US3786760A - Rotating band for projectile - Google Patents

Rotating band for projectile Download PDF

Info

Publication number
US3786760A
US3786760A US3786760DA US3786760A US 3786760 A US3786760 A US 3786760A US 3786760D A US3786760D A US 3786760DA US 3786760 A US3786760 A US 3786760A
Authority
US
United States
Prior art keywords
projectile
rotating band
plastic
rotating
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
F Feldmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Technica Corp
Original Assignee
Pacific Technica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by Pacific Technica Corp filed Critical Pacific Technica Corp
Priority to US25855872A priority Critical
Application granted granted Critical
Publication of US3786760A publication Critical patent/US3786760A/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22981097&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3786760(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B14/00Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
    • F42B14/02Driving bands; Rotating bands

Abstract

The present invention relates to the use of plastics for rotating bands on projectiles fired from rifled gun barrels. The plastic band is injection molded into a circumferential channel provided in the projectile body. The cross section of the circumferential channel is designed such as to provide a tight gas seal between the plastic rotating band and the projectile body, to assure transfer of spin introduced by the rifling in the gun barrel and to secure the rotating band to the projectile after exit from the muzzle of the gun. The portion of the plastic rotating band protruding beyond the projectile body engraves and is compressed into the rifling groove of the gun barrel, thus obturating the propellant gases and transmitting the spinning motion to the projectile. The plastic rotating band is lighter and costs less than conventional metallic rotating bands and is, in addition, a noncritical war material. Furthermore, its use yields better obturation and reduced barrel wear than is obtained with conventional rotating bands.

Description

United States Patent [191 Feldmann Jan. 22, 1974 ROTATING BAND FOR PROJECTILE Fritz K. Feldmann, Santa Barbara, Calif.

[73] Assignee: Pacific Technica Corporation, Santa Barbara, Calif.

[22] Filed: June 1, 1972 [21] Appl. No.: 258,558

[75] Inventor:

3,551,972 1/1971 Engel 102/93 X 3,452,677 7/1969 Abela 102/93 X 3,137,195 6/1964 Rosenberg, Jr. 102/93 X Primary Examiner-Robert F. Stahl [5 7] ABSTRACT The present invention relates to the use of plastics for rotating bands on projectiles fired from rifled gun barrels. The plastic band is injection molded into a circumferential channel provided in the projectile body. The cross section of the circumferential channel is designed such as to provide a tight gas seal between the plastic rotating band and the projectile body, to assure transfer of spin introduced by the rifling in the gun barrel and to secure the rotating band to the projectile after exit from the muzzle of the gun. The .portion of the plastic rotating band protruding beyond the projectile body engraves and is compressed into the rifling groove of the gun barrel, thus obturating the propellant gases and transmitting the spinning motion to the projectileThe plastic rotating band is lighter and costs less than conventional metallic rotating bands and is, in addition, a noncritical war material. F urthermore, its use yields better obturation and reduced barrel wear than is obtained with conventional rotating bands.

7 Claims, 6 Drawing: Figures PATENTEB JAN 2 2 i974 SHEET 2 'UF 2 ROTATING BAND FOR PROJECTILE BACKGROUND OF THE INVENTION I A spin stabilized projectile develops a spin or rotational motion about its longitudinal axis as the projectile moves through a gun barrel. The projectile carries a rotating band which is a ring-like member encircling the aft end of the bourrelet section of the projectile. The band protrudes circumferentially from the projectile body so to engage the rifling grooves of the gun barrel. During firing of the projectile, the rotating band engraves into the rifling grooves and imparts spin to the projectile according to the rifling twist as the projectile advances through the gun barrel. In order for the projectile to develop the desired spin the rotating band must not slip in the rifling grooves as through inadequate engraving and additionally the band must not slip with respect to the projectile body. Either condition will result in failure of the projectile to develop full spin. The action of the gas pressure during launch, inertial forces and frictional forces along the barrel wall will result in shear forces between the rotating band and the projectile body. The strength of the rotating band and of its attachment to the projectile body must be adequate to withstand the shear forces and to avoid unwanted slippage.

The rotating band must also perform as an obturator and prevent leakage of the powder gases between projectile body and barrel. Insufficient obturation will result in decreased muzzle velocity. Small leakages can lead to very high velocities of the escaping hot powder gases causing erosion of the barrel walls which is a major factor in reducing barrel life. Thus, the engraving of the rotating band with the rifling grooves of the barrel has to be complete for satisfactory obturation and remain that way during the entire travel of the projectile in the gun barrel.

Upon exit of the projectile from the muzzle, the rotating band must remain on the projectile. Disintegrating rotating bands represent a hazard to friendly troops and in the case of aircraft mounted guns may cause damage to aircraft components as through ingestion into the powerplant for instance. Unsymmetric deformation of the rotating band subsequent to muzzle exit will contribute to projectile dispersion and trajectory deviations.

The rotating band must perform theJunctions described above over the entire range of environmental military conditions, i.e., -65"F to 135F. The use of a noncritical war material for rotating bands is desirable.

Copper alloys and siiritered iroii are the conventional materials used for the manufacture of rotating bands. For some time the application of plastics as a rotating band material has been investigated, the primary advantages of plastics being light weight, low cost, and low barrel wear. So far the-design and employment of plastic rotating bands has not been fully successful for a variety of reasons.

One approach has been to secure a plastic rotating band to a metal projectile body by means of a bonding material such as an epoxy. There are numerous disadvantages in bonding for this particular application. The shear strength of a well-applied bond between a plastic and a metal surface is on the order of I,500 psi, depending on the specific adhesive and the materials to be bonded. This limited shear strength either requires a wide rotating band configuration or the use of multiple bands in order to transmit the shear forces acting between the rotating band and the projectile body. The use of wide or multiple rotating bands is undesirable since they induce an increase in aerodynamic drag of the projectile during flight.

A further disadvantage of bonding agents is their diminishing shear strength with time (aging resistance). In addition, experience indicates that bonds gradually weaken with age in atmospheres of high humidity. These characteristics limit the shelf life of the ammunition and adversely affect its immunity to adverse environmental conditions. These disadvantages are unacceptable for military applications.

Last, there are no valid inspection and quality control methods to assure the quality of a bond other than by destructive testing. This constitutes a severe handicap, particularly considering the high production rates in the manufacture of ammunition and the high reliability requirements for ammunition fired from automatic weapons.

SUMMARY OF THE INVENTION According to the present invention, a plastic rotating band is applied preferably by injection molding to a circumferential groove on the main projectile body. The width of of the plastic band is approximately 50 percent larger than that of conventional metal bands. The present invention provides a configuration for the circumferential groove in the projectile body. The circumferential groove for the plastic band contains a smooth cylindrical section at its rear portion. This section acts as the gas seal and prevents access of the high pressure propellant gases to the interface of the rotating band and the projectile body. Ahead of the gas seal the circumferential groove contains a knurled section which is required to transmit the rotational motion induced by the rifling grooves of the gun barrel to the projectile body without slippage. Access of high temperature and high pressure propellant gases to the knurled section such as would occur in the absence of the gas seal will result in an excessive deformation of the rotating band subsequent to emergence from the gun barrel, thus causing aerodynamic assymmetries and/or loss of the rotating band. The shoulders of the circumferential groove in the projectile body are dovetailed to strengthen the seat of the rotating band, thus preventing its disengagement upon exit from the gun barrel.

A ductile plastic such as a polycarbonate resin or a plastic of similar strength properties is used as band material. The physical properties required are such as to permit adequ'ate engraving of the rotating band with the rifling grooves of the barrel without fracturing the band, and also to provide sufiicient tensile strength to withstand the centrifugal loads imposed on the band by the high spin rate of the projectile.

The present invention can be applied to any spin stabilized projectile. The dimensions and detailed design depends on the particular projectile-gun configuration and the specific plastic material selection.

The plastic rotating band can be applied to projectiles manufactured of different metals, plastics, etc.

OBJECTS OF THE INVENTION It is an object of the present invention to provide a plastic rotating band which can be applied to any spin stabilized projectile fired from a rifle gun barrel. Another object is to provide for a plastic rotating band which can be fabricated from low cost, non-war critical materials, using efficient production methods. A further object of the present invention is to provide a low weight rotating band permitting an increase in payload or an increase in muzzle velocity of the projectile. A further object is to provide a rotating band having improved ductility and elasticity to yield superior propellant gas obturations to those obtainable with conventional metal rotating bands resulting in higher muzzle velocities for equal weight projectiles, propellant charges and maximum chamber pressures. A further object is the reduction of barrel wear through the use of plastic and thus the extention of the useful life of gun barrels.

DESCRIPTION OF THE DRAWING is shown in the accompanying drawing, forming a part of the specification, wherein:

FIG. 1 is a side elevation view partially in section of a projectile having a rotating band according to the present invention;

FIG. 2 is an enlarged view of the sectioned portion of FIG. 1;

FIG. 3 is a fragmentary plan view of a projectile showing the circumferential groove with the rotating band removed;

FIG. 4 is a section .view taken along line 4-4 of FIG. 2;

FIG. 5 is a section view showing a projectile within a gun barrel; and

FIG. 6 is a section view taken along line 6-6 of FIG. 5 showing the rotating band of the projectile engraved into the gun barrel rifling.

DETAILED DESGRIPTION OF THE INVENTION Referring to the drawing, a projectile 10 according to the present invention includes a projectile nose or ogive section 12 and a bourrelet section 14. A recessed groove 16 may be provided on the bourrelet section for crimping of the cartridge case (not shown) to the projectile for final assembly. The bourrelet section has a recessed, circumferentially extending groove 18 for receiving a rotating band 20. During launch, the rotating band serves as a gas seal to prevent escape of propelling gases past the projectile in the gun barrel 22 (FIG. 5) so that maximum propelling energy is delivered to the projectile. In addition, the rotating band engraves into the rifling grooves 24 of the gun barrel to impart spin to the projectile.

According to the present invention, the circumferential groove 18 in the projectile cooperates with the rotating band to provide a gas seal at the interface between the rotating band and the surface of the projectile at the base 26 of the groove so to prevent the escape of propelling gases past the interface. In addition the circumferential groove I8 cooperates with the rotating band to transmit spin without slippage to the projectile as the projectile moves and spins along the axis of the gun barrel.

As shown in the drawing, the groove 18 includes a generally channel form cross section extending circumferentially of the projectile and defining a generally cylindrical base 26 and upstanding shoulders 28, 30. Each shoulder inclines approximately 30 measured from the vertical to define confronting dovetail shoulders for retaining the rotating band. The cylindrical base 26 of the groove is smooth over its aft portion 26a. Preferably the smooth section 26a covers approximately one half the surface of the base 26. The provision of the smooth section 26a is essential in the use of plastic as rotating band material in order to form the gas seal at the interface between the rotating band and the projectile body. For projectiles having calibers from 20 to 30 millimeters, the width of the smooth cylindrical section 26a should be no less than 0.2 calibers. Ahead of the smooth portion is a knurled section 26b followed again by a shorter smooth portion 26c. Radii 32, 34 define the junctures of the cylindrical base portions 26a and 260 with the dovetailed shoulders 30 and 28 respectively. The width of the knurled section 26b is dimensioned such to assure the transmission of spin induced by the rifling to the projectile without slippage. Among other factors, this is a function of the rifling twist of the weapon and the axial moment of inertia of the projectile. The dovetailed shoulders 28 and 30 of the circumferential groove serve to contain the rotating band 20 after assembly and also during the flight of the projectile subsequent to emergence from the barrel. 7

The cylindrical section 20a of the exterior of the rotating band which protrudes beyond the diameter of the projectile body engages the rifling grooves 240 of the gun barrel 22 (FIGS. 5 and 6). The outside diameter of the cylindrical section of the rotating band is dimensioned such as to completely fill the rifling grooves upon emerging in the barrel, causing a compression of the band exceeding the compressive yield strength of the plastic as shown in FIGS. 5 and 6. The configuration of the rotating band protruding beyond the cylindrical main projectile body has a ramp 20b at its forward end with a ramp angle of approximately 20. This ramp assures a gradual initiation of engraving and is furthermore desirable for aerodynamic reasons during the flight of the projectile.

The rear end 20c of the band has a shoulder angle equal to the dovetail, i.e., approximately 30. The width of the cylindrical section of the rotating band is approximately 1.5 times the width of an equivalent metal rotating band for the same projectile.

' The compression of the rotating band is necessary to to satisfactorily obturate the high pressure powder gases. The engraving of the band takes place automatically upon firing and initial motion of the projectile into the rifled gun barrel. To accomplish the substantial deformation of the band during engraving without breakage, a ductile and elastic plastic such as a polycarbonate resin, nylon 12 or high density polyethylene, or equivalent is required. The physical properties of some applicable plastics are listed below:

(high density,- high molecular wt.)

The physical properties of these plastics are such that they can be employed successfully over a temperature range from 65F to 135F.

Plastics are subject to shrinkage subsequent to injection molding. The combination of post-molding shrinkage and surface tension causes a withdrawal of the plastic from the sharp concave corners 260 of the knurled section, thus leaving open channels through which high pressure gases could escape. Hence, the knurled section 26b does not in itself form an adequate gas seal. This phenomena is unique for plastics due to their inherent molding shrinkage and does not apply to conventional metal rotating band materials. Therefore in using plastic as a rotating band material the knurled section has to be backed up by a gas seal 26a. Over the smooth cylindrical section 26a, the post-molding shrinkage of the plastic causes a tightening of the plastic around the metal thus forming a very effective gas seal at the interface of rotating band and projectile. In order to prevent the withdrawal of the plastic from the intersection formed by the cylindrical sections and the dovetailed shoulders, the corners are suitably radiused at 32 and 34.

During flight the projectile is spinning at a rate determined by the rifling twist of the barrel and the muzzle velocity. For a millimeter gun having a rifling twist of 7 and a projectile fired at a muzzle velocity of 4,000 feet per second, for instance, the rate of spin is 2,375 revolutions per second. The resultant centrifugal forces acting on the plastic band induce a hoop stress with the tendency to expand the rotating band. The dovetailed shoulders of the circumferential groove prevent the expansion of the band and contain it in its original position.

What is claimed is:

1. A projectile, a groove extending circumferentially of the exterior of the projectile, said groove being re cessed below the surface of said projectile and having a generally cylindrical section extending circumferentially of projectile together with generally dovetailed fore and aft shoulder portions defining the sides of said groove, a plastic rotating band located in said groove and extending above the groove surface beyond the diameter of said projectile to engage gun rifling to obturate the propellant gases and to impart spin to the projectile during launch, said cylindrical section having a smooth aft surface covering approximately one half of said cylindrical section, a knurled portion located fow ardly of said aft surface, and a shorter smooth surface located forwardly of the knurled surface.

2. A projectile according to claim 1 in which said rotating band comprises an injection molded plastic.

3. A projectile according to claim 1 in which said ro tating band comprises injection molded nylon 12.

4. A projectile according to claim 1 in which said ro tating band comprises an injection molded high density polyethylene.

5. A projectile according to claim 1 in which said rotating band comprises an injection molded polycarbon ate.

6. A projectile according to claim 1 in which said rotating band comprises an injection moldable plastic having an elastic modulus of not less than 1 X 10 psi, a tensile strength of not less than 5,400 psi and an IZOD impact strength (notched) of not less than 4 pounds per inch.

7. A projectile according to claim 1 in which said rotaing band comprises a ductile, elastic plastic having a density of 0.043 pounds per cubic inch, a modulus of elasticity of 34 X 10 psi, and tensile strength of 8,500

psl.

Claims (7)

1. A projectile, a groove extending circumferentially of the exterior of the projectile, said groove being recessed below the surface of said projectile and having a generally cylindrical section extending circumferentially of projectile together with generally dovetailed fore and aft shoulder portions defining the sides of said groove, a plastic rotating band located in said groove and extending above the groove surface beyond the diameter of said projectile to engage gun rifling to obturate the propellant gases and to impart spin to the projectile during launch, said cylindrical section having a smooth aft surface covering approximately one half of said cylindrical section, a knurled portion located fowardly of said aft surface, and a shorter smooth surface located forwardly of the knurled surface.
2. A projectile according to claim 1 in which said rotating band comprises an injection molded plastic.
3. A projectile according to claim 1 in which said rotating band comprises injection molded nylon 12.
4. A projectile according to claim 1 in which said rotating band comprises an injection molded high density polyethylene.
5. A projectile according to claim 1 in which said rotating band comprises an injection molded polycarbonate.
6. A projectile according to claim 1 in which said rotating band comprises an injection moldable plastic having an elastic modulus of not less than 1 X 105 psi, a tensile strength of not less than 5,400 psi and an IZOD impact strength (notched) of not less than 4 pounds per inch.
7. A projectile according to claim 1 in which said rotaing band comprises a ductile, elastic plastic having a density of 0.043 pounds per cubic inch, a modulus of elasticity of 34 X 105 psi, and tensile strength of 8,500 psi.
US3786760D 1972-06-01 1972-06-01 Rotating band for projectile Expired - Lifetime US3786760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US25855872A true 1972-06-01 1972-06-01

Publications (1)

Publication Number Publication Date
US3786760A true US3786760A (en) 1974-01-22

Family

ID=22981097

Family Applications (1)

Application Number Title Priority Date Filing Date
US3786760D Expired - Lifetime US3786760A (en) 1972-06-01 1972-06-01 Rotating band for projectile

Country Status (1)

Country Link
US (1) US3786760A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108074A (en) * 1977-04-27 1978-08-22 Avco Corporation Frangible target practice projectile
US4242961A (en) * 1978-10-23 1981-01-06 Martin Marietta Corporation Chevron grooved decoupling obturator
EP0027552A1 (en) * 1979-10-17 1981-04-29 Rheinmetall GmbH Process for producing a slip-obturator band and projectiles provided with such a band
FR2512540A1 (en) * 1981-09-09 1983-03-11 Bofors Ab Exercise ammunition for canon
US4385561A (en) * 1981-02-02 1983-05-31 The United States Of America As Represented By The Secretary Of The Army Launch tube bore rider
FR2526153A1 (en) * 1980-06-11 1983-11-04 Saint Louis Inst Sub-calibre projectile with propelling ring - comprising outer deformable plastics cylinder and inner metal cone
US4444113A (en) * 1981-04-06 1984-04-24 The United States Of America As Represented By The Secretary Of The Army High-pressure self-sealing obturator in sabot discard projectile
US4470604A (en) * 1977-12-12 1984-09-11 Hoffmann Anton R Target practice system
EP0236705A1 (en) * 1986-03-07 1987-09-16 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Connection between the casing and the bottom of a sabot for a subcalibre projectile
US4970960A (en) * 1980-11-05 1990-11-20 Feldmann Fritz K Anti-material projectile
US4991513A (en) * 1990-03-12 1991-02-12 The United States Of America As Represented By The Secretary Of The Navy Carrier projectile with safety vents
DE4000167A1 (en) * 1990-01-05 1991-07-11 Rheinmetall Gmbh Swirl-stabilized shelter floor with a metal guide tape
US6062168A (en) * 1998-09-24 2000-05-16 Host; Douglas R. Sanitary refuse and animal dung collection valet
US6295934B1 (en) 1999-06-29 2001-10-02 Raytheon Company Mid-body obturator for a gun-launched projectile
US6305293B1 (en) * 1998-04-14 2001-10-23 Laser Ii, Llc Multiple-component projectile with non-discarding sabot sleeve
US6369373B1 (en) 1999-06-29 2002-04-09 Raytheon Company Ramming brake for gun-launched projectiles
US6453821B1 (en) * 1999-06-29 2002-09-24 Raytheon Company High-temperature obturator for a gun-launched projectile
US6505561B1 (en) * 2001-04-25 2003-01-14 Raytheon Company Method and apparatus for inducing rotation of a dispensed payload from non-spin projectiles
US6820556B1 (en) * 2001-11-21 2004-11-23 Daicel Chemical Industries, Ltd. Initiator assembly
US20060027128A1 (en) * 2004-02-10 2006-02-09 Hober Holding Company Firearms projectile having jacket runner
US20060123684A1 (en) * 2001-03-13 2006-06-15 Bunney Robert F Apparatus
CN100397027C (en) * 2001-11-21 2008-06-25 大赛璐化学工业株式会社 Initiator assembly
DE102010006164A1 (en) * 2010-01-29 2011-08-04 Lödding, Jutta, 31275 Bullet for shot guns, has nose into which ambient air enters with high speed, where escaping air obtains left handed twist and bullet, as counter-pulse, obtains right handed twist
US9689649B1 (en) * 2014-08-20 2017-06-27 The United States Of America As Represented By The Secretary Of The Army Obturator for 105MM projectile
US9702677B2 (en) * 2015-04-27 2017-07-11 Basic Electronics, Inc. Ammunition for providing a multilayer flowering upon impact
US9846017B1 (en) * 2014-04-17 2017-12-19 The United States Of America As Represented By The Secretary Of The Army High pressure obturators and method of making
EP3187817A4 (en) * 2014-08-26 2018-07-25 Andrey Albertovich Polovnev Bullet for small arms weapon
US20180364017A1 (en) * 2015-10-21 2018-12-20 Vista Outdoor Operations Llc Reduced drag projectiles
RU2704693C1 (en) * 2019-02-06 2019-10-30 Акционерное общество "Научно-производственное объединение "Прибор" Method of fixing plastic driving band
US10598472B2 (en) * 2016-12-07 2020-03-24 Russell LeBlanc Frangible projectile and method of manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137195A (en) * 1961-11-20 1964-06-16 American Internat Tool Corp Centering and guiding means for metal studs
US3216356A (en) * 1964-01-30 1965-11-09 Jr William F Kaufmann Projectile
US3452677A (en) * 1967-03-14 1969-07-01 Michael F Abela Cartridge having a composite,spinning projectile
US3460478A (en) * 1964-10-24 1969-08-12 Rheinmetall Gmbh Projectile with sintered metal driving band
US3551972A (en) * 1967-07-24 1971-01-05 Oerlikon Buehrle Holding Ag Method of manufactring a sabot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137195A (en) * 1961-11-20 1964-06-16 American Internat Tool Corp Centering and guiding means for metal studs
US3216356A (en) * 1964-01-30 1965-11-09 Jr William F Kaufmann Projectile
US3460478A (en) * 1964-10-24 1969-08-12 Rheinmetall Gmbh Projectile with sintered metal driving band
US3452677A (en) * 1967-03-14 1969-07-01 Michael F Abela Cartridge having a composite,spinning projectile
US3551972A (en) * 1967-07-24 1971-01-05 Oerlikon Buehrle Holding Ag Method of manufactring a sabot

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108074A (en) * 1977-04-27 1978-08-22 Avco Corporation Frangible target practice projectile
US4470604A (en) * 1977-12-12 1984-09-11 Hoffmann Anton R Target practice system
WO1981003697A1 (en) * 1978-10-23 1981-12-24 Martin Marietta Corp Chevron grooved decoupling obturator
US4242961A (en) * 1978-10-23 1981-01-06 Martin Marietta Corporation Chevron grooved decoupling obturator
EP0027552A1 (en) * 1979-10-17 1981-04-29 Rheinmetall GmbH Process for producing a slip-obturator band and projectiles provided with such a band
US4444712A (en) * 1979-10-17 1984-04-24 Rheinmetall Gmbh Process for the production of sliding-through guide bands
FR2526153A1 (en) * 1980-06-11 1983-11-04 Saint Louis Inst Sub-calibre projectile with propelling ring - comprising outer deformable plastics cylinder and inner metal cone
US4970960A (en) * 1980-11-05 1990-11-20 Feldmann Fritz K Anti-material projectile
US4385561A (en) * 1981-02-02 1983-05-31 The United States Of America As Represented By The Secretary Of The Army Launch tube bore rider
US4444113A (en) * 1981-04-06 1984-04-24 The United States Of America As Represented By The Secretary Of The Army High-pressure self-sealing obturator in sabot discard projectile
FR2512540A1 (en) * 1981-09-09 1983-03-11 Bofors Ab Exercise ammunition for canon
US4726298A (en) * 1986-03-07 1988-02-23 Werkzeugmaschinenfabrik Oerlikon-Buhrle Connection between the casing and the rear part of a sabot for projectile
EP0236705A1 (en) * 1986-03-07 1987-09-16 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Connection between the casing and the bottom of a sabot for a subcalibre projectile
DE4000167A1 (en) * 1990-01-05 1991-07-11 Rheinmetall Gmbh Swirl-stabilized shelter floor with a metal guide tape
US5081931A (en) * 1990-01-05 1992-01-21 Rheinmetall Gmbh Spin stabilized carrier projectile provided with a metal driving band
US4991513A (en) * 1990-03-12 1991-02-12 The United States Of America As Represented By The Secretary Of The Navy Carrier projectile with safety vents
US6305293B1 (en) * 1998-04-14 2001-10-23 Laser Ii, Llc Multiple-component projectile with non-discarding sabot sleeve
US6062168A (en) * 1998-09-24 2000-05-16 Host; Douglas R. Sanitary refuse and animal dung collection valet
US6453821B1 (en) * 1999-06-29 2002-09-24 Raytheon Company High-temperature obturator for a gun-launched projectile
US6369373B1 (en) 1999-06-29 2002-04-09 Raytheon Company Ramming brake for gun-launched projectiles
US6295934B1 (en) 1999-06-29 2001-10-02 Raytheon Company Mid-body obturator for a gun-launched projectile
US20060123684A1 (en) * 2001-03-13 2006-06-15 Bunney Robert F Apparatus
US6505561B1 (en) * 2001-04-25 2003-01-14 Raytheon Company Method and apparatus for inducing rotation of a dispensed payload from non-spin projectiles
CN100397027C (en) * 2001-11-21 2008-06-25 大赛璐化学工业株式会社 Initiator assembly
US6820556B1 (en) * 2001-11-21 2004-11-23 Daicel Chemical Industries, Ltd. Initiator assembly
US20060027128A1 (en) * 2004-02-10 2006-02-09 Hober Holding Company Firearms projectile having jacket runner
DE102010006164B4 (en) * 2010-01-29 2012-04-05 Jutta Lödding bullet
DE102010006164A1 (en) * 2010-01-29 2011-08-04 Lödding, Jutta, 31275 Bullet for shot guns, has nose into which ambient air enters with high speed, where escaping air obtains left handed twist and bullet, as counter-pulse, obtains right handed twist
US9846017B1 (en) * 2014-04-17 2017-12-19 The United States Of America As Represented By The Secretary Of The Army High pressure obturators and method of making
US9689649B1 (en) * 2014-08-20 2017-06-27 The United States Of America As Represented By The Secretary Of The Army Obturator for 105MM projectile
EP3187817A4 (en) * 2014-08-26 2018-07-25 Andrey Albertovich Polovnev Bullet for small arms weapon
US9702677B2 (en) * 2015-04-27 2017-07-11 Basic Electronics, Inc. Ammunition for providing a multilayer flowering upon impact
US20180364017A1 (en) * 2015-10-21 2018-12-20 Vista Outdoor Operations Llc Reduced drag projectiles
US10598472B2 (en) * 2016-12-07 2020-03-24 Russell LeBlanc Frangible projectile and method of manufacture
RU2704693C1 (en) * 2019-02-06 2019-10-30 Акционерное общество "Научно-производственное объединение "Прибор" Method of fixing plastic driving band

Similar Documents

Publication Publication Date Title
US9513092B2 (en) Cartridge and bullet with controlled expansion
US5259288A (en) Pressure regulating composite cartridge
CN1033603C (en) Reduce energy cartrige
US3842739A (en) Metallic mouth for a plastic cartridge case
US5033386A (en) Composite cartridge for high velocity rifles and the like
US4284008A (en) Double ramp discarding sabot
US6799519B2 (en) Sabot for a bullet
US4036140A (en) Ammunition
ES2273375T3 (en) Project or fighting head.
US3935816A (en) Construction for cartridge
EP1338860B1 (en) Method for manufacturing a big calibre high explosive projectile and projectile manufactured by this method
CA1278952C (en) Ammunition round
US3738279A (en) Sabot for sub-calibre projectile
EP2801784B1 (en) A projectile
US7021219B1 (en) Non-lethal telescoping cartridge
US6748870B2 (en) Ammunition round assembly with combustible cartridge case
EP1728043B1 (en) Hunting bullet comprising an expansion ring
US5265540A (en) Ammunition, in particular of the telescoped type
US4005660A (en) Projectiles for air arms
US3485170A (en) Expendable case ammunition
US4301736A (en) Supersonic, low drag tubular projectile
US5677505A (en) Reduced energy cartridge
US3164092A (en) Ammunition sabot
US6234082B1 (en) Large-caliber long-range field artillery projectile
US3865038A (en) Deterrent ammunition projectile