals for converting said information signals into a corresponding plurality of electrical signals, first means for additively combining said plurality of electrical signals to produce a signal A proportional to the sum thereof, seconds means for additively combining said plurality of electrical signals to produce a signal proportional to A cos theta , wherein theta is the angular disposition of a sound source with respect to a reference direction in said spatial region, and third means for additively combining said plurality of electrical signals to produce a signal proportional to A sin theta .
2. Apparatus according to claim 1 wherein: said plurality of transducers comprise four like microphones disposed about a point in a sound field, said microphones being equally angularly spaced around said point and each exhibiting a cardioidal response characteristic.
3. Apparatus according to claim 2 wherein: said first additive combining means comprises a summing circuit providing a relative gain of one-half for each of signals supplied by said four microphones, said second and third additive combining means providing relative gains of Square Root 2/2 for each of said signals from said four microphones, said second combining means further providing inversion of signals from two adjacent ones of said microphones and said third combining means providing inversion of signals from one of said two adjacent ones of said microphones and of signals from a third one of said microphones adjacent to said one.
4. Apparatus according to claim 1 wherein: said transducers comprise a plurality of magnetic pickup devices, each associated with a corresponding magnetic sound recording track, said apparatus further comprising a like plurality of sine-cosine potentiometers coupled in ciRcuit between each said pickup device and said second and third combining means.
5. In a system for reproducing a sound field surrounding a listener wherein said sound field is represented by three signals A, A cosine theta , and A sine theta , the quantity A being representative of total sound pressure at a point in space and the parameter theta being representative of a spatial orientation of a sound source with respect to a reference direction, a sound reproducing system comprising: first, second and third audio signal transmission channels for said three signals; four sound reproducing means; and first, second, third and fourth linear additive signal combining means for coupling said transmission channels to said sound reproducing means to produce, by means of said three signals, four output signals representative of a sound field surrounding a spatial region suitable for reproduction by synthesis of said four signals from said three signals in additive and subtractive combinations.
6. A sound reproducing system according to claim 5 wherein: signal A, proportional to total sound pressure, is defined by the expression: A K(Lf + Rf + Rr + Lr) wherein Lf, Rf, Rr and Lr correspond respectively to sound sources disposed at left front, right front, right rear and left rear locations in a sound field; signal A cosine theta is porportional to the difference between the front and rear sound sources defined by the expression: A cosine theta Square Root 2 K(Lf + Rf - Rr -Lr); and signal A sine theta is proportional to the difference between the left side and right side sound sources defined by the expression: A sine theta Square Root 2 K(Lf - Rf - Rr + Lr), the quantity K representing a numerical constant.
US3824342A 1972-05-09 1972-05-09 Omnidirectional sound field reproducing system Expired - Lifetime US3824342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US3824342A US3824342A (en) 1972-05-09 1972-05-09 Omnidirectional sound field reproducing system

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US3824342A US3824342A (en) 1972-05-09 1972-05-09 Omnidirectional sound field reproducing system
DE19732317124 DE2317124A1 (en) 1972-05-09 1973-04-05 A device for generating a spatial sound field signals representing
CA 169399 CA976090A (en) 1972-05-09 1973-04-24 Sound reproducing system
IT2357473A IT984179B (en) 1972-05-09 1973-04-30 for reproducing sound system
AU5511673A AU5511673A (en) 1972-05-09 1973-05-02 Sound reproducing system
CH646473A CH565494A5 (en) 1972-05-09 1973-05-07
DD17065173A DD104673A5 (en) 1972-05-09 1973-05-07
GB2174673A GB1432153A (en) 1972-05-09 1973-05-08 Sound reproducing system
BR332273A BR7303322D0 (en) 1972-05-09 1973-05-08 Apparatus for generating signals representing a sound field
DK253273A DK137110C (en) 1972-05-09 1973-05-08
JP5104173A JPS5215201B2 (en) 1972-05-09 1973-05-08
SE7306449A SE378969B (en) 1972-05-09 1973-05-08
NL7306404A NL7306404A (en) 1972-05-09 1973-05-08
FR7316629A FR2183974B1 (en) 1972-05-09 1973-05-09
ES414567A ES414567A1 (en) 1972-05-09 1973-05-09 Improvements in sound reproduction systems.
AT410273A AT350294B (en) 1972-05-09 1973-05-09 A device for generating the sound distribution in a spatial region corresponding signals

Publications (1)

Publication Number Publication Date
US3824342A true US3824342A (en) 1974-07-16

Family

ID=22953214

Family Applications (1)

Application Number Title Priority Date Filing Date
US3824342A Expired - Lifetime US3824342A (en) 1972-05-09 1972-05-09 Omnidirectional sound field reproducing system

Country Status (9)

Country Link
US (1) US3824342A (en)
JP (1) JPS5215201B2 (en)
CA (1) CA976090A (en)
DE (1) DE2317124A1 (en)
DK (1) DK137110C (en)
ES (1) ES414567A1 (en)
FR (1) FR2183974B1 (en)
GB (1) GB1432153A (en)
NL (1) NL7306404A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940559A (en) * 1974-04-18 1976-02-24 Cbs Inc. Compatible four channel recording and reproducing system
US3970788A (en) * 1971-10-06 1976-07-20 Cooper Duane H Monaural and stereo compatible multidirectional sound matrixing
US4042779A (en) * 1974-07-12 1977-08-16 National Research Development Corporation Coincident microphone simulation covering three dimensional space and yielding various directional outputs
DE2711299A1 (en) * 1976-03-15 1977-09-22 Nat Res Dev A sound reproduction
DE2728325A1 (en) * 1976-07-01 1978-01-05 Nat Res Dev Multi-channel sound reproducing systems
US4074084A (en) * 1975-11-05 1978-02-14 Berg Johannes C M Van Den Method and apparatus for receiving sound intended for stereophonic reproduction
US4119798A (en) * 1975-09-04 1978-10-10 Victor Company Of Japan, Limited Binaural multi-channel stereophony
US4236039A (en) * 1976-07-19 1980-11-25 National Research Development Corporation Signal matrixing for directional reproduction of sound
US4392019A (en) * 1980-12-19 1983-07-05 Independent Broadcasting Authority Surround sound system
US6041127A (en) * 1997-04-03 2000-03-21 Lucent Technologies Inc. Steerable and variable first-order differential microphone array
US20050270906A1 (en) * 2002-03-18 2005-12-08 Daniele Ramenzoni Resonator device and circuits for 3-d detection/receiving sonic waves, even of a very low amplitude/frequency, suitable for use in cybernetics
US20070147634A1 (en) * 2005-12-27 2007-06-28 Polycom, Inc. Cluster of first-order microphones and method of operation for stereo input of videoconferencing system
US20140016801A1 (en) * 2012-07-11 2014-01-16 National Cheng Kung University Method for producing optimum sound field of loudspeaker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1494751A (en) * 1974-03-26 1977-12-14 Nat Res Dev Sound reproduction systems
JPS5187002A (en) * 1975-01-29 1976-07-30 Nippon Telegraph & Telephone 4 chanerusutereohoshiki

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746792A (en) * 1968-01-11 1973-07-17 P Scheiber Multidirectional sound system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1359509A (en) * 1970-06-15 1974-07-10 Scheiber P Decoder apparatus for use in a multidirectional sound system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746792A (en) * 1968-01-11 1973-07-17 P Scheiber Multidirectional sound system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Analysing Phase Amplitude Matrices, Scheiber, AES Preprint, 10/71. *
Discrete Matrix Multichannel Stereo, Cooper & Shiga, Journal of Audio Engr. Society, Presented 10/7/71. *
Four Channels and Compatibility, 10/70, Scheiber, AES Preprint. *
Multi Channel Matrix Encoding by Cooper, Presented 10/7/71, AES Convention. *
Multichannel Stereo Matrix Systems: An Overview by Eargle, Journal AES, July/August 1971. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970788A (en) * 1971-10-06 1976-07-20 Cooper Duane H Monaural and stereo compatible multidirectional sound matrixing
US3940559A (en) * 1974-04-18 1976-02-24 Cbs Inc. Compatible four channel recording and reproducing system
US4042779A (en) * 1974-07-12 1977-08-16 National Research Development Corporation Coincident microphone simulation covering three dimensional space and yielding various directional outputs
US4119798A (en) * 1975-09-04 1978-10-10 Victor Company Of Japan, Limited Binaural multi-channel stereophony
US4074084A (en) * 1975-11-05 1978-02-14 Berg Johannes C M Van Den Method and apparatus for receiving sound intended for stereophonic reproduction
DE2711299A1 (en) * 1976-03-15 1977-09-22 Nat Res Dev A sound reproduction
US4095049A (en) * 1976-03-15 1978-06-13 National Research Development Corporation Non-rotationally-symmetric surround-sound encoding system
DE2728325A1 (en) * 1976-07-01 1978-01-05 Nat Res Dev Multi-channel sound reproducing systems
US4139729A (en) * 1976-07-01 1979-02-13 National Research Development Corporation Sound reproduction system with matrixing of power amplifier outputs
US4236039A (en) * 1976-07-19 1980-11-25 National Research Development Corporation Signal matrixing for directional reproduction of sound
US4392019A (en) * 1980-12-19 1983-07-05 Independent Broadcasting Authority Surround sound system
US6041127A (en) * 1997-04-03 2000-03-21 Lucent Technologies Inc. Steerable and variable first-order differential microphone array
US20050270906A1 (en) * 2002-03-18 2005-12-08 Daniele Ramenzoni Resonator device and circuits for 3-d detection/receiving sonic waves, even of a very low amplitude/frequency, suitable for use in cybernetics
US7263034B2 (en) 2002-03-18 2007-08-28 Andrea Chiesi Resonator device and circuits for 3-D detection/receiving sonic waves, even of a very low amplitude/frequency, suitable for use in cybernetics
US20070147634A1 (en) * 2005-12-27 2007-06-28 Polycom, Inc. Cluster of first-order microphones and method of operation for stereo input of videoconferencing system
US8130977B2 (en) 2005-12-27 2012-03-06 Polycom, Inc. Cluster of first-order microphones and method of operation for stereo input of videoconferencing system
US20140016801A1 (en) * 2012-07-11 2014-01-16 National Cheng Kung University Method for producing optimum sound field of loudspeaker
US9066173B2 (en) * 2012-07-11 2015-06-23 National Cheng Kung University Method for producing optimum sound field of loudspeaker

Also Published As

Publication number Publication date Type
CA976090A1 (en) grant
JPS5215201B2 (en) 1977-04-27 grant
FR2183974B1 (en) 1978-02-10 grant
ES414567A1 (en) 1976-02-01 application
DK137110B (en) 1978-01-16 grant
GB1432153A (en) 1976-04-14 application
DE2317124A1 (en) 1973-11-22 application
NL7306404A (en) 1973-11-13 application
FR2183974A1 (en) 1973-12-21 application
DK137110C (en) 1978-06-19 grant
JPS4955301A (en) 1974-05-29 application
CA976090A (en) 1975-10-14 grant

Similar Documents

Publication Publication Date Title
US3632886A (en) Quadrasonic sound system
US4039755A (en) Auditorium simulator economizes on delay line bandwidth
US6763115B1 (en) Processing method for localization of acoustic image for audio signals for the left and right ears
US5386082A (en) Method of detecting localization of acoustic image and acoustic image localizing system
US5459790A (en) Personal sound system with virtually positioned lateral speakers
US3970787A (en) Auditorium simulator and the like employing different pinna filters for headphone listening
US4058675A (en) Loudspeaker system for use in a stereophonic sound reproduction system
US3952156A (en) Signal processing system
US4524451A (en) Sound reproduction system having sonic image localization networks
US20090116652A1 (en) Focusing on a Portion of an Audio Scene for an Audio Signal
US6259795B1 (en) Methods and apparatus for processing spatialized audio
US7536021B2 (en) Utilization of filtering effects in stereo headphone devices to enhance spatialization of source around a listener
US5982903A (en) Method for construction of transfer function table for virtual sound localization, memory with the transfer function table recorded therein, and acoustic signal editing scheme using the transfer function table
US4042779A (en) Coincident microphone simulation covering three dimensional space and yielding various directional outputs
US6173061B1 (en) Steering of monaural sources of sound using head related transfer functions
US4251688A (en) Audio-digital processing system for demultiplexing stereophonic/quadriphonic input audio signals into 4-to-72 output audio signals
US5052685A (en) Sound processor for video game
US3725586A (en) Multisound reproducing apparatus for deriving four sound signals from two sound sources
US3686471A (en) System for recording and/or reproducing four channel signals on a record disc
US5610986A (en) Linear-matrix audio-imaging system and image analyzer
US3588355A (en) Stereophonic loudspeaker system
US5400433A (en) Decoder for variable-number of channel presentation of multidimensional sound fields
US3959590A (en) Stereophonic sound system
US3783192A (en) Decoder for use in matrix four-channel system
US6614910B1 (en) Stereo sound expander

Legal Events

Date Code Title Description
AS Assignment

Owner name: RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, P

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RCA CORPORATION, A CORP. OF DE;REEL/FRAME:004993/0131

Effective date: 19871208