US3823717A - Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe - Google Patents
Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe Download PDFInfo
- Publication number
- US3823717A US3823717A US00351140A US35114073A US3823717A US 3823717 A US3823717 A US 3823717A US 00351140 A US00351140 A US 00351140A US 35114073 A US35114073 A US 35114073A US 3823717 A US3823717 A US 3823717A
- Authority
- US
- United States
- Prior art keywords
- impact element
- tubular
- teeth
- probe
- impact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/18—Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320073—Working tips with special features, e.g. extending parts probe
Definitions
- An ultrasonic probe for disintegrating concretions e.g. urinary calculus, in body cavities comprises a probe tube, ultrasonically vibrated in a longitudinal direction, having at one end a tubular impact element loosely coupled to it in the direction of vibration.
- the impact element is provided on its free end with a cutting edge, preferably formed by a plurality of teeth.
- the disintegrated concretions are continuously evacuated through the tubular impact element and the tubular probe.
- the known apparatus suffers from an other disadvantage.
- the optical examination instrument endoscope
- the ultrasonic probe must be removed out of the body cavity and another instrument, for example a so-called suction syringe, must be used.
- FIG. 1 shows the front end of an ultrasonic probe with tubular impact element. partly in section;
- FIG. 2 shows the side elevation of the cutting edge of the impact element with trapezoidal teeth
- FIG. 3 shows the plan of the cutting edge with twisted teeth and of the impact-element (in a section along the line III-III of FIG. 1);
- FIG. 4 shows an impact element with rounded and corrugated impact surface
- FIG. 5 shows an impact element with conical impact surface and cap sleeve
- FIG. 6 shows an impact element with helicoidal spring retaining means
- FIG. 7 shows an impact element with tubular retaining means.
- the loose mounting ofthe impact element is ensured in that a sufficient tolerance in the radial direction is provided by shank guide means 4 in the end of the tube 1, whilst axial movement of the impact element 2 is limited on the one hand by an impact surface 3 on the element 2 and on the other hand by retaining pins 5, 5 which engage in slots 6, 6' in the impact element 2, so that the impact element 2 is prevented from dropping out of the tube 1.
- the teeth 7 of the impact element 2 constructed as a tube section are arranged joggled, so that only those fragments of the concretion treated which have a smaller diameter than that of the tube can penetrate into the tube 1, so that easy evacuation of the fragments in the direction of the arrow 27 through the tube 1 is possible.
- the teeth 7 are advantageously of trapezoidal construction with their wide side acting as chisels, so that they do not jam in the case ofa less brittle concretions, but can automatically bore themselves free.
- the discharge of the material to the exhaustor device is furthermore greatly facilitated by this means.
- FIG. 4 shows a construction of the impact surfaces at the front end of the ultrasonic probe tube 8 and on the impact element 9.
- the end of the tube 8 is substantially conically countersunk at its end face 9a, whereby an automatic centering of the impact element 9 is created.
- the impact element 9 is rounded at its contact surface 10, so that its rests not upon a plane surface but only upon an encircling line. If desired, the rounded support surfaces 10 may be corrugated as at 100, so that only support points remain.
- FIG. 5 shows the mode of supporting an impact element 1] on an ultrasonic probe tube 12 by a cap sleeve 13.
- both the impact surfaces l4, 15 are conically tapered.
- FIG. 6 illustrates an embodiment in which an impact element 16 is loosely supported on an ultrasonic probe tube 17 by means of a helical spring 18.
- the spring is dimensioned so that in the rest position a small gap 19 remains between the impact element I6 and the tube 17, which is closed only when the impact element 16 is pressed against the tube 17, so that energy is transmitted only then.
- FIG. 7 shows means for supporting an impact element 20 on an ultrasonic probe tube 21 by means of a soft resilient sleeve 22 which can be adjusted so that again a small gap 23 remains between impact surfaces 24, 25.
- the impact surfaces may be rounded and/or conically tapered.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Toxicology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
Abstract
An ultrasonic probe for disintegrating concretions e.g. urinary calculus, in body cavities comprises a probe tube, ultrasonically vibrated in a longitudinal direction, having at one end a tubular impact element loosely coupled to it in the direction of vibration. The impact element is provided on its free end with a cutting edge, preferably formed by a plurality of teeth. The disintegrated concretions are continuously evacuated through the tubular impact element and the tubular probe.
Description
United States Patent [191 Pohlman et a1.
APPARATUS'FOR DISINTEGRATING CONCRETIONS IN BODY CAVITIES OF LIVING ORGANISMS BY MEANS OF AN ULTRASONIC PROBE Reimar Pohlman; Manfred Cichos, both of Aachen, Germany Assignee: Reimar Pohlman, Aachen, Germany Filed: Apr. 16, 1973 Appl. No.: 351,140
inventors:
Foreign Application Priority Data Apr. 22, 1972 Germany 2219790 U.S. Cl 128/305, 128/276, 128/328, 128/24 A Int. Cl A6lb 17/32 Field of Search 128/303, 24 A, 305, 276, 128/328, 319
Primary Examiner-Lawrence W. Trapp I [5 7 1 ABSTRACT An ultrasonic probe for disintegrating concretions e.g. urinary calculus, in body cavities comprises a probe tube, ultrasonically vibrated in a longitudinal direction, having at one end a tubular impact element loosely coupled to it in the direction of vibration. The impact element is provided on its free end with a cutting edge, preferably formed by a plurality of teeth. The disintegrated concretions are continuously evacuated through the tubular impact element and the tubular probe.
12 Claims, 7 Drawing Figures PATENTED JUL 1 s 1924 APPARATUS FOR DISINTEGRATING CONCRETIONS IN BODY CAVITIES OF LIVING ORGANISMS BY MEANS OF AN ULTRASONIC PROBE BACKGROUND OF THE INVENTION This invention relates to an apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe.
It is known to treat hard and brittle materials by means of ultrasonic vibrations. in this case a tool profiled in any desired manner and excited to longitudinal vibrations is lowered into the material to be treated with interposition of a boron carbide suspension. By this means perforations, dies etc. can be made in hard and brittle materials.
The present invention pursues a totally different purpose, namely to produce brittle fractures in hard and brittle bodies in order to destroy the said bodies, e.g. urinary calculus. By this means it is desired to destroy or disintegrate a urinary calculus presentin the human bladder to such an extent that the debris can be exhausted or removed from the bladder through natural channels without difficulty.
Now when it is attempted to obtain brittle fractures by means of ultrasonic vibrations, although e.g. in the case of disintegration of urinary calculus, relatively soft types of calculus such as phosphate calculus, can be reduced fairly rapidly by ultrasonic vibrations; on the other hand harder types, such as urate Calculus, oxalate calculus, can only be disintegrated into small debris extraordinarily slowly, or even not at all.
Known apparatusses operate on the principle that a concretion present in a body cavity is touched by a rodshaped ultrasonic probe introduced through natural channels, whereupon by pressing the concretion against the wall of the body cavity the ultrasonic vibrations are transmitted to the concretion and the latter is thereby destroyed. Because the pressure forces required in this case are relatively powerful. there is a risk, more particularly with small smooth concretions, that the sonic probe may slip off, so that the wall of the body cavity may become damaged. Moreover, if such small smooth concretions are also extremely hard, then in the majority of cases they cannot be disintegrated at all by this procedure, because they move away at the very first contact by the ultrasonic probe.
Furthermore, the known apparatus suffers from an other disadvantage. When it is actually possible to disintegrate a concretion, then in every case initially the disintegrated debris of the calculus and the stone dust suspended in the liquor are left behind in the body cavity. This gives rise to on the one hand to a visual obstruction for the optical examination instrument (endoscope) introduced with the ultrasonic probe, and on the other hand to the necessity of removing the stone residues from the body cavity by a separate operation, which furthermore can no longer be performed under visual control. For this purpose the ultrasonic probe must be removed out of the body cavity and another instrument, for example a so-called suction syringe, must be used.
SUMMARY OF THE lNVENTlON The invention aims at providing an apparatus for disintegrating concretions in body cavities by means of an ultrasonic probe, whereby the disadvantages of the apparatusses of this type hitherto known are obviated.
To this end, the present invention consists in an apparatus for disintegrating concretions in body cavities in living organisms, comprising a tubular probe ultrasonically vibrated longitudinally and a tubular impact element loosely coupled in the direction of vibration to one end of said tubular probe whereby the ultrasonic vibrations transmitted to the impact element are transformed into shock forces.
Due to the interposition of the impact element, the shattering effect of the ultrasonic vibrations is increased by orders of magnitude. The impact element should be as hard and highly elastic as possible, and is arranged loosely between the ultrasonic probe and the body to be disintegrated. This unyielding element is capable of collecting impulse shocks statistically from the ultrasonic vibrations acting periodically upon it, and to transmit them in very brief and highly intensive impact shocks to the body to be disintegrated. lt has been found that these collected" highly intensive impulse shocks can achieve orders of magnitude and can initiate percussive forces which exceed many times the pressure peaks transmitted periodically by the ultrasonic probe tube and are capable of causing the desired brittle fractures. Even the hardest types or urinary calculus (urate and oxalate calculus) can be destroyed by this means.
By virtue of the tubular construction of the impact element and of the ultrasonic probe tube, it becomes possible to exhaust the fragments of calculus continuously by an exhauster device as they are detached during the actual disintegration operation, so that it is unnecessary to use additionally a further apparatus to exhaust them after the disintegration of the concretion. Furthermore, the continuous exhaustion of the fragments of calculus and of the stone dust produce the further advantage that no obstruction of vision for the optical observation instrument (endoscope) occurs. And
lastly, the exhaustion of the fragments of calculus also sucks the calculus itself towards the front end of the tubular impact element, so that on the one hand it centres itself automatically upon the impact element, so that the latter is largely prevented from slipping off, while at the same time a certain'contact pressure is generated whereby the contact force against the wall of the body cavity which was hitherto necessary is substantially reduced. Since furthermore the shocks of the impact element only have a destructive effect when they strike hard bodies, no injury to the soft wall of the body cavity occurs even if the latter is accidentally touched.
The characteristic property of the impact element to transform the ultrasonic vibrations transmitted to it into powerful shock forces of low frequency produces a number of advantages:
Only a much weaker contact pressure is required to achieve the desired effect, compared to the apparatusses hitherto known. Furthermore, it is possible to destroy with ultrasonic vibrations of hitherto customary amplitude and power, concretions which would have withstood destruction without the interposition of an impact element.
Preferably, the end of the tubular impact element remote from said coupling is constructed as a cutting edge which may advantageously be constituted by a plurality of teeth. The efficacity of the destruction of concretions is increased by these measures.
It is furthermore advantageous to make the teeth of undercut trapezoidal construction so that their cutting surfaces are larger than their root surfaces, since in this manner the disintegrated culculus material can easily be discharged by the exhaustion operation. Furthermore, if the teeth are arranged mutually joggled or twisted, so that their cutting edges project partly beyond the outer circumference of the tube supporting them and into the interior space of the said tube, then on the one hand the risk of the impact element seizing in the calculus is reduced, while on the other hand it has the effect that the diameter of the hole generated is greater than the diameter of the impact element carrying the teeth, and the stone fragments are smaller than the internal diameter of the impact element and of the tubular ultrasonic probe. In this way a clogging of the entire instrument by the disintegrated stones is reliably obviated. Furthermore the advantage is obtained that with this mode of construction the tubular impact element tends to dance" in the peripheral direction, so that it repeatedly strikes fresh points of the concretion to be destroyed.
The impact element is preferably guided loosely with slight radial and axial play on the end of the ultrasonic probe tube. In this case the impact element can be prevented from falling out by various measures which later be more fully explained.
It has further been found particularly advantageous to construct the ultrasonic vibrator tube and/or the impact element coupled to it, at the mutual contact surfaces, so that a linear or punctiform contact occurs, since in the case of an areal contact the recoil of the element is considerably impaired by the adherence layer of interlying liquid. The elastic shock conditions are also appreciably improved.
BRIEF DESCRIPTION OF THE DRAWINGS In order that the invention may be more readily understood. reference is made to the accompanying drawings which illustrate diagrammatically and by way of example several embodiments thereof, and in which:
FIG. 1 shows the front end of an ultrasonic probe with tubular impact element. partly in section;
FIG. 2 shows the side elevation of the cutting edge of the impact element with trapezoidal teeth;
FIG. 3 shows the plan of the cutting edge with twisted teeth and of the impact-element (in a section along the line III-III of FIG. 1);
FIG. 4 shows an impact element with rounded and corrugated impact surface;
FIG. 5 shows an impact element with conical impact surface and cap sleeve;
FIG. 6 shows an impact element with helicoidal spring retaining means; and
FIG. 7 shows an impact element with tubular retaining means.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, an ultrasonic probe comprises a tube 1 and an impact element 2. The tube 1 is oscillated longitudinally by an ultrasonic generator indicated by the double arrow 27. The impact element 2 is likewise of tubular construction and carries at one end teeth 7 as a cutting edge. Due to the longitudinal oscillations of the tube 1, impulses are transmitted to the impact element 2, which are intensified in the above described manner into very powerful impulse peaks, because the "impact element 2 is supported loosely in the radial and axial direction in or on the tube 1. The loose mounting ofthe impact element is ensured in that a sufficient tolerance in the radial direction is provided by shank guide means 4 in the end of the tube 1, whilst axial movement of the impact element 2 is limited on the one hand by an impact surface 3 on the element 2 and on the other hand by retaining pins 5, 5 which engage in slots 6, 6' in the impact element 2, so that the impact element 2 is prevented from dropping out of the tube 1. The teeth 7 of the impact element 2 constructed as a tube section are arranged joggled, so that only those fragments of the concretion treated which have a smaller diameter than that of the tube can penetrate into the tube 1, so that easy evacuation of the fragments in the direction of the arrow 27 through the tube 1 is possible.
As FIG. 2 shows, the teeth 7 are advantageously of trapezoidal construction with their wide side acting as chisels, so that they do not jam in the case ofa less brittle concretions, but can automatically bore themselves free. The discharge of the material to the exhaustor device is furthermore greatly facilitated by this means.
FIG. 3 illustrates the impact element 2 viewed axially in plan and partly in section along the line Ill-Ill of FIG. 1. The teeth 7 are arranged twisted so that a line connecting the outer edges of the teeth has a greater diameter than the outside diameter D of the impact element 2, whilst a line connecting the inner edges of the teeth has a smaller diameter than the inside diameter d of the impact element 2.
FIG. 4 shows a construction of the impact surfaces at the front end of the ultrasonic probe tube 8 and on the impact element 9. The end of the tube 8 is substantially conically countersunk at its end face 9a, whereby an automatic centering of the impact element 9 is created. The impact element 9 is rounded at its contact surface 10, so that its rests not upon a plane surface but only upon an encircling line. If desired, the rounded support surfaces 10 may be corrugated as at 100, so that only support points remain.
FIG. 5 shows the mode of supporting an impact element 1] on an ultrasonic probe tube 12 by a cap sleeve 13. In this case, for the purpose of automatic centering, both the impact surfaces l4, 15 are conically tapered.
FIG. 6 illustrates an embodiment in which an impact element 16 is loosely supported on an ultrasonic probe tube 17 by means of a helical spring 18. The spring is dimensioned so that in the rest position a small gap 19 remains between the impact element I6 and the tube 17, which is closed only when the impact element 16 is pressed against the tube 17, so that energy is transmitted only then. By virtue of this construction, during idle running, the excited but inoperative ultrasonic vibrator does not touch the impact element at all and avoids unnecessary wear of the impact surfaces and stressing of the support means.
FIG. 7 shows means for supporting an impact element 20 on an ultrasonic probe tube 21 by means of a soft resilient sleeve 22 which can be adjusted so that again a small gap 23 remains between impact surfaces 24, 25. The impact surfaces may be rounded and/or conically tapered.
We claim:
1. An apparatus for disintegrating concretions in body cavities in living organisms, comprising a tubular probe adapted to be ultrasonically vibrated longitudinally and a tubular impact element loosely coupled in the direction of vibration to one end of said tubular probe whereby the ultrasonic vibrations transmitted to the impact element are transformed into shock forces.
2. An apparatus as claimed in claim I, wherein the end of the tubular impact element remote from said coupling is constructed as a cutting edge.
3. An apparatus as claimed in claim 2, wherein the cutting edge is constituted by a plurality of teeth.
4. An apparatus as claimed in claim 3, wherein the teeth are of an undercut. trapezoidal construction so that their cutting surfaces are larger than their root surfaces.
5. An apparatus as claimed in claim 3, wherein the teeth are arranged mutually joggled or twisted so that a line connecting the outer edges of the teeth has a greater diameter than the external diameter of the impact element and a line connecting the inner edges of the teeth has a smaller diameter than the internal diameter of the impact element.
6. An apparatus as claimed in any of the claim 2, wherein the impact element is guided loosely with slight radial and axial play on the end of the tubular probe.
7. An apparatus as claimed in claim 6, wherein the impact element is prevented from dropping out of the tubular probe by retaining pins which engage in slots provided in the impact element.
8. An apparatus as claimed in claim 6, wherein the impact element is loosely supported by a cap sleeve secured to the tubular probe.
9. An apparatus as claimed in claim 6, wherein the impact element is supported by a helicoidal spring contacting the tubular probe and the impact element.
10. An apparatus as claimed in claim 6, wherein the impact element is supported by a resilient tube contacting the tubular probe and the impact element.
11. An apparatus as claimed in claim 6, wherein those parts of the ultrasonic probe tube and of the impact element where the two components are in mutual contact during their axial movement caused by the ultrasonic vibrations are of tapered construction of at least one of said parts.
12. An apparatus as claimed in claim 1, wherein the ultrasonic probe tube is adapted to be connected to an exhaustor device.
Claims (12)
1. An apparatus for disintegrating concretions in body cavities in living organisms, comprising a tubular probe adapted to be ultrasonically vibrated longitudinally and a tubular impact element loosely coupled in the direction of vibration to one end of said tubular probe whereby the ultrasonic vibrations transmitted to the impact element are transformed into shock forces.
2. An apparatus as claimed in claim 1, wherein the end of the tubular impact element remote from said coupling is constructed as a cutting edge.
3. An apparatus as claimed in claim 2, wherein the cutting edge is constituted by a plurality of teeth.
4. An apparatus as claimed in claim 3, wherein the teeth are of an undercut, trapezoidal construction so that their cutting surfaces are larger than their root surfaces.
5. An apparatus as claimed in claim 3, wherein the teeth are arranged mutually joggled or twisted so that a line connecting the outer edges of the teeth has a greater diameter than the external diameter of the impact element and a line connecting the inner edges of the teeth has a smaller diameter than the internal diameter of the impact element.
6. An apparatus as claimed in any of the claim 2, wherein the impact element is guided loosely with slight radial and axial play on the end of the tubular probe.
7. An apparatus as claimed in claim 6, wherein the impact element is prevented from dropping out of the tubular probe by retaining pins which engage in slots provided in the impact element.
8. An apparatus as claimed in claim 6, wherein the impact element is loosely supported by a cap sleeve secured to the tubular probe.
9. An apparatus as claimed in claim 6, wherein the impact element is supported by a helicoidal spring contacTing the tubular probe and the impact element.
10. An apparatus as claimed in claim 6, wherein the impact element is supported by a resilient tube contacting the tubular probe and the impact element.
11. An apparatus as claimed in claim 6, wherein those parts of the ultrasonic probe tube and of the impact element where the two components are in mutual contact during their axial movement caused by the ultrasonic vibrations are of rounded tapered construction of at least one of said parts.
12. An apparatus as claimed in claim 1, wherein the ultrasonic probe tube is adapted to be connected to an exhaustor device.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2219790A DE2219790C3 (en) | 1972-04-22 | 1972-04-22 | Device for generating brittle fractures in hard stones |
Publications (1)
Publication Number | Publication Date |
---|---|
US3823717A true US3823717A (en) | 1974-07-16 |
Family
ID=5842932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00351140A Expired - Lifetime US3823717A (en) | 1972-04-22 | 1973-04-16 | Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe |
Country Status (4)
Country | Link |
---|---|
US (1) | US3823717A (en) |
JP (1) | JPS4921989A (en) |
DE (1) | DE2219790C3 (en) |
GB (1) | GB1390322A (en) |
Cited By (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4748971A (en) * | 1987-01-30 | 1988-06-07 | German Borodulin | Vibrational apparatus for accelerating passage of stones from ureter |
US4750902A (en) * | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4750488A (en) * | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4823793A (en) * | 1985-10-30 | 1989-04-25 | The United States Of America As Represented By The Administrator Of The National Aeronuautics & Space Administration | Cutting head for ultrasonic lithotripsy |
US4838853A (en) * | 1987-02-05 | 1989-06-13 | Interventional Technologies Inc. | Apparatus for trimming meniscus |
US4907572A (en) * | 1988-04-14 | 1990-03-13 | Urological Instruments Research, Inc. | Vibrational method for accelerating passage of stones from ureter |
US4911149A (en) * | 1984-06-18 | 1990-03-27 | Urological Instruments Research, Inc. | Vibratory treatment method and apparatus |
US4922902A (en) * | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
WO1990009762A1 (en) * | 1989-02-22 | 1990-09-07 | Physical Sciences Inc. | Acoustic impact delivery catheter with end cap |
US5019083A (en) * | 1989-01-31 | 1991-05-28 | Advanced Osseous Technologies, Inc. | Implanting and removal of orthopedic prostheses |
US5058570A (en) * | 1986-11-27 | 1991-10-22 | Sumitomo Bakelite Company Limited | Ultrasonic surgical apparatus |
US5103556A (en) * | 1988-05-05 | 1992-04-14 | Circon Corporation | Method of manufacturing an electrohydraulic probe |
US5116343A (en) * | 1989-10-03 | 1992-05-26 | Richard Wolf Gmbh | Device for disintegrating concretions disposed in body cavities |
US5154722A (en) * | 1988-05-05 | 1992-10-13 | Circon Corporation | Electrohydraulic probe having a controlled discharge path |
WO1993011711A1 (en) * | 1991-12-16 | 1993-06-24 | Psi Medical Products, Inc. | Shielded tip catheter |
US5243997A (en) * | 1992-09-14 | 1993-09-14 | Interventional Technologies, Inc. | Vibrating device for a guide wire |
US5246447A (en) * | 1989-02-22 | 1993-09-21 | Physical Sciences, Inc. | Impact lithotripsy |
US5267954A (en) * | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5269291A (en) * | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5284484A (en) * | 1990-02-06 | 1994-02-08 | Advanced Osseous Technologies, Inc. | Apparatus for implantation and extraction of osteal prostheses |
US5295955A (en) * | 1992-02-14 | 1994-03-22 | Amt, Inc. | Method and apparatus for microwave aided liposuction |
US5304115A (en) * | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5312328A (en) * | 1991-01-11 | 1994-05-17 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5318570A (en) * | 1989-01-31 | 1994-06-07 | Advanced Osseous Technologies, Inc. | Ultrasonic tool |
US5324297A (en) * | 1989-01-31 | 1994-06-28 | Advanced Osseous Technologies, Inc. | Ultrasonic tool connector |
US5324255A (en) * | 1991-01-11 | 1994-06-28 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm |
US5342292A (en) * | 1991-11-04 | 1994-08-30 | Baxter International Inc. | Ultrasonic ablation device adapted for guidewire passage |
US5344395A (en) * | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5368557A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5368558A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having endoscopic component and method of using same |
US5380273A (en) * | 1992-05-19 | 1995-01-10 | Dubrul; Will R. | Vibrating catheter |
US5380274A (en) * | 1991-01-11 | 1995-01-10 | Baxter International Inc. | Ultrasound transmission member having improved longitudinal transmission properties |
US5382228A (en) * | 1992-07-09 | 1995-01-17 | Baxter International Inc. | Method and device for connecting ultrasound transmission member (S) to an ultrasound generating device |
US5382251A (en) * | 1989-01-31 | 1995-01-17 | Biomet, Inc. | Plug pulling method |
US5390678A (en) * | 1993-10-12 | 1995-02-21 | Baxter International Inc. | Method and device for measuring ultrasonic activity in an ultrasound delivery system |
US5405318A (en) * | 1992-05-05 | 1995-04-11 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5417672A (en) * | 1993-10-04 | 1995-05-23 | Baxter International Inc. | Connector for coupling an ultrasound transducer to an ultrasound catheter |
US5425735A (en) * | 1989-02-22 | 1995-06-20 | Psi Medical Products, Inc. | Shielded tip catheter for lithotripsy |
US5427118A (en) * | 1993-10-04 | 1995-06-27 | Baxter International Inc. | Ultrasonic guidewire |
US5443078A (en) * | 1992-09-14 | 1995-08-22 | Interventional Technologies, Inc. | Method for advancing a guide wire |
US5447509A (en) * | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5492528A (en) * | 1990-07-17 | 1996-02-20 | Anis; Azis Y. | Removal of tissue |
US5524635A (en) * | 1992-09-14 | 1996-06-11 | Interventional Technologies Inc. | Apparatus for advancing a guide wire |
US5562609A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics, Inc. | Ultrasonic surgical probe |
US5562610A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
WO1996039955A1 (en) * | 1995-06-07 | 1996-12-19 | Dubrul Will R | Vibrating catheter |
US5626560A (en) * | 1993-04-13 | 1997-05-06 | Soring Medizintechnik Gmbh | Diathermic hand-held instrument with an endoscopic probe |
EP0820728A2 (en) | 1992-05-05 | 1998-01-28 | Baxter International Inc. | Ultrasonic angioplasty catheter device |
US5722945A (en) * | 1990-07-17 | 1998-03-03 | Aziz Yehia Anis | Removal of tissue |
US5725570A (en) * | 1992-03-31 | 1998-03-10 | Boston Scientific Corporation | Tubular medical endoprostheses |
US5906623A (en) * | 1995-12-11 | 1999-05-25 | Boston Scientific Corporation | Lithotripsy system |
US5957882A (en) * | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
USRE37024E1 (en) | 1994-05-06 | 2001-01-16 | Boston Scientific Corporation | Endoscopic lithotripsy system |
US6277084B1 (en) | 1992-03-31 | 2001-08-21 | Boston Scientific Corporation | Ultrasonic medical device |
US6375651B2 (en) | 1999-02-19 | 2002-04-23 | Scimed Life Systems, Inc. | Laser lithotripsy device with suction |
US6440123B1 (en) * | 1997-04-15 | 2002-08-27 | Konrad Engel | Metal probe for use in intracorporeal lithotripsy |
US20020128647A1 (en) * | 1999-08-05 | 2002-09-12 | Ed Roschak | Devices for applying energy to tissue |
US6517531B2 (en) | 2001-04-27 | 2003-02-11 | Scimed Life Systems, Inc. | Medical suction device |
US6527802B1 (en) | 1993-01-19 | 2003-03-04 | Scimed Life Systems, Inc. | Clad composite stent |
US6689086B1 (en) | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US20040039311A1 (en) * | 2002-08-26 | 2004-02-26 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US20040138570A1 (en) * | 2003-01-14 | 2004-07-15 | Flowcardia, Inc., A Delaware Corporation | Ultrasound catheter and methods for making and using same |
US20040167507A1 (en) * | 2003-02-26 | 2004-08-26 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US20040204670A1 (en) * | 2003-04-08 | 2004-10-14 | Flowcardia, Inc., A Delaware Corporation | Ultrasound catheter devices and methods |
US20050043752A1 (en) * | 2001-09-04 | 2005-02-24 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US20050113688A1 (en) * | 2003-11-24 | 2005-05-26 | Flowcardia, Inc., | Steerable ultrasound catheter |
US6936025B1 (en) | 1992-05-19 | 2005-08-30 | Bacchus Vascular, Inc. | Thrombolysis device |
US20060047239A1 (en) * | 2004-08-26 | 2006-03-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US20060161098A1 (en) * | 2005-01-20 | 2006-07-20 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US7101392B2 (en) | 1992-03-31 | 2006-09-05 | Boston Scientific Corporation | Tubular medical endoprostheses |
US20060229659A1 (en) * | 2004-12-09 | 2006-10-12 | The Foundry, Inc. | Aortic valve repair |
US20080039745A1 (en) * | 2006-08-08 | 2008-02-14 | Bacoustics Llc | Ablative ultrasonic-cryogenic apparatus |
US20080097251A1 (en) * | 2006-06-15 | 2008-04-24 | Eilaz Babaev | Method and apparatus for treating vascular obstructions |
US7393330B2 (en) | 1999-08-05 | 2008-07-01 | Broncus Technologies, Inc. | Electrosurgical device having hollow tissue cutting member and transducer assembly |
US20090099536A1 (en) * | 2006-11-06 | 2009-04-16 | Takayuki Akahoshi Akahoshi | Bidirectional Phacoemulsification Needle Tips for Torsional and Longitudinal Motion |
US20090221955A1 (en) * | 2006-08-08 | 2009-09-03 | Bacoustics, Llc | Ablative ultrasonic-cryogenic methods |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US8133236B2 (en) | 2006-11-07 | 2012-03-13 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US8226566B2 (en) | 2009-06-12 | 2012-07-24 | Flowcardia, Inc. | Device and method for vascular re-entry |
US8246643B2 (en) | 2006-11-07 | 2012-08-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
CN101401755B (en) * | 2007-09-28 | 2013-01-23 | 株式会社尼德克 | Head for ultrasonic operation and knife head for ultrasonic operation |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
US8506519B2 (en) | 1999-02-16 | 2013-08-13 | Flowcardia, Inc. | Pre-shaped therapeutic catheter |
US8641630B2 (en) | 2003-09-19 | 2014-02-04 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US8647293B2 (en) | 2002-08-02 | 2014-02-11 | Flowcardia, Inc. | Therapeutic ultrasound system |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US20140336666A1 (en) * | 2013-05-09 | 2014-11-13 | Gyrus Acmi, Inc., D.B.A. Olympus Surgical Technologies America | Oscillating lithotripter |
US9034033B2 (en) | 2011-10-19 | 2015-05-19 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9125740B2 (en) | 2011-06-21 | 2015-09-08 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9168099B2 (en) | 2012-10-25 | 2015-10-27 | Gyrus Acmi, Inc. | Lithotripsy apparatus using a flexible endoscope |
US9186164B2 (en) | 2012-10-25 | 2015-11-17 | Gyrus Acmi, Inc. | Impact lithotripsy tip |
US9282984B2 (en) | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US9345532B2 (en) | 2011-05-13 | 2016-05-24 | Broncus Medical Inc. | Methods and devices for ablation of tissue |
US9421098B2 (en) | 2010-12-23 | 2016-08-23 | Twelve, Inc. | System for mitral valve repair and replacement |
CN106163428A (en) * | 2014-02-04 | 2016-11-23 | 米松尼克斯股份有限公司 | Ultrasonic debridement is popped one's head in |
US9533128B2 (en) | 2003-07-18 | 2017-01-03 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9901443B2 (en) | 2011-10-19 | 2018-02-27 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10111747B2 (en) | 2013-05-20 | 2018-10-30 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10238490B2 (en) | 2015-08-21 | 2019-03-26 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
US10265172B2 (en) | 2016-04-29 | 2019-04-23 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US10272260B2 (en) | 2011-11-23 | 2019-04-30 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US10357263B2 (en) | 2012-01-18 | 2019-07-23 | C. R. Bard, Inc. | Vascular re-entry device |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10702380B2 (en) | 2011-10-19 | 2020-07-07 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10758256B2 (en) | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10835267B2 (en) | 2002-08-02 | 2020-11-17 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
CN112334082A (en) * | 2018-06-26 | 2021-02-05 | 奥林巴斯株式会社 | Calculus crushing device |
US20210093340A1 (en) * | 2019-09-30 | 2021-04-01 | Gyrus Acmi, Inc D/B/A Olympus Surgical Technologies America | Ultrasonic probe |
US10974278B2 (en) | 2014-08-14 | 2021-04-13 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Vibration element with decoupled component |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11344750B2 (en) | 2012-08-02 | 2022-05-31 | Flowcardia, Inc. | Ultrasound catheter system |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US11633206B2 (en) | 2016-11-23 | 2023-04-25 | C.R. Bard, Inc. | Catheter with retractable sheath and methods thereof |
US11832877B2 (en) | 2017-04-03 | 2023-12-05 | Broncus Medical Inc. | Electrosurgical access sheath |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5422993A (en) * | 1977-07-21 | 1979-02-21 | Samoirobuichi Gefuman Borisu | Device for decomposing urinary calculus |
JPS6055408U (en) * | 1983-09-27 | 1985-04-18 | 長田電機工業株式会社 | Ultrasonic lithotripter for stones |
DE3429487A1 (en) * | 1984-08-10 | 1986-02-20 | Richard Wolf Gmbh, 7134 Knittlingen | Device for generating an alternating voltage for the transducer of a lithotripsy probe |
JPS61149135A (en) * | 1984-12-24 | 1986-07-07 | オリンパス光学工業株式会社 | Ultrasonic incisor for living body tissue |
JPH066129B2 (en) * | 1985-02-27 | 1994-01-26 | オリンパス光学工業株式会社 | Ultrasonic crushed stone probe |
JPS62167556A (en) * | 1986-01-18 | 1987-07-23 | 住友ベークライト株式会社 | Ultrasonic operation apparatus |
JPH0529696Y2 (en) * | 1988-11-28 | 1993-07-29 | ||
JPH0529697Y2 (en) * | 1988-12-07 | 1993-07-29 | ||
WO1998016157A1 (en) * | 1996-10-17 | 1998-04-23 | Ethicon Endo-Surgery, Inc. | Methods and devices for improving blood flow to the heart of a patient |
DE102021130795B4 (en) | 2021-11-24 | 2023-12-28 | Karl Storz Se & Co. Kg | Application probe for breaking up body stones for a lithotripsy device, lithotripsy device, lithotripsy system and method for operating a lithotripsy device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3352303A (en) * | 1965-07-28 | 1967-11-14 | Lawrence J Delaney | Method for blood clot lysis |
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US3526219A (en) * | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
-
1972
- 1972-04-22 DE DE2219790A patent/DE2219790C3/en not_active Expired
-
1973
- 1973-04-12 GB GB1759273A patent/GB1390322A/en not_active Expired
- 1973-04-16 US US00351140A patent/US3823717A/en not_active Expired - Lifetime
- 1973-04-21 JP JP48044681A patent/JPS4921989A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US3352303A (en) * | 1965-07-28 | 1967-11-14 | Lawrence J Delaney | Method for blood clot lysis |
US3526219A (en) * | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
Cited By (286)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911149A (en) * | 1984-06-18 | 1990-03-27 | Urological Instruments Research, Inc. | Vibratory treatment method and apparatus |
US5334183A (en) * | 1985-08-28 | 1994-08-02 | Valleylab, Inc. | Endoscopic electrosurgical apparatus |
US4750902A (en) * | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4823793A (en) * | 1985-10-30 | 1989-04-25 | The United States Of America As Represented By The Administrator Of The National Aeronuautics & Space Administration | Cutting head for ultrasonic lithotripsy |
US4750488A (en) * | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4922902A (en) * | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
US5058570A (en) * | 1986-11-27 | 1991-10-22 | Sumitomo Bakelite Company Limited | Ultrasonic surgical apparatus |
US4748971A (en) * | 1987-01-30 | 1988-06-07 | German Borodulin | Vibrational apparatus for accelerating passage of stones from ureter |
US4838853A (en) * | 1987-02-05 | 1989-06-13 | Interventional Technologies Inc. | Apparatus for trimming meniscus |
US4907572A (en) * | 1988-04-14 | 1990-03-13 | Urological Instruments Research, Inc. | Vibrational method for accelerating passage of stones from ureter |
US5103556A (en) * | 1988-05-05 | 1992-04-14 | Circon Corporation | Method of manufacturing an electrohydraulic probe |
US5154722A (en) * | 1988-05-05 | 1992-10-13 | Circon Corporation | Electrohydraulic probe having a controlled discharge path |
US5019083A (en) * | 1989-01-31 | 1991-05-28 | Advanced Osseous Technologies, Inc. | Implanting and removal of orthopedic prostheses |
US5382251A (en) * | 1989-01-31 | 1995-01-17 | Biomet, Inc. | Plug pulling method |
US5324297A (en) * | 1989-01-31 | 1994-06-28 | Advanced Osseous Technologies, Inc. | Ultrasonic tool connector |
US5456686A (en) * | 1989-01-31 | 1995-10-10 | Biomet, Inc. | Implantation and removal of orthopedic prostheses |
US5318570A (en) * | 1989-01-31 | 1994-06-07 | Advanced Osseous Technologies, Inc. | Ultrasonic tool |
AU637786B2 (en) * | 1989-02-22 | 1993-06-10 | General Hospital Corporation, The | Acoustic impact delivery catheter with end cap |
US5246447A (en) * | 1989-02-22 | 1993-09-21 | Physical Sciences, Inc. | Impact lithotripsy |
US5425735A (en) * | 1989-02-22 | 1995-06-20 | Psi Medical Products, Inc. | Shielded tip catheter for lithotripsy |
WO1990009762A1 (en) * | 1989-02-22 | 1990-09-07 | Physical Sciences Inc. | Acoustic impact delivery catheter with end cap |
US5116343A (en) * | 1989-10-03 | 1992-05-26 | Richard Wolf Gmbh | Device for disintegrating concretions disposed in body cavities |
US5344395A (en) * | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5284484A (en) * | 1990-02-06 | 1994-02-08 | Advanced Osseous Technologies, Inc. | Apparatus for implantation and extraction of osteal prostheses |
US5730718A (en) * | 1990-07-17 | 1998-03-24 | Aziz Yehia Anis | Removal of tissue |
US5722945A (en) * | 1990-07-17 | 1998-03-03 | Aziz Yehia Anis | Removal of tissue |
US5492528A (en) * | 1990-07-17 | 1996-02-20 | Anis; Azis Y. | Removal of tissue |
US5827292A (en) * | 1990-07-17 | 1998-10-27 | Anis; Aziz Yehia | Removal of tissue |
US5269291A (en) * | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5397301A (en) * | 1991-01-11 | 1995-03-14 | Baxter International Inc. | Ultrasonic angioplasty device incorporating an ultrasound transmission member made at least partially from a superelastic metal alloy |
US5324255A (en) * | 1991-01-11 | 1994-06-28 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm |
US5447509A (en) * | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5368557A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5368558A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having endoscopic component and method of using same |
US5474530A (en) * | 1991-01-11 | 1995-12-12 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasospasm |
US5380274A (en) * | 1991-01-11 | 1995-01-10 | Baxter International Inc. | Ultrasound transmission member having improved longitudinal transmission properties |
US5304115A (en) * | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5326342A (en) * | 1991-01-11 | 1994-07-05 | Baxter International Inc. | Ultrasonic angioplasty device incorporating all ultrasound transmission member made at least partially from a superlastic metal alloy |
US5957882A (en) * | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5267954A (en) * | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US20030009125A1 (en) * | 1991-01-11 | 2003-01-09 | Henry Nita | Ultrasonic devices and methods for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US6929632B2 (en) | 1991-01-11 | 2005-08-16 | Advanced Cardiovascular Systems, Inc. | Ultrasonic devices and methods for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5312328A (en) * | 1991-01-11 | 1994-05-17 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5342292A (en) * | 1991-11-04 | 1994-08-30 | Baxter International Inc. | Ultrasonic ablation device adapted for guidewire passage |
EP0617590A4 (en) * | 1991-12-16 | 1995-07-12 | Psi Medical Products Inc | Shielded tip catheter. |
WO1993011711A1 (en) * | 1991-12-16 | 1993-06-24 | Psi Medical Products, Inc. | Shielded tip catheter |
EP0617590A1 (en) * | 1991-12-16 | 1994-10-05 | Psi Medical Products, Inc. | Shielded tip catheter |
US5295955A (en) * | 1992-02-14 | 1994-03-22 | Amt, Inc. | Method and apparatus for microwave aided liposuction |
US7101392B2 (en) | 1992-03-31 | 2006-09-05 | Boston Scientific Corporation | Tubular medical endoprostheses |
US6290721B1 (en) | 1992-03-31 | 2001-09-18 | Boston Scientific Corporation | Tubular medical endoprostheses |
US6287331B1 (en) | 1992-03-31 | 2001-09-11 | Boston Scientific Corporation | Tubular medical prosthesis |
US6277084B1 (en) | 1992-03-31 | 2001-08-21 | Boston Scientific Corporation | Ultrasonic medical device |
US6497709B1 (en) | 1992-03-31 | 2002-12-24 | Boston Scientific Corporation | Metal medical device |
US5725570A (en) * | 1992-03-31 | 1998-03-10 | Boston Scientific Corporation | Tubular medical endoprostheses |
US5405318A (en) * | 1992-05-05 | 1995-04-11 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
EP0820727A2 (en) | 1992-05-05 | 1998-01-28 | Baxter International Inc. | Ultrasonic angioplasty catheter device |
EP0820728A2 (en) | 1992-05-05 | 1998-01-28 | Baxter International Inc. | Ultrasonic angioplasty catheter device |
US6508782B1 (en) | 1992-05-19 | 2003-01-21 | Bacchus Vascular, Inc. | Thrombolysis device |
US5380273A (en) * | 1992-05-19 | 1995-01-10 | Dubrul; Will R. | Vibrating catheter |
US6936025B1 (en) | 1992-05-19 | 2005-08-30 | Bacchus Vascular, Inc. | Thrombolysis device |
US5382228A (en) * | 1992-07-09 | 1995-01-17 | Baxter International Inc. | Method and device for connecting ultrasound transmission member (S) to an ultrasound generating device |
US5443078A (en) * | 1992-09-14 | 1995-08-22 | Interventional Technologies, Inc. | Method for advancing a guide wire |
US5243997A (en) * | 1992-09-14 | 1993-09-14 | Interventional Technologies, Inc. | Vibrating device for a guide wire |
US5524635A (en) * | 1992-09-14 | 1996-06-11 | Interventional Technologies Inc. | Apparatus for advancing a guide wire |
US6527802B1 (en) | 1993-01-19 | 2003-03-04 | Scimed Life Systems, Inc. | Clad composite stent |
US5626560A (en) * | 1993-04-13 | 1997-05-06 | Soring Medizintechnik Gmbh | Diathermic hand-held instrument with an endoscopic probe |
US5417672A (en) * | 1993-10-04 | 1995-05-23 | Baxter International Inc. | Connector for coupling an ultrasound transducer to an ultrasound catheter |
US5427118A (en) * | 1993-10-04 | 1995-06-27 | Baxter International Inc. | Ultrasonic guidewire |
US5390678A (en) * | 1993-10-12 | 1995-02-21 | Baxter International Inc. | Method and device for measuring ultrasonic activity in an ultrasound delivery system |
USRE37024E1 (en) | 1994-05-06 | 2001-01-16 | Boston Scientific Corporation | Endoscopic lithotripsy system |
US5562610A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
US5562609A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics, Inc. | Ultrasonic surgical probe |
US6689086B1 (en) | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US6287271B1 (en) | 1995-06-07 | 2001-09-11 | Bacchus Vascular, Inc. | Motion catheter |
WO1996039955A1 (en) * | 1995-06-07 | 1996-12-19 | Dubrul Will R | Vibrating catheter |
US5906623A (en) * | 1995-12-11 | 1999-05-25 | Boston Scientific Corporation | Lithotripsy system |
US6440123B1 (en) * | 1997-04-15 | 2002-08-27 | Konrad Engel | Metal probe for use in intracorporeal lithotripsy |
US6752801B2 (en) * | 1997-04-15 | 2004-06-22 | Konrad Engel | Metal probe for intracorporeal calculi crushing |
US8506519B2 (en) | 1999-02-16 | 2013-08-13 | Flowcardia, Inc. | Pre-shaped therapeutic catheter |
US20040243123A1 (en) * | 1999-02-19 | 2004-12-02 | Scimed Life Systems, Inc. | Laser lithotripsy device with suction |
US6375651B2 (en) | 1999-02-19 | 2002-04-23 | Scimed Life Systems, Inc. | Laser lithotripsy device with suction |
US6726681B2 (en) | 1999-02-19 | 2004-04-27 | Scimed Life Systems, Inc. | Laser lithotripsy device with suction |
US7104983B2 (en) | 1999-02-19 | 2006-09-12 | Boston Scientific Scimed, Inc. | Laser lithotripsy device with suction |
US7422563B2 (en) | 1999-08-05 | 2008-09-09 | Broncus Technologies, Inc. | Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow |
US20020128647A1 (en) * | 1999-08-05 | 2002-09-12 | Ed Roschak | Devices for applying energy to tissue |
US7393330B2 (en) | 1999-08-05 | 2008-07-01 | Broncus Technologies, Inc. | Electrosurgical device having hollow tissue cutting member and transducer assembly |
US7540868B2 (en) | 2001-04-27 | 2009-06-02 | Boston Scientific Scimed, Inc. | Medical suction device |
US8100892B2 (en) | 2001-04-27 | 2012-01-24 | Boston Scientific Scimed, Inc. | Medical suction device |
US8672928B2 (en) | 2001-04-27 | 2014-03-18 | Boston Scientific Scimed, Inc. | Medical suction device |
US6517531B2 (en) | 2001-04-27 | 2003-02-11 | Scimed Life Systems, Inc. | Medical suction device |
US20030078566A1 (en) * | 2001-04-27 | 2003-04-24 | Scimed Life Systems, Inc. | Medical suction device |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US20050043752A1 (en) * | 2001-09-04 | 2005-02-24 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US7462162B2 (en) | 2001-09-04 | 2008-12-09 | Broncus Technologies, Inc. | Antiproliferative devices for maintaining patency of surgically created channels in a body organ |
US10111680B2 (en) | 2002-08-02 | 2018-10-30 | Flowcardia, Inc. | Therapeutic ultrasound system |
US8647293B2 (en) | 2002-08-02 | 2014-02-11 | Flowcardia, Inc. | Therapeutic ultrasound system |
US9265520B2 (en) | 2002-08-02 | 2016-02-23 | Flowcardia, Inc. | Therapeutic ultrasound system |
US10835267B2 (en) | 2002-08-02 | 2020-11-17 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US10722262B2 (en) | 2002-08-02 | 2020-07-28 | Flowcardia, Inc. | Therapeutic ultrasound system |
US10285727B2 (en) | 2002-08-26 | 2019-05-14 | Flowcardia, Inc. | Steerable ultrasound catheter |
US20070021691A1 (en) * | 2002-08-26 | 2007-01-25 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US8308677B2 (en) | 2002-08-26 | 2012-11-13 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
WO2004018019A2 (en) | 2002-08-26 | 2004-03-04 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US9421024B2 (en) | 2002-08-26 | 2016-08-23 | Flowcardia, Inc. | Steerable ultrasound catheter |
US7137963B2 (en) | 2002-08-26 | 2006-11-21 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US8690819B2 (en) | 2002-08-26 | 2014-04-08 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US7955293B2 (en) | 2002-08-26 | 2011-06-07 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US8956375B2 (en) | 2002-08-26 | 2015-02-17 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7621902B2 (en) | 2002-08-26 | 2009-11-24 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US10376272B2 (en) | 2002-08-26 | 2019-08-13 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US20040039311A1 (en) * | 2002-08-26 | 2004-02-26 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US9381027B2 (en) | 2002-08-26 | 2016-07-05 | Flowcardia, Inc. | Steerable ultrasound catheter |
US7604608B2 (en) | 2003-01-14 | 2009-10-20 | Flowcardia, Inc. | Ultrasound catheter and methods for making and using same |
US20040138570A1 (en) * | 2003-01-14 | 2004-07-15 | Flowcardia, Inc., A Delaware Corporation | Ultrasound catheter and methods for making and using same |
US8152753B2 (en) | 2003-01-14 | 2012-04-10 | Flowcardia, Inc. | Ultrasound catheter and methods for making and using same |
US8043251B2 (en) | 2003-01-14 | 2011-10-25 | Flowcardia, Inc. | Ultrasound catheter and methods for making and using same |
US20040167507A1 (en) * | 2003-02-26 | 2004-08-26 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US7621929B2 (en) | 2003-02-26 | 2009-11-24 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US20100049209A1 (en) * | 2003-02-26 | 2010-02-25 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US10130380B2 (en) | 2003-02-26 | 2018-11-20 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US8961423B2 (en) | 2003-02-26 | 2015-02-24 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US11103261B2 (en) | 2003-02-26 | 2021-08-31 | C.R. Bard, Inc. | Ultrasound catheter apparatus |
US6942677B2 (en) | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US20050245951A1 (en) * | 2003-02-26 | 2005-11-03 | Flowcardia, Inc., A Delaware Corporation | Ultrasound catheter apparatus |
EP2471474A1 (en) | 2003-02-26 | 2012-07-04 | Flowcardia Inc. | Ultrasound catheter apparatus |
US8062566B2 (en) | 2003-04-08 | 2011-11-22 | Flowcardia, Inc. | Method of manufacturing an ultrasound transmission member for use in an ultrasound catheter device |
EP2417945A2 (en) | 2003-04-08 | 2012-02-15 | Flowcardia Inc. | Improved ultrasound catheter devices and methods |
WO2004093736A2 (en) | 2003-04-08 | 2004-11-04 | Flowcardia, Inc. | Improved ultrasound catheter devices and methods |
US7220233B2 (en) | 2003-04-08 | 2007-05-22 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
EP2609878A1 (en) | 2003-04-08 | 2013-07-03 | FlowCardia, Inc. | Improved ultrasound catheter devices and methods |
US20040204670A1 (en) * | 2003-04-08 | 2004-10-14 | Flowcardia, Inc., A Delaware Corporation | Ultrasound catheter devices and methods |
US9533128B2 (en) | 2003-07-18 | 2017-01-03 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US10349964B2 (en) | 2003-09-19 | 2019-07-16 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US8641630B2 (en) | 2003-09-19 | 2014-02-04 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US9433433B2 (en) | 2003-09-19 | 2016-09-06 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US11426189B2 (en) | 2003-09-19 | 2022-08-30 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US8613751B2 (en) | 2003-11-24 | 2013-12-24 | Flowcardia, Inc. | Steerable ultrasound catheter |
US8668709B2 (en) | 2003-11-24 | 2014-03-11 | Flowcardia, Inc. | Steerable ultrasound catheter |
US11109884B2 (en) | 2003-11-24 | 2021-09-07 | Flowcardia, Inc. | Steerable ultrasound catheter |
WO2005053769A2 (en) | 2003-11-24 | 2005-06-16 | Flowcardia, Inc. | Steerable ultrasound catheter |
US20050113688A1 (en) * | 2003-11-24 | 2005-05-26 | Flowcardia, Inc., | Steerable ultrasound catheter |
US20080172067A1 (en) * | 2003-11-24 | 2008-07-17 | Flowcardia, Inc. | Steerable ultrasound catheter |
US7335180B2 (en) | 2003-11-24 | 2008-02-26 | Flowcardia, Inc. | Steerable ultrasound catheter |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
US11357960B2 (en) | 2004-07-19 | 2022-06-14 | Broncus Medical Inc. | Devices for delivering substances through an extra-anatomic opening created in an airway |
US10369339B2 (en) | 2004-07-19 | 2019-08-06 | Broncus Medical Inc. | Devices for delivering substances through an extra-anatomic opening created in an airway |
US8608724B2 (en) | 2004-07-19 | 2013-12-17 | Broncus Medical Inc. | Devices for delivering substances through an extra-anatomic opening created in an airway |
US8784400B2 (en) | 2004-07-19 | 2014-07-22 | Broncus Medical Inc. | Devices for delivering substances through an extra-anatomic opening created in an airway |
US20060047239A1 (en) * | 2004-08-26 | 2006-03-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US10004520B2 (en) | 2004-08-26 | 2018-06-26 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US8617096B2 (en) | 2004-08-26 | 2013-12-31 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US8790291B2 (en) | 2004-08-26 | 2014-07-29 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US10682151B2 (en) | 2004-08-26 | 2020-06-16 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7540852B2 (en) | 2004-08-26 | 2009-06-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US9414852B2 (en) | 2004-12-09 | 2016-08-16 | Twelve, Inc. | Aortic valve repair |
US20100324554A1 (en) * | 2004-12-09 | 2010-12-23 | The Foundry, Llc | Aortic Valve Repair |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
US20060229659A1 (en) * | 2004-12-09 | 2006-10-12 | The Foundry, Inc. | Aortic valve repair |
US10350004B2 (en) | 2004-12-09 | 2019-07-16 | Twelve, Inc. | Intravascular treatment catheters |
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US20060161098A1 (en) * | 2005-01-20 | 2006-07-20 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US11510690B2 (en) | 2005-01-20 | 2022-11-29 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US8221343B2 (en) | 2005-01-20 | 2012-07-17 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US10285719B2 (en) | 2005-01-20 | 2019-05-14 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
US9282984B2 (en) | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US20080097251A1 (en) * | 2006-06-15 | 2008-04-24 | Eilaz Babaev | Method and apparatus for treating vascular obstructions |
US20090209885A1 (en) * | 2006-08-08 | 2009-08-20 | Bacoustics, Llc | Ablative ultrasonic-cryogenic apparatus |
US20090221955A1 (en) * | 2006-08-08 | 2009-09-03 | Bacoustics, Llc | Ablative ultrasonic-cryogenic methods |
US7540870B2 (en) | 2006-08-08 | 2009-06-02 | Bacoustics, Llc | Ablative ultrasonic-cryogenic apparatus |
US8062289B2 (en) | 2006-08-08 | 2011-11-22 | Bacoustics, Llc | Ablative ultrasonic-cryogenic apparatus |
US20080039745A1 (en) * | 2006-08-08 | 2008-02-14 | Bacoustics Llc | Ablative ultrasonic-cryogenic apparatus |
US9913969B2 (en) | 2006-10-05 | 2018-03-13 | Broncus Medical Inc. | Devices for delivering substances through an extra-anatomic opening created in an airway |
US20090099536A1 (en) * | 2006-11-06 | 2009-04-16 | Takayuki Akahoshi Akahoshi | Bidirectional Phacoemulsification Needle Tips for Torsional and Longitudinal Motion |
US8133236B2 (en) | 2006-11-07 | 2012-03-13 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US9629643B2 (en) | 2006-11-07 | 2017-04-25 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US8246643B2 (en) | 2006-11-07 | 2012-08-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US8496669B2 (en) | 2006-11-07 | 2013-07-30 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US10537712B2 (en) | 2006-11-07 | 2020-01-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US11229772B2 (en) | 2006-11-07 | 2022-01-25 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
CN101401755B (en) * | 2007-09-28 | 2013-01-23 | 株式会社尼德克 | Head for ultrasonic operation and knife head for ultrasonic operation |
US8679049B2 (en) | 2009-06-12 | 2014-03-25 | Flowcardia, Inc. | Device and method for vascular re-entry |
US9402646B2 (en) | 2009-06-12 | 2016-08-02 | Flowcardia, Inc. | Device and method for vascular re-entry |
US8226566B2 (en) | 2009-06-12 | 2012-07-24 | Flowcardia, Inc. | Device and method for vascular re-entry |
US9770331B2 (en) | 2010-12-23 | 2017-09-26 | Twelve, Inc. | System for mitral valve repair and replacement |
US9421098B2 (en) | 2010-12-23 | 2016-08-23 | Twelve, Inc. | System for mitral valve repair and replacement |
US11571303B2 (en) | 2010-12-23 | 2023-02-07 | Twelve, Inc. | System for mitral valve repair and replacement |
US10517725B2 (en) | 2010-12-23 | 2019-12-31 | Twelve, Inc. | System for mitral valve repair and replacement |
US12016640B2 (en) | 2011-05-13 | 2024-06-25 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US9993306B2 (en) | 2011-05-13 | 2018-06-12 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US8932316B2 (en) | 2011-05-13 | 2015-01-13 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US9345532B2 (en) | 2011-05-13 | 2016-05-24 | Broncus Medical Inc. | Methods and devices for ablation of tissue |
US9486229B2 (en) | 2011-05-13 | 2016-11-08 | Broncus Medical Inc. | Methods and devices for excision of tissue |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US9421070B2 (en) | 2011-05-13 | 2016-08-23 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US10631938B2 (en) | 2011-05-13 | 2020-04-28 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US9572662B2 (en) | 2011-06-21 | 2017-02-21 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11712334B2 (en) | 2011-06-21 | 2023-08-01 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11523900B2 (en) | 2011-06-21 | 2022-12-13 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10028827B2 (en) | 2011-06-21 | 2018-07-24 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10034750B2 (en) | 2011-06-21 | 2018-07-31 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9585751B2 (en) | 2011-06-21 | 2017-03-07 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9579196B2 (en) | 2011-06-21 | 2017-02-28 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9125740B2 (en) | 2011-06-21 | 2015-09-08 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10751173B2 (en) | 2011-06-21 | 2020-08-25 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10299917B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9295552B2 (en) | 2011-10-19 | 2016-03-29 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US11197758B2 (en) | 2011-10-19 | 2021-12-14 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10299927B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10052204B2 (en) | 2011-10-19 | 2018-08-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10335278B2 (en) | 2011-10-19 | 2019-07-02 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10016271B2 (en) | 2011-10-19 | 2018-07-10 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10945835B2 (en) | 2011-10-19 | 2021-03-16 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9034032B2 (en) | 2011-10-19 | 2015-05-19 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11497603B2 (en) | 2011-10-19 | 2022-11-15 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11826249B2 (en) | 2011-10-19 | 2023-11-28 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11628063B2 (en) | 2011-10-19 | 2023-04-18 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9901443B2 (en) | 2011-10-19 | 2018-02-27 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10702380B2 (en) | 2011-10-19 | 2020-07-07 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US11617648B2 (en) | 2011-10-19 | 2023-04-04 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9034033B2 (en) | 2011-10-19 | 2015-05-19 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10272260B2 (en) | 2011-11-23 | 2019-04-30 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US10357263B2 (en) | 2012-01-18 | 2019-07-23 | C. R. Bard, Inc. | Vascular re-entry device |
US11191554B2 (en) | 2012-01-18 | 2021-12-07 | C.R. Bard, Inc. | Vascular re-entry device |
US11129714B2 (en) | 2012-03-01 | 2021-09-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US10258468B2 (en) | 2012-03-01 | 2019-04-16 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US11344750B2 (en) | 2012-08-02 | 2022-05-31 | Flowcardia, Inc. | Ultrasound catheter system |
US9186164B2 (en) | 2012-10-25 | 2015-11-17 | Gyrus Acmi, Inc. | Impact lithotripsy tip |
US11284912B2 (en) | 2012-10-25 | 2022-03-29 | Gyrus Acmi, Inc. | Lithotripsy apparatus using a flexible endoscope |
US9168099B2 (en) | 2012-10-25 | 2015-10-27 | Gyrus Acmi, Inc. | Lithotripsy apparatus using a flexible endoscope |
US10813653B2 (en) | 2013-05-09 | 2020-10-27 | Gyrus Acmi, Inc. | Oscillating lithotripter |
US9113935B2 (en) * | 2013-05-09 | 2015-08-25 | Gyrus Acmi, Inc. | Oscillating lithotripter |
US20150351783A1 (en) * | 2013-05-09 | 2015-12-10 | Gyrus Acmi, Inc. D.B.A. Olympus Surgical Technologies America | Oscillating lithotripter |
CN105025823A (en) * | 2013-05-09 | 2015-11-04 | 美国奥林匹斯外科技术吉鲁斯阿克米公司 | Oscillating lithotripter tip |
US9974552B2 (en) * | 2013-05-09 | 2018-05-22 | Gyrus Acmi, Inc. | Oscillating lithotripter |
CN105025823B (en) * | 2013-05-09 | 2018-05-22 | 美国奥林匹斯外科技术吉鲁斯阿克米公司 | Vibrate stone crusher tip |
US11911055B2 (en) | 2013-05-09 | 2024-02-27 | Gyrus Acmi, Inc. | Oscillating lithotripter |
WO2014183051A1 (en) * | 2013-05-09 | 2014-11-13 | Gyrus Acmi, Inc., D.B.A. Olympus Surgical Technologies America | Oscillating lithotripter tip |
US9877738B2 (en) | 2013-05-09 | 2018-01-30 | Gyrus Acmi, Inc. | Oscillating lithotripter |
US11109874B2 (en) | 2013-05-09 | 2021-09-07 | Gyrus Acmi, Inc. | Oscillating lithotripter |
US20140336666A1 (en) * | 2013-05-09 | 2014-11-13 | Gyrus Acmi, Inc., D.B.A. Olympus Surgical Technologies America | Oscillating lithotripter |
US11234821B2 (en) | 2013-05-20 | 2022-02-01 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10111747B2 (en) | 2013-05-20 | 2018-10-30 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
EP3102126A4 (en) * | 2014-02-04 | 2017-09-20 | Misonix, Inc. | Ultrasonic debrider probe |
US9949751B2 (en) | 2014-02-04 | 2018-04-24 | Misonix, Inc. | Ultrasonic debrider probe |
US10980564B2 (en) | 2014-02-04 | 2021-04-20 | Misonix, Incorporated | Ultrasonic debrider probe |
CN106163428B (en) * | 2014-02-04 | 2019-09-03 | 米松尼克斯股份有限公司 | Ultrasonic debridement probe |
CN106163428A (en) * | 2014-02-04 | 2016-11-23 | 米松尼克斯股份有限公司 | Ultrasonic debridement is popped one's head in |
US10974278B2 (en) | 2014-08-14 | 2021-04-13 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Vibration element with decoupled component |
US11576782B2 (en) | 2015-08-21 | 2023-02-14 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10238490B2 (en) | 2015-08-21 | 2019-03-26 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
US10820996B2 (en) | 2015-08-21 | 2020-11-03 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US11033390B2 (en) | 2016-04-29 | 2021-06-15 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US12109113B2 (en) | 2016-04-29 | 2024-10-08 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US10265172B2 (en) | 2016-04-29 | 2019-04-23 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US11633206B2 (en) | 2016-11-23 | 2023-04-25 | C.R. Bard, Inc. | Catheter with retractable sheath and methods thereof |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US10758256B2 (en) | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US11638624B2 (en) | 2017-02-06 | 2023-05-02 | C.R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US11832877B2 (en) | 2017-04-03 | 2023-12-05 | Broncus Medical Inc. | Electrosurgical access sheath |
US11654021B2 (en) | 2017-04-18 | 2023-05-23 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US11737873B2 (en) | 2017-04-18 | 2023-08-29 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US11389295B2 (en) | 2017-04-18 | 2022-07-19 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US11786370B2 (en) | 2017-05-11 | 2023-10-17 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US11559398B2 (en) | 2017-06-02 | 2023-01-24 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US11464659B2 (en) | 2017-06-06 | 2022-10-11 | Twelve, Inc. | Crimping device for loading stents and prosthetic heart valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11877926B2 (en) | 2017-07-06 | 2024-01-23 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US12016772B2 (en) | 2017-07-06 | 2024-06-25 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
CN112334082A (en) * | 2018-06-26 | 2021-02-05 | 奥林巴斯株式会社 | Calculus crushing device |
CN114449963A (en) * | 2019-09-30 | 2022-05-06 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Ultrasonic probe |
US11969177B2 (en) * | 2019-09-30 | 2024-04-30 | Gyrus Acmi, Inc. | Ultrasonic probe |
US20210093340A1 (en) * | 2019-09-30 | 2021-04-01 | Gyrus Acmi, Inc D/B/A Olympus Surgical Technologies America | Ultrasonic probe |
WO2021067303A1 (en) * | 2019-09-30 | 2021-04-08 | Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America | Ultrasonic probe |
Also Published As
Publication number | Publication date |
---|---|
DE2219790A1 (en) | 1973-10-31 |
GB1390322A (en) | 1975-04-09 |
DE2219790C3 (en) | 1974-11-07 |
JPS4921989A (en) | 1974-02-26 |
DE2219790B2 (en) | 1974-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3823717A (en) | Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe | |
CA2539963C (en) | Dual probe | |
JP3931051B2 (en) | Stone removal device | |
US3942531A (en) | Apparatus for breaking-up, without contact, concrements present in the body of a living being | |
JP4903961B2 (en) | Ultrasound medical device operating in transverse mode | |
US4823793A (en) | Cutting head for ultrasonic lithotripsy | |
CN111544112B (en) | Holmium laser ultrasonic stone crushing and removing device | |
US20080058775A1 (en) | Ultrasonic debrider probe and method of use | |
WO2000030554A1 (en) | Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound | |
JP2022550177A (en) | ultrasonic probe | |
JP2022549378A (en) | ultrasonic probe | |
EP4419022A1 (en) | Lithotripsy device, in particular intracorporeal lithotripsy device, for breaking up calculi, impact element, retrofitting set for retrofitting an existing lithotripsy device, and method for operating a lithotripsy device | |
JPS62114545A (en) | Ultrasonic stone crushing probe | |
WO2009088390A1 (en) | Ultrasonic debrider probe | |
DE102021130795B4 (en) | Application probe for breaking up body stones for a lithotripsy device, lithotripsy device, lithotripsy system and method for operating a lithotripsy device | |
JP2004141397A (en) | Ultrasonic wave calculus crusher and calculus crushing system equipped with the same | |
Suby | The potential use of vibration for the disintegration of calculi | |
JPH0298346A (en) | Ultrasonic processing device | |
AU2021316786A1 (en) | Orthopaedic cement removal tools | |
JPS63122446A (en) | Ultrasonic stone destructing apparatus | |
JPS63122447A (en) | Ultrasonic probe | |
JPS62127041A (en) | Ultrasonic stone crushing probe | |
JPS62102747A (en) | Ultrasonic stone crushing probe | |
JP2004081333A (en) | Calculus crushing probe | |
JPH0479948A (en) | Ultrasonic surgery instrument |