US3813036A - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
US3813036A
US3813036A US00358314A US35831473A US3813036A US 3813036 A US3813036 A US 3813036A US 00358314 A US00358314 A US 00358314A US 35831473 A US35831473 A US 35831473A US 3813036 A US3813036 A US 3813036A
Authority
US
United States
Prior art keywords
liquid
friction heating
heating means
temperature
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00358314A
Inventor
G Lutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00358314A priority Critical patent/US3813036A/en
Priority to US05/447,729 priority patent/US3944395A/en
Priority to JP49051055A priority patent/JPS5042653A/ja
Application granted granted Critical
Publication of US3813036A publication Critical patent/US3813036A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D7/00Central heating systems employing heat-transfer fluids not covered by groups F24D1/00 - F24D5/00, e.g. oil, salt or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies
    • F24V40/10Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies the fluid passing through restriction means

Definitions

  • references Cited high temperature path and a low temperature path are UNITED STATES PATENTS provided to improve comfort control.
  • the heating element is formed of woven stainless steel 2,304,689 12/1942 Hanson 138/42 which is compressed in a mold to obtain sufficient 2,743,802 6/1956 Hanson cl 133/42 strand density to produce a high heat of friction.
  • the invention relates to closed heating systems utilizing a liquid such as oil as the heat transfer medium.
  • the invention relates to an improved friction heating element and to a method of making the element.
  • the present invention comprises a closed heating system using a liquid such as oil as the heat transfer medium.
  • the oil is pumped through the system which comprises a friction heating element and one or more radiation units which transfer the heat from the oil to the ambient atmosphere.
  • the friction heating element is formed of woven metal wire such as stainless steel and is then compressed into a cylindrical block. This provides a tortuous path for the liquid as it is pumped through the block and due to the frequent frictional contacts between the wires in the block and the liquid, the liquid is heated.
  • the heated liquid gives off some of the heat so acquired to the ambient environment through the radiation means.
  • FIG. 1 is a block diagram of a heating system of the invention
  • FIG. 2 is a perspective view of a friction heating element of the invention.
  • FIG. 3 is a block diagram of the steps of the method of making friction heating elements of the invention.
  • System 10 is a closed system and is seen to comprise a storage tank 12 having an outlet line 14, a motor and pump 16 for pumping liquid from tank 12 into a distribution line 18.
  • the liquid from the distribution line 18 is heated in friction heating element 20 or friction heating element 22 and the heating liquid is fed through line 24 to one or more radiation units 26 which take heat from the heated liquid to heat the ambient atmosphere.
  • the liquid then returns through a line 28 to storage tank 12.
  • a low pressure check valve 30 is provided near the tank. This keeps line 28 full at all times.
  • Control of the system is accomplished by means of a switch 32 which may be thermostatically controlled.
  • a breather 36 is affixed to tank 12 for the usual purposes.
  • a pressure gage 34 is used to monitor the pressure of the pumped liquid and may be provided with suitable mechanisms, well known in the art, to operate a safety switch 37 to return liquid directly to tank 12 through line 38.
  • the liquid In normal operation, the liquid is pumped through line 18, past check valve 42 and into line 19. Then it proceeds through friction heating element 20. The liquid follows a tortuous path through clement 20 and is heated therein. Its temperature is sensed by thermostat 44 and its pressure by gage 46. Gage 46 may be used to actuate control equipment (not shown) to shut down the system if the pressure is outside normal limits or it may be used for monitoring only.
  • the operating pressure of the system should preferably be between 800 and 2,000 psi.
  • Thermostat 44 may be used in several ways:
  • valve 50 is actuated to divert the liquid from element 20 and direct it toward element 22. Since element 22 is smaller than element 20, the contact between the liquid and the wires is shorter and there is less friction and less heat generated. Valve 51 may be operated manually or automatically to direct the liquid from element 22 back to tank 12 through line 52 or through line 24 to the radiation units 26.
  • Thermostat 44 may direct some of the liquid I through by-pass line 38 and safety switch 37 by means of solenoid valve 48 and some of it through element 22 by means of solenoid valve 50.
  • the liquid used in the system is synthetic oil such as resistant bean oil, cottonseed oil or similar products. This liquid retains heat better than water so that the system is more efficient. For example, 2 pounds of water at 200 F dropped 40 F in 15 minutes while 2 pounds of the liquid at 200 F dropped 27 F in 15 minutes in the same ambient environment.
  • FIG. 2 there is illustrated a friction heating element 60 which is the same in construction as elements 20 and 22. It is formed of woven metal wire such as stainless steel having a diameter of the order of 0.005 inch. About 1,900 yards of the wire is woven into a mass having a volume of about 5 cubic inches. The mass is then placed in a mold and compressed under a pressure of the order of 25,000 psi (FIG. 3). The final compressed volume is about one-half the woven volume.
  • woven metal wire such as stainless steel having a diameter of the order of 0.005 inch.
  • the mass is then placed in a mold and compressed under a pressure of the order of 25,000 psi (FIG. 3).
  • the final compressed volume is about one-half the woven volume.
  • Element 22 is formed by the method set forth above to the preferable final dimensions of 1.2 inches in length and a base diameter of 0.75 inch.
  • the density is preferably of the order of 0.28 pounds per cubic inch.
  • Element is preferably an assembly of two elements 22 in series so that the liquid is in contact with the element over twice the length in element 20 than it is in element 22. The use of standard size elements in systems of the invention simplifies manufacture and reduces costs.
  • a closed heating system utilizing a liquid as the heat transfer medium and having storage means for storing the liquid, pump means for pumping the liquid through the system, friction heating means for raising the temperature of the liquid as the liquid is pumped through the friction heating means, radiation means for transferring heat from the liquid to the ambient atmosphere, the friction heating means comprising:
  • a compressed block formed of woven metal wire and having a density of the order of 0.28 pounds per cubic inch such that the liquid is compelled to follow a tortuous path through the block to thereby with the friction heating means and having ashorter tortuous path therethrough than the friction heating means;
  • the switching means directing the liquid flow through the second friction heating means when the temperature is above the first predetermined value and directing the flow through the friction heating means when the temperature is below the second predetermined value.
  • the liuqid flow is diverted away from the radiation means when the temperature is above the first predetermined value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Central Heating Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

A heating system utilizing a closed oil system and a friction element for heating the oil as the oil is forced through the element. The oil''s path is from a storage tank through the friction element, then to the radiation units and then is returned to the storage tank. A high temperature path and a low temperature path are provided to improve comfort control. The heating element is formed of woven stainless steel which is compressed in a mold to obtain sufficient strand density to produce a high heat of friction.

Description

United States Patent Lutz 1 May 28, 1974 1 HEATING SYSTEM 3,720,372 3/1973 Jacobs 122/26 [76] Inventor: George H. Lutz, Binghamton, NY. I
Primary ExaminerW1ll1am E. Wayner [22] Filed: May 1973 Assistant Examiner-William E. Tapolcai, Jr. [21] Appl. No.: 358,314 I Attorney, Agent, or Firm-Samuelson & Jacob 52 us. (:1 237/2 R, 122/26, 126/247, [571 ABSTRACT 138/ 2 A heating system utilizing a closed oil system and a [5 1] Int. Cl. G05d 23/02 friction element for heating the oil as the oil is forced [58] Field Of Search 23 1 S 1, through the element. The oils path is from a storage 8/ tank through the friction element, then to the radiation units and then is returned to the storage tank. A [56] References Cited high temperature path and a low temperature path are UNITED STATES PATENTS provided to improve comfort control. 2,254,587 9/1941 Williams 138/42 The heating element is formed of woven stainless steel 2,304,689 12/1942 Hanson 138/42 which is compressed in a mold to obtain sufficient 2,743,802 6/1956 Hanson cl 133/42 strand density to produce a high heat of friction. 2,764,147 9/1957 Brunner 237/1 R 2,915,299 12/1959 Woebcke 122/26 4 Claims, 3 Drawing Figures 50' /9 33 42 36 i i l i48 PATENTEDMM 28 I974 WEAVING PLACING IN MOLD FORMING UNDER PRESSURE Fig. 3
HEATING SYSTEM The invention relates to closed heating systems utilizing a liquid such as oil as the heat transfer medium. In particular, the invention relates to an improved friction heating element and to a method of making the element.
Most residential heating systems possess some or all of the following inherent disadvantages:
1. Inefficient heat transfer.
2. Discharge of pollutants into the atmosphere.
3. Wide temperature differential in the heated area during mild days.
Broadly, the present invention comprises a closed heating system using a liquid such as oil as the heat transfer medium. The oil is pumped through the system which comprises a friction heating element and one or more radiation units which transfer the heat from the oil to the ambient atmosphere. The friction heating element is formed of woven metal wire such as stainless steel and is then compressed into a cylindrical block. This provides a tortuous path for the liquid as it is pumped through the block and due to the frequent frictional contacts between the wires in the block and the liquid, the liquid is heated. The heated liquid gives off some of the heat so acquired to the ambient environment through the radiation means.
It is an important object of the invention to provide such a system which is economical to operate, efficient and environmentally clean.
It is a further object of the invention to provide a heating system for residential and industrial installation which is safe.
It is another object of the invention to provide a heating system which may be used in industrial processing description, when taken in conjunction with the accompanying drawing, wherein:
FIG. 1 is a block diagram of a heating system of the invention;
FIG. 2 is a perspective view of a friction heating element of the invention; and
FIG. 3 is a block diagram of the steps of the method of making friction heating elements of the invention.
In the drawings, wherein, for the purpose of illustration, there are shown preferred embodiments of the invention and wherein like numerals designate like parts throughout the same, the numeral 10 designates a heating system of the invention generally.
System 10 is a closed system and is seen to comprise a storage tank 12 having an outlet line 14, a motor and pump 16 for pumping liquid from tank 12 into a distribution line 18. The liquid from the distribution line 18 is heated in friction heating element 20 or friction heating element 22 and the heating liquid is fed through line 24 to one or more radiation units 26 which take heat from the heated liquid to heat the ambient atmosphere.
The liquid then returns through a line 28 to storage tank 12. To prevent bleed feed from line 28 into tank 12 a low pressure check valve 30 is provided near the tank. This keeps line 28 full at all times. Control of the system is accomplished by means of a switch 32 which may be thermostatically controlled. A breather 36 is affixed to tank 12 for the usual purposes. A pressure gage 34 is used to monitor the pressure of the pumped liquid and may be provided with suitable mechanisms, well known in the art, to operate a safety switch 37 to return liquid directly to tank 12 through line 38.
In normal operation, the liquid is pumped through line 18, past check valve 42 and into line 19. Then it proceeds through friction heating element 20. The liquid follows a tortuous path through clement 20 and is heated therein. Its temperature is sensed by thermostat 44 and its pressure by gage 46. Gage 46 may be used to actuate control equipment (not shown) to shut down the system if the pressure is outside normal limits or it may be used for monitoring only. The operating pressure of the system should preferably be between 800 and 2,000 psi.
Thermostat 44 may be used in several ways:
1. If there is no branch 21 and heating element 22 in the system, it may actuate solenoid 48 to bypass element 20 when the temperature is above a first predetermined value (too high). Then, the liquid will return to tank 12 through line 38. When the temperature is below a second predetermined value (too low), the flow is directed through element 20.
2. If there is a branch 21 and an element 22 which is similar to element 20 but smaller, a solenoid valve 50 is actuated to divert the liquid from element 20 and direct it toward element 22. Since element 22 is smaller than element 20, the contact between the liquid and the wires is shorter and there is less friction and less heat generated. Valve 51 may be operated manually or automatically to direct the liquid from element 22 back to tank 12 through line 52 or through line 24 to the radiation units 26.
3. Thermostat 44 may direct some of the liquid I through by-pass line 38 and safety switch 37 by means of solenoid valve 48 and some of it through element 22 by means of solenoid valve 50.
The liquid used in the system is synthetic oil such as resistant bean oil, cottonseed oil or similar products. This liquid retains heat better than water so that the system is more efficient. For example, 2 pounds of water at 200 F dropped 40 F in 15 minutes while 2 pounds of the liquid at 200 F dropped 27 F in 15 minutes in the same ambient environment.
By way of illustration and without limiting the scope of the invention, I have found that using 10 pounds of No. 40 synthetic fluid at 2,000 psi., the system generates 45,600 btu per hour and at 1,600 psi, it generates 42,600 btu per hour. In both cases the delivery rate was 1.28 gallons per minute and the electrical power consumed was about 1,500 watts.
In FIG. 2 there is illustrated a friction heating element 60 which is the same in construction as elements 20 and 22. It is formed of woven metal wire such as stainless steel having a diameter of the order of 0.005 inch. About 1,900 yards of the wire is woven into a mass having a volume of about 5 cubic inches. The mass is then placed in a mold and compressed under a pressure of the order of 25,000 psi (FIG. 3). The final compressed volume is about one-half the woven volume.
Element 22 is formed by the method set forth above to the preferable final dimensions of 1.2 inches in length and a base diameter of 0.75 inch. The density is preferably of the order of 0.28 pounds per cubic inch. Element is preferably an assembly of two elements 22 in series so that the liquid is in contact with the element over twice the length in element 20 than it is in element 22. The use of standard size elements in systems of the invention simplifies manufacture and reduces costs.
While particular embodiments of the invention have been shown and described, it is apparent to those skilled in the art that modifications are possible without departing from the spirit of the invention or the scope of the subjoined claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. In a closed heating system utilizing a liquid as the heat transfer medium and having storage means for storing the liquid, pump means for pumping the liquid through the system, friction heating means for raising the temperature of the liquid as the liquid is pumped through the friction heating means, radiation means for transferring heat from the liquid to the ambient atmosphere, the friction heating means comprising:
a compressed block formed of woven metal wire and having a density of the order of 0.28 pounds per cubic inch such that the liquid is compelled to follow a tortuous path through the block to thereby with the friction heating means and having ashorter tortuous path therethrough than the friction heating means;
the switching means directing the liquid flow through the second friction heating means when the temperature is above the first predetermined value and directing the flow through the friction heating means when the temperature is below the second predetermined value.
4. The invention of claim 2 wherein:
the liuqid flow is diverted away from the radiation means when the temperature is above the first predetermined value.

Claims (4)

1. In a closed heating system utilizing a liquid as the heat transfer medium and having storage means for storing the liquid, pump means for pumping the liquid through the system, friction heating means for raising the temperature of the liquid as the liquid is pumped through the friction heating means, radiation means for transferring heat from the liquid to the ambient atmosphere, the friction heating means comprising: a compressed block formed of woven metal wire and having a density of the order of 0.28 pounds per cubic inch such that the liquid is compelled to follow a tortuous path through the block to thereby acquire heat due to the frictional contact with the woven metal wire.
2. The invention of claim 1 including: sensing means for sensing the temperature of the liquid leaving the friction heating means; and switching means responsive to the sensing means for diverting the liquid flow away from the friction heating means when the temperature is above a first predetermined value and directing said flow through the friction heating means when the temperature is below a second predetermined value.
3. The invention of claim 2 including: second friction heating means connected in parallel with the friction heating means and having a shorter tortuous path therethrough than the friction heating means; the switching means directing the liquid flow through the second friction heating means when the temperature is above the first predetermined value and directing the flow through the friction heating means when the temperature is below the second predetermined value.
4. The invention of claim 2 wherein: the liuqid flow is diverted away from the radiation means when the temperature is above the first predetermined value.
US00358314A 1973-05-08 1973-05-08 Heating system Expired - Lifetime US3813036A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00358314A US3813036A (en) 1973-05-08 1973-05-08 Heating system
US05/447,729 US3944395A (en) 1973-05-08 1974-03-04 Element for heating system
JP49051055A JPS5042653A (en) 1973-05-08 1974-05-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00358314A US3813036A (en) 1973-05-08 1973-05-08 Heating system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/447,729 Division US3944395A (en) 1973-05-08 1974-03-04 Element for heating system

Publications (1)

Publication Number Publication Date
US3813036A true US3813036A (en) 1974-05-28

Family

ID=23409177

Family Applications (1)

Application Number Title Priority Date Filing Date
US00358314A Expired - Lifetime US3813036A (en) 1973-05-08 1973-05-08 Heating system

Country Status (2)

Country Link
US (1) US3813036A (en)
JP (1) JPS5042653A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898968A (en) * 1973-07-27 1975-08-12 Isidoro N Markus Thermo insulated hydraulic restrictors
US4060194A (en) * 1976-03-08 1977-11-29 Lutz George H Heating system and element therefor
US4208152A (en) * 1976-10-19 1980-06-17 Westinghouse Electric Corp. Diver support apparatus
EP0032676A2 (en) * 1980-01-17 1981-07-29 Klöckner-Humboldt-Deutz Aktiengesellschaft Heating arrangement for a vehicle cabin
US4285329A (en) * 1978-12-26 1981-08-25 Moline George A Friction heat generator
US4344567A (en) * 1980-12-31 1982-08-17 Horne C James Hydraulic heating system
US4368692A (en) * 1979-08-31 1983-01-18 Shimadzu Co. Wind turbine
US4372254A (en) * 1981-01-23 1983-02-08 Edmund Hildebrandt Hydraulic heat generator
US4381762A (en) * 1980-11-03 1983-05-03 Ernst Arnold E Friction furnace
US4387851A (en) * 1981-05-18 1983-06-14 Dick Edward R Apparatus for heating and spraying viscous coating material
US4393824A (en) * 1980-10-18 1983-07-19 Klockner-Humboldt-Deutz Ag Heating system
US4424797A (en) * 1981-10-13 1984-01-10 Eugene Perkins Heating device
US4458633A (en) * 1981-05-18 1984-07-10 Halliburton Company Flameless nitrogen skid unit
US4493750A (en) * 1982-07-16 1985-01-15 Olmsted James F Thermodynamic conditioning of air or any other gas to increase the operating efficiency of diverse energy consuming systems
EP0149057A1 (en) * 1983-12-02 1985-07-24 Michel Porcellana Apparatus for the conversion of electric energy into thermal energy
US4576122A (en) * 1984-03-20 1986-03-18 Marcato Forrest C Road-marking material heating system
US4646714A (en) * 1981-09-03 1987-03-03 Bolin Charles E Friction heat generator
US5098036A (en) * 1986-10-30 1992-03-24 Zwick Energy Research Organization, Inc. Flameless deicer
US5190249A (en) * 1989-09-25 1993-03-02 Zwick Energy Research Organization, Inc. Aircraft deicer fluid heating and propulsion system
US5222696A (en) * 1986-10-30 1993-06-29 Zwick Energy Research Organization, Inc. Flameless deicer
US7523873B1 (en) * 2004-11-04 2009-04-28 Lopes Walter R Heating system
WO2010041011A2 (en) * 2008-10-08 2010-04-15 Next Generation Heating Limited A heating apparatus for a domestic central heating system
US20100193155A1 (en) * 2009-01-30 2010-08-05 Panasonic Corporation Liquid circulation heating system
US20100193156A1 (en) * 2009-01-30 2010-08-05 Panasonic Corporation Liquid circulation heating system and method of controlling the same
WO2010057491A3 (en) * 2008-11-20 2012-01-19 Gunter Krauss Device for mechanically heating fluids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346298B1 (en) * 1999-11-20 2002-07-26 이우동 A device to generate heat by spraying liquid at high speed and high pressure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254587A (en) * 1937-11-09 1941-09-02 Linde Air Prod Co Apparatus for dispensing gas material
US2304689A (en) * 1939-06-07 1942-12-08 Creamery Package Mfg Co Homogenizing valve
US2748802A (en) * 1953-07-24 1956-06-05 Creamery Package Mfg Co Valve construction
US2764147A (en) * 1951-02-23 1956-09-25 Northrop Aircraft Inc Frictional heater for hydraulic system
US2915299A (en) * 1956-12-19 1959-12-01 Mobay Chemical Corp Apparatus for controlling temperatures
US3720372A (en) * 1971-12-09 1973-03-13 Gen Motors Corp Means for rapidly heating interior of a motor vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254587A (en) * 1937-11-09 1941-09-02 Linde Air Prod Co Apparatus for dispensing gas material
US2304689A (en) * 1939-06-07 1942-12-08 Creamery Package Mfg Co Homogenizing valve
US2764147A (en) * 1951-02-23 1956-09-25 Northrop Aircraft Inc Frictional heater for hydraulic system
US2748802A (en) * 1953-07-24 1956-06-05 Creamery Package Mfg Co Valve construction
US2915299A (en) * 1956-12-19 1959-12-01 Mobay Chemical Corp Apparatus for controlling temperatures
US3720372A (en) * 1971-12-09 1973-03-13 Gen Motors Corp Means for rapidly heating interior of a motor vehicle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898968A (en) * 1973-07-27 1975-08-12 Isidoro N Markus Thermo insulated hydraulic restrictors
US4060194A (en) * 1976-03-08 1977-11-29 Lutz George H Heating system and element therefor
US4208152A (en) * 1976-10-19 1980-06-17 Westinghouse Electric Corp. Diver support apparatus
US4285329A (en) * 1978-12-26 1981-08-25 Moline George A Friction heat generator
US4368692A (en) * 1979-08-31 1983-01-18 Shimadzu Co. Wind turbine
EP0032676B1 (en) * 1980-01-17 1984-02-22 Klöckner-Humboldt-Deutz Aktiengesellschaft Heating arrangement for a vehicle cabin
EP0032676A2 (en) * 1980-01-17 1981-07-29 Klöckner-Humboldt-Deutz Aktiengesellschaft Heating arrangement for a vehicle cabin
US4393824A (en) * 1980-10-18 1983-07-19 Klockner-Humboldt-Deutz Ag Heating system
US4381762A (en) * 1980-11-03 1983-05-03 Ernst Arnold E Friction furnace
US4344567A (en) * 1980-12-31 1982-08-17 Horne C James Hydraulic heating system
US4372254A (en) * 1981-01-23 1983-02-08 Edmund Hildebrandt Hydraulic heat generator
US4387851A (en) * 1981-05-18 1983-06-14 Dick Edward R Apparatus for heating and spraying viscous coating material
US4458633A (en) * 1981-05-18 1984-07-10 Halliburton Company Flameless nitrogen skid unit
US4646714A (en) * 1981-09-03 1987-03-03 Bolin Charles E Friction heat generator
US4424797A (en) * 1981-10-13 1984-01-10 Eugene Perkins Heating device
US4493750A (en) * 1982-07-16 1985-01-15 Olmsted James F Thermodynamic conditioning of air or any other gas to increase the operating efficiency of diverse energy consuming systems
EP0149057A1 (en) * 1983-12-02 1985-07-24 Michel Porcellana Apparatus for the conversion of electric energy into thermal energy
US4576122A (en) * 1984-03-20 1986-03-18 Marcato Forrest C Road-marking material heating system
US5098036A (en) * 1986-10-30 1992-03-24 Zwick Energy Research Organization, Inc. Flameless deicer
US5222696A (en) * 1986-10-30 1993-06-29 Zwick Energy Research Organization, Inc. Flameless deicer
US5190249A (en) * 1989-09-25 1993-03-02 Zwick Energy Research Organization, Inc. Aircraft deicer fluid heating and propulsion system
US7523873B1 (en) * 2004-11-04 2009-04-28 Lopes Walter R Heating system
WO2010041011A2 (en) * 2008-10-08 2010-04-15 Next Generation Heating Limited A heating apparatus for a domestic central heating system
WO2010041011A3 (en) * 2008-10-08 2012-12-13 Next Generation Heating Limited A heating apparatus for a domestic central heating system
WO2010057491A3 (en) * 2008-11-20 2012-01-19 Gunter Krauss Device for mechanically heating fluids
US20100193155A1 (en) * 2009-01-30 2010-08-05 Panasonic Corporation Liquid circulation heating system
US20100193156A1 (en) * 2009-01-30 2010-08-05 Panasonic Corporation Liquid circulation heating system and method of controlling the same

Also Published As

Publication number Publication date
JPS5042653A (en) 1975-04-17

Similar Documents

Publication Publication Date Title
US3813036A (en) Heating system
US4138996A (en) Solar heater freeze protection system
US4244385A (en) Fluent material level control system
CA1115599A (en) Automatic control system for centrifugal pumps
EP0896212A3 (en) Domestic water valve assembly
US4309982A (en) Process and apparatus for the preparation of hot water from solar energy
US5999700A (en) Portable refrigerant supply tank heating unit
IL111899A (en) Method and apparatus for refrigerant reclamation
GB2079909A (en) Refrigerant condensing system
US4455477A (en) Electric boiling water heater
US3491544A (en) Method and apparatus for guarding refrigeration systems
US1698561A (en) Method and system of heating
GB1261810A (en) Temperature control unit
US3944395A (en) Element for heating system
GB2053429A (en) Water heaters for mobile installations
EP0703407A1 (en) Steam generator for domestic use, in particular for cleaning tasks
US3151468A (en) Liquid level control for cold traps
SU1021809A1 (en) Compressor unit
US4420677A (en) Heating system
US3795789A (en) Residential water heaters
GB1208559A (en) Apparatus for controlling a combined heating boiler for service water and central-heating water
US3330332A (en) Domestic hot water storage supply system
US3643678A (en) Self-contained pumpless cooling water system
DE69823036T2 (en) WATER HEATER WITH TEMPERATURE CONTROL IN THE PROPORTIONAL AREA TO ACHIEVE AN IMPROVED THERMAL EFFICIENCY
JPS54130769A (en) Hydraulic circuit