Connect public, paid and private patent data with Google Patents Public Datasets

Multiplunger reciprocating pump

Download PDF

Info

Publication number
US3820922A
US3820922A US42121473A US3820922A US 3820922 A US3820922 A US 3820922A US 42121473 A US42121473 A US 42121473A US 3820922 A US3820922 A US 3820922A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
valve
inlet
discharge
cylinder
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
F Buse
W Sensinger
Original Assignee
F Buse
W Sensinger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1097Valves; Arrangement of valves with means for lifting the closure member for pump cleaning purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangements of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • F04B49/243Bypassing by keeping open the inlet valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/109Valves; Arrangement of valves inlet and outlet valve forming one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • F04B53/164Stoffing boxes

Abstract

A multiplunger reciprocating pump having a cylinder head with internal manifolding and valving arrangement that permits removal of valves as units from selected pumps, valve bodies with bias porting, and studs in constant tension. A solenoid actuated rod may be added to unload the compression chambers by inhibiting the inlet or suction valve from seating.

Description

United States Patent 1 1 1111 3,820,922 Buse et a1. June 28, I974 1 MULTIPLUNGER RECIPROCATING P 3,373,695 3/1968 Lophe 417/25 4 3,508,849 4 1970 b 417 54 [761 Inventors: Frederic Buse, 4115 Kmuss 3,510,233 5/1970 51:61; ct a1 417/454 Allentown, P21. 18104; Warner E. 3 79 332 4/ 97 417/570 Sensinger, Jr., 515 Fe 3,709,638 1/1973 Iguchi 417/571 Emmaus, Pa. 18018 FOREIGN PATENTS OR APPLICATIONS {22] 1973 745,560 2/1933 France 417/539 121] Appl. No.: 421,214

Related US Application Data Primary Examinerjxvillianll L. Freeh [62] Division Qrser. No. 257,588, May 30, 1972. Attorney Agent or Obert Paqum [52] US. Cl. 417/539, 92/165 [57] ABSTRACT [51] Int. Cl. F04b 23/06 A m l i h d 58 Field 61 Search 92/165; 417/454, 539, 570, h I f i 'f PUmPd f a CY 117/571 ea with interna mam odmg an valving arrangement that permits removal of valves as units from selected pumps, valve bodies with bias porting, and [56] References Clted studs in constant tension. A solenoid actuated rod may UNITED STATES PATENTS be added to unload the compression chambers by in- 3,l46,724 9/1964 Cornelsen 417/539 hibiting the inlet or uction valve from seating, 3,185,103 5/1965 Yophe 417/454 3,370,545 2/1968 Waibol 417/571 5 Claims, 9 Drawing Figures 1 MULTIPLUNGER RECIPROCATING PUMP This is a division of application Ser. No. 257,588 filed May 30, 1972.

DESCRIPTION OF THE INVENTION This invention relates to reciprocating pumps. More particularly the invention relates to a multi-plunger inline reciprocating pump which provides economy in manufacture and servicing by internal manifolding and valving arrangement within a cylinder head permitting removal of the suction and exhaust valves as units from selected pumps, and which also includes valve bodies with bias porting providing increased thickness of walls separating high and low pressure areas, and studs in constant tension minimizing stress reversal to reduce this cause of fatigue failure.

Among the disadvantages of high pressure pumps subject to the continuous pulsation and shock inherent in reciprocating pumps is the external manifolding which results in greater assembly cost and more complicated disassembly to the service a single pump unit. In these pumps the inlet ports have generally been holes parallel to discharge ports and subject to failure at great pressure differentials. The studs that hold these assemblies together have been subjected to cyclical stresses with each stroke of the piston, a condition which results in premature failure due to fatigue.

These problems have been resolved in my invention through the use of a cylinder head with internal manifolding and valving arrangement, bias porting of the valve bodies, and an arrangement of the stuffing box, valve bodies and cylinder head which maintains the studs under a relatively constant tension governed by the outlet pressure of the pump.

It is the object of this invention to provide a multiplunger in-line reciprocating pump with an novel arrangement that affords economy in manufacture and servicing.

Another object is to increase the thickness of the walls separating high and low pressurevareas in the valve body.

Another object is to minimize stress reversal in the studs that hold the stuffing box, valve body and cylinder head together.

Still another'object is to provide the inlet valve with an integral guide and/or with bias seating to improve sealing.

A further object is to arrange inlet and discharge valves entirely within the valve body to permit servicing them as a subassembly. Another object is to arrange the stuffing box and plunger in a subassembly for convenience in removal and servicing. Yet another object is to provide an unloading means to automatically reduce the pressure within the pump when it is shut-off.

A better understanding of the invention will be had by referring to the following description and drawings in which:

FIG. 1 is an elevational view of a vertical in-line pump with three pistons;

' FIG. 2 is an elevational cross-section of the cylinder head in FIG. 1;

FIG. 3 is an elevational cross-section of the pump of FIG. 1 taken along line 33 showing the piston and valving arrangement;

FIG. 4 is an enlarged fragmentary view of the valves in FIG. 3;

FIG. 5 is a plan view of a horizontal in-line pump with three pistons;

FIG. 6 is a plan view in cross-section of the cylinder head in FIG. 5;

' FIG. 7 is a plan cross-section of the pump in FIG. 5 taken along line 77 showing the piston and valving arrangement;

FIG. 8 is an enlarged fragmentary view of the valves in FIG. 7; and

FIG. 9 is a partial section of a pressure unloader.

In the drawings similar reference characters refer to corresponding parts in the several views. Referring to FIG. 1 a multi-plunger reciprocating pump 10 is seen to comprise a drive unit 12 and a cylinder head 14. FIG. 2 shows that the cylinder head 14 has a plurality of chambers 16, each opening through a common first face 18 of the head 14 and having a large diameter portion 20 and a smaller diameter portion 22. An inlet manifold 24 communicates with the larger diameter portions 20 and terminates in inlet ports 26 at second face 28 and third face 30 of the cylinder head. A discharge manifold 32 similarly communicates with the smaller diameter portions 22 of the chambers 16 and terminates in outlet ports 34 in faces 28 and 30. The manifolds 24, 32 are each generally sealed at one of the faces 28, 30 by an inlet port plug 27 and an outlet port plug 36.

FIG. 3 is an elevational cross-section showing the cylindrical valve body 38 positioned in one of the chambers 16 of the cylinder head 14. The valve body 38 has an inlet face 40 and a discharge face 42 which bears against a step in the cylinder head. As shown in FIG. 4, the valve body 38 has a stepped bore 44, which includes a bore step 46, a conical valve seat 48, and a valve seat annulus 50. The bore 44 further comprises an enlarged portion 52, a discharge valve seat 54, a chamber or recess 56, and an outlet valve cavity 62.

. The valve body 38 has a section annulus 57 in the outer pheriphery and inlet passages 58 providing communication between the suction annulus 57 and the bore 44. O-ring annuli 60 are provided in the cylindrical periphery and the discharge face 42 of the cylindrical valve body.

A funnel shaped inlet valve 64 is slidably located at the inlet end of the valve body bore 44. It comprises a cylindrical portion 66 having a first annular recess 68, and a conical portion 70 having a second annular recess 72. An inlet valve bore 74 communicates with the first annular recess through ports 76, and the wide end of the conical portion is provided with inlet valve slots 78. When the valve is in the closed position, the second annular recess 72 mates with the valve seat annulus 50 of the valve body.

A stuffing box 80, having a step bore 82, mates along a first face 84 with the valve body inlet face 40. At the first face the bore has an enlarged diameter defining a chamber and step for a valve stop 104. A second face 88 of the stuffing box has an annular projection 90 which locates gland ring 130. Within the stuffing box bore 82 are packing 92 and a sleeve 94. The sleeve bore 96 partially defines a cylinder or compression chamber 98. An end face of the sleeve 100 provides a bearing surface for the inlet valve spring and the valve stop 104. A piston 102 is slidably and coaxially positioned in the cylinder 98.

The cylindrical stop 104 comprises a stepped bore 106 which retains inlet valve spring 110 and a step face 108 which provides a bearing surface that limits the axial movement of the inlet valve 64 during the suction stroke of the piston.

A discharge valve 112 rests in the closed position on the valve seat 54, and is guided by discharge valve plug 114. The plug has a stepped bore 116 which includes discharge valve retainer cup 118 at one end and a cavity for the discharge valve spring 120 at the other end. The plug is slidably positioned in the discharge valve spring retainer 122 and is coaxial with it and all the cylindrical elements described hereto.

The discharge valve spring retainer 122 has a threaded diameter 124 which engages the outlet valve cavity of the valve body 62. A sealing flange 126 partially defines an O-ring recess with the annulus 60 in the valve body discharge face 42. Studs 132 threadedly engage cylinder head 14 and gland ring 130 thereby compressively binding the gland ring stuffing box, valve body and cylinder head.

'An unloader system may be provided as shown in FIG. 9 comprising an unloader rod 140, actuated by a solenoid to control diaphragm cylinder 142 to move axially through an unloader port 144 in the cylinder head, the suction annulus 57, and one of the inlet passages 58 to valve seat annulus 50. A seal 146 in the unloader port 144 prevents leakage to the atmosphere.

In the horizontal modification shown in FIGS. through 8, the cylinder head chambers 16 also communicate with a fourth face 31 of the cylinder head as shown in FIG. 6. This opening is sealed with a cylinder head plug 138 which has an O-ring annulus in the surface that interfaces with the fourth face of the cylinder head. Instead of a funnel configuration, the cylindrical valve body has a flat inlet valve seat 47 and a valve seat recess 49 which provides clearance and reduces the amount of lapping that is required. It is further provided with discharge passages 59 which are biased to increase material thickness in the guide portion and facilitate machining. The discharge valve spring retainers described in the vertical pump is eliminated. The inlet valve is cylindrical, its body serving as a guide, and has a flat seat 77. As the valve stop has been eliminated, face 84 of the stuffing box serves as a spring abutment and inlet valve stop.

OPERATION OF THE INVENTION In the operation of the pump of FIGS. 1 through 4, when the driving means retracts piston 102 in the stuffing box 80, the volumetric increase of compression chamber 98, decreases the pressure therein sufficiently to overcome the force of the inlet valve spring 110, so that inlet valve 64 moves axially toward the piston until it bears against step face 108 of valve stop 104. Fluid is drawn into the system through inlet port 26, inlet manifold 24, and the annular chamber defined bythe annular recess 57 in cylinder valve body 38. From there the fluid moves through inlet passages 58 around the conical surface 70 of the inlet valve 64. Part of the fluid flows towards the second annular recess 52 in the valve through the inlet valve ports 76 to fill the inlet valve bore 74, while a greater volume is diverted around the conical portion 70 through the slots 78 in the end face of the inlet valve and fills the compression chamber 98. As the inlet pressure is lower than the pressure in the discharge manifold 32, discharge valve 1 12 is urged to its closed position against discharge valve seat 54 by the greater fluid pressure in the discharge manifold and by the discharge valve spring. The spring urges the discharge valve plug 114 axially toward the piston 102 within the stepped bore 128 of the discharge valve spring retainer 122. As the discharge valve 112 is carried in the discharge valve retainer cup 118 of the discharge valve plug 114, proper seating of the valve on discharge valve seat 54 is assured.

During the discharge stroke the piston 102 is driven into the compression chamber 98 guided by stuffing box sleeve 94. Compression of the fluid impels inlet valve 64 axially. The cylindrical portion 66 is guided by the bore 44 of cylinder valve body 38. The conical portion mates with conical valve seat 48, closing the inlet passages 58. Although the inlet manifold 24 is sealed off from this piston during the compression stroke the intake fluid may flow around annular recess 57 in the cylinder valve body 38 and be diverted to another pump in-line and undergoing suction stroke. When the fluid pressure in the compression chamber 98 exceeds the combined force of the fluid in the discharge manifold 32 and the discharge valve spring 120 upon the discharge valve 112, the discharge valve plug 114 will move axially away from the piston 102 carrying the discharge valve with it and thereby allowing the fluid in thecompression chamber 98 to discharge through the discharge manifold 32.

O-rings effectively seal the fluid from leakage at the interfaces of the various components, and packing 92 prevents leakage of the fluid from the compression chamber 98 past the piston. A gland ring and studs 132 compressively mate the stuffing box, the cylinder head, and the cylinder valve body. Because the studs 132 are constantly in tension, fatigue failure due to cyclical reversal of stress is avoided, and therefor smaller diameter studs may be used than with conventional pumps. At the beginning of the intake stroke inlet fluid pressure upon inlet valve 64 is distributed evenly around the conical portion 70 because second annular recess 72 andconjoining valve seat annulus 50 provide communication between inlet passages 58. This prevents mis-alignment and uneven wear of the inlet valve. For servicing thestuffing box and piston may be removed as a unit and worked on at a bench. Similarly the valves and valve body may be taken out as a unit to be worked upon separatelyl Leaving the cylinder head in place thereby avoids complicated disconnecting of manifolds.

When the pump is shut off for emergency or operational reasons the pressure built up in compression chambers 98 will continue to exhaust fluid into the discharge manifold until the internal pressure is reduced to that at outlet port 30. Where it is necessary to pro vide for immediate dumping of this pressure, the unloading system projects an unloader rod a predetermined distance beyond valve seat annulus 50 thereby preventing the seating of inlet valve 64. As communication between compression chamber 98 and suction annulus 57 is open, the internal pressure is prevented from rising above inlet pressure. During normal operation of the pump, solenoid 142 retracts rod 140 sufficiently to allow proper seating and sealing of valve 64. At all times seal 146 prevents leakage of the fluid to atmosphere through the cylinder head unloader port 144.

In reciprocating pumps with conventional manifolding, the studs join the stuffing box to a working barrel which contains the compression chamber. Thus, the

force transmitted through the box to the gland and studs fluctuates as the pressure in accordance with the chambers fluctuates. In this invention, the force transmitted to the gland 130 through the stuffing box 80 is the relatively constant force of the discharge fluid working to separate valve body block 38 from cylinder head 14. This force places studs 132 in fairly constant tension, reducing the cyclical reversals that cause fatigue failure and thereby permitting the use of smaller diameter studs.

in the horizonal modification of the pump the cylinder head plug 138 may be removed providing ready access to the discharge valve and valve plug assembly. The operation of this modification differs in the fluid flow within the valve body because of the modified inlet valve and discharge passage structure. On the intake stroke of the piston the inlet valve is opened by the pressure differential between the inlet manifold 24 and compression chamber 98. The cylindrical portion of the valve 66 guides its axial movement in the enlarged diameter 62 of the valve body. Bearing face 100 in the stuffing box which serves as an abutment surface for the inlet valve spring also serves as a valve stop in this modification. With the valve in the open position inlet fluid flows through inlet passages 58 partially diverting around inlet valve seat 77 to the inlet valve bore 74 and the valve body bore 44, and partially through annular recess 56 in the valve body through inlet valve ports 76 to the compression chamber 98. During the compression stroke of the piston the inlet valve is axially moved to close upon the flat valve seat 47 in the valve body. The valve seat recess 49 and the recess 56 prevent binding of the valve in its closed position. The compressed fluid is forced through bore 44, opening discharge valve 112, and flows through discharge passages 59 to the discharge manifold 32.

From the foregoing description and the drawings, it can be seen that the objects of the invention have been achieved. While the preferred embodiments have been described with particularity, the details of construction presented here should not be regarded as limiting the scope of the claims which follow.

We claim:

l. A reciprocating pump comprising 1. a cylinder head having a. first, second, third, and fourth faces;

b. a plurality of cylindrical chambers each with l. a larger diameter portion communicating with and axially normal to the common first face,

,2. a smaller diameter portion coaxial with a larger diameter portion and communicating with the second face, and

v 3. a central portion of intermediate diameter;

c. an inlet manifold serially connecting the chambers at the central portions and porting at an exterior surface of the cylinder head;

d. a discharge manifold providing communication between the smaller diameter portions of the chambers and porting at an external surface of the cylinder head; and for each chamber 2. a cylindrical valve body coaxially positioned in the cylinder chamber having a. portions of reduced diameter dimensioned to fit into the smaller and central portions of the cylinder head chamber;

b. a discharge face bearing against the smaller diameter portion of the chamber and an inlet face protruding beyond the common first face of the cylinder head;

c. a first annular recess aligned with the inlet manifold:

d. a bore having first and second enlarged diameters at the inlet and discharge faces respectively, a second annular recess in the first diameter, and valve seats at each end of the smallest diameter portion of the bore;

e. a plurality of inlet ports communicating between the annular recess and the first enlarged diameter of the bore;

3. a cylindrical inlet valve slidably positioned in the first enlarged diameter of the valve body bore having a. a bore with large and small diameters;

b. an inner face, and

c. radial ports communicating between the external diameter and the large diameter of the bore;

4. a stuffing box with first and second faces adapted to matably bear the first face against the inlet face of the valve body and having a. a stepped bore extending between the first face and second face coaxial with the cylinder head chamber and larger in diameter at the second face;

b. a sleeve positioned against a step in the bore defining a compression chamber coaxial with the bore;

5. a piston adapted to reciprocate axially in the stuffing box 6. packing means adapted to prevent fluid leakage between the piston and the stuffing box at the second face of the stuffing box;

'7. a cylinder head plug with a. a cylindrical portion dimensioned to fit in the smaller diameter portion of the cylinder head chamber; and

b. a mating face bearing against the second face of the cylinder head;

8. discharge valve; and

9. a cylindrical discharge valve plug and spring retainer slidably positioned in the second enlarged diameter of the valve body bore having a stepped bore adapted to receive the discharge valve at one end; whereby a reciprocating motion imparted to a piston,

when the inlet manifold is connected to an external source of fluid, produces axial motion of the inlet valve and discharge valve plug in the same direction and seating of the inlet and discharge valves on alternate strokes thereby resulting in fluid flow from the inlet to the outlet manifolds and permitting flow of the inlet fluid through said first annular recess from the valve body of a piston in the discharge stroke to the valve body of a piston in the suction stroke.

2. A reciprocating pump according to claim 1, wherein said gland ring and valve block are at opposite ends of said stuffing box, and said stud means are external to said stuffing box and connected at opposite ends to said gland ring and said valve block.

3. The reciprocating pump of claim 1, wherein the chambers in the cylinder head are arranged in a line and the inlet and discharge manifolds each ports at third and fourth faces of the cylinder head, the pump for an O-ring in the first face, whereby the suction man- 'ifold may be sealed from the inlet and discharge faces of the valve body.

5. The reciprocating pump of claim 3, further comprising gland ring and stud means compressively mating the stuffing box and valve block.

Claims (15)

1. A reciprocating pump comprising 1. a cylinder head having a. first, second, third, and fourth faces; b. a plurality of cylindrical chambers each with 1. a larger diameter portion communicating with and axially normal to the common first face, 2. a smaller diameter portion coaxial with a larger diameter portion and communicating with the second face, and 3. a central portion of intermediate diameter; c. an inlet manifold serially connecting the chambers at the central portions and porting at an exterior surface of the cylinder head; d. a discharge manifold providing communication between the smaller diameter portions of the chambers and porting at an external surface of the cylinder head; and for each chamber 2. a cylindrical valve body coaxially positioned in the cylinder chamber having a. portions of reduced diameter dimensioned to fit into the smaller and central portions of the cylinder head chamber; b. a discharge face bearing against the smaller diameter portion of the chamber and an inlet face protruding beyond the common first face of the cylinder head; c. a first annular recess aligned with the inlet manifold: d. a bore having first and second enlarged diameters at the inlet and discharge faces respectively, a second annular recess in the first diameter, and valve seats at each end of the smallest diameter portion of the bore; e. a plurality of inlet ports communicating between the annular recess and the first enlarged diameter of the bore; 3. a cylindrical inlet valve slidably positioned in the first enlarged diameter of the valve body bore having a. a bore with large and small diameters; b. an inner face, and c. radial ports communicating between the external diameter and the large diameter of the bore; 4. a stuffing box with first and second faces adapted to matably bear the first face against the inlet face of the valve body and having a. a stepped bore extending between the first face and second face coaxial with the cylinder head chamber and larger in diameter at the second face; b. a sleeve positioned against a step in the bore defining a compression chamber coaxial with the bore; 5. a piston adapted to reciprocate axially in the stuffing box 6. packing means adapted to prevent fluid leakage between the piston and the stuffing box at the second face of the stuffing box; 7. a cylinder head plug with a. a cylindrical portion dimensioned to fit in the smaller diameter portion of the cylinder head chamber; and b. a mating face bearing against the second face of the cylinder head; 8. discharge valve; and 9. a cylindrical discharge valve plug and spring retainer slidably positioned in the second enlarged diameter of the valve body bore having a stepped bore adapted to receive the discharge valve at one end; whereby a reciprocating motion imparted to a piston, when the inlet manifold is connected to an external source of fluid, produces axial motion of the inlet valve and discharge valve plug in the same direction and seating of the inlet and discharge valves on alternate strokes thereby resulting in fluid flow from the inlet to the outlet manifolds and permitting flow of the inlet fluid tHrough said first annular recess from the valve body of a piston in the discharge stroke to the valve body of a piston in the suction stroke.
2. a smaller diameter portion coaxial with a larger diameter portion and communicating with the second face, and
2. a cylindrical valve body coaxially positioned in the cylinder chamber having a. portions of reduced diameter dimensioned to fit into the smaller and central portions of the cylinder head chamber; b. a discharge face bearing against the smaller diameter portion of the chamber and an inlet face protruding beyond the common first face of the cylinder head; c. a first annular recess aligned with the inlet manifold: d. a bore having first and second enlarged diameters at the inlet and discharge faces respectively, a second annular recess in the first diameter, and valve seats at each end of the smallest diameter portion of the bore; e. a plurality of inlet ports communicating between the annular recess and the first enlarged diameter of the bore;
2. A reciprocating pump according to claim 1, wherein said gland ring and valve block are at opposite ends of said stuffing box, and said stud means are external to said stuffing box and connected at opposite ends to said gland ring and said valve block.
3. The reciprocating pump of claim 1, wherein the chambers in the cylinder head are arranged in a line and the inlet and discharge manifolds each ports at third and fourth faces of the cylinder head, the pump further comprising plug means whereby an inlet and an outlet port may be selectively sealed.
3. a cylindrical inlet valve slidably positioned in the first enlarged diameter of the valve body bore having a. a bore with large and small diameters; b. an inner face, and c. radial ports communicating between the external diameter and the large diameter of the bore;
3. a central portion of intermediate diameter; c. an inlet manifold serially connecting the chambers at the central portions and porting at an exterior surface of the cylinder head; d. a discharge manifold providing communication between the smaller diameter portions of the chambers and porting at an external surface of the cylinder head; and for each chamber
4. The reciprocating pump of claim 1, further comprising a plurality of O-rings and wherein each cylinder valve body has a plurality of annuli adapted to receive O-rings in the peripheral surface and discharge face, and the cylinderical inlet valve has an annular recess for an O-ring in the first face, whereby the suction manifold may be sealed from the inlet and discharge faces of the valve body.
4. a stuffing box with first and second faces adapted to matably bear the first face against the inlet face of the valve body and having a. a stepped bore extending between the first face and second face coaxial with the cylinder head chamber and larger in diameter at the second face; b. a sleeve positioned against a step in the bore defining a compression chamber coaxial with the bore;
5. a piston adapted to reciprocate axially in the stuffing box
5. The reciprocating pump of claim 3, further comprising gland ring and stud means compressively mating the stuffing box and valve block.
6. packing means adapted to prevent fluid leakage between the piston and the stuffing box at the second face of the stuffing box;
7. a cylinder head plug with a. a cylindrical portion dimensioned to fit in the smaller diameter portion of the cylinder head chamber; and b. a mating face bearing against the second face of the cylinder head;
8. discharge valve; and
9. a cylindrical discharge valve plug and spring retainer slidably positioned in the second enlarged diameter of the valve body bore having a stepped bore adapted to receive the discharge valve at one end; whereby a reciprocating motion imparted to a piston, when the inlet manifold is connected to an external source of fluid, produces axial motion of the inlet valve and discharge valve plug in the same direction and seating of the inlet and discharge valves on alternate strokes thereby resulting in fluid flow from the inlet to the outlet manifolds and permitting flow of the inlet fluid tHrough said first annular recess from the valve body of a piston in the discharge stroke to the valve body of a piston in the suction stroke.
US3820922A 1972-05-30 1973-12-03 Multiplunger reciprocating pump Expired - Lifetime US3820922A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US3811801A US3811801A (en) 1972-05-30 1972-05-30 Multi-plunger reciprocating pump
US3820922A US3820922A (en) 1972-05-30 1973-12-03 Multiplunger reciprocating pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3820922A US3820922A (en) 1972-05-30 1973-12-03 Multiplunger reciprocating pump

Publications (1)

Publication Number Publication Date
US3820922A true US3820922A (en) 1974-06-28

Family

ID=26946056

Family Applications (1)

Application Number Title Priority Date Filing Date
US3820922A Expired - Lifetime US3820922A (en) 1972-05-30 1973-12-03 Multiplunger reciprocating pump

Country Status (1)

Country Link
US (1) US3820922A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891356A (en) * 1973-11-21 1975-06-24 Armco Steel Corp Fluid guide plunger system
US4239463A (en) * 1978-09-28 1980-12-16 Worthington Pump, Inc. Reciprocating plunger pump with improved liquid end valve assembly
US4551077A (en) * 1984-03-22 1985-11-05 Butterworth Inc. High pressure pump
US5171136A (en) * 1991-01-28 1992-12-15 Butterworth Jetting Systems, Inc. Fluid flow control device
US20070025863A1 (en) * 2005-07-29 2007-02-01 Wagner Spray Tech Corporation Automatic inlet check valve release
US20070093701A1 (en) * 2005-10-26 2007-04-26 Hutchinson Technology Incorporated Dynamic StO2 measurements and analysis
EP1998045A1 (en) * 2007-05-31 2008-12-03 R. Schäfer & Urbach GmbH & Co. KG Displacement machine with coaxial valves
EP2085613A2 (en) * 2008-02-01 2009-08-05 Paul Hammelmann Maschinenfabrik GmbH High pressure valve assembly
US20150059880A1 (en) * 2010-02-03 2015-03-05 Denso Corporation High-pressure pump
US20150211641A1 (en) * 2014-01-24 2015-07-30 Gardner Denver Water Jetting Systems, Inc. Valve cartridge assembly with a suction valve in line with a discharge valve and a suction valve seat circumscribing an inlet which the suction valve covers

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891356A (en) * 1973-11-21 1975-06-24 Armco Steel Corp Fluid guide plunger system
US4239463A (en) * 1978-09-28 1980-12-16 Worthington Pump, Inc. Reciprocating plunger pump with improved liquid end valve assembly
US4551077A (en) * 1984-03-22 1985-11-05 Butterworth Inc. High pressure pump
US5171136A (en) * 1991-01-28 1992-12-15 Butterworth Jetting Systems, Inc. Fluid flow control device
GB2441490B (en) * 2005-07-29 2011-03-02 Wagner Spray Tech Corp Automatic inlet check valve release in a paint pump
WO2007016486A1 (en) * 2005-07-29 2007-02-08 Wagner Spray Tech Corporation Automatic inlet check valve release in a paint pump
CN101228355B (en) 2005-07-29 2012-09-26 瓦格纳喷涂技术有限公司 Automatic inlet check valve release device in a paint pump
GB2441490A (en) * 2005-07-29 2008-03-05 Wagner Spray Tech Corp Automatic inlet check valve release in a paint pump
CN102817828B (en) * 2005-07-29 2015-04-15 瓦格纳喷涂技术有限公司 Apparatus and method for releasing automatic inlet check valve in paint pump
US7540721B2 (en) 2005-07-29 2009-06-02 Wagner Spray Tech Corporation Automatic inlet check valve release
US20070025863A1 (en) * 2005-07-29 2007-02-01 Wagner Spray Tech Corporation Automatic inlet check valve release
US20070093701A1 (en) * 2005-10-26 2007-04-26 Hutchinson Technology Incorporated Dynamic StO2 measurements and analysis
EP1998045A1 (en) * 2007-05-31 2008-12-03 R. Schäfer & Urbach GmbH & Co. KG Displacement machine with coaxial valves
EP2085613A2 (en) * 2008-02-01 2009-08-05 Paul Hammelmann Maschinenfabrik GmbH High pressure valve assembly
US8240634B2 (en) * 2008-02-01 2012-08-14 Hammelmann Maschinenfabrik Gmbh High-pressure valve assembly
EP2085613A3 (en) * 2008-02-01 2013-12-18 Hammelmann Maschinenfabrik GmbH High pressure valve assembly
US20090194717A1 (en) * 2008-02-01 2009-08-06 Hammelmann Maschinenfabrik Gmbh High-pressure valve assembly
US20150059880A1 (en) * 2010-02-03 2015-03-05 Denso Corporation High-pressure pump
US20150211641A1 (en) * 2014-01-24 2015-07-30 Gardner Denver Water Jetting Systems, Inc. Valve cartridge assembly with a suction valve in line with a discharge valve and a suction valve seat circumscribing an inlet which the suction valve covers
US9670922B2 (en) * 2014-01-24 2017-06-06 Gardner Denver Water Jetting Systems, Inc. Pump system including valve cartridge assembly with a suction valve in line with a discharge valve

Similar Documents

Publication Publication Date Title
US3373695A (en) Reciprocating piston pump
US3106169A (en) Intensifier high pressure valve and block assembly
US4549467A (en) Actuator valve
US3247767A (en) Fluid cylinder
US5362215A (en) Modular pump cylinder-head having integral over-pressure protection
US3741692A (en) Surge suppressor for fluid lines
US4456440A (en) Valve assembly for high-pressure pumps
US4593719A (en) Spool valve
US3514223A (en) Hydraulic pump
US6158982A (en) Amplified pressure air driven diaphragm pump and pressure relief valve therefor
US6289875B1 (en) Fuel injection pump
US5059101A (en) Fluid end
US4573886A (en) Valve assembly for high pressure pump
US3019739A (en) High pressure pumping apparatus
US3114326A (en) Plunger type pump especially for high pressure
US4011029A (en) Fluid suction and discharge apparatus
US6162031A (en) Seal seat for high pressure pumps and vessels
US5575626A (en) Cryogenic pump
US4878815A (en) High pressure reciprocating pump apparatus
US4342544A (en) Reciprocating pump
US4343280A (en) Fuel delivery control arrangement
US4768933A (en) High pressure reciprocating pump and valve assembly therefor
US4824342A (en) Chemical injector system for piston pumps
US3209701A (en) Pump
US4412792A (en) Intensifier pump with integrated check valve